151
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
152
|
Mexhitaj I, Lim N, Fernandez-Velasco JI, Zrzavy T, Harris KM, Muraro PA, Villar LM, Bar-Or A, Cooney LA. Stabilization of leukocytes from cerebrospinal fluid for central immunophenotypic evaluation in multicenter clinical trials. J Immunol Methods 2022; 510:113344. [PMID: 36041516 DOI: 10.1016/j.jim.2022.113344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 12/31/2022]
Abstract
Analysis of cerebrospinal fluid (CSF) represents a valuable window into the pathogenesis of neuroinflammatory diseases, such as multiple sclerosis (MS). However, analysis of the cellular fraction of CSF is often neglected because CSF cells die rapidly ex vivo. Immunophenotyping of CSF cells in multicenter clinical trials requires sample preservation and shipping to a centralized lab. Yet, there is no consensus on the best method to preserve intact CSF cells and no detailed evaluation of subset-specific cell loss. We used flow cytometry to compare major leukocyte populations in fresh CSF (processed within 2 h) to cells fixed for 48 h with TransFix-EDTA® or cryopreserved and thawed after 96 h. We observed a statistically significant loss of total mononuclear cells, total T cells, CD3+ CD8- T cells, and CD3+ CD8+ T cells after cryopreservation compared to fresh or fixed (p < 0.001), with no significant difference between fresh and fixed. Thus, our results demonstrate that TransFix-EDTA® was superior to cryopreservation for preserving intact CSF T cells. Surprisingly, neither cryopreservation nor fixation had a significant effect on recovery of low frequency cell subsets in CSF, including B cells, NK cells, NKT-like cells, CD14+ monocytes, or CD123+ DCs, versus fresh CSF. To determine the effect of prolonged fixation on cell recovery, we analyzed major CSF cell subsets by flow cytometry after 24, 48, or 72 h of fixation with TransFix-EDTA®. We observed a consistent and progressive loss in the absolute counts of all subsets over time, although this effect was not statistically significant. We conclude that for immunophenotyping of major CSF cell subsets by flow cytometry, fixation with TransFix-EDTA®, shipment to a central lab, and analysis within 48 h is a feasible method to ensure stability of both absolute cell number and relative frequency. This method is a valuable alternative to fresh CSF analysis and can be implemented in multicenter clinical trials.
Collapse
Affiliation(s)
- Ina Mexhitaj
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Noha Lim
- Immune Tolerance Network, Bethesda, MD, USA
| | | | - Tobias Zrzavy
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Paolo A Muraro
- Department of Brain Sciences, Imperial College London, London, UK
| | - Luisa M Villar
- Department of Immunology, Hospital Ramón y Cajal, Madrid, Spain
| | - Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics and the Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | |
Collapse
|
153
|
Arneth B, Kraus J. The Use of Kappa Free Light Chains to Diagnose Multiple Sclerosis. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1512. [PMID: 36363469 PMCID: PMC9698214 DOI: 10.3390/medicina58111512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/10/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Background: The positive implications of using free light chains in diagnosing multiple sclerosis have increasingly gained considerable interest in medical research and the scientific community. It is often presumed that free light chains, particularly kappa and lambda free light chains, are of practical use and are associated with a higher probability of obtaining positive results compared to oligoclonal bands. The primary purpose of the current paper was to conduct a systematic review to assess the up-to-date methods for diagnosing multiple sclerosis using kappa and lambda free light chains. Method: An organized literature search was performed across four electronic sources, including Google Scholar, Web of Science, Embase, and MEDLINE. The sources analyzed in this systematic review and meta-analysis comprise randomized clinical trials, prospective cohort studies, retrospective studies, controlled clinical trials, and systematic reviews. Results: The review contains 116 reports that includes 1204 participants. The final selection includes a vast array of preexisting literature concerning the study topic: 35 randomized clinical trials, 21 prospective cohort studies, 19 retrospective studies, 22 controlled clinical trials, and 13 systematic reviews. Discussion: The incorporated literature sources provided integral insights into the benefits of free light chain diagnostics for multiple sclerosis. It was also evident that the use of free light chains in the diagnosis of clinically isolated syndrome (CIS) and multiple sclerosis is relatively fast and inexpensive in comparison to other conventional state-of-the-art diagnostic methods, e.g., using oligoclonal bands (OCBs).
Collapse
Affiliation(s)
- Borros Arneth
- Institute of Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Justus Liebig University, Feulgenstr. 12, 35392 Giessen, Germany
| | - Jörg Kraus
- Department of Laboratory Medicine, Paracelsus Medical University and Salzburger Landeskliniken, Strubergasse 21, 5020 Salzburg, Austria
- Department of Neurology, Medical Faculty, Heinrich-Heine-University Düsseldorf, Bergische Landstraße 2, 40629 Düsseldorf, Germany
| |
Collapse
|
154
|
Rival M, Thouvenot E, Du Trieu de Terdonck L, Laurent-Chabalier S, Demattei C, Uygunoglu U, Castelnovo G, Cohen M, Okuda DT, Kantarci OH, Pelletier D, Azevedo C, Marin P, Lehmann S, Siva A, Mura T, Lebrun-Frenay C. Neurofilament Light Chain Levels Are Predictive of Clinical Conversion in Radiologically Isolated Syndrome. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200044. [PMID: 36280258 PMCID: PMC9621336 DOI: 10.1212/nxi.0000000000200044] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES To evaluate the predictive value of serum neurofilament light chain (sNfL) and CSF NfL (cNfL) in patients with radiologically isolated syndrome (RIS) for evidence of disease activity (EDA) and clinical conversion (CC). METHODS sNfL and cNfL were measured at RIS diagnosis by single-molecule array (Simoa). The risk of EDA and CC according to sNfL and cNfL was evaluated using the Kaplan-Meier analysis and multivariate Cox regression models including age, spinal cord (SC) or infratentorial lesions, oligoclonal bands, CSF chitinase 3-like protein 1, and CSF white blood cells. RESULTS Sixty-one patients with RIS were included. At diagnosis, sNfL and cNfL were correlated (Spearman r = 0.78, p < 0.001). During follow-up, 47 patients with RIS showed EDA and 36 patients showed CC (median time 12.6 months, 1-86). When compared with low levels, medium and high cNfL (>260 pg/mL) and sNfL (>5.0 pg/mL) levels were predictive of EDA (log rank, p < 0.01 and p = 0.02, respectively). Medium-high cNfL levels were predictive of CC (log rank, p < 0.01). In Cox regression models, cNfL and sNfL were independent factors of EDA, while SC lesions, cNfL, and sNfL were independent factors of CC. DISCUSSION cNfL >260 pg/mL and sNfL >5.0 pg/mL at diagnosis are independent predictive factors of EDA and CC in RIS. Although cNfL predicts disease activity better, sNfL is more accessible than cNfL and can be considered when a lumbar puncture is not performed. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in people with radiologic isolated syndrome (RIS), initial serum and CSF NfL levels are associated with subsequent evidence of disease activity or clinical conversion.
Collapse
Affiliation(s)
- Manon Rival
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Eric Thouvenot
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France.
| | - Lucile Du Trieu de Terdonck
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Sabine Laurent-Chabalier
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christophe Demattei
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Ugur Uygunoglu
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Giovanni Castelnovo
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Mikael Cohen
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Darin T Okuda
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Orhun H Kantarci
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Daniel Pelletier
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christina Azevedo
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Philippe Marin
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Sylvain Lehmann
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Aksel Siva
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Thibault Mura
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christine Lebrun-Frenay
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| |
Collapse
|
155
|
Vermunt L, Otte M, Verberk IMW, Killestein J, Lemstra AW, van der Flier WM, Pijnenburg YAL, Vijverberg EGB, Bouwman FH, Gravesteijn G, van de Berg WDJ, Scheltens P, van Harten AC, Willemse EAJ, Teunissen CE. Age- and disease-specific reference values for neurofilament light presented in an online interactive support interface. Ann Clin Transl Neurol 2022; 9:1832-1837. [PMID: 36196979 DOI: 10.1002/acn3.51676] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/07/2022] Open
Abstract
Interpretation of axonal damage biomarker Neurofilament Light chain (NfL) concentrations is difficult due to the lack of age-specific and disease-specific reference values. We here developed an interactive interface to support interpretation of NfL results in human body fluids. We used NfL values of 1698 individuals without a neurological disorder, aged 19-85 years, and patients with MS and dementias. Percentile regression estimates per diagnosis populate interactive graphs, alongside NfL background information (available on: https://mybiomarkers.shinyapps.io/Neurofilament). This accessible interface provides reference for interpretation of the individual patient results for clinicians. It showcases an adaptable method to support interpretation of age-dependent biomarkers in neurology.
Collapse
Affiliation(s)
- Lisa Vermunt
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Marco Otte
- Network Institute Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Inge M W Verberk
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology and Data Science, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Femke H Bouwman
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Gido Gravesteijn
- Department of Clinical Genetics and Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Wilma D J van de Berg
- Clinical Neuroanatomy and Biobanking, department of Anatomy and Neurosciences, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Life Science Partners (LSP), Amsterdam, The Netherlands
| | - Argonde C van Harten
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Eline A J Willemse
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
156
|
Neuroinflammatory Biomarkers in Cerebrospinal Fluid From 106 Patients With Recent-Onset Depression Compared With 106 Individually Matched Healthy Control Subjects. Biol Psychiatry 2022; 92:563-572. [PMID: 35659385 DOI: 10.1016/j.biopsych.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/01/2022] [Accepted: 04/01/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Neuroinflammation has been linked to depression; however, neuroinflammatory biomarkers in the cerebrospinal fluid (CSF) have not previously been thoroughly investigated in a large group of patients with recent-onset depression compared with healthy control subjects. METHODS We conducted an individually matched case-control study comparing patients with recent-onset depression (ICD-10: F32) to control subjects. Primary outcomes were CSF white cell count (WCC), CSF-to-serum albumin ratio, CSF total protein, and immunoglobulin G (IgG) index. Secondary outcomes were CSF WCC differential count and CSF neutrophil-to-lymphocyte, CSF-to-serum IgG, and CSF-to-plasma glucose ratios. Linear models adjusting for sex and age were applied. RESULTS We included 106 patients with recent-onset depression (84.0% outpatients) and 106 healthy control subjects. Patients had 18% higher CSF WCC relative to control subjects (relative mean difference [MD]: 1.18; 95% CI: 1.02-1.40; p = .025). CSF WCC differed with depression symptomatology (p = .034), and patients with severe depression (n = 29) had 43% higher CSF WCC relative to control subjects (MD: 1.43; 95% CI: 1.13-1.80, p = .003). Two (1.9%) patients and no controls (0.0%) had CSF WCC above the normal range (>5 × 106/L). No significant differences between groups were observed regarding CSF-to-serum albumin ratio (MD: 1.07; 95% CI: 0.97-1.18; p = .191), CSF total protein (MD: 1.01; 95% CI: 0.94-1.09; p = .775), or IgG index (MD: 1.05; 95% CI: 0.97-1.15; p = .235). Regarding secondary outcomes, the proportion of CSF neutrophils was lower among patients (MD: 0.22; 95% CI: 0.08-0.59; p = .003) relative to control subjects, whereas the remaining outcomes were not significantly different (all p > .06). CONCLUSIONS Patients had higher CSF WCC relative to control subjects, indicating increased neuroimmunologic activation, particularly for severe depression.
Collapse
|
157
|
Mackmull MT, Nagel L, Sesterhenn F, Muntel J, Grossbach J, Stalder P, Bruderer R, Reiter L, van de Berg WDJ, de Souza N, Beyer A, Picotti P. Global, in situ analysis of the structural proteome in individuals with Parkinson's disease to identify a new class of biomarker. Nat Struct Mol Biol 2022; 29:978-989. [PMID: 36224378 DOI: 10.1038/s41594-022-00837-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/18/2022] [Indexed: 12/23/2022]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disease for which robust biomarkers are needed. Because protein structure reflects function, we tested whether global, in situ analysis of protein structural changes provides insight into PD pathophysiology and could inform a new concept of structural disease biomarkers. Using limited proteolysis-mass spectrometry (LiP-MS), we identified 76 structurally altered proteins in cerebrospinal fluid (CSF) of individuals with PD relative to healthy donors. These proteins were enriched in processes misregulated in PD, and some proteins also showed structural changes in PD brain samples. CSF protein structural information outperformed abundance information in discriminating between healthy participants and those with PD and improved the discriminatory performance of CSF measures of the hallmark PD protein α-synuclein. We also present the first analysis of inter-individual variability of a structural proteome in healthy individuals, identifying biophysical features of variable protein regions. Although independent validation is needed, our data suggest that global analyses of the human structural proteome will guide the development of novel structural biomarkers of disease and enable hypothesis generation about underlying disease processes.
Collapse
Affiliation(s)
- Marie-Therese Mackmull
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Luise Nagel
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Fabian Sesterhenn
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | - Jan Grossbach
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Patrick Stalder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | | | | | - Wilma D J van de Berg
- Amsterdam UMC location Vrije Universiteit Amsterdam, Section Clinical Neuroanatomy and Biobanking, Department Anatomy and Neurosciences, Amsterdam, the Netherlands.,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, the Netherlands
| | - Natalie de Souza
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.,Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Andreas Beyer
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany. .,Faculty of Medicine and University Hospital of Cologne, and Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany. .,Institute for Genetics, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany.
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
158
|
Umemura Y, Khan B, Weill BJ, Buthorn JJ, Skakodub A, Ridder AJ, Nevel KS, Sun Y, Boire A. Discordance Between Perceptions and Experience of Lumbar Puncture: A Prospective Study. Neurol Clin Pract 2022; 12:344-351. [PMID: 36380890 PMCID: PMC9647808 DOI: 10.1212/cpj.0000000000200061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/26/2022] [Indexed: 01/13/2023]
Abstract
Background and Objectives Novel diagnostic techniques and neurologic biomarkers have greatly expanded clinical indications for CSF studies. CSF is most commonly obtained via lumbar puncture (LP). Although it is generally believed that LPs are well tolerated, there is a lack of supportive data for this claim, and patients anticipate LP to be painful. The objective of this study was to prospectively investigate discordance between patient perception and tolerability of LP. Methods Adult patients were surveyed before and after LP regarding their perceptions and experience of LP. Physician perceptions were gathered through a web-based survey. Relative risk and Spearman correlation were used to assess the relationship between responses. Paired binomial and paired ordinal responses were compared by McNemar and paired Wilcoxon rank-sum tests. Results A total of 178 patients completed the surveys. About half of the patients (58%) reported anxiety pre-LP, at median 3.0 of 10. Physicians overpredicted patients' pre-LP anxiety (median score 5.0, p < 0.001). Experienced pain was significantly less than predicted pain (median scores 0 and 3.0, respectively, p < 0.001). Patients who predicted pain were more likely to report pain from LP (relative risk [RR] 1.3). Predicting pain was also correlated with anxiety before LP (p < 0.001). Discussion LP was generally well tolerated. The majority of patients experienced minimal pain. Anticipation of pain was correlated with both feeling anxious and experiencing pain. The results of this study can be used to reassure patients and providers that LP is indeed not as painful as imagined, which may both reduce pre-LP anxiety and improve LP tolerability.
Collapse
Affiliation(s)
- Yoshie Umemura
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Baber Khan
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Benjamin J Weill
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Justin J Buthorn
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Anna Skakodub
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Andrew J Ridder
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Kathryn S Nevel
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Yilun Sun
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| | - Adrienne Boire
- Departments of Neurology (YU, BK, AJR, YS), and Radiation Oncology and Biostatistics (YS), University of Michigan, Ann Arbor; and Human Oncology and Pathogenesis Program (BJW, JJB, AS, KSN), Brain Tumor Center and Department of Neurology (AB), Memorial Sloan Kettering Cancer Center, New York
| |
Collapse
|
159
|
Thanapornsangsuth P, Ongphichetmetha T, Luechaipanit W, Hemachudha P, Hemachudha T. Elevation of plasma phosphorylated tau181 during neurological illnesses affecting consciousness and kidney dysfunction. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12358. [PMID: 36204656 PMCID: PMC9523798 DOI: 10.1002/dad2.12358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/27/2022]
Abstract
Introduction Phosphorylated tau (p-tau)181 has become a promising blood-based Alzheimer's disease (AD) biomarker. We studied the agreement of plasma p-tau181 and cerebrospinal fluid (CSF) markers in patients with alteration of consciousness (AOC). Methods Plasma and CSF were simultaneously collected in participants presenting with AOC. Plasma p-tau181 was measured using the single-molecule array. CSF biomarkers were classified according to the amyloid/tau/neurodegeneration (AT[N]) framework. Results Among participants enrolled, the median (interquartile range) age was 57 (28.5-75) years and 5.8% had AD. Plasma p-tau181 yielded area under the curve of 0.85 and showed moderate correlation with CSF p-tau181 (Rho = 0.42, P < .001). Using the historical cut-point, many non-AD participants had elevated plasma p-tau181 resulting in a specificity of 0.57. Plasma p-tau181 correlated with the glomerular filtration rate (Rho = -0.52, P < .001). Among A- participants with elevated plasma p-tau181, 42% had kidney dysfunction. Discussion Plasma p-tau181 showed inadequate specificity in patients with AOC partially attributable to concomitant kidney dysfunction.
Collapse
Affiliation(s)
- Poosanu Thanapornsangsuth
- Thai Red Cross Emerging Infectious Diseases Health Science CentreWorld Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
- Division of NeurologyDepartment of MedicineFaculty of MedicineChulalongkorn UniversityBangkok10330Thailand
| | - Tatchaporn Ongphichetmetha
- Division of NeurologyDepartment of MedicineFaculty of MedicineChulalongkorn UniversityBangkok10330Thailand
| | - Watayuth Luechaipanit
- Thai Red Cross Emerging Infectious Diseases Health Science CentreWorld Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
| | - Pasin Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science CentreWorld Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
- Division of NeurologyDepartment of MedicineFaculty of MedicineChulalongkorn UniversityBangkok10330Thailand
| | - Thiravat Hemachudha
- Thai Red Cross Emerging Infectious Diseases Health Science CentreWorld Health Organization Collaborating Centre for Research and Training on Viral ZoonosesKing Chulalongkorn Memorial Hospital The Thai Red Cross SocietyBangkokThailand
- Division of NeurologyDepartment of MedicineFaculty of MedicineChulalongkorn UniversityBangkok10330Thailand
| |
Collapse
|
160
|
Arslan B, Ayhan Arslan G, Tuncer A, Karabudak R, Sepici Dinçel A. Evaluation of cerebrospinal fluid neurofilament light chain levels in multiple sclerosis and non-demyelinating diseases of the central nervous system: clinical and biochemical perspective. Bosn J Basic Med Sci 2022; 22:699-706. [PMID: 35490364 PMCID: PMC9519158 DOI: 10.17305/bjbms.2021.7326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The neurofilament light chain (NfL) is a promising biomarker in the diagnosis, prognosis, and treatment response evaluation of neurological diseases. The aims of this study were to compare the cerebrospinal fluid (CSF) NfL levels in multiple sclerosis (MS) and certain non-demyelinating diseases of the central nervous system (NDCNS); to determine the relationship between clinical and radiological features and CSF NfL levels in patients with MS; and to compare the enzyme-linked immunosorbent assay (ELISA) and single molecule array (SIMOA) methods for NfL measurement using paired CSF and serum samples. We retrospectively analyzed the clinical data and performed NfL measurements in CSF and serum samples of newly diagnosed and treatment-naive patients with CNS diseases evaluated between 1 January 2019 and 1 January 2020. Eligible patients were divided into three groups: MS (n=23), differential diagnosis of MS (n=19), and NDCNS (n=42). First, we compared the CSF NfL levels among the three groups using the previously validated CSF ELISA assay. Next, we evaluated the relationship between CSF NfL levels and the clinical and radiological findings in MS group. Finally, we compared CSF and serum samples from patients of the MS groups (paired serum and CSF samples, n=19) using two different methods (ELISA and SIMOA). The CSF NfL level was the highest in the NDCNS group (1169.64 [535.92-5120.11] pg/mL, p=0.025). There was a strong positive correlation between the number of T2 lesions and CSF NfL level (r=0.786, p<0.001) in the MS group. There was excellent consistency between ELISA and SIMOA for CSF samples, but not for serum samples. Our results indicated that CSF NfL levels may also be used in the management of NDCNS and that SIMOA is the most reliable method for serum NfL determination.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey; Department of Medical Biochemistry, Erciş State Hospital, Van, Turkey
| | | | - Aslı Tuncer
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rana Karabudak
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Aylin Sepici Dinçel
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
161
|
Mank A, Rijnhart JJM, van Maurik IS, Jönsson L, Handels R, Bakker ED, Teunissen CE, van Berckel BNM, van Harten AC, Berkhof J, van der Flier WM. A longitudinal study on quality of life along the spectrum of Alzheimer's disease. Alzheimers Res Ther 2022; 14:132. [PMID: 36109800 PMCID: PMC9476356 DOI: 10.1186/s13195-022-01075-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Quality of life (QoL) is an important outcome from the perspective of patients and their caregivers, in both dementia and pre-dementia stages. Yet, little is known about the long-term changes in QoL over time. We aimed to compare the trajectories of QoL between amyloid-positive and amyloid-negative SCD or MCI patients and to evaluate QoL trajectories along the Alzheimer's disease (AD) continuum of cognitively normal to dementia. METHODS We included longitudinal data of 447 subjective cognitive decline (SCD), 276 mild cognitive impairment (MCI), and 417 AD dementia patients from the Amsterdam Dementia Cohort. We compared QoL trajectories (EQ-5D and visual analog scale (VAS)) between (1) amyloid-positive and amyloid-negative SCD or MCI patients and (2) amyloid-positive SCD, MCI, and dementia patients with linear mixed-effect models. The models were adjusted for age, sex, Charlson Comorbidity Index (CCI), education, and EQ-5D scale (3 or 5 level). RESULTS In SCD, amyloid-positive participants had a higher VAS at baseline but showed a steeper decline over time in EQ-5D and VAS than amyloid-negative participants. Also, in MCI, amyloid-positive patients had higher QoL at baseline but subsequently showed a steeper decline in QoL over time compared to amyloid-negative patients. When we compared amyloid-positive patients along the Alzheimer continuum, we found no difference between SCD, MCI, or dementia in baseline QoL, but QoL decreased at a faster rate in the dementia stage compared with the of SCD and MCI stages. CONCLUSIONS QoL decreased at a faster rate over time in amyloid-positive SCD or MCI patients than amyloid-negative patients. QoL decreases over time along the entire AD continuum of SCD, MCI and dementia, with the strongest decrease in dementia patients. Knowledge of QoL trajectories is essential for the future evaluation of treatments in AD.
Collapse
Affiliation(s)
- Arenda Mank
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081, HZ, Amsterdam, The Netherlands. .,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands. .,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam, The Netherlands.
| | - Judith J M Rijnhart
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam, The Netherlands
| | - Ingrid S van Maurik
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081, HZ, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam, The Netherlands
| | - Linus Jönsson
- Department for Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden
| | - Ron Handels
- Department for Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Solna, Sweden.,Department of Psychiatry and Neuropsychology, Alzheimer Centre Limburg, School for Mental Health and Neurosciences, Maastricht University, Maastricht, The Netherlands
| | - Els D Bakker
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081, HZ, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081, HZ, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.,Department of Radiology & Nuclear Medicine Amsterdam Neuroscience Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Argonde C van Harten
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081, HZ, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Johannes Berkhof
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, De Boelelaan 1118, 1081, HZ, Amsterdam, The Netherlands.,Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands.,Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Epidemiology and Data Science, Amsterdam Public Health Institute, Amsterdam, The Netherlands
| |
Collapse
|
162
|
Bolsewig K, Hok-A-Hin Y, Sepe F, Boonkamp L, Jacobs D, Bellomo G, Paoletti FP, Vanmechelen E, Teunissen C, Parnetti L, Willemse E. A Combination of Neurofilament Light, Glial Fibrillary Acidic Protein, and Neuronal Pentraxin-2 Discriminates Between Frontotemporal Dementia and Other Dementias. J Alzheimers Dis 2022; 90:363-380. [DOI: 10.3233/jad-220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic overlap with other neurological diseases and the lack of biofluid-based biomarkers. Objective: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and blood. Methods: We included 135 patients from the Centre for Memory Disturbances, University of Perugia, with the diagnoses FTD (n = 37), mild cognitive impairment due to Alzheimer’s disease (MCI-AD, n = 47), Lewy body dementia (PDD/DLB, n = 22), and cognitively unimpaired patients as controls (OND, n = 29). Biomarker levels of neuronal pentraxin-2 (NPTX2), neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF, as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker associations. Results: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2, serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy FTD versus MCI-AD: area under the curve (AUC [95% CI] = 0.89 [0.81–0.96]; FTD versus PDD/DLB: AUC = 0.82 [0.71–0.93]; FTD versus OND: AUC = 0.80 [0.70–0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (ρ= 0.56, p < 0.05). NPTX2 and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all groups (ρ= 0.47–0.74, p < 0.05). Conclusion: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other neurodegenerative disorders.
Collapse
Affiliation(s)
- Katharina Bolsewig
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Yanaika Hok-A-Hin
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Federica Sepe
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Lynn Boonkamp
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | | | - Giovanni Bellomo
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Federico Paolini Paoletti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte Teunissen
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Lucilla Parnetti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Eline Willemse
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| |
Collapse
|
163
|
Evidence for an Intrathecal Immunoglobulin Synthesis by Kappa Free Light Chains in Neurological Patients with an Isolated Band in Isoelectric Focusing. Biomedicines 2022; 10:biomedicines10092202. [PMID: 36140302 PMCID: PMC9496576 DOI: 10.3390/biomedicines10092202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
The gold standard for detecting intrathecal immunoglobulin synthesis is the determination of the oligoclonal band (OCB) in the cerebrospinal fluid (CSF) using isoelectric focusing (IEF). Controversy still exists regarding the significance of an isolated band in the CSF. A highly promising alternative method for the assessment of intrathecal inflammation is the quantification of kappa free light chains (k-FLC). Our aim was to evaluate the clinical significance of quantitative k-FLC in patients with an isolated band in the CSF. Using the Human Kappa Freelite Mx Kit on a turbidimetric Optilite®, we quantified the k-FLCs in paired CSF and serum samples in 47 patients with a single band in IEF. We classified patients into 27× inflammatory neurological disorders (IND), 2× peripheral inflammatory neurological disorders (PIND), 9× non-inflammatory neurological disorders (NIND) and 9× symptomatic controls (SC) based on their medical diagnosis. k-FLC were below the lower measurement limit of the analyser (LML) in all SC and PIND, as well as in 8 out of 9 NIND and 11 IND. Only 1 NIND and 16 IND were above the LML, and of these, only 14 IND were above the upper discrimination limit (Qlim). A neuroinflammatory nature of the diseases can be indicated in many cases by positive k-FLC in patients with an isolated band in IEF. The measurement of k-FLC can support the diagnosis of neurological diseases if they are included in the routine work-up.
Collapse
|
164
|
van Amerongen S, Caton DK, Ossenkoppele R, Barkhof F, Pouwels PJW, Teunissen CE, Rozemuller AJM, Hoozemans JJM, Pijnenburg YAL, Scheltens P, Vijverberg EGB. Rationale and design of the “NEurodegeneration: Traumatic brain injury as Origin of the Neuropathology (NEwTON)” study: a prospective cohort study of individuals at risk for chronic traumatic encephalopathy. Alzheimers Res Ther 2022; 14:119. [PMID: 36050790 PMCID: PMC9438060 DOI: 10.1186/s13195-022-01059-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
Background Repetitive head injury in contact sports is associated with cognitive, neurobehavioral, and motor impairments and linked to a unique neurodegenerative disorder: chronic traumatic encephalopathy (CTE). As the clinical presentation is variable, risk factors are heterogeneous, and diagnostic biomarkers are not yet established, the diagnostic process of CTE remains a challenge. The general objective of the NEwTON study is to establish a prospective cohort of individuals with high risk for CTE, to phenotype the study population, to identify potential fluid and neuroimaging biomarkers, and to measure clinical progression of the disease. The present paper explains the protocol and design of this case-finding study. Methods NEwTON is a prospective study that aims to recruit participants at risk for CTE, with features of the traumatic encephalopathy syndrome (exposed participants), and healthy unexposed control individuals. Subjects are invited to participate after diagnostic screening at our memory clinic or recruited by advertisement. Exposed participants receive a comprehensive baseline screening, including neurological examination, neuropsychological tests, questionnaires and brain MRI for anatomical imaging, diffusion tensor imaging (DTI), resting-state functional MRI (rsfMRI), and quantitative susceptibility mapping (QSM). Questionnaires include topics on life-time head injury, subjective cognitive change, and neuropsychiatric symptoms. Optionally, blood and cerebrospinal fluid are obtained for storage in the NEwTON biobank. Patients are informed about our brain donation program in collaboration with the Netherlands Brain Brank. Follow-up takes place annually and includes neuropsychological assessment, questionnaires, and optional blood draw. Testing of control subjects is limited to baseline neuropsychological tests, MRI scan, and also noncompulsory blood draw. Results To date, 27 exposed participants have finished their baseline assessments. First baseline results are expected in 2023. Conclusions The NEwTON study will assemble a unique cohort with prospective observational data of male and female individuals with high risk for CTE. This study is expected to be a primary explorative base and designed to share data with international CTE-related cohorts. Sub-studies may be added in the future with this cohort as backbone.
Collapse
|
165
|
Exploring the brain metabolic correlates of process-specific CSF biomarkers in patients with MCI due to Alzheimer's disease: preliminary data. Neurobiol Aging 2022; 117:212-221. [DOI: 10.1016/j.neurobiolaging.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 12/30/2022]
|
166
|
Petzold A, Fraser CL, Abegg M, Alroughani R, Alshowaeir D, Alvarenga R, Andris C, Asgari N, Barnett Y, Battistella R, Behbehani R, Berger T, Bikbov MM, Biotti D, Biousse V, Boschi A, Brazdil M, Brezhnev A, Calabresi PA, Cordonnier M, Costello F, Cruz FM, Cunha LP, Daoudi S, Deschamps R, de Seze J, Diem R, Etemadifar M, Flores-Rivera J, Fonseca P, Frederiksen J, Frohman E, Frohman T, Tilikete CF, Fujihara K, Gálvez A, Gouider R, Gracia F, Grigoriadis N, Guajardo JM, Habek M, Hawlina M, Martínez-Lapiscina EH, Hooker J, Hor JY, Howlett W, Huang-Link Y, Idrissova Z, Illes Z, Jancic J, Jindahra P, Karussis D, Kerty E, Kim HJ, Lagrèze W, Leocani L, Levin N, Liskova P, Liu Y, Maiga Y, Marignier R, McGuigan C, Meira D, Merle H, Monteiro MLR, Moodley A, Moura F, Muñoz S, Mustafa S, Nakashima I, Noval S, Oehninger C, Ogun O, Omoti A, Pandit L, Paul F, Rebolleda G, Reddel S, Rejdak K, Rejdak R, Rodriguez-Morales AJ, Rougier MB, Sa MJ, Sanchez-Dalmau B, Saylor D, Shatriah I, Siva A, Stiebel-Kalish H, Szatmary G, Ta L, Tenembaum S, Tran H, Trufanov Y, van Pesch V, Wang AG, Wattjes MP, Willoughby E, Zakaria M, Zvornicanin J, Balcer L, et alPetzold A, Fraser CL, Abegg M, Alroughani R, Alshowaeir D, Alvarenga R, Andris C, Asgari N, Barnett Y, Battistella R, Behbehani R, Berger T, Bikbov MM, Biotti D, Biousse V, Boschi A, Brazdil M, Brezhnev A, Calabresi PA, Cordonnier M, Costello F, Cruz FM, Cunha LP, Daoudi S, Deschamps R, de Seze J, Diem R, Etemadifar M, Flores-Rivera J, Fonseca P, Frederiksen J, Frohman E, Frohman T, Tilikete CF, Fujihara K, Gálvez A, Gouider R, Gracia F, Grigoriadis N, Guajardo JM, Habek M, Hawlina M, Martínez-Lapiscina EH, Hooker J, Hor JY, Howlett W, Huang-Link Y, Idrissova Z, Illes Z, Jancic J, Jindahra P, Karussis D, Kerty E, Kim HJ, Lagrèze W, Leocani L, Levin N, Liskova P, Liu Y, Maiga Y, Marignier R, McGuigan C, Meira D, Merle H, Monteiro MLR, Moodley A, Moura F, Muñoz S, Mustafa S, Nakashima I, Noval S, Oehninger C, Ogun O, Omoti A, Pandit L, Paul F, Rebolleda G, Reddel S, Rejdak K, Rejdak R, Rodriguez-Morales AJ, Rougier MB, Sa MJ, Sanchez-Dalmau B, Saylor D, Shatriah I, Siva A, Stiebel-Kalish H, Szatmary G, Ta L, Tenembaum S, Tran H, Trufanov Y, van Pesch V, Wang AG, Wattjes MP, Willoughby E, Zakaria M, Zvornicanin J, Balcer L, Plant GT. Diagnosis and classification of optic neuritis. Lancet Neurol 2022; 21:1120-1134. [PMID: 36179757 DOI: 10.1016/s1474-4422(22)00200-9] [Show More Authors] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 11/28/2022]
Abstract
There is no consensus regarding the classification of optic neuritis, and precise diagnostic criteria are not available. This reality means that the diagnosis of disorders that have optic neuritis as the first manifestation can be challenging. Accurate diagnosis of optic neuritis at presentation can facilitate the timely treatment of individuals with multiple sclerosis, neuromyelitis optica spectrum disorder, or myelin oligodendrocyte glycoprotein antibody-associated disease. Epidemiological data show that, cumulatively, optic neuritis is most frequently caused by many conditions other than multiple sclerosis. Worldwide, the cause and management of optic neuritis varies with geographical location, treatment availability, and ethnic background. We have developed diagnostic criteria for optic neuritis and a classification of optic neuritis subgroups. Our diagnostic criteria are based on clinical features that permit a diagnosis of possible optic neuritis; further paraclinical tests, utilising brain, orbital, and retinal imaging, together with antibody and other protein biomarker data, can lead to a diagnosis of definite optic neuritis. Paraclinical tests can also be applied retrospectively on stored samples and historical brain or retinal scans, which will be useful for future validation studies. Our criteria have the potential to reduce the risk of misdiagnosis, provide information on optic neuritis disease course that can guide future treatment trial design, and enable physicians to judge the likelihood of a need for long-term pharmacological management, which might differ according to optic neuritis subgroups.
Collapse
|
167
|
Ren Z, Chu C, Pang Y, Cai H, Jia L. A circular RNA blood panel that differentiates Alzheimer's disease from other dementia types. Biomark Res 2022; 10:63. [PMID: 35982472 PMCID: PMC9389828 DOI: 10.1186/s40364-022-00405-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/02/2022] [Indexed: 11/10/2022] Open
Abstract
Background Circular RNAs (circRNAs) have been demonstrated to be associated with Alzheimer’s disease (AD). Here, we conducted a study to explore whether circRNAs have the ability to differentiate AD from cognitively normal controls and other types of dementia, such as vascular dementia (VaD), Parkinson’s disease dementia (PDD), behavioral variant frontotemporal dementia (bvFTD), and dementia with Lewy body (DLB). Methods Three datasets were included in this study to measure blood circRNAs. The pilot study (Dataset 1, n = 40; controls, 20; AD, 20) was used to screen differentially expressed circRNAs. Dataset 2 (n = 124; controls, 61; AD, 63) was recruited for the establishment of the diagnostic model using a circRNA panel. Further, the Dataset 3 (n = 321; control, 58; AD, 60; VaD, 50; PDD, 51; bvFTD, 52; DLB, 50) was used to verify the diagnostic model. Results In Dataset 1, 22 upregulated and 19 downregulated circRNAs were revealed. In Dataset 2, a six-circRNA panel was found to be able to distinguish patients with AD from controls. Then this panel was applied to Dataset 3 and successfully differentiated AD from other types of dementia. Conclusion This study suggested that a six-circRNA panel is AD-specific and a promising biomarker of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40364-022-00405-0.
Collapse
Affiliation(s)
- Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China
| | - Changbiao Chu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China
| | - Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China
| | - Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St, Beijing, China.
| |
Collapse
|
168
|
Mank A, van Maurik IS, Rijnhart JJM, bakker ED, Bouteloup V, Le Scouarnec L, Teunissen CE, Barkhof F, Scheltens P, Berkhof J, van der Flier WM. Development of multivariable prediction models for institutionalization and mortality in the full spectrum of Alzheimer’s disease. Alzheimers Res Ther 2022; 14:110. [PMID: 35932034 PMCID: PMC9354423 DOI: 10.1186/s13195-022-01053-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022]
Abstract
Background Patients and caregivers express a desire for accurate prognostic information about time to institutionalization and mortality. Previous studies predicting institutionalization and mortality focused on the dementia stage. However, Alzheimer’s disease (AD) is characterized by a long pre-dementia stage. Therefore, we developed prediction models to predict institutionalization and mortality along the AD continuum of cognitively normal to dementia. Methods This study included SCD/MCI patients (subjective cognitive decline (SCD) or mild cognitive impairment (MCI)) and patients with AD dementia from the Amsterdam Dementia Cohort. We developed internally and externally validated prediction models with biomarkers and without biomarkers, stratified by dementia status. Determinants were selected using backward selection (p<0.10). All models included age and sex. Discriminative performance of the models was assessed with Harrell’s C statistics. Results We included n=1418 SCD/MCI patients (n=123 died, n=74 were institutionalized) and n=1179 patients with AD dementia (n=413 died, n=453 were institutionalized). For both SCD/MCI and dementia stages, the models for institutionalization and mortality included after backward selection clinical characteristics, imaging, and cerebrospinal fluid (CSF) biomarkers. In SCD/MCI, the Harrell’s C-statistics of the models were 0.81 (model without biomarkers: 0.76) for institutionalization and 0.79 (model without biomarker: 0.76) for mortality. In AD-dementia, the Harrell’s C-statistics of the models were 0.68 (model without biomarkers: 0.67) for institutionalization and 0.65 (model without biomarker: 0.65) for mortality. Models based on data from amyloid-positive patients only had similar discrimination. Conclusions We constructed prediction models to predict institutionalization and mortality with good accuracy for SCD/MCI patients and moderate accuracy for patients with AD dementia. The developed prediction models can be used to provide patients and their caregivers with prognostic information on time to institutionalization and mortality along the cognitive continuum of AD. Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-01053-0.
Collapse
|
169
|
Prins S, de Kam ML, Teunissen CE, Groeneveld GJ. Inflammatory plasma biomarkers in subjects with preclinical Alzheimer's disease. Alzheimers Res Ther 2022; 14:106. [PMID: 35922871 PMCID: PMC9347121 DOI: 10.1186/s13195-022-01051-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/21/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND This study investigated plasma biomarkers for neuroinflammation associated with Alzheimer's disease (AD) in subjects with preclinical AD compared to healthy elderly. How these biomarkers behave in patients with AD, compared to healthy elderly is well known, but determining these in subjects with preclinical AD is not and will add information related to the onset of AD. When found to be different in preclinical AD, these inflammatory biomarkers may be used to select preclinical AD subjects who are most likely to develop AD, to participate in clinical trials with new disease-modifying drugs. METHODS Healthy elderly (n= 50; age 71.9; MMSE >24) and subjects with preclinical AD (n=50; age 73.4; MMSE >24) defined by CSF Aβ1-42 levels < 1000 pg/mL were included. Four neuroinflammatory biomarkers were determined in plasma, GFAP, YKL-40, MCP-1, and eotaxin-1. Differences in biomarker outcomes were compared using ANCOVA. Subject characteristics age, gender, and APOE ε4 status were reported per group and were covariates in the ANCOVA. Least square means were calculated for all 4 inflammatory biomarkers using both the Aβ+/Aβ- cutoff and Ptau/Aβ1-42 ratio. RESULTS The mean (standard deviation, SD) age of the subjects (n=100) was 72.6 (4.6) years old with 62 male and 38 female subjects. Mean (SD) overall MMSE score was 28.7 (0.49) and 32 subjects were APOE ε4 carriers. The number of subjects in the different APOE ε4 status categories differed significantly between the Aβ+ and Aβ- groups. Plasma GFAP concentration was significantly higher in the Aβ+ group compared to the Aβ- group with significant covariates age and sex, variables that also correlated significantly with GFAP. CONCLUSION GFAP was significantly higher in subjects with preclinical AD compared to healthy elderly which agrees with previous studies. When defining preclinical AD based on the Ptau181/Aβ1-42 ratio, YKL-40 was also significantly different between groups. This could indicate that GFAP and YKL-40 are more sensitive markers of the inflammatory process in response to the Aβ misfolding and aggregation that is ongoing as indicated by the lowered Aβ1-42 levels in the CSF. Characterizing subjects with preclinical AD using neuroinflammatory biomarkers is important for subject selection in new disease-modifying clinical trials. TRIAL REGISTRATION ISRCTN.org identifier: ISRCTN79036545 (retrospectively registered).
Collapse
Affiliation(s)
- Samantha Prins
- Centre for Human Drug Research, Leiden, the Netherlands
- Leiden University Medical Center, Leiden, the Netherlands
| | | | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, the Netherlands.
- Leiden University Medical Center, Leiden, the Netherlands.
| |
Collapse
|
170
|
Association of Serum GFAP with Functional and Neurocognitive Outcome in Sporadic Small Vessel Disease. Biomedicines 2022; 10:biomedicines10081869. [PMID: 36009416 PMCID: PMC9405121 DOI: 10.3390/biomedicines10081869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 07/31/2022] [Indexed: 11/25/2022] Open
Abstract
Cerebrospinal fluid (CSF) and serum biomarkers are critical for clinical decision making in neurological diseases. In cerebral small vessel disease (CSVD), white matter hyperintensities (WMH) are an important neuroimaging biomarker, but more blood-based biomarkers capturing different aspects of CSVD pathology are needed. In 42 sporadic CSVD patients, we prospectively analysed WMH on magnetic resonance imaging (MRI) and the biomarkers neurofilament light chain (NfL), glial fibrillary acidic protein (GFAP), chitinase3-like protein 1 (CHI3L1), Tau and Aβ1-42 in CSF and NfL and GFAP in serum. GFAP and CHI3L1 expression was studied in post-mortem brain tissue in additional cases. CSVD cases with higher serum NfL and GFAP levels had a higher modified Rankin Scale (mRS) and NIHSS score and lower CSF Aβ1-42 levels, whereas the CSF NfL and CHI3L1 levels were positively correlated with the WMH load. Moreover, the serum GFAP levels significantly correlated with the neurocognitive functions. Pathological analyses in CSVD revealed a high density of GFAP-immunoreactive fibrillary astrocytic processes in the periventricular white matter and clusters of CHI3L1-immunoreactive astrocytes in the basal ganglia and thalamus. Thus, besides NfL, serum GFAP is a highly promising fluid biomarker of sporadic CSVD, because it does not only correlate with the clinical severity but also correlates with the cognitive function in patients.
Collapse
|
171
|
Puerto-Parada M, Arango-Sabogal JC, Bilodeau MÈ, Bédard C, Francoz D, Desrochers A, Nichols S, Fecteau G. Interpretation of cerebrospinal fluid analysis from recumbent cows using different thresholds of red blood cell count. J Vet Intern Med 2022; 36:1837-1842. [PMID: 35906868 PMCID: PMC9511068 DOI: 10.1111/jvim.16502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Hemodilution of the cerebrospinal fluid (CSF) could confound interpretation of results. Accurately predicting total nucleated cells count (TNCC) and total protein concentration (TPC) attributable to hemodilution is difficult. OBJECTIVE To determine the effects of hemodilution on TPC and TNCC in bovine CSF. METHODS Retrospective review of CSF analysis results of downer dairy cows treated at Centre hospitalier universitaire vétérinaire between January 2006 and December 2014. Descriptive statistics were performed using 3 scenarios. RESULTS Among the 235 samples included, red blood cell (RBC) count (RBCC) ranged from 0 to 869 220 RBC/μL (median = 6.6), TPC ranged from 0.04 to 6.51 g/L (median = 0.27), and TNCC ranged from 0 to 7500 cell/μL (median = 1.1). Among the 157 samples that had <30 RBC/μL (a threshold used in other species), TPC and TNCC varied between 0.13 and 1.06 g/L (median = 0.27) and between 0 and 31.4 cell/μL (median = 0.6), respectively. Eighty-four samples had TPC <0.25 g/L and TNCC ≤4.5 cell/μL. Among those 84 samples, RBCC varied between 0 and 1290 RBC/μL (median = 4.7). In 20 samples, TNCC was 0 with a variation in RBCC between 0 and 840 RBC/μL (median = 3.9). No strong correlations between RBCC and TNCC and TPC were found. CONCLUSIONS A cutoff around 200 RBC/μL is proposed as clinically meaninful in bovine CSF. Results between 200 and 1290 RBC/μL are equivocal.
Collapse
Affiliation(s)
- Maria Puerto-Parada
- Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Juan Carlos Arango-Sabogal
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Marie-Ève Bilodeau
- Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Christian Bédard
- Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - David Francoz
- Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - André Desrochers
- Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Sylvain Nichols
- Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Gilles Fecteau
- Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada
| |
Collapse
|
172
|
Zinganell A, Bsteh G, Di Pauli F, Rass V, Helbok R, Walde J, Deisenhammer F, Hegen H. Longitudinal ventricular cerebrospinal fluid profile in patients with spontaneous subarachnoid hemorrhage. Front Neurol 2022; 13:861625. [PMID: 35959383 PMCID: PMC9360751 DOI: 10.3389/fneur.2022.861625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSpontaneous subarachnoid hemorrhage (SAH) is a severe neurological disease that frequently requires placement of external ventricular drainage (EVD). Cerebrospinal fluid (CSF) obtained via the drain is used to detect potential complications of SAH.ObjectiveThis study aimed to describe the longitudinal profile of routine CSF parameters in patients with SAH and to identify associations with neurological complications.MethodsA total of thirty-three patients with spontaneous SAH who required an EVD and had at least three consecutive CSF samples collected over a period of more than 7 days were included in this study.ResultsA median of 6 longitudinally collected CSF samples per patient were available within 1–22 days after SAH onset. Overall, red blood cells (RBC) steadily decreased over time, whereas white blood cells (WBC) and total protein (TP) increased until days 6 and 13, respectively, and decreased thereafter. The estimated decay rates of RBC, WBC, and TP were 28, 22, and 6% per day. Distinct CSF patterns over time were linked to known complications after SAH. Patients with rebleeding showed increased RBC, TP, and phagocytosing cells compared to patients without re-bleeding. For ventriculitis, an elevated cell index with a higher proportion of granulocytes was characteristic. CSF of patients with delayed cerebral ischemia showed increased RBC and WBC compared to patients without DCI. Early CSF WBC and cell index were predictive for the occurrence of DCI and ventriculitis later during the disease course. The amount of daily CSF drainage via EVD had no impact on routine CSF parameters.ConclusionLongitudinal CSF characteristics are associated with SAH-related complications.
Collapse
Affiliation(s)
- Anne Zinganell
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Bsteh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Franziska Di Pauli
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Rass
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Janette Walde
- Department of Statistics, Faculty of Economics and Statistics, University of Innsbruck, Innsbruck, Austria
| | | | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
- *Correspondence: Harald Hegen
| |
Collapse
|
173
|
Non-Invasive Nasal Discharge Fluid and Other Body Fluid Biomarkers in Alzheimer’s Disease. Pharmaceutics 2022; 14:pharmaceutics14081532. [PMID: 35893788 PMCID: PMC9330777 DOI: 10.3390/pharmaceutics14081532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/04/2023] Open
Abstract
The key to current Alzheimer’s disease (AD) therapy is the early diagnosis for prompt intervention, since available treatments only slow the disease progression. Therefore, this lack of promising therapies has called for diagnostic screening tests to identify those likely to develop full-blown AD. Recent AD diagnosis guidelines incorporated core biomarker analyses into criteria, including amyloid-β (Aβ), total-tau (T-tau), and phosphorylated tau (P-tau). Though effective, the accessibility of screening tests involving conventional cerebrospinal fluid (CSF)- and blood-based analyses is often hindered by the invasiveness and high cost. In an attempt to overcome these shortcomings, biomarker profiling research using non-invasive body fluid has shown the potential to capture the pathological changes in the patients’ bodies. These novel non-invasive body fluid biomarkers for AD have emerged as diagnostic and pathological targets. Here, we review the potential peripheral biomarkers, including non-invasive peripheral body fluids of nasal discharge, tear, saliva, and urine for AD.
Collapse
|
174
|
Gao X, Gao YY, Wu LY, Peng Z, Liu XZ, Chen XX, Gao S, Zhang HS, Lu Y, Hang CH, Zhuang Z, Li W. High Expression of PDK4 Could Play a Potentially Protective Role by Attenuating Oxidative Stress after Subarachnoid Hemorrhage. J Clin Med 2022; 11:3974. [PMID: 35887737 PMCID: PMC9323843 DOI: 10.3390/jcm11143974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 02/04/2023] Open
Abstract
Pyruvate dehydrogenase (PDH), a key enzyme on the mitochondrial outer membrane, has been found to decrease activity notably in early brain injury (EBI) after subarachnoid hemorrhage (SAH). It has been demonstrated that PDH is associated with the production of reactive oxygen species (ROS) and apoptosis. Hence, in this study, we aimed to determine the cause of the decreased PDH activity and explore the potential role of PDH in EBI. We investigated the expression changes of PDH and pyruvate dehydrogenase kinase (PDK) in vivo and in vitro. Then, we explored the possible effects of PDH and ROS after SAH. The results showed that early overexpression of PDK4 promoted the phosphorylation of PDH, inhibited PDH activity, and may play a protective role after SAH in vivo and in vitro. Finally, we investigated the levels of PDK4 and pyruvate, which accumulated due to decreased PDH activity, in the cerebrospinal fluid (CSF) of 34 patients with SAH. Statistical analysis revealed that PDK4 and pyruvate expression was elevated in the CSF of SAH patients compared with that of controls, and this high expression correlated with the degree of neurological impairment and long-term outcome. Taken together, the results show that PDK4 has the potential to serve as a new therapeutic target and biomarker for assisting in the diagnosis of SAH severity and prediction of recovery.
Collapse
Affiliation(s)
- Xuan Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
- Department of Neurosurgery, Tianjin Huanhu Hospital, Tianjin 300300, China
| | - Yong-Yue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Ling-Yun Wu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Zheng Peng
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Xun-Zhi Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Xiang-Xin Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Sen Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Hua-Sheng Zhang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Chun-Hua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; (X.G.); (Y.-Y.G.); (L.-Y.W.); (Z.P.); (X.-Z.L.); (X.-X.C.); (S.G.); (H.-S.Z.); (Y.L.); (C.-H.H.)
| |
Collapse
|
175
|
Serum neurofilament light chain levels in Covid-19 patients without major neurological manifestations. J Neurol 2022; 269:5691-5701. [PMID: 35781535 PMCID: PMC9252542 DOI: 10.1007/s00415-022-11233-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 12/27/2022]
Abstract
Background Increased serum levels of neurofilament light chain (sNFL), a biomarker of neuroaxonal damage, have been reported in patients with Covid-19. We aimed at investigating whether sNFL is increased in Covid-19 patients without major neurological manifestations, is associated with disease severity, respiratory and routine blood parameters, and changes longitudinally in the short term. Methods sNFL levels were measured with single molecule array (Simoa) technology in 57 hospitalized Covid-19 patients without major neurological manifestations and in 30 neurologically healthy controls. Patients were evaluated for PaO2/FiO2 ratio on arterial blood gas, Brescia Respiratory Covid Severity Scale (BRCSS), white blood cell counts, serum C-reactive protein (CRP), plasma D-dimer, plasma fibrinogen, and serum creatinine at admission. In 20 patients, NFL was also measured on serum samples obtained at a later timepoint during the hospital stay. Results Covid-19 patients had higher baseline sNFL levels compared to controls, regardless of disease severity. Baseline sNFL correlated with serum CRP and plasma D-dimer in patients with mild disease, but was not associated with measures of respiratory impairment. Longitudinal sNFL levels tended to be higher than baseline ones, albeit not significantly, and correlated with serum CRP and plasma D-dimer. The PaO2/FiO2 ratio was not associated with longitudinal sNFL, whereas BRCSS only correlated with longitudinal sNFL variation. Conclusions We provide neurochemical evidence of subclinical axonal damage in Covid-19 also in the absence of major neurological manifestations. This is apparently not fully explained by hypoxic injury; rather, systemic inflammation might promote this damage. However, a direct neurotoxic effect of SARS-CoV-2 cannot be excluded.
Collapse
|
176
|
Tigchelaar C, van Zuylen ML, Hulst AH, Preckel B, van Beek AP, Kema IP, Hermanides J, Absalom AR. Elevated cerebrospinal fluid glucose levels and diabetes mellitus are associated with activation of the neurotoxic polyol pathway. Diabetologia 2022; 65:1098-1107. [PMID: 35380232 PMCID: PMC9174140 DOI: 10.1007/s00125-022-05693-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 01/01/2023]
Abstract
AIMS/HYPOTHESIS During hyperglycaemia, some glucose bypasses glycolysis and is metabolised via the potentially neurotoxic polyol pathway, in which glucose is metabolised to sorbitol and fructose. Increased polyol concentrations have been demonstrated in the cerebrospinal fluid (CSF) of neurological patients with and without diabetes mellitus. However, polyol levels in patients without evident neurological abnormalities have not been investigated so far. The aim of this study was to determine CSF polyol concentrations in patients without major neurological disease with normal or elevated CSF glucose concentrations. METHODS This observational cohort study used CSF and plasma analyses, as well as clinical data, from 30 participants of the Anaesthetic Biobank of Cerebrospinal Fluid study. Biomaterial was collected from adult patients scheduled for elective surgery under spinal anaesthesia. CSF polyol concentrations were measured by GC/flame ionisation detector in ten patients with normal CSF glucose levels (group 1), ten patients with elevated CSF glucose levels (group 2) and ten patients with elevated CSF glucose levels and type 2 diabetes (group 3). We compared the concentrations of plasma glucose, CSF glucose, sorbitol and fructose, and CSF polyol/glucose ratios between the three groups, and determined the correlation between plasma glucose levels and CSF glucose, sorbitol and fructose levels. RESULTS Groups 2 and 3 had significantly higher CSF fructose levels compared with group 1 (p=0.036 and p<0.001, respectively). Group 3 showed significant differences compared with groups 1 and 2 for CSF sorbitol (p<0.001 and 0.036, respectively). Moreover, patients with diabetes had a significantly higher CSF sorbitol/glucose ratio compared with patients without diabetes. There was a strong positive correlation between plasma glucose and CSF glucose, sorbitol and fructose. Finally, age, sex, CSF/plasma albumin ratio and preoperative cognitive function scores were significantly correlated with plasma glucose and CSF glucose, sorbitol and fructose levels. CONCLUSIONS/INTERPRETATION Hyperglycaemia causes a proportional increase in polyol concentrations in CSF of patients without major neurological disease. Furthermore, this study provides the first indication of upregulation of the cerebral polyol pathway in patients with diabetes without evident neurological abnormalities.
Collapse
Affiliation(s)
- Celien Tigchelaar
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Mark L van Zuylen
- Department of Anaesthesiology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Abraham H Hulst
- Department of Anaesthesiology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
- Department of Intensive Care, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Benedikt Preckel
- Department of Anaesthesiology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - André P van Beek
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Ido P Kema
- Department of Laboratory Medicine, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Jeroen Hermanides
- Department of Anaesthesiology, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Anthony R Absalom
- Department of Anaesthesiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
177
|
Li Y, Meng S, Di W, Xia M, Dong L, Zhao Y, Ling S, He J, Xue X, Chen X, Liu C. Amyloid-β protein and MicroRNA-384 in NCAM-Labeled exosomes from peripheral blood are potential diagnostic markers for Alzheimer's disease. CNS Neurosci Ther 2022; 28:1093-1107. [PMID: 35470961 PMCID: PMC9160455 DOI: 10.1111/cns.13846] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 11/27/2022] Open
Abstract
Objective We aimed to establish a method to determine whether amyloid‐β (Aβ) protein and miR‐384 in peripheral blood neural cell adhesion molecule (NCAM)/ATP‐binding cassette transporter A1 (ABCA1) dual‐labeled exosomes may serve as diagnostic markers for the diagnosis of Alzheimer's disease (AD). Methods This was a multicenter study using a two‐stage design. The subjects included 45 subjective cognitive decline (SCD) patients, 50 amnesic mild cognitive impairment (aMCI) patients, 40 AD patients, and 30 controls in the discovery stage. The results were validated in the verification stage in 47 SCD patients, 45 aMCI patients, 45 AD patients, and 30 controls. NCAM single‐labeled and NCAM/ABCA1 double‐labeled exosomes in the peripheral blood were captured and detected by immunoassay. Results The Aβ42, Aβ42/40, Tau, P‐T181‐tau, and miR‐384 levels in NCAM single‐labeled and NCAM/ABCA1 double‐labeled exosomes of the aMCI and AD groups were significantly higher than those of the SCD, control, and vascular dementia (VaD) groups (all p < 0.05). The Aβ42 and miR‐384 levels in NCAM/ABCA1 dual‐labeled exosomes of the aMCI and AD groups were higher than those of the control and VaD groups (all p < 0.05). The exosomal Aβ42, Aβ42/40, Tau, P‐T181‐tau, and miR‐384 levels in peripheral blood were correlated with those in cerebrospinal fluid (all p < 0.05). Conclusion This study, for the first time, established a method that sorts specific surface marker exosomes using a two‐step immune capture technology. The plasma NCAM/ABCA1 dual‐labeled exosomal Aβ42/40 and miR‐384 had potential advantages in the diagnosis of SCD.
Collapse
Affiliation(s)
- Ying Li
- Clinical Laboratory of Beijing Anding Hospital, Capital Medical University, Beijing, China.,Clinical Laboratory of Air Force General Hospital, Chinese People's Liberation Army, Beijing, China
| | - Shuang Meng
- State Key Laboratory for Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | - Wu Di
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ming Xia
- Clinical Laboratory of Minhang Hospital, Fudan University, Shanghai, China
| | - Lei Dong
- Clinical Laboratory of Air Force General Hospital, Chinese People's Liberation Army, Beijing, China
| | - Yue Zhao
- Clinical Laboratory of Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sihai Ling
- Clinical Laboratory of Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jing He
- Clinical Laboratory of Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiaoxing Xue
- Clinical Laboratory of Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Xiali Chen
- Clinical Laboratory of Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Chengeng Liu
- Clinical Laboratory of Beijing Anding Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
178
|
Marastoni D, Pisani AI, Schiavi G, Mazziotti V, Castellaro M, Tamanti A, Bosello F, Crescenzo F, Ricciardi GK, Montemezzi S, Pizzini FB, Calabrese M. CSF TNF and osteopontin levels correlate with the response to dimethyl fumarate in early multiple sclerosis. Ther Adv Neurol Disord 2022; 15:17562864221092124. [PMID: 35755969 PMCID: PMC9218430 DOI: 10.1177/17562864221092124] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Disease activity in the first years after a diagnosis of relapsing-remitting multiple sclerosis (RRMS) is a negative prognostic factor for long-term disability. Markers of both clinical and radiological responses to disease-modifying therapies (DMTs) are advocated. Objective: The objective of this study is to estimate the value of cerebrospinal fluid (CSF) inflammatory markers at the time of diagnosis in predicting the disease activity in treatment-naïve multiple sclerosis (MS) patients exposed to dimethyl fumarate (DMF). Methods: In total, 48 RRMS patients (31 females/17 males) treated with DMF after the diagnosis were included in this 2-year longitudinal study. All patients underwent a CSF examination, regular clinical and 3T magnetic resonance imaging (MRI) scans that included the assessment of white matter (WM) lesions, cortical lesions (CLs) and global cortical thickness. CSF levels of 10 pro-inflammatory markers – CXCL13 [chemokine (C-X-C motif) ligand 13 or B lymphocyte chemoattractant], CXCL12 (stromal cell-derived factor or C-X-C motif chemokine 12), tumour necrosis factor (TNF), APRIL (a proliferation-inducing ligand, or tumour necrosis factor ligand superfamily member 13), LIGHT (tumour necrosis factor ligand superfamily member 14 or tumour necrosis factor superfamily member 14), interferon (IFN) gamma, interleukin 12 (IL-12), osteopontin, sCD163 [soluble-CD163 (cluster of differentiation 163)] and Chitinase3-like1 – were assessed using immune-assay multiplex techniques. The combined three-domain status of ‘no evidence of disease activity’ (NEDA-3) was defined by no relapses, no disability worsening and no MRI activity, including CLs. Results: Twenty patients (42%) reached the NEDA-3 status; patients with disease activity showed higher CSF TNF (p = 0.009), osteopontin (p = 0.005), CXCL12 (p = 0.037), CXCL13 (p = 0.040) and IFN gamma levels (p = 0.019) compared with NEDA-3 patients. After applying a random forest approach, TNF and osteopontin revealed the most important variables associated with the NEDA-3 status. Six molecules that emerged at the random forest approach were added in a multivariate regression model with demographic, clinical and MRI measures of WM and grey matter damage as independent variables. TNF levels confirmed to be associated with the absence of disease activity: odds ratio (OR) = 0.25, CI% = 0.04–0.77. Conclusion: CSF inflammatory markers may provide prognostic information in predicting disease activity in the first years after DMF initiation. CSF TNF levels are a possible candidate in predicting treatment response, in addition to clinical, demographic and MRI variables.
Collapse
Affiliation(s)
- Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna I Pisani
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gianmarco Schiavi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Mazziotti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Castellaro
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Bosello
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, Ocular Immunology and Neuroophthalmology Service, AOUI-University of Verona, Verona, Italy
| | - Francesco Crescenzo
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe K Ricciardi
- Neuroradiology & Radiology Units, Integrated University Hospital of Verona, Verona, Italy
| | - Stefania Montemezzi
- Neuroradiology & Radiology Units, Integrated University Hospital of Verona, Verona, Italy
| | - Francesca B Pizzini
- Radiology, Department of Diagnostic and Public Health, Integrated University Hospital of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico 'G.B. Rossi' Borgo Roma, Piazzale L. A. Scuro, 10, 37134 Verona, Italy
| |
Collapse
|
179
|
Li Y, Xia M, Meng S, Wu D, Ling S, Chen X, Liu C. MicroRNA-29c-3p in dual-labeled exosome is a potential diagnostic marker of subjective cognitive decline. Neurobiol Dis 2022; 171:105800. [PMID: 35752392 DOI: 10.1016/j.nbd.2022.105800] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/25/2022] [Accepted: 06/19/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE The present study aimed to determine whether peripheral blood neural cell adhesion molecule (NCAM)/amphiphysin 1 dual-labeled exosomal proteins and microRNAs (miRs) might serve as a marker for the early diagnosis of Alzheimer's disease (AD). METHODS This observational, retrospective, multicenter study used a two-stage design conducted in Beijing and Shanghai, China. The subjects included 76 patients with subjective cognitive decline (SCD), 80 with amnestic mild cognitive impairment (aMCI), 76 with dementia of Alzheimer's type (AD), 40 with vascular dementia (VaD), and 40 controls in the discovery stage. These results were confirmed in the verification stage. The levels of Aβ42, Aβ42/40, T-Tau, P-T181-tau, neurofilament light chain (NfL), and miR-29c-3p in peripheral blood amphiphysin 1 single-labeled and NCAM/amphiphysin 1 dual-labeled exosomes were captured and detected by immunoassay. RESULTS In the discovery stage, the levels of Aβ42 and miR-29c-3p in peripheral blood NCAM/amphiphysin 1 dual-labeled exosome of the SCD group were significantly higher than those in control and VaD groups (all P < 0.05). The verification stage further confirmed the results of the discovery stage. Plasma NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p showed a good diagnostic performance. The NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p had the highest AUC for diagnosis of SCD. The levels of Aβ42, Aβ42/40, Tau, P-T181-tau, and miR-29c-3p in peripheral blood exosomes were correlated to those in CSF (all P < 0.05). The combination of exosomal biomarkers had slightly higher diagnostic efficiency than the individual biomarkers and that the exosomal biomarkers had the same diagnostic power as the CSF biomarkers. CONCLUSION The plasma NCAM/amphiphysin 1 dual-labeled exosomal miR-29c-3p had potential advantages in the diagnosis of SCD.
Collapse
Affiliation(s)
- Ying Li
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Clinical Laboratory of Air Force General Hospital, Chinese People's Liberation Army, Beijing 100142, China
| | - Ming Xia
- Clinical Laboratory of Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Shuang Meng
- State Key Laboratory for Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Beijing 102206, China
| | - Di Wu
- Clinical Laboratory of Xuanwu Hospital, Captital Medcial University, Beijing 100053, China
| | - Sihai Ling
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Xiali Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Chengeng Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China.
| |
Collapse
|
180
|
Specific Cerebrospinal Fluid SerpinA1 Isoform Pattern in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23136922. [PMID: 35805926 PMCID: PMC9266332 DOI: 10.3390/ijms23136922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
SerpinA1 (α1-antitrypsin) is a soluble glycoprotein, the cerebrospinal fluid (CSF) isoforms of which showed disease-specific changes in neurodegenerative disorders that are still unexplored in Alz-heimer’s disease (AD). By means of capillary isoelectric focusing immunoassay, we investigated six serpinA1 isoforms in CSF samples of controls (n = 29), AD-MCI (n = 29), AD-dem (n = 26) and Lewy body disease (LBD, n = 59) patients and correlated the findings with CSF AD core biomarkers (Aβ42/40 ratio, p-tau, t-tau). Four CSF serpinA1 isoforms were differently expressed in AD patients compared to controls and LBD patients, especially isoforms 2 and 4. AD-specific changes were found since the MCI stage and significantly correlated with decreased Aβ42/40 (p < 0.05) and in-creased p-tau and t-tau levels in CSF (p < 0.001). Analysis of serpinA1 isoform provided good di-agnostic accuracy in discriminating AD patients versus controls (AUC = 0.80) and versus LBD patients (AUC = 0.92), with best results in patients in the dementia stage (AUC = 0.97). SerpinA1 isoform expression is altered in AD patients, suggesting a common, albeit disease-specific, in-volvement of serpinA1 in most neurodegenerative disorders.
Collapse
|
181
|
Yekula A, Tracz J, Rincon-Torroella J, Azad T, Bettegowda C. Single-Cell RNA Sequencing of Cerebrospinal Fluid as an Advanced Form of Liquid Biopsy for Neurological Disorders. Brain Sci 2022; 12:brainsci12070812. [PMID: 35884620 PMCID: PMC9313114 DOI: 10.3390/brainsci12070812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 11/16/2022] Open
Abstract
Diagnosis and longitudinal monitoring of neurological diseases are limited by the poor specificity and limited resolution of currently available techniques. Analysis of circulating cells in cerebrospinal fluid (CSF) has emerged as a promising strategy for the diagnosis, molecular characterization, and monitoring of neurological disease. In comparison to bulk sequencing analysis, single-cell sequencing studies can provide novel insights into rare cell populations and uncover heterogeneity in gene expression at a single-cell resolution, which has several implications for understanding disease pathology and treatment. Parallel development of standardized biofluid collection protocols, pre-processing strategies, reliable single-cell isolation strategies, downstream genomic analysis, and robust computational analysis is paramount for comprehensive single-cell sequencing analysis. Here we perform a comprehensive review of studies focusing on single-cell sequencing of cells in the CSF of patients with oncological or non-oncological diseases of the central nervous system.
Collapse
Affiliation(s)
- Anudeep Yekula
- Department of Surgery, Yale School of Medicine, New Haven, CT 06510, USA;
| | - Jovanna Tracz
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.T.); (J.R.-T.); (T.A.)
| | - Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.T.); (J.R.-T.); (T.A.)
| | - Tej Azad
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.T.); (J.R.-T.); (T.A.)
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; (J.T.); (J.R.-T.); (T.A.)
- Correspondence:
| |
Collapse
|
182
|
Hjæresen S, Sejbaek T, Axelsson M, Mortensen SK, Vinsløv-Jensen H, Pihl-Jensen G, Novakova L, Pedersen CB, Halle B, Poulsen FR, Zhang M, Benedikz E, Frederiksen JL, Lycke J, Illes Z, Fex-Svenningsen Å. MIF in the cerebrospinal fluid is decreased during relapsing-remitting while increased in secondary progressive multiple sclerosis. J Neurol Sci 2022; 439:120320. [PMID: 35717879 DOI: 10.1016/j.jns.2022.120320] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is involved in the function of both the innate and adaptive immune systems and in neuroprotection and has recently been implicated in multiple sclerosis (MS). OBJECTIVES Determination of MIF levels in the cerebrospinal fluid (CSF) of patients with distinct subtypes of MS and the cellular localization of MIF in human brain tissue. METHODS The levels of MIF were investigated in CSF from patients with clinically isolated syndrome (CIS) (n = 26), relapsing-remitting MS (RRMS) (n = 22), secondary progressive MS (SPMS) (n = 19), and healthy controls (HCs) (n = 24), using ELISA. The effect of disease-modifying therapies in the RRMS and SPMS cohorts were examined. Cellular distribution of MIF in the human brain was studied using immunochemistry and the newly available OligoInternode database. RESULTS MIF was significantly decreased in treatment-naïve CIS and RRMS patients compared to HCs but was elevated in SPMS. Interestingly, MIF levels were sex-dependent and significantly higher in women with CIS and RRMS. MIF expression in the human brain was localized to neurons, astrocytes, pericytes, and oligo5 oligodendrocytes but not in microglia. CONCLUSION The finding that MIF was decreased in newly diagnosed CIS and RRMS patients but was high in patients with SPMS may suggest that MIF levels in CSF are regulated by local MIF receptor expression that affects the overall MIF signaling in the brain and may represent a protective mechanism that eventually fails.
Collapse
Affiliation(s)
- Simone Hjæresen
- University of Southern Denmark, Department of Molecular Medicine, J.B. Winsløws vej 21, 5000 Odense, Denmark; BRIDGE - Brain Research InterDisciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.
| | - Tobias Sejbaek
- University of Southern Denmark, Department of Regional Health Research, 5000 Odense, Denmark; University of Copenhagen, Department of Neurology, Southwest Jutland University Hospital, 6700 Esbjerg, Denmark.
| | - Markus Axelsson
- University of Gothenburg, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Sif Kløvedal Mortensen
- University of Southern Denmark, Department of Molecular Medicine, J.B. Winsløws vej 21, 5000 Odense, Denmark.
| | - Helle Vinsløv-Jensen
- University of Southern Denmark, Department of Molecular Medicine, J.B. Winsløws vej 21, 5000 Odense, Denmark
| | - Gorm Pihl-Jensen
- University of Copenhagen, Department of Neurology, Rigshospitalet Glostrup, Copenhagen, Denmark
| | - Lenka Novakova
- University of Gothenburg, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Christian Bonde Pedersen
- Odense University Hospital, Department of Neurosurgery, Clinical Institute and University of Southern Denmark, Denmark; BRIDGE - Brain Research InterDisciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.
| | - Bo Halle
- Odense University Hospital, Department of Neurosurgery, Clinical Institute and University of Southern Denmark, Denmark; BRIDGE - Brain Research InterDisciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.
| | - Frantz Rom Poulsen
- Odense University Hospital, Department of Neurosurgery, Clinical Institute and University of Southern Denmark, Denmark; BRIDGE - Brain Research InterDisciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.
| | - Mengliang Zhang
- University of Southern Denmark, Department of Molecular Medicine, J.B. Winsløws vej 21, 5000 Odense, Denmark; BRIDGE - Brain Research InterDisciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.
| | - Eirikur Benedikz
- University of Southern Denmark, Faculty of Health Sciences, J.B. Winsløws vej 19., 5000 Odense, Denmark.
| | | | - Jan Lycke
- University of Gothenburg, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, and Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Zsolt Illes
- University of Southern Denmark, Department of Molecular Medicine, J.B. Winsløws vej 21, 5000 Odense, Denmark; Odense University Hospital, Department of Neurology, Odense, Denmark; BRIDGE - Brain Research InterDisciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.
| | - Åsa Fex-Svenningsen
- University of Southern Denmark, Department of Molecular Medicine, J.B. Winsløws vej 21, 5000 Odense, Denmark; BRIDGE - Brain Research InterDisciplinary Guided Excellence, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
183
|
Lin X, Li XX, Dong R, Wang B, Bi YL. Habitual tea consumption and postoperative delirium after total hip/knee arthroplasty in elderly patients: The PNDABLE study. Brain Behav 2022; 12:e2612. [PMID: 35555872 PMCID: PMC9226797 DOI: 10.1002/brb3.2612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/17/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To clarify the effects of habitual tea consumption on postoperative delirium (POD) in elderly patients undergoing total hip/knee arthroplasty. PATIENTS AND METHODS A prospective cohort study was carried out at Qingdao Municipal Hospital Affiliated to Qingdao University between June 2020 and June 2021. A total of 332 patients aged 65-85 years undergoing total hip/knee arthroplasty under combined spinal and epidural anesthesia were enrolled from the Perioperative Neurocognitive Disorder and Biomarker Lifestyle (PNDABLE) study in the final analysis, consisting of 168 patients with habitual tea consumption and 164 patients with infrequent tea consumption. The primary endpoint was the effects of habitual tea consumption on POD and the incidence of POD, which was assessed by the Confusion Assessment Method (CAM) twice daily during the first 7 postoperative days, and POD severity was measured by the Memorial Delirium Assessment Scale (MDAS). The secondary endpoints were the concentrations of caffeine and tea polyphenols in plasma and cerebrospinal fluid (CSF), which were detected by the enzyme-linked immunosorbent assay. RESULTS POD occurred in 61 of 332 patients (18.37%), among whom 19 had habitual tea consumption (5.72%) and 42 had infrequent tea consumption (12.65%). Habitual tea consumption (odds ratio [OR] = 0.370, 95% confidence interval [CI]: 0.205-0.670, P = .001) was significantly associated with POD in the logistic analysis, and then after adjusting for age and American Society of Anesthesiologists (ASA) physical status (OR = 0.353, 95% CI: 0.190-0.655, P = .001). Furthermore, caffeine in T0 plasma (OR = 0.834, 95% CI: 0.752-0.924, P = .001), T1 plasma (OR = 0.818, 95% CI: 0.738-0.908, P < .001), and CSF (OR = 0.899, 95% CI: 0.820-0.984, P = .022) and tea polyphenols in T0 plasma (OR = 0.541, 95% CI: 0.416-0.704, P < .001), T1 plasma (OR = 0.477, 95% CI: 0.359-0.633, P < .001), and CSF (OR = 0.526, 95% CI: 0.397-0.696, P < .001) were associated with POD after adjusting for age and ASA physical status. CONCLUSION Habitual tea consumption may be associated with a lower incidence of POD in elderly patients.
Collapse
Affiliation(s)
- Xu Lin
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Xiao-Xuan Li
- Department of Anesthesiology, Qingdao Women and Children's Hospital, Qingdao, China
| | - Rui Dong
- Department of Anesthesiology, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, China
| | - Bin Wang
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| | - Yan-Lin Bi
- Department of Anesthesiology, Qingdao Municipal Hospital Affiliated to Qingdao University, Qingdao, China
| |
Collapse
|
184
|
Zveik O, Fainstein N, Rechtman A, Haham N, Ganz T, Lavon I, Brill L, Vaknin‐Dembinsky A. Cerebrospinal fluid of progressive multiple sclerosis patients reduces differentiation and immune functions of oligodendrocyte progenitor cells. Glia 2022; 70:1191-1209. [PMID: 35266197 PMCID: PMC9314832 DOI: 10.1002/glia.24165] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 12/31/2022]
Abstract
Oligodendrocyte progenitor cells (OPCs) are responsible for remyelination in the central nervous system (CNS) in health and disease. For patients with multiple sclerosis (MS), remyelination is not always successful, and the mechanisms differentiating successful from failed remyelination are not well-known. Growing evidence suggests an immune role for OPCs, in addition to their regenerative role; however, it is not clear if this helps or hinders the regenerative process. We studied the effect of cerebrospinal fluid (CSF) from relapsing MS (rMS) and progressive MS (pMS) patients on primary OPC differentiation and immune gene expression and function. We observed that CSF from either rMS or pMS patients has a differential effect on the ability of mice OPCs to differentiate into mature oligodendrocytes and to express immune functions. CSF of pMS patients impaired differentiation into mature oligodendrocytes. In addition, it led to decreased major histocompatibility complex class (MHC)-II expression, tumor necrosis factor (TNF)-α secretion, nuclear factor kappa-B (NFκB) activation, and less activation and proliferation of T cells. Our findings suggest that OPCs are not only responsible for remyelination, but they may also play an active role as innate immune cells in the CNS.
Collapse
Affiliation(s)
- Omri Zveik
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of NeuroimmunologyThe Agnes‐Ginges Center for Neurogenetics, Hadassah – Hebrew University Medical CenterJerusalemIsrael
| | - Nina Fainstein
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of NeuroimmunologyThe Agnes‐Ginges Center for Neurogenetics, Hadassah – Hebrew University Medical CenterJerusalemIsrael
| | - Ariel Rechtman
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of NeuroimmunologyThe Agnes‐Ginges Center for Neurogenetics, Hadassah – Hebrew University Medical CenterJerusalemIsrael
| | - Nitzan Haham
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of NeuroimmunologyThe Agnes‐Ginges Center for Neurogenetics, Hadassah – Hebrew University Medical CenterJerusalemIsrael
| | - Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of NeuroimmunologyThe Agnes‐Ginges Center for Neurogenetics, Hadassah – Hebrew University Medical CenterJerusalemIsrael
| | - Iris Lavon
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of NeuroimmunologyThe Agnes‐Ginges Center for Neurogenetics, Hadassah – Hebrew University Medical CenterJerusalemIsrael
- Leslie and Michael Gaffin Center for Neuro‐OncologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Livnat Brill
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of NeuroimmunologyThe Agnes‐Ginges Center for Neurogenetics, Hadassah – Hebrew University Medical CenterJerusalemIsrael
| | - Adi Vaknin‐Dembinsky
- Faculty of Medicine, Hebrew University of Jerusalem, Department of Neurology and Laboratory of NeuroimmunologyThe Agnes‐Ginges Center for Neurogenetics, Hadassah – Hebrew University Medical CenterJerusalemIsrael
| |
Collapse
|
185
|
Nicoletti TF, Rossi S, Vita MG, Perna A, Guerrera G, Lino F, Iacovelli C, Di Natale D, Modoni A, Battistini L, Silvestri G. Elevated serum Neurofilament Light chain (NfL) as a potential biomarker of neurological involvement in Myotonic Dystrophy type 1 (DM1). J Neurol 2022; 269:5085-5092. [PMID: 35575811 PMCID: PMC9363395 DOI: 10.1007/s00415-022-11165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022]
Abstract
Background Cognitive and behavioural symptoms due to involvement of the central nervous system (CNS) are among the main clinical manifestations of Myotonic Dystrophy type 1 (DM1). Such symptoms affect patients’ quality of life and disease awareness, impacting on disease prognosis by reducing compliance to medical treatments. Therefore, CNS is a key therapeutic target in DM1. Deeper knowledge of DM1 pathogenesis is prompting development of potential disease-modifying therapies: as DM1 is a rare, multisystem and slowly progressive disease, there is need of sensitive, tissue-specific prognostic and monitoring biomarkers in view of forthcoming clinical trials. Circulating Neurofilament light chain (NfL) levels have been recognized as a sensitive prognostic and monitoring biomarker of neuroaxonal damage in various CNS disorders. Methods We performed a cross-sectional study in a cohort of 40 adult DM1 patients, testing if serum NfL might be a potential biomarker of CNS involvement also in DM1. Moreover, we collected cognitive data, brain MRI, and other DM1-related diagnostic findings for correlation studies. Results Mean serum NfL levels resulted significantly higher in DM1 (25.32 ± 28.12 pg/ml) vs 22 age-matched healthy controls (6.235 ± 0.4809 pg/ml). Their levels positively correlated with age, and with one cognitive test (Rey’s Auditory Verbal learning task). No correlations were found either with other cognitive data, or diagnostic parameters in the DM1 cohort. Conclusions Our findings support serum NfL as a potential biomarker of CNS damage in DM1, which deserves further evaluation on larger cross-sectional and longitudinal studies to test its ability in assessing brain disease severity and/or progression. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-022-11165-0.
Collapse
|
186
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
187
|
Zeman D, Revendova K, Bunganic R, Ryzi M, Masarovicova P, Kusnierova P, Kotrlova V, Hradilek P, Stejskal D, Thon V. Analysis of cerebrospinal fluid cells by flow cytometry: Comparison to conventional cytology. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022. [PMID: 35510294 DOI: 10.5507/bp.2022.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
AIMS This study compared the results obtained by basic immunophenotyping of cerebrospinal fluid (CSF) cells by flow cytometry (FC) to the results of conventional cytology and evaluated the possibility of detailed analyses of CSF B-cell subpopulations. METHODS Samples from 42 patients were examined by conventional cytology (native and/or pre-centrifuged CSF) and FC. The results from 15 patients without evidence of organic neurological disease were used to estimate reference ranges. RESULTS Pre-centrifugated CSF had significantly higher cell yield on the cytologic slide, but cell subpopulation percentages were altered; the percentage of lymphocytes was significantly higher and monocytes significantly lower compared to both native CSF slides and FC. The percentage of granulocytes was higher in FC compared to cytology. For leukocyte count, the following reference ranges were estimated for Fuchs-Rosenthal chamber (FR) counting and FC, respectively: leukocytes ≤4.7/μL and ≤2.5/μL, lymphocytes ≤4.1/μL and ≤1.8/μL, monocytes ≤1.2/μL and ≤0.9/μL, and granulocytes 0/μL and ≤0.2/μL. The following reference ranges were estimated for basic subpopulations: T-lymphocytes 84.1 - 100%, B lymphocytes 0.0 - 1.5%, NK cells 0.0 - 6.3%, NKT cells 0 - 9.5%, and CD3+CD4+/CD3+CD8+ 0.8 - 4.9. Using a volume of 1.2-2.4 mL, the number of B lymphocytes was too low (<20) in samples with ≤2.7 cells/μL in the FR. CONCLUSIONS Even normal CSF samples are amenable to basic mononuclear cell subpopulation analysis by FC. However, analysis of the B-cell subpopulations requires either a larger sample volume or selection of samples with ≥ 3 cells/μL.
Collapse
Affiliation(s)
- David Zeman
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Czech Republic.,Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Czech Republic.,Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic.,Clinic of Neurology, University Hospital Ostrava, Czech Republic
| | - Kamila Revendova
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Czech Republic.,Clinic of Neurology, University Hospital Ostrava, Czech Republic
| | - Radovan Bunganic
- Clinic of Neurology, University Hospital Ostrava, Czech Republic
| | - Marketa Ryzi
- Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic
| | - Petra Masarovicova
- Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic
| | - Pavlina Kusnierova
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Czech Republic.,Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic
| | - Vera Kotrlova
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Czech Republic.,Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic
| | - Pavel Hradilek
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Czech Republic.,Clinic of Neurology, University Hospital Ostrava, Czech Republic
| | - David Stejskal
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Czech Republic.,Institute of Laboratory Medicine, University Hospital Ostrava, Czech Republic
| | - Vojtech Thon
- Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Czech Republic.,RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
188
|
Kalle J, Pontus W, Lenka N, Simon S, Ann B, Gunnar B, Kaj B, Henrik Z, Markus A. Cerebrospinal fluid amyloid precursor protein as a potential biomarker of fatigue in multiple sclerosis: A pilot study. Mult Scler Relat Disord 2022; 63:103846. [DOI: 10.1016/j.msard.2022.103846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 11/28/2022]
|
189
|
Oeckl P, Anderl-Straub S, Von Arnim CAF, Baldeiras I, Diehl-Schmid J, Grimmer T, Halbgebauer S, Kort AM, Lima M, Marques TM, Ortner M, Santana I, Steinacker P, Verbeek MM, Volk AE, Ludolph AC, Otto M. Serum GFAP differentiates Alzheimer's disease from frontotemporal dementia and predicts MCI-to-dementia conversion. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2021-328547. [PMID: 35477892 DOI: 10.1136/jnnp-2021-328547] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Reactive astrogliosis is a hallmark of Alzheimer's disease (AD) and frontotemporal dementia (FTD) but differences between the diseases and time course are unclear. Here, we used serum levels of the astroglial marker glial fibrillary acidic protein (GFAP) to investigate differences in patients with AD dementia, mild cognitive impairment (MCI)-AD and behavioural variant FTD (bvFTD). METHODS This multicentre study included serum samples from patients diagnosed with AD dementia (n=230), MCI-AD (n=111), bvFTD (n=140) and controls (n=129). A subgroup of patients with MCI-AD (n=32) was longitudinally followed-up for 3.9±2.6 years after sample collection. Serum levels of GFAP, neurofilament light chain (NfL) and pTau181 were measured by Simoa (Quanterix) and Ella (ProteinSimple). RESULTS In total, samples from 610 individuals from four clinical centres were investigated in this study. Serum GFAP levels in AD dementia were increased (median 375 pg/mL, IQR 276-505 pg/mL) compared with controls (167 pg/mL, IQR 108-234 pg/mL) and bvFTD (190 pg/mL, IQR 134-298 pg/mL, p<0.001). GFAP was already increased in the early disease phase (MCI-AD, 300 pg/mL, IQR 232-433 pg/mL, p<0.001) and was higher in patients with MCI-AD who developed dementia during follow-up (360 pg/mL, IQR 253-414 pg/mL vs 215 pg/mL, IQR 111-266 pg/mL, p<0.01, area under the curve (AUC)=0.77). Diagnostic performance of serum GFAP for AD (AUC=0.84, sensitivity 98%, specificity 60%, likelihood ratio 2.5) was comparable to serum pTau181 (AUC=0.89, sensitivity 80%, specificity 87%, likelihood ratio 6.0) but superior to serum NfL (AUC=0.71, sensitivity 92%, specificity 49%, likelihood ratio 1.8). CONCLUSIONS Our data indicate a different type of reactive astrogliosis in AD and bvFTD and support serum GFAP as biomarker for differential diagnosis and prediction of MCI-to-dementia conversion.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | | | - Christine A F Von Arnim
- Department of Neurology, Ulm University, Ulm, Germany
- Division of Geriatrics, University Medical Center Göttingen, Göttingen, Niedersachsen, Germany
| | - Inês Baldeiras
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar de Coimbra, Coimbra, Portugal
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Timo Grimmer
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | | | - Anna M Kort
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marisa Lima
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Tainá M Marques
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marion Ortner
- Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine, Munich, Germany
| | - Isabel Santana
- Center for Neurosciences and Cell Biology-CIBB, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Centro Hospitalar de Coimbra, Coimbra, Portugal
| | | | - Marcel M Verbeek
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Raboud Alzheimer Center, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Sachsen-Anhalt, Germany
| |
Collapse
|
190
|
Serum NfL in Alzheimer Dementia: Results of the Prospective Dementia Registry Austria. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58030433. [PMID: 35334608 PMCID: PMC8955532 DOI: 10.3390/medicina58030433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022]
Abstract
Background and Objectives: The neurofilament light chain (NfL) is a biomarker for neuro-axonal injury in various acute and chronic neurological disorders, including Alzheimer’s disease (AD). We here investigated the cross-sectional and longitudinal associations between baseline serum NfL (sNfL) levels and cognitive, behavioural as well as MR volumetric findings in the Prospective Dementia Registry Austria (PRODEM-Austria). Materials and Methods: All participants were clinically diagnosed with AD according to NINCDS-ADRDA criteria and underwent a detailed clinical assessment, cognitive testing (including the Mini Mental State Examination (MMSE) and the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD)), the neuropsychiatric inventory (NPI) and laboratory evaluation. A total of 237 patients were included in the study. Follow-up examinations were done at 6 months, 1 year and 2 years with 93.3% of patients undergoing at least one follow-up. We quantified sNfL by a single molecule array (Simoa). In a subgroup of 125 subjects, brain imaging data (1.5 or 3T MRI, with 1 mm isotropic resolution) were available. Brain volumetry was assessed using the FreeSurfer image analysis suite (v6.0). Results: Higher sNfL concentrations were associated with worse performance in cognitive tests at baseline, including CERAD (B = −10.084, SE = 2.999, p < 0.001) and MMSE (B = −3.014, SE = 1.293, p = 0.021). The sNfL levels also correlated with the presence of neuropsychiatric symptoms (NPI total score: r = 0.138, p = 0.041) and with smaller volumes of the temporal lobe (B = −0.012, SE = 0.003, p = 0.001), the hippocampus (B = −0.001, SE = 0.000201, p = 0.013), the entorhinal (B = −0.000308, SE = 0.000124, p = 0.014), and the parahippocampal cortex (B = −0.000316, SE = 0.000113, p = 0.006). The sNfL values predicted more pronounced cognitive decline over the mean follow-up period of 22 months, but there were no significant associations with respect to change in neuropsychiatric symptoms and brain volumetric measures. Conclusions: the sNfL levels relate to cognitive, behavioural, and imaging hallmarks of AD and predicts short term cognitive decline.
Collapse
|
191
|
Berdowska I, Matusiewicz M, Krzystek-Korpacka M. HDL Accessory Proteins in Parkinson’s Disease—Focusing on Clusterin (Apolipoprotein J) in Regard to Its Involvement in Pathology and Diagnostics—A Review. Antioxidants (Basel) 2022; 11:antiox11030524. [PMID: 35326174 PMCID: PMC8944556 DOI: 10.3390/antiox11030524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Parkinson’s disease (PD)—a neurodegenerative disorder (NDD) characterized by progressive destruction of dopaminergic neurons within the substantia nigra of the brain—is associated with the formation of Lewy bodies containing mainly α-synuclein. HDL-related proteins such as paraoxonase 1 and apolipoproteins A1, E, D, and J are implicated in NDDs, including PD. Apolipoprotein J (ApoJ, clusterin) is a ubiquitous, multifunctional protein; besides its engagement in lipid transport, it modulates a variety of other processes such as immune system functionality and cellular death signaling. Furthermore, being an extracellular chaperone, ApoJ interacts with proteins associated with NDD pathogenesis (amyloid β, tau, and α-synuclein), thus modulating their properties. In this review, the association of clusterin with PD is delineated, with respect to its putative involvement in the pathological mechanism and its application in PD prognosis/diagnosis.
Collapse
Affiliation(s)
- Izabela Berdowska
- Correspondence: (I.B.); (M.M.); Tel.: +48-71-784-13-92 (I.B.); +48-71-784-13-70 (M.M.)
| | | | | |
Collapse
|
192
|
Bajwa HM, Novak F, Nilsson AC, Nielsen C, Holm DK, Østergaard K, Witt AH, Byg KE, Johansen IS, Mittl K, Rowles W, Zamvil SS, Bove R, Sabatino JJ, Sejbaek T. Persistently reduced humoral and sustained cellular immune response from first to third SARS-CoV-2 mRNA vaccination in anti-CD20-treated multiple sclerosis patients. Mult Scler Relat Disord 2022; 60:103729. [PMID: 35334278 PMCID: PMC8898195 DOI: 10.1016/j.msard.2022.103729] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/25/2022] [Accepted: 03/04/2022] [Indexed: 01/14/2023]
Abstract
Objective To examine humoral and cellular response in multiple sclerosis patients on anti-CD20 therapy after third BNT162b2 mRNA SARS-CoV-2 vaccination. Methods A prospective longitudinal study design from first throughout third vaccination in Danish and American MS centers. All participants were treated with ocrelizumab. Antibody (Ab) levels were assessed before and after third vaccination using SARS-CoV-2 IgG II Quant assay (Abbott Laboratories). B- and T-lymphocytes enumeration was done with BD Multitest™6-color TBNK reagent. Spike-specific T-cell responses were measured through PBMC stimulation with spike peptide pools (JPT Peptide Technologies). Results We found that 14.0%, 37.7%, and 33.3% were seropositive after first, second and third vaccination. The median Ab-levels were 74.2 BAU/mL (range: 8.5–2427) after second vaccination, as well as 43.7 BAU/ml (range: 7.8–366.1) and 31.3 BAU/mL (range: 7.9–507.0) before and after third vaccination, respectively. No difference was found in levels after second and third vaccination (p = 0.1475). Seropositivity dropped to 25.0% of participants before the third vaccination, a relative reduction of 33.3% (p = 0.0020). No difference was found between frequencies of spike reactive CD4+and CD8+ T-cells after second (0.65 ± 0.08% and 0.95 ± 0.20%, respectively) and third vaccination (0.99 ± 0.22% and 1.3 ± 0.34%, respectively). Conclusion In this longitudinal cohort we found no significant increased humoral or cellular response with administration of a third SARS-CoV-2 mRNA vaccination. These findings suggest the need for clinical strategies to include allowance of B cell reconstitution before repeat vaccination and/or provision of pre-exposure prophylactic monoclonal antibodies.
Collapse
|
193
|
Lee H, Kim SI. Review of Liquid Chromatography-Mass Spectrometry-Based Proteomic Analyses of Body Fluids to Diagnose Infectious Diseases. Int J Mol Sci 2022; 23:ijms23042187. [PMID: 35216306 PMCID: PMC8878692 DOI: 10.3390/ijms23042187] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
Rapid and precise diagnostic methods are required to control emerging infectious diseases effectively. Human body fluids are attractive clinical samples for discovering diagnostic targets because they reflect the clinical statuses of patients and most of them can be obtained with minimally invasive sampling processes. Body fluids are good reservoirs for infectious parasites, bacteria, and viruses. Therefore, recent clinical proteomics methods have focused on body fluids when aiming to discover human- or pathogen-originated diagnostic markers. Cutting-edge liquid chromatography-mass spectrometry (LC-MS)-based proteomics has been applied in this regard; it is considered one of the most sensitive and specific proteomics approaches. Here, the clinical characteristics of each body fluid, recent tandem mass spectroscopy (MS/MS) data-acquisition methods, and applications of body fluids for proteomics regarding infectious diseases (including the coronavirus disease of 2019 [COVID-19]), are summarized and discussed.
Collapse
Affiliation(s)
- Hayoung Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
| | - Seung Il Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea;
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon 34113, Korea
- Correspondence:
| |
Collapse
|
194
|
Probert F, Yeo T, Zhou Y, Sealey M, Arora S, Palace J, Claridge TDW, Hillenbrand R, Oechtering J, Kuhle J, Leppert D, Anthony DC. Determination of CSF GFAP, CCN5, and vWF Levels Enhances the Diagnostic Accuracy of Clinically Defined MS From Non-MS Patients With CSF Oligoclonal Bands. Front Immunol 2022; 12:811351. [PMID: 35185866 PMCID: PMC8855362 DOI: 10.3389/fimmu.2021.811351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/27/2021] [Indexed: 12/31/2022] Open
Abstract
Background Inclusion of cerebrospinal fluid (CSF) oligoclonal IgG bands (OCGB) in the revised McDonald criteria increases the sensitivity of diagnosis when dissemination in time (DIT) cannot be proven. While OCGB negative patients are unlikely to develop clinically definite (CD) MS, OCGB positivity may lead to an erroneous diagnosis in conditions that present similarly, such as neuromyelitis optica spectrum disorders (NMOSD) or neurosarcoidosis. Objective To identify specific, OCGB-complementary, biomarkers to improve diagnostic accuracy in OCGB positive patients. Methods We analysed the CSF metabolome and proteome of CDMS (n=41) and confirmed non-MS patients (n=64) comprising a range of CNS conditions routinely encountered in neurology clinics. Results OCGB discriminated between CDMS and non-MS with high sensitivity (85%), but low specificity (67%), as previously described. Machine learning methods revealed CCN5 levels provide greater accuracy, sensitivity, and specificity than OCGB (79%, +5%; 90%, +5%; and 72%, +5% respectively) while glial fibrillary acidic protein (GFAP) identified CDMS with 100% specificity (+33%). A multiomics approach improved accuracy further to 90% (+16%). Conclusion The measurement of a few additional CSF biomarkers could be used to complement OCGB and improve the specificity of MS diagnosis when clinical and radiological evidence of DIT is absent.
Collapse
Affiliation(s)
- Fay Probert
- Department of Chemistry, University of Oxford, Oxford, United Kingdom,*Correspondence: Daniel C. Anthony, ; Fay Probert,
| | - Tianrong Yeo
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom,Department of Neurology, National Neuroscience Institute, Singapore, Singapore,Duke-National University of Singapore (NUS) Medical School, Singapore, Singapore
| | - Yifan Zhou
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom,Translational Stem Cell Biology Branch, National Institutes of Health, Bethesda, MD, United States,Wellcome Medical Research Council (MRC) Trust Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Megan Sealey
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Siddharth Arora
- Department of Mathematics, University of Oxford, Oxford, United Kingdom
| | - Jacqueline Palace
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | | | | | - Johanna Oechtering
- Neurologic Clinic and Policlinic, Multiple Sclerosis (MS) Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Multiple Sclerosis (MS) Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Multiple Sclerosis (MS) Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Clinical Research and Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom,*Correspondence: Daniel C. Anthony, ; Fay Probert,
| |
Collapse
|
195
|
Kim SH, Chae SA. Promising candidate cerebrospinal fluid biomarkers of seizure disorder, infection, inflammation, tumor, and traumatic brain injury in pediatric patients. Clin Exp Pediatr 2022; 65:56-64. [PMID: 34425669 PMCID: PMC8841973 DOI: 10.3345/cep.2021.00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/27/2021] [Accepted: 07/11/2021] [Indexed: 11/27/2022] Open
Abstract
Cerebrospinal fluid (CSF) is a dynamic metabolically active body fluid that has many important roles and is commonly analyzed in pediatric patients, mainly to diagnose central nervous system infection and inflammation disorders. CSF components have been extensively evaluated as biomarkers of neurological disorders in adult patients. Circulating microRNAs in CSF are a promising class of biomarkers for various neurological diseases. Due to the complexity of pediatric neurological disorders and difficulty in acquiring CSF samples from pediatric patients, there are challenges in developing CSF biomarkers of pediatric neurological disorders. This review aimed to provide an overview of novel CSF biomarkers of seizure disorders, infection, inflammation, tumor, traumatic brain injuries, intraventricular hemorrhage, and congenital hydrocephalus exclusively observed in pediatric patients.
Collapse
Affiliation(s)
- Seh Hyun Kim
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
| | - Soo Ahn Chae
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Korea
- College of Medicine, Chung-Ang University, Seoul, Korea
| |
Collapse
|
196
|
Cuomo-Haymour N, Bergamini G, Russo G, Kulic L, Knuesel I, Martin R, Huss A, Tumani H, Otto M, Pryce CR. Differential Expression of Serum Extracellular Vesicle miRNAs in Multiple Sclerosis: Disease-Stage Specificity and Relevance to Pathophysiology. Int J Mol Sci 2022; 23:ijms23031664. [PMID: 35163583 PMCID: PMC8836256 DOI: 10.3390/ijms23031664] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/27/2022] [Indexed: 01/27/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory autoimmune disease of the central nervous system (CNS). Its first clinical presentation (clinically isolated syndrome, CIS) is often followed by the development of relapsing–remitting MS (RRMS). The periphery-to-CNS transmission of inflammatory molecules is a major pathophysiological pathway in MS. This could include signalling via extracellular vesicle (EV) microRNAs (miRNAs). In this study, we investigated the serum EV miRNome in CIS and RRMS patients and matched controls, with the aims to identify MS stage-specific differentially expressed miRNAs and investigate their biomarker potential and pathophysiological relevance. miRNA sequencing was conducted on serum EVs from CIS-remission, RRMS-relapse, and viral inflammatory CNS disorder patients, as well as from healthy and hospitalized controls. Differential expression analysis was conducted, followed by predictive power and target-pathway analysis. A moderate number of dysregulated serum EV miRNAs were identified in CIS-remission and RRMS-relapse patients, especially relative to healthy controls. Some of these miRNAs were also differentially expressed between the two MS stages and had biomarker potential for patient-control and CIS–RRMS separations. For the mRNA targets of the RRMS-relapse-specific EV miRNAs, biological processes inherent to MS pathophysiology were identified using in silico analysis. Study findings demonstrate that specific serum EV miRNAs have MS stage-specific biomarker potential and contribute to the identification of potential targets for novel, efficacious therapies.
Collapse
Affiliation(s)
- Nagiua Cuomo-Haymour
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
| | - Giancarlo Russo
- Functional Genomics Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland
| | - Luka Kulic
- Roche Innovation Center Basel, Neuroimmunology Division, Roche Pharma Research and Early Development, 4070 Basel, Switzerland
| | - Irene Knuesel
- Roche Innovation Center Basel, Neuroimmunology Division, Roche Pharma Research and Early Development, 4070 Basel, Switzerland
| | - Roland Martin
- Neuroimmunology and MS Research, Neurology Clinic, University Hospital Zurich, 8006 Zurich, Switzerland
| | - André Huss
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany
| | - Hayrettin Tumani
- Department of Neurology, University Hospital Ulm, 89081 Ulm, Germany
| | - Markus Otto
- Department of Neurology, University Hospital Halle, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
197
|
van de Beek M, Ooms FAH, Ebenau JL, Barkhof F, Scheltens P, Teunissen CE, van Harten AC, van der Flier WM, Lemstra AW. Association of the ATN Research Framework With Clinical Profile, Ccognitive Decline, and Mortality in Patients With Dementia With Lewy Bodies. Neurology 2022; 98:e1262-e1272. [PMID: 35074893 DOI: 10.1212/wnl.0000000000200048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/30/2021] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The ATN framework has been developed to categorize biological processes within the Alzheimer's disease (AD) continuum. Since AD pathology often coincides with dementia with Lewy Bodies (DLB), we aimed to investigate the distribution of ATN profiles in DLB and associate ATN-profiles in DLB to prognosis. METHODS We included 202 DLB patients from the Amsterdam Dementia Cohort (68±7yrs, 19%F, MMSE: 24±3, DAT-SPECT abnormal: 105/119). Patients were classified into eight profiles according to the ATN framework, using CSF Aβ42 (A), CSF p-tau (T) and medial temporal atrophy scores (N). We compared presence of clinical symptoms in ATN profiles and used linear mixed models to analyze decline on cognitive tests (follow-up 3±2yrs for n=139). Mortality risk was assessed using Cox proportional hazards analysis. Analyses were performed on both the eight profiles, as well as three clustered categories (normal AD biomarkers, non-AD pathologic change, AD continuum). RESULTS Fifty (25%) DLB patients had normal AD biomarkers (A-T-N-), 37 (18%) had non-AD pathologic change (A-T+N-: 10%/A-T-N+: 6%/A-T+N+: 3%) and 115 (57%) were classified within the AD continuum (A+T-N-: 20%/A+T+N-: 16%/A+T-N+: 10%/A+T+N+: 9%). A+T+N+ patients were older and least often had RBD symptoms. Parkinsonism was more often present in A+T-, compared to A-T+ (independent of N). Compared to patients with normal AD biomarkers, patients in A+ categories showed steeper decline on memory tests and higher mortality risk. Cognitive decline and mortality did not differ between non-AD pathologic change and normal AD biomarkers. DISCUSSION In our DLB cohort, we found clinically relevant associations between ATN categories and disease manifestation. Patients within the AD continuum had steeper cognitive decline and shorter survival. Implementing the ATN framework within DLB patients aids in subtyping patients based on underlying biological processes and could provide targets for future treatment strategies, e.g. AD modifying treatment. Expanding the framework by incorporating markers for alpha-synucleinopathy would improve the use of the framework to characterize dementia patients with mixed pathology, which could enhance proper stratification of patients for therapeutic trials.
Collapse
Affiliation(s)
- Marleen van de Beek
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Floor A H Ooms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Jarith L Ebenau
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, the Netherlands.,Institutes of Neurology and Healthcare Engineering, UCL, London, England, United Kingdom
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Department of Neurochemistry, Department of Clinical Chemistry, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Argonde C van Harten
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.,Department of Epidemiology and Data Sciences, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Afina W Lemstra
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
198
|
Porteny J, Tovar E, Lin S, Anwar A, Osier N. Salivary Biomarkers as Indicators of TBI Diagnosis and Prognosis: A Systematic Review. Mol Diagn Ther 2022; 26:169-187. [PMID: 35048328 DOI: 10.1007/s40291-021-00569-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Traumatic brain injuries are physical injuries to the head that result in disruptions to normal brain function. Diagnostic tools such as computed tomography scans have commonly been used to detect traumatic brain injuries but are costly and not ubiquitously available. Recent research on diagnostic alternatives has focused on using salivary biomarkers, but there is no consensus on the utility of these methods. The objective of this manuscript is to address the gap in the literature pertaining to the effectiveness of salivary biomarkers for TBI diagnosis and prognosis. METHODS A systematic review was conducted between November 2020 and October 2021 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Six databases were searched using the terms "traumatic brain injury," "TBI," "saliva," and "biomarkers." Literature published prior to 2010 was excluded, and two authors reviewed each full-text article to ensure its relevance. RESULTS A total of 18 articles were included in this review, with nine articles on salivary microRNA, three on salivary hormones, three on salivary extracellular vesicles, and three on salivary proteins. CONCLUSIONS Studies reported changes in salivary biomarkers after traumatic brain injuries and indicated a possible link between salivary biomarker expression and traumatic brain injury severity. However, it is unclear the degree to which salivary biomarkers accurately predict traumatic brain injury diagnosis and prognosis; some studies reported significant associations while others reported weaker associations. More research into the robustness of salivary biomarkers is needed to fully elucidate their utility for the traumatic brain injury population.
Collapse
Affiliation(s)
- Jacqueline Porteny
- The University of Texas at Austin College of Liberal Arts, Austin, TX, USA
| | - Elicenda Tovar
- The University of Texas at Austin College of Natural Sciences, Austin, TX, USA
| | - Samuel Lin
- The University of Texas at Austin College of Natural Sciences, Austin, TX, USA.,Dell Medical School, Austin, TX, USA
| | - Afifa Anwar
- The University of Texas at Austin College of Natural Sciences, Austin, TX, USA.,The University of Texas Health Science Center at San Antonio School of Dentistry, San Antonio, TX, USA
| | - Nico Osier
- The University of Texas at Austin School of Nursing, Austin, TX, USA. .,Department of Neurology, Dell Medical School, Austin, TX, USA.
| |
Collapse
|
199
|
Sørensen NV, Orlovska-Waast S, Jeppesen R, Christensen RH, Benros ME. Neuroimmunological investigations of cerebrospinal fluid in patients with recent onset depression - a study protocol. BMC Psychiatry 2022; 22:35. [PMID: 35022028 PMCID: PMC8756720 DOI: 10.1186/s12888-021-03633-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 11/30/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND A proinflammatory response has been suggested to be involved in the pathophysiology of depression in a subgroup of patients. However, comprehensive largescale studies on neuroimmunological investigations of the cerebrospinal fluid (CSF) are lacking and no largescale longitudinal CSF studies comparing patients with depression to healthy controls currently exist. METHODS A longitudinal case-control study including at least 100 patients with first time depression (ICD-10: F32) within the past year with ongoing symptoms and at least 100 sex and age matched healthy controls with collection of CSF, blood, and fecal samples. All individuals will be evaluated by neurological examination including neurological soft signs, interviewed for psychopathology assessment and have symptomatology evaluated by relevant rating scales. Level of functioning and quality of life will be evaluated by a panel of interview questions and rating scales, and cognitive function assessed by a relevant test battery. In addition, a large number of potential confounders will be registered (BMI, smoking status, current medication etc.). Primary outcomes: CSF white cell count, CSF/serum albumin ratio, CSF total protein levels, IgG index, CSF levels of IL-6 and IL-8, and the prevalence of any CNS-reactive autoantibody in CSF and/or blood. SECONDARY OUTCOMES exploratory analyses of a wide range of neuroimmunological markers and specific autoantibodies. Power calculations are computed for all primary outcomes based on previous CSF studies including patients with depression and healthy controls. DISCUSSION This study will represent the hitherto largest investigation of CSF in patients with recent onset depression compared to healthy controls. We expect to elucidate neuroimmunological alterations in individuals with depression and characterize an immunological profile paving the way for the development of effective treatments based on biomarkers. TRIAL REGISTRATION The study is approved by The Regional Committee on Health Research Ethics (Capital Region, j.no: H-16030985) and The Danish Data Protection Agency (j.no: RHP-2016-020, I-Suite no.: 04945).
Collapse
Affiliation(s)
- Nina Vindegaard Sørensen
- grid.4973.90000 0004 0646 7373Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900 Hellerup, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sonja Orlovska-Waast
- grid.4973.90000 0004 0646 7373Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900 Hellerup, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rose Jeppesen
- grid.4973.90000 0004 0646 7373Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900 Hellerup, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rune Haubo Christensen
- grid.4973.90000 0004 0646 7373Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900 Hellerup, Denmark
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Mental Health Centre Copenhagen, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4. sal, 2900, Hellerup, Denmark. .,Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
200
|
Wojdała AL, Chiasserini D, Bellomo G, Paciotti S, Gaetani L, Paoletti FP, Parnetti L. Phosphatidylethanolamine Binding Protein 1 (PEBP1) in Alzheimer's Disease: ELISA Development and Clinical Validation. J Alzheimers Dis 2022; 88:1459-1468. [PMID: 35786656 PMCID: PMC9484123 DOI: 10.3233/jad-220323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Phosphatidylethanolamine binding protein 1 (PEBP1) is a multifunctional protein, mainly known for its specific binding of phosphatidylethanolamine and the ability to suppress the Raf1-MAPK pathway. Its potential role as an Alzheimer's disease (AD) biomarker has been proposed in several studies. However, evaluation of its discriminative value in clinical cohorts is missing. OBJECTIVE We aimed to develop a new immunoassay for the measurement of PEBP1 in cerebrospinal fluid (CSF) and assess the possible role of this protein as AD biomarker. METHODS We developed a sandwich enzyme-linked immunosorbent assay (ELISA) for detection of PEBP1 in CSF and performed a technical and a clinical validation on two well-characterized cohorts. The first cohort included 14 mild cognitive impairment due to AD (MCI-AD) and 11 other neurological diseases (OND) patients. The second, larger cohort, included 25 MCI-AD, 29 AD dementia (AD-dem), and 21 OND patients. RESULTS PEBP1 is highly sensitive to pre-analytical conditions, especially to prolonged storage at room temperature or 4°C. Analysis of the first cohort showed a trend of an increase of PEBP1 level in MCI-AD patients versus OND subjects. Analysis of the second cohort did not show significant differences among diagnostic groups. Weak, positive correlation was found between CSF PEBP1 and t-tau, p-tau, and Aβ40 in the AD-dem group. CONCLUSION A novel ELISA for the detection of PEBP1 in CSF was developed. Further research is needed to assess the potential of PEBP1 in AD diagnostics. The observed dependence of the PEBP1 signal on operating procedures encourages its potential application as CSF quality control.
Collapse
Affiliation(s)
- Anna Lidia Wojdała
- Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Giovanni Bellomo
- Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Silvia Paciotti
- Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|