151
|
Potential Role of JAK-STAT Signaling Pathway in the Neurogenic-to-Gliogenic Shift in Down Syndrome Brain. Neural Plast 2016; 2016:7434191. [PMID: 26881131 PMCID: PMC4737457 DOI: 10.1155/2016/7434191] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/15/2015] [Accepted: 11/17/2015] [Indexed: 01/09/2023] Open
Abstract
Trisomy of human chromosome 21 in Down syndrome (DS) leads to several phenotypes, such as mild-to-severe intellectual disability, hypotonia, and craniofacial dysmorphisms. These are fundamental hallmarks of the disorder that affect the quality of life of most individuals with DS. Proper brain development involves meticulous regulation of various signaling pathways, and dysregulation may result in abnormal neurodevelopment. DS brain is characterized by an increased number of astrocytes with reduced number of neurons. In mouse models for DS, the pool of neural progenitor cells commits to glia rather than neuronal cell fate in the DS brain. However, the mechanism(s) and consequences of this slight neurogenic-to-gliogenic shift in DS brain are still poorly understood. To date, Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling has been proposed to be crucial in various developmental pathways, especially in promoting astrogliogenesis. Since both human and mouse models of DS brain exhibit less neurons and a higher percentage of cells with astrocytic phenotypes, understanding the role of JAK-STAT signaling in DS brain development will provide novel insight into its role in the pathogenesis of DS brain and may serve as a potential target for the development of effective therapy to improve DS cognition.
Collapse
|
152
|
Homem CCF, Repic M, Knoblich JA. Proliferation control in neural stem and progenitor cells. Nat Rev Neurosci 2015; 16:647-59. [PMID: 26420377 DOI: 10.1038/nrn4021] [Citation(s) in RCA: 250] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neural circuit function can be drastically affected by variations in the number of cells that are produced during development or by a reduction in adult cell number owing to disease. For this reason, unique cell cycle and cell growth control mechanisms operate in the developing and adult brain. In Drosophila melanogaster and in mammalian neural stem and progenitor cells, these mechanisms are intricately coordinated with the developmental age and the nutritional, metabolic and hormonal state of the animal. Defects in neural stem cell proliferation that result in the generation of incorrect cell numbers or defects in neural stem cell differentiation can cause microcephaly or megalencephaly.
Collapse
Affiliation(s)
- Catarina C F Homem
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria.,Chronic Diseases Research Center, NOVA Medical School, Rua Camara Pestana, 6, 1150-082 Lisbon, Portugal
| | - Marko Repic
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria
| | - Jürgen A Knoblich
- Institute of Molecular Biotechnology, Dr. Bohr Gasse 3, 1030, Vienna, Austria
| |
Collapse
|
153
|
Keil KP, Vezina CM. DNA methylation as a dynamic regulator of development and disease processes: spotlight on the prostate. Epigenomics 2015; 7:413-25. [PMID: 26077429 DOI: 10.2217/epi.15.8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Prostate development, benign hyperplasia and cancer involve androgen and growth factor signaling as well as stromal-epithelial interactions. We review how DNA methylation influences these and related processes in other organ systems such as how proliferation is restricted to specific cell populations during defined temporal windows, how androgens elicit their actions and how cells establish, maintain and remodel DNA methylation in a time and cell specific fashion. We also discuss mechanisms by which hormones and endocrine disrupting chemicals reprogram DNA methylation in the prostate and elsewhere and examine evidence for a reawakening of developmental epigenetic pathways as drivers of prostate cancer and benign prostate hyperplasia.
Collapse
Affiliation(s)
- Kimberly P Keil
- Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53705, USA
| | - Chad M Vezina
- Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53705, USA
| |
Collapse
|
154
|
Nagao M, Lanjakornsiripan D, Itoh Y, Kishi Y, Ogata T, Gotoh Y. High mobility group nucleosome-binding family proteins promote astrocyte differentiation of neural precursor cells. Stem Cells 2015; 32:2983-97. [PMID: 25069414 DOI: 10.1002/stem.1787] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 11/07/2022]
Abstract
Astrocytes are the most abundant cell type in the mammalian brain and are important for the functions of the central nervous system. Although previous studies have shown that the STAT signaling pathway or its regulators promote the generation of astrocytes from multipotent neural precursor cells (NPCs) in the developing mammalian brain, the molecular mechanisms that regulate the astrocytic fate decision have still remained largely unclear. Here, we show that the high mobility group nucleosome-binding (HMGN) family proteins, HMGN1, 2, and 3, promote astrocyte differentiation of NPCs during brain development. HMGN proteins were expressed in NPCs, Sox9(+) glial progenitors, and GFAP(+) astrocytes in perinatal and adult brains. Forced expression of either HMGN1, 2, or 3 in NPCs in cultures or in the late embryonic neocortex increased the generation of astrocytes at the expense of neurons. Conversely, knockdown of either HMGN1, 2, or 3 in NPCs suppressed astrocyte differentiation and promoted neuronal differentiation. Importantly, overexpression of HMGN proteins did not induce the phosphorylation of STAT3 or activate STAT reporter genes. In addition, HMGN family proteins did not enhance DNA demethylation and acetylation of histone H3 around the STAT-binding site of the gfap promoter. Moreover, knockdown of HMGN family proteins significantly reduced astrocyte differentiation induced by gliogenic signal ciliary neurotrophic factor, which activates the JAK-STAT pathway. Therefore, we propose that HMGN family proteins are novel chromatin regulatory factors that control astrocyte fate decision/differentiation in parallel with or downstream of the JAK-STAT pathway through modulation of the responsiveness to gliogenic signals.
Collapse
Affiliation(s)
- Motoshi Nagao
- Department of Rehabilitation for the Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | | | | | | | | | | |
Collapse
|
155
|
Correale J, Farez MF. The Role of Astrocytes in Multiple Sclerosis Progression. Front Neurol 2015; 6:180. [PMID: 26347709 PMCID: PMC4539519 DOI: 10.3389/fneur.2015.00180] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 08/03/2015] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disorder causing central nervous system (CNS) demyelination and axonal injury. Although its etiology remains elusive, several lines of evidence support the concept that autoimmunity plays a major role in disease pathogenesis. The course of MS is highly variable; nevertheless, the majority of patients initially present a relapsing–remitting clinical course. After 10–15 years of disease, this pattern becomes progressive in up to 50% of untreated patients, during which time clinical symptoms slowly cause constant deterioration over a period of many years. In about 15% of MS patients, however, disease progression is relentless from disease onset. Published evidence supports the concept that progressive MS reflects a poorly understood mechanism of insidious axonal degeneration and neuronal loss. Recently, the type of microglial cell and of astrocyte activation and proliferation observed has suggested contribution of resident CNS cells may play a critical role in disease progression. Astrocytes could contribute to this process through several mechanisms: (a) as part of the innate immune system, (b) as a source of cytotoxic factors, (c) inhibiting remyelination and axonal regeneration by forming a glial scar, and (d) contributing to axonal mitochondrial dysfunction. Furthermore, regulatory mechanisms mediated by astrocytes can be affected by aging. Notably, astrocytes might also limit the detrimental effects of pro-inflammatory factors, while providing support and protection for oligodendrocytes and neurons. Because of the dichotomy observed in astrocytic effects, the design of therapeutic strategies targeting astrocytes becomes a challenging endeavor. Better knowledge of molecular and functional properties of astrocytes, therefore, should promote understanding of their specific role in MS pathophysiology, and consequently lead to development of novel and more successful therapeutic approaches.
Collapse
Affiliation(s)
- Jorge Correale
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea, FLENI , Buenos Aires , Argentina
| | - Mauricio F Farez
- Department of Neurology, Institute for Neurological Research Dr. Raúl Carrea, FLENI , Buenos Aires , Argentina
| |
Collapse
|
156
|
Emery B, Lu QR. Transcriptional and Epigenetic Regulation of Oligodendrocyte Development and Myelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2015; 7:a020461. [PMID: 26134004 DOI: 10.1101/cshperspect.a020461] [Citation(s) in RCA: 210] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Central nervous system (CNS) myelination by oligodendrocytes (OLs) is a highly orchestrated process involving well-defined steps from specification of neural stem cells into proliferative OL precursors followed by terminal differentiation and subsequent maturation of these precursors into myelinating OLs. These specification and differentiation processes are mediated by profound global changes in gene expression, which are in turn subject to control by both extracellular signals and regulatory networks intrinsic to the OL lineage. Recently, basic transcriptional mechanisms that control OL differentiation and myelination have begun to be elucidated at the molecular level and on a genome scale. The interplay between transcription factors activated by differentiation-promoting signals and master regulators likely exerts a crucial role in controlling stage-specific progression of the OL lineage. In this review, we describe the current state of knowledge regarding the transcription factors and the epigenetic programs including histone methylation, acetylation, chromatin remodeling, micro-RNAs, and noncoding RNAs that regulate development of OLs and myelination.
Collapse
Affiliation(s)
- Ben Emery
- Department of Anatomy and Neurobiology, University of Melbourne, Victoria 3010, Australia Florey Institute of Neuroscience and Mental Health, University of Melbourne, Victoria 3010, Australia
| | - Q Richard Lu
- Department of Pediatrics, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
157
|
Morris MJ, Monteggia LM. Role of DNA methylation and the DNA methyltransferases in learning and memory. DIALOGUES IN CLINICAL NEUROSCIENCE 2015. [PMID: 25364286 PMCID: PMC4214178 DOI: 10.31887/dcns.2014.16.3/mmorris] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Dynamic regulation of chromatin structure in postmitotic neurons plays an important role in learning and memory. Methylation of cytosine nucleotides has historically been considered the strongest and least modifiable of epigenetic marks. Accumulating recent data suggest that rapid and dynamic methylation and demethylation of specific genes in the brain may play a fundamental role in learning, memory formation, and behavioral plasticity. The current review focuses on the emergence of data that support the role of DNA methylation and demethylation, and its molecular mediators in memory formation.
Collapse
Affiliation(s)
- Michael J Morris
- Department of Biological Sciences, University of Michigan-Dearborn, Dearborn, Michigan, USA
| | - Lisa M Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
158
|
Bose R, Spulber S, Kilian P, Heldring N, Lönnerberg P, Johnsson A, Conti M, Hermanson O, Ceccatelli S. Tet3 mediates stable glucocorticoid-induced alterations in DNA methylation and Dnmt3a/Dkk1 expression in neural progenitors. Cell Death Dis 2015; 6:e1793. [PMID: 26086966 PMCID: PMC4669838 DOI: 10.1038/cddis.2015.159] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/28/2015] [Accepted: 05/13/2015] [Indexed: 12/15/2022]
Abstract
Developmental exposure to excess glucocorticoids (GCs) has harmful neurodevelopmental effects, which include persistent alterations in the differentiation potential of embryonic neural stem cells (NSCs). The mechanisms, however, are largely unknown. Here, we investigated the effects of dexamethasone (Dex, a synthetic GC analog) by MeDIP-like genome-wide analysis of differentially methylated DNA regions (DMRs) in NSCs isolated from embryonic rat cortices. We found that Dex-induced genome-wide DNA hypomethylation in the NSCs in vitro. Similarly, in utero exposure to Dex resulted in global DNA hypomethylation in the cerebral cortex of 3-day-old mouse pups. Dex-exposed NSCs displayed stable changes in the expression of the DNA methyltransferase Dnmt3a, and Dkk1, an essential factor for neuronal differentiation. These alterations were dependent on Tet3 upregulation. In conclusion, we propose that GCs elicit strong and persistent effects on DNA methylation in NSCs with Tet3 playing an essential role in the regulation of Dnmt3a and Dkk1. Noteworthy is the occurrence of similar changes in Dnmt3a and Dkk1 gene expression after exposure to excess GC in vivo.
Collapse
Affiliation(s)
- R Bose
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - S Spulber
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - P Kilian
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - N Heldring
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - P Lönnerberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - A Johnsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - M Conti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - O Hermanson
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - S Ceccatelli
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
159
|
Abstract
Stem cell decline is an important cellular driver of aging-associated pathophysiology in multiple tissues. Epigenetic regulation is central to establishing and maintaining stem cell function, and emerging evidence indicates that epigenetic dysregulation contributes to the altered potential of stem cells during aging. Unlike terminally differentiated cells, the impact of epigenetic dysregulation in stem cells is propagated beyond self; alterations can be heritably transmitted to differentiated progeny, in addition to being perpetuated and amplified within the stem cell pool through self-renewal divisions. This Review focuses on recent studies examining epigenetic regulation of tissue-specific stem cells in homeostasis, aging, and aging-related disease.
Collapse
Affiliation(s)
- Isabel Beerman
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA
| | - Derrick J Rossi
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA.
| |
Collapse
|
160
|
Montalbán-Loro R, Domingo-Muelas A, Bizy A, Ferrón SR. Epigenetic regulation of stemness maintenance in the neurogenic niches. World J Stem Cells 2015; 7:700-710. [PMID: 26029342 PMCID: PMC4444611 DOI: 10.4252/wjsc.v7.i4.700] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/12/2014] [Accepted: 03/20/2015] [Indexed: 02/06/2023] Open
Abstract
In the adult mouse brain, the subventricular zone lining the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus are two zones that contain neural stem cells (NSCs) with the capacity to give rise to neurons and glia during the entire life of the animal. Spatial and temporal regulation of gene expression in the NSCs population is established and maintained by the coordinated interaction between transcription factors and epigenetic regulators which control stem cell fate. Epigenetic mechanisms are heritable alterations in genome function that do not involve changes in DNA sequence itself but that modulate gene expression, acting as mediators between the environment and the genome. At the molecular level, those epigenetic mechanisms comprise chemical modifications of DNA such as methylation, hydroxymethylation and histone modifications needed for the maintenance of NSC identity. Genomic imprinting is another normal epigenetic process leading to parental-specific expression of a gene, known to be implicated in the control of gene dosage in the neurogenic niches. The generation of induced pluripotent stem cells from NSCs by expression of defined transcription factors, provide key insights into fundamental principles of stem cell biology. Epigenetic modifications can also occur during reprogramming of NSCs to pluripotency and a better understanding of this process will help to elucidate the mechanisms required for stem cell maintenance. This review takes advantage of recent studies from the epigenetic field to report knowledge regarding the mechanisms of stemness maintenance of neural stem cells in the neurogenic niches.
Collapse
|
161
|
Shin J, Ming GL, Song H. DNA modifications in the mammalian brain. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0512. [PMID: 25135973 DOI: 10.1098/rstb.2013.0512] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.
Collapse
Affiliation(s)
- Jaehoon Shin
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Guo-Li Ming
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hongjun Song
- Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
162
|
Falcone C, Mallamaci A. Tuning of neocortical astrogenesis rates by Emx2 in neural stem cells. Neural Regen Res 2015; 10:550-1. [PMID: 26170809 PMCID: PMC4424741 DOI: 10.4103/1673-5374.155418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2015] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carmen Falcone
- Laboratory of Cerebral Cortex Development, SISSA, Triest I-36134, Italy
| | | |
Collapse
|
163
|
Seo H, Seol MJ, Lee K. Differential expression of hyperpolarization-activated cyclic nucleotide-gated channel subunits during hippocampal development in the mouse. Mol Brain 2015; 8:13. [PMID: 25761792 PMCID: PMC4352274 DOI: 10.1186/s13041-015-0103-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 02/12/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels help control the rhythmic activation of pacemaker neurons during brain development. However, little is known about the timing and cell type specificity of the expression of HCN isoforms during development of the hippocampus. RESULTS Here we examined the developmental expression of the brain-enriched HCN1, HCN2, and HCN4 isoforms of HCN channels in mouse hippocampus from embryonic to postnatal stages. All these isoforms were expressed abundantly in the hippocampus at embryonic day 14.5 and postnatal day 0. Each HCN channel isoform showed subfield-specific expression within the hippocampus from postnatal day 7, and only HCN4 was found in glial cells in the stratum lacunosum moleculare at this developmental stage. At postnatal days 21 and 56, all HCN isoforms were strongly expressed in the stratum lacunosum moleculare and the stratum pyramidale of the Cornu Ammonis (CA), as well as in the hilus of the dentate gyrus, but not in the subgranular zone. Furthermore, the immunolabeling for all these isoforms was colocalized with parvalbumin immunolabeling in interneurons of the CA field and in the dentate gyrus. CONCLUSIONS Our mapping data showing the temporal and spatial changes in the expression of HCN channels suggest that HCN1, HCN2, and HCN4 subunits may have distinct physiological roles in the developing hippocampus.
Collapse
Affiliation(s)
- Hyunhyo Seo
- Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| | - Myoung-Jin Seol
- Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| | - Kyungmin Lee
- Department of Anatomy, Brain Science & Engineering Institute, Kyungpook National University Graduate School of Medicine, 2-101, Dongin-dong, Jung-gu, Daegu, 700-842, South Korea.
| |
Collapse
|
164
|
Shenoy A, Danial M, Blelloch RH. Let-7 and miR-125 cooperate to prime progenitors for astrogliogenesis. EMBO J 2015; 34:1180-94. [PMID: 25715649 DOI: 10.15252/embj.201489504] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/16/2015] [Indexed: 01/09/2023] Open
Abstract
The molecular basis of astrocyte differentiation and maturation is poorly understood. As microRNAs have important roles in cell fate transitions, we set out to study their function during the glial progenitor cell (GPC) to astrocyte transition. Inducible deletion of all canonical microRNAs in GPCs in vitro led to a block in the differentiation to astrocytes. In an unbiased screen, the reintroduction of let-7 and miR-125 families of microRNAs rescued differentiation. Let-7 and miR-125 shared many targets and functioned in parallel to JAK-STAT signaling, a known regulator of astrogliogenesis. While individual knockdown of shared targets did not rescue the differentiation phenotype in microRNA-deficient GPCs, overexpression of these targets in wild-type GPCs blocked differentiation. This finding supports the idea that microRNAs simultaneously suppress multiple mRNAs that inhibit differentiation. MicroRNA-regulated transcripts exhibited concordant changes during in vivo differentiation and were enriched for a gene set upregulated in glioblastomas, consistent with validity of using the in vitro model to study in vivo events. These findings provide insight into the microRNAs and the genes they regulate in this important cell fate transition.
Collapse
Affiliation(s)
- Archana Shenoy
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Muhammad Danial
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, CA, USA
| | - Robert H Blelloch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences and Department of Urology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
165
|
Noguchi H, Kimura A, Murao N, Matsuda T, Namihira M, Nakashima K. Expression of DNMT1 in neural stem/precursor cells is critical for survival of newly generated neurons in the adult hippocampus. Neurosci Res 2015; 95:1-11. [PMID: 25659757 DOI: 10.1016/j.neures.2015.01.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Revised: 01/22/2015] [Accepted: 01/26/2015] [Indexed: 01/17/2023]
Abstract
Adult neurogenesis persists throughout life in the dentate gyrus (DG) of the hippocampus, and its importance has been highlighted in hippocampus-dependent learning and memory. Adult neurogenesis consists of multiple processes: maintenance and neuronal differentiation of neural stem/precursor cells (NS/PCs), followed by survival and maturation of newborn neurons and their integration into existing neuronal circuitry. However, the mechanisms that govern these processes remain largely unclear. Here we show that DNA methyltransferase 1 (DNMT1), an enzyme responsible for the maintenance of DNA methylation, is highly expressed in proliferative cells in the adult DG and plays an important role in the survival of newly generated neurons. Deletion of Dnmt1 in adult NS/PCs (aNS/PCs) did not affect the proliferation and differentiation of aNS/PCs per se. However, it resulted in a decrease of newly generated mature neurons, probably due to gradual cell death after aNS/PCs differentiated into neurons in the hippocampus. Interestingly, loss of DNMT1 in post-mitotic neurons did not influence their survival. Taken together, these findings suggest that the presence of DNMT1 in aNS/PCs is crucial for the survival of newly generated neurons, but is dispensable once they accomplish neuronal differentiation in the adult hippocampus.
Collapse
Affiliation(s)
- Hirofumi Noguchi
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Ayaka Kimura
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Murao
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | - Taito Matsuda
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Group, Biomedical Research Institute, AIST, Ibaraki, Japan
| | - Kinichi Nakashima
- Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
166
|
Swaminathan A, Kumar M, Halder Sinha S, Schneider-Anthony A, Boutillier AL, Kundu TK. Modulation of neurogenesis by targeting epigenetic enzymes using small molecules: an overview. ACS Chem Neurosci 2014; 5:1164-77. [PMID: 25250644 DOI: 10.1021/cn500117a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Neurogenesis consists of a plethora of complex cellular processes including neural stem cell (NSC) proliferation, migration, maturation or differentiation to neurons, and finally integration into the pre-existing neural circuits in the brain, which are temporally regulated and coordinated sequentially. Mammalian neurogenesis begins during embryonic development and continues in postnatal brain (adult neurogenesis). It is now evident that adult neurogenesis is driven by extracellular and intracellular signaling pathways, where epigenetic modifications like reversible histone acetylation, methylation, as well as DNA methylation play a vital role. Epigenetic regulation of gene expression during neural development is governed mainly by histone acetyltransferases (HATs), histone methyltransferase (HMTs), DNA methyltransferases (DNMTs), and also the enzymes for reversal, like histone deacetylases (HDACs), and many of these have also been shown to be involved in the regulation of adult neurogenesis. The contribution of these epigenetic marks to neurogenesis is increasingly being recognized, through knockout studies and small molecule modulator based studies. These small molecules are directly involved in regeneration and repair of neurons, and not only have applications from a therapeutic point of view, but also provide a tool to study the process of neurogenesis itself. In the present Review, we will focus on small molecules that act predominantly on epigenetic enzymes to enhance neurogenesis and neuroprotection and discuss the mechanism and recent advancements in their synthesis, targeting, and biology.
Collapse
Affiliation(s)
- Amrutha Swaminathan
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Manoj Kumar
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Sarmistha Halder Sinha
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| | - Anne Schneider-Anthony
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Anne-Laurence Boutillier
- Laboratoire de Neurosciences
Cognitives et Adaptatives (LNCA), UMR7364, Université de Strasbourg-CNRS,
GDR CNRS 2905, Faculté de Psychologie, 12 rue Goethe, 67000 Strasbourg, France
| | - Tapas K Kundu
- Transcription and
Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O, Bangalore-560064, India
| |
Collapse
|
167
|
Adefuin AMD, Kimura A, Noguchi H, Nakashima K, Namihira M. Epigenetic mechanisms regulating differentiation of neural stem/precursor cells. Epigenomics 2014; 6:637-49. [DOI: 10.2217/epi.14.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Differentiation of neural stem/precursor cells (NS/PCs) into neurons, astrocytes and oligodendrocytes during mammalian brain development is a carefully controlled and timed event. Increasing evidences suggest that epigenetic regulation is necessary to drive this. Here, we provide an overview of the epigenetic mechanisms involved in the developing mammalian embryonic forebrain. Histone methylation is a key factor but other epigenetic factors such as DNA methylation and noncoding RNAs also partake during fate determination. As numerous epigenetic modifications have been identified, future studies on timing and regional specificity of these modifications will further deepen our understanding of how intrinsic and extrinsic mechanisms participate together to precisely control brain development.
Collapse
Affiliation(s)
- Aliya Mari D Adefuin
- Department of Stem Cell Biology & Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Ayaka Kimura
- Department of Stem Cell Biology & Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Hirofumi Noguchi
- Department of Stem Cell Biology & Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
- Laboratory of Gene Regulation Research, Graduate School of Biological Sciences, Nara Institute of Science & Technology, Ikoma Ciy, Nara, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology & Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka City, Fukuoka, Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Group, Biomedical Research Institute, AIST, Tsukuba City, Ibaraki, Japan
| |
Collapse
|
168
|
Rodrigues GM, Toffoli LV, Manfredo MH, Francis-Oliveira J, Silva AS, Raquel HA, Martins-Pinge MC, Moreira EG, Fernandes KB, Pelosi GG, Gomes MV. Acute stress affects the global DNA methylation profile in rat brain: modulation by physical exercise. Behav Brain Res 2014; 279:123-8. [PMID: 25449846 DOI: 10.1016/j.bbr.2014.11.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/07/2014] [Accepted: 11/12/2014] [Indexed: 11/26/2022]
Abstract
The vulnerability of epigenetic marks of brain cells to environmental stimuli and its implication for health have been recently debated. Thus, we used the rat model of acute restraint stress (ARS) to evaluate the impact of stress on the global DNA methylation and on the expression of the Dnmt1 and Bdnf genes of hippocampus, cortex, hypothalamus and periaqueductal gray (PAG). Furthermore, we verified the potential of physical exercise to modulate epigenetic responses evoked by ARS. Sedentary male Wistar rats were submitted to ARS at the 75th postnatal day (PND), whereas animals from a physically active group were previously submitted to swimming sessions (35-74th PND) and to ARS at the 75th PND. Global DNA methylation profile was quantified using an ELISA-based method and the quantitative expression of the Dnmt1 and Bdnf genes was evaluated by real-time PCR. ARS induced a decrease in global DNA methylation in hippocampus, cortex and PAG of sedentary animals and an increased expression of Bdnf in PAG. No change in DNA methylation was associated with ARS in the exercised animals, although it was associated with abnormal expression of Dnmt1 and Bdnf in cortex, hypothalamus and PAG. Our data reveal that ARS evokes adaptive changes in global DNA methylation of rat brain that are independent of the expression of the Dnmt1 gene but might be linked to abnormal expression of the Bdnf gene in the PAG. Furthermore, our evidence indicates that physical exercise has the potential to modulate changes in DNA methylation and gene expression consequent to ARS.
Collapse
Affiliation(s)
| | | | | | | | - Andrey S Silva
- Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | | | | | | | | | - Marcus V Gomes
- Universidade Norte do Paraná (UNOPAR), Londrina, Brazil.
| |
Collapse
|
169
|
Murao N, Matsuda T, Noguchi H, Koseki H, Namihira M, Nakashima K. Characterization of Np95 expression in mouse brain from embryo to adult: A novel marker for proliferating neural stem/precursor cells. NEUROGENESIS 2014; 1:e976026. [PMID: 27504471 PMCID: PMC4973607 DOI: 10.4161/23262133.2014.976026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/31/2014] [Accepted: 10/08/2014] [Indexed: 01/12/2023]
Abstract
Nuclear protein 95 KDa (Np95, also known as UHRF1 or ICBP90) plays an important role in maintaining DNA methylation of newly synthesized DNA strands by recruiting DNA methyltransferase 1 (DNMT1) during cell division. In addition, Np95 participates in chromatin remodeling by interacting with histone modification enzymes such as histone deacetylases. However, its expression pattern and function in the brain have not been analyzed extensively. We here investigated the expression pattern of Np95 in the mouse brain, from developmental to adult stages. In the fetal brain, Np95 is abundantly expressed at the midgestational stage, when a large number of neural stem/precursor cells (NS/PCs) exist. Interestingly, Np95 is expressed specifically in NS/PCs but not in differentiated cells such as neurons or glial cells. Furthermore, we demonstrate that Np95 is preferentially expressed in type 2a cells, which are highly proliferative NS/PCs in the dentate gyrus of the adult hippocampus. Moreover, the number of Np95-expressing cells increases in response to kainic acid administration or to voluntary running, which are known to enhance the proliferation of adult NS/PCs. These results suggest that Np95 participates in the process of proliferation and differentiation of NS/PCs, and that it should be a useful novel marker for proliferating NS/PCs, facilitating the analysis of the complex behavior of NS/PCs in the brain.
Collapse
Affiliation(s)
- Naoya Murao
- Department of Stem Cell Biology and Medicine; Graduate School of Medical Sciences; Kyushu University; Fukuoka, Japan; Laboratory of Gene Regulation Research; Graduate School of Biological Sciences; Nara Institute of Science and Technology; Nara, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine; Graduate School of Medical Sciences; Kyushu University ; Fukuoka, Japan
| | - Hirofumi Noguchi
- Department of Stem Cell Biology and Medicine; Graduate School of Medical Sciences; Kyushu University; Fukuoka, Japan; Laboratory of Gene Regulation Research; Graduate School of Biological Sciences; Nara Institute of Science and Technology; Nara, Japan
| | - Haruhiko Koseki
- Developmental Genetics; RIKEN Research Center for Allergy and Immunology ; Kanagawa, Japan
| | - Masakazu Namihira
- Molecular Neurophysiology Research Group; Biomedical Research Institute; National Institute of Advanced Industrial Science and Technology ; Ibaraki, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine; Graduate School of Medical Sciences; Kyushu University ; Fukuoka, Japan
| |
Collapse
|
170
|
Ma Q, Zhang L. Epigenetic programming of hypoxic-ischemic encephalopathy in response to fetal hypoxia. Prog Neurobiol 2014; 124:28-48. [PMID: 25450949 DOI: 10.1016/j.pneurobio.2014.11.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 08/14/2014] [Accepted: 11/02/2014] [Indexed: 12/13/2022]
Abstract
Hypoxia is a major stress to the fetal development and may result in irreversible injury in the developing brain, increased risk of central nervous system (CNS) malformations in the neonatal brain and long-term neurological complications in offspring. Current evidence indicates that epigenetic mechanisms may contribute to the development of hypoxic/ischemic-sensitive phenotype in the developing brain in response to fetal stress. However, the causative cellular and molecular mechanisms remain elusive. In the present review, we summarize the recent findings of epigenetic mechanisms in the development of the brain and their roles in fetal hypoxia-induced brain developmental malformations. Specifically, we focus on DNA methylation and active demethylation, histone modifications and microRNAs in the regulation of neuronal and vascular developmental plasticity, which may play a role in fetal stress-induced epigenetic programming of hypoxic/ischemic-sensitive phenotype in the developing brain.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
171
|
Falcone C, Filippis C, Granzotto M, Mallamaci A. Emx2 expression levels in NSCs modulate astrogenesis rates by regulating EgfR and Fgf9. Glia 2014; 63:412-22. [PMID: 25327963 DOI: 10.1002/glia.22761] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 09/29/2014] [Indexed: 01/22/2023]
Abstract
Generation of astrocytes within the developing cerebral cortex is a tightly regulated process, initiating at low level in the middle of neuronogenesis and peaking up after its completion. Astrocytic outputs depend on two primary factors: progression of multipotent precursors toward the astroglial lineage and sizing of the astrogenic proliferating pool. The aim of this study was to investigate the role of the Emx2 homeobox gene in the latter process. We addressed this issue by combined gain- and loss-of-function methods, in vivo as well as in primary cultures of cortico-cerebral precursors. We found that Emx2 overexpression in cortico-cerebral stem cells shrinked the proliferating astrogenic pool, resulting in a severe reduction of the astroglial outcome. We showed that this was caused by EgfR and Fgf9 downregulation and that both phenomena originated from exaggerated Bmp signaling and Sox2 repression. Finally, we provided evidence that in vivo temporal progression of Emx2 levels in cortico-cerebral multipotent precursors contributes to confine the bulk of astrogenesis to postnatal life. Emx2 regulation of astrogenesis adds to a number of earlier developmental processes mastered by this gene. It points to Emx2 as a new promising tool for controlling reactive astrogliosis and optimizing cell-based designs for brain repair.
Collapse
|
172
|
Ma Q, Xiong F, Zhang L. Gestational hypoxia and epigenetic programming of brain development disorders. Drug Discov Today 2014; 19:1883-96. [PMID: 25256780 DOI: 10.1016/j.drudis.2014.09.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/23/2014] [Accepted: 09/16/2014] [Indexed: 01/04/2023]
Abstract
Adverse environmental conditions faced by an individual early during its life, such as gestational hypoxia, can have a profound influence on the risk of diseases, such as neurological disorders, in later life. Clinical and preclinical studies suggest that epigenetic programming of gene expression patterns in response to maternal stress have a crucial role in the fetal origins of neurological diseases. Herein, we summarize recent studies regarding the role of epigenetic mechanisms in the developmental programming of neurological diseases in offspring, primarily focusing on DNA methylation/demethylation and miRNAs. Such information could increase our understanding of the fetal origins of adult diseases and help develop effective prevention and intervention against neurological diseases.
Collapse
Affiliation(s)
- Qingyi Ma
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Fuxia Xiong
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Lubo Zhang
- Center for Perinatal Biology, Division of Pharmacology, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA.
| |
Collapse
|
173
|
Santiago M, Antunes C, Guedes M, Sousa N, Marques CJ. TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they? Genomics 2014; 104:334-40. [PMID: 25200796 DOI: 10.1016/j.ygeno.2014.08.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
Epigenetic modifications of the genome play important roles in controlling gene transcription thus regulating several molecular and cellular processes. A novel epigenetic modification - 5-hydroxymethylcytosine (5hmC) - has been recently described and attracted a lot of attention due to its possible involvement in the active DNA demethylation mechanism. TET enzymes are dioxygenases capable of oxidizing the methyl group of 5-methylcytosines (5mC) and thus converting 5mC into 5hmC. Although most of the work on TET enzymes and 5hmC has been carried out in embryonic stem (ES) cells, the highest levels of 5hmC occur in the brain and in neurons, pointing to a role for this epigenetic modification in the control of neuronal differentiation, neural plasticity and brain functions. Here we review the most recent advances on the role of TET enzymes and DNA hydroxymethylation in neuronal differentiation and function.
Collapse
Affiliation(s)
- Mafalda Santiago
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Claudia Antunes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Marta Guedes
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - C Joana Marques
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
174
|
Rinaldi L, Benitah SA. Epigenetic regulation of adult stem cell function. FEBS J 2014; 282:1589-604. [PMID: 25060320 DOI: 10.1111/febs.12946] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 01/09/2023]
Abstract
Understanding the cellular and molecular mechanisms that specify cell lineages throughout development, and that maintain tissue homeostasis during adulthood, is paramount towards our understanding of why we age or develop pathologies such as cancer. Epigenetic mechanisms ensure that genetically identical cells acquire different fates during embryonic development and are therefore essential for the proper progression of development. How they do so is still a matter of intense investigation, but there is sufficient evidence indicating that they act in a concerted manner with inductive signals and tissue-specific transcription factors to promote and stabilize fate changes along the three germ layers during development. In consequence, it is generally hypothesized that epigenetic mechanisms are also required for the continuous maintenance of cell fate during adulthood. However, in vivo models in which different epigenetic factors have been depleted in different tissues do not show overt changes in cell lineage, thus not strongly supporting this view. Instead, the function of some of these factors appears to be primarily associated with tissue functionality, and a strong causal relationship has been established between their misregulation and a diseased state. In this review, we summarize our current knowledge of the role of epigenetic factors in adult stem cell function and tissue homeostasis.
Collapse
Affiliation(s)
- Lorenzo Rinaldi
- Centre for Genomic Regulation, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Institute for Research in Biomedicine, Barcelona, Spain
| | | |
Collapse
|
175
|
Abstract
Epigenetic modulations orchestrate with extracellular environmental cues to determine the spatial and temporal expression of key regulators in neural stem/progenitor cells to control their proliferation, fate specification, and differentiation. Here, Yao and Jin review the latest in our knowledge of epigenetic regulation in neurogenesis and offer a perspective for future studies. During embryonic and adult neurogenesis, neuronal stem cells follow a highly conserved path of differentiation to give rise to functional neurons at various developmental stages. Epigenetic regulation—including DNA modifications, histone modifications, and noncoding regulatory RNAs, such as microRNA (miRNA) and long noncoding RNA (lncRNA)—plays a pivotal role in embryonic and adult neurogenesis. Here we review the latest in our understanding of the epigenetic regulation in neurogenesis, with a particular focus on newly identified cytosine modifications and their dynamics, along with our perspective for future studies.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
176
|
The link between injury-induced stress and regenerative phenomena: A cellular and genetic synopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:454-61. [PMID: 25088176 DOI: 10.1016/j.bbagrm.2014.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 12/24/2022]
Abstract
Injury is an inescapable phenomenon of life that affects animals at every physiological level. Yet, some animals respond to injury by rebuilding the damaged tissues whereas others are limited to scarring. Elucidating how a tissue insult from wounding leads to a regenerative response at the genetic level is essential to make regenerative advantages translational. It has become clear that animals with regenerative abilities recycle developmental programs after injury, reactivating genes that have lied dormant throughout adulthood. The question that is critical to our understanding of regeneration is how a specific set of developmentally important genes can be reactivated only after an acute tissue insult. Here, we review how injury-induced cellular stresses such as hypoxic, oxidative, and mechanical stress may contribute to the genomic and epigenetic changes that promote regeneration in animals. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
|
177
|
Functional transcriptome analysis of the postnatal brain of the Ts1Cje mouse model for Down syndrome reveals global disruption of interferon-related molecular networks. BMC Genomics 2014; 15:624. [PMID: 25052193 PMCID: PMC4124147 DOI: 10.1186/1471-2164-15-624] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/16/2014] [Indexed: 12/25/2022] Open
Abstract
Background The Ts1Cje mouse model of Down syndrome (DS) has partial triplication of mouse chromosome 16 (MMU16), which is partially homologous to human chromosome 21. These mice develop various neuropathological features identified in DS individuals. We analysed the effect of partial triplication of the MMU16 segment on global gene expression in the cerebral cortex, cerebellum and hippocampus of Ts1Cje mice at 4 time-points: postnatal day (P)1, P15, P30 and P84. Results Gene expression profiling identified a total of 317 differentially expressed genes (DEGs), selected from various spatiotemporal comparisons, between Ts1Cje and disomic mice. A total of 201 DEGs were identified from the cerebellum, 129 from the hippocampus and 40 from the cerebral cortex. Of these, only 18 DEGs were identified as common to all three brain regions and 15 were located in the triplicated segment. We validated 8 selected DEGs from the cerebral cortex (Brwd1, Donson, Erdr1, Ifnar1, Itgb8, Itsn1, Mrps6 and Tmem50b), 18 DEGs from the cerebellum (Atp5o, Brwd1, Donson, Dopey2, Erdr1, Hmgn1, Ifnar1, Ifnar2, Ifngr2, Itgb8, Itsn1, Mrps6, Paxbp1, Son, Stat1, Tbata, Tmem50b and Wrb) and 11 DEGs from the hippocampus (Atp5o, Brwd1, Cbr1, Donson, Erdr1, Itgb8, Itsn1, Morc3, Son, Tmem50b and Wrb). Functional clustering analysis of the 317 DEGs identified interferon-related signal transduction as the most significantly dysregulated pathway in Ts1Cje postnatal brain development. RT-qPCR and western blotting analysis showed both Ifnar1 and Stat1 were over-expressed in P84 Ts1Cje cerebral cortex and cerebellum as compared to wild type littermates. Conclusions These findings suggest over-expression of interferon receptor may lead to over-stimulation of Jak-Stat signaling pathway which may contribute to the neuropathology in Ts1Cje or DS brain. The role of interferon mediated activation or inhibition of signal transduction including Jak-Stat signaling pathway has been well characterized in various biological processes and disease models including DS but information pertaining to the role of this pathway in the development and function of the Ts1Cje or DS brain remains scarce and warrants further investigation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-624) contains supplementary material, which is available to authorized users.
Collapse
|
178
|
MicroRNA-152 regulates DNA methyltransferase 1 and is involved in the development and lactation of mammary glands in dairy cows. PLoS One 2014; 9:e101358. [PMID: 24987964 PMCID: PMC4079547 DOI: 10.1371/journal.pone.0101358] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 06/05/2014] [Indexed: 12/18/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding, endogenous regulatory RNAs that function by controlling gene expression at the post-transcriptional level. Using small RNA sequencing and qRT-PCR techniques, we found that the expression of miR-152 was significantly increased during lactation in the mammary glands of dairy cows producing high quality milk compared with that in cows producing low quality milk. Furthermore, DNA methyltransferase 1 (DNMT1), which is a target of miR-152, was inversely correlated with the expression levels of miR-152 in the mammary glands of dairy cows. Dairy cow mammary epithelial cells (DCMECs) were used as in vitro cell models to study the function of miR-152. The forced expression of miR-152 in DCMECs resulted in a marked reduction of DNMT1 at both mRNA and protein levels. This in turn led to a decrease in global DNA methylation and increased the expression of two lactation-related genes, serine/threonine protein kinase Akt (Akt) and peroxisome proliferator-activated receptor gamma (Pparγ). In contrast, inhibition of miR-152 showed the opposite results. By using an electronic Coulter counter (CASY-TT) and flow cytometer, we discovered that miR-152 enhanced the viability and multiplication capacity of DCMECs. In conclusion, miR-152 plays an important role in the development and lactation processes in the mammary glands of dairy cows. Our data provide insights into dairy cow mammary gland development and lactation.
Collapse
|
179
|
Ravi B, Kannan M. Epigenetics in the nervous system: An overview of its essential role. INDIAN JOURNAL OF HUMAN GENETICS 2014; 19:384-91. [PMID: 24497700 PMCID: PMC3897130 DOI: 10.4103/0971-6866.124357] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role that epigenetic mechanisms play in phenomena such as cellular differentiation during embryonic development, X chromosome inactivation, and cancers is well-characterized. Epigenetic mechanisms have been implicated to be the mediators of several functions in the nervous system such as in neuronal-glial differentiation, adult neurogenesis, the modulation of neural behavior and neural plasticity, and also in higher brain functions like cognition and memory. Its particular role in explaining the importance of early life/social experiences on adult behavioral patterns has caught the attention of scientists and has spawned the exciting new field of behavioral epigenetics which may hold the key to explaining many complex behavioral paradigms. Epigenetic deregulation is known to be central in the etiology of several neuropsychiatric disorders which underscore the importance of understanding these mechanisms more thoroughly to elucidate novel and effective therapeutic approaches. In this review we present an overview of the findings which point to the essential role played by epigenetics in the vertebrate nervous system.
Collapse
Affiliation(s)
- Bhavya Ravi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Manoj Kannan
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| |
Collapse
|
180
|
Yang J, Bai W, Niu P, Tian L, Gao A. Aberrant hypomethylated STAT3 was identified as a biomarker of chronic benzene poisoning through integrating DNA methylation and mRNA expression data. Exp Mol Pathol 2014; 96:346-53. [PMID: 24613686 DOI: 10.1016/j.yexmp.2014.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/25/2014] [Indexed: 01/08/2023]
Abstract
Chronic occupational benzene exposure is associated with an increased risk of hematological malignancies such as aplastic anemia and leukemia. The new biomarker and action mechanisms of chronic benzene poisoning are still required to be explored. Aberrant DNA methylation, which may lead to genomic instability and the altered gene expression, is frequently observed in hematological cancers. To gain an insight into the new biomarkers and molecular mechanisms of chronic benzene poisoning, DNA methylation profiles and mRNA expression pattern from the peripheral blood mononuclear cells of four chronic benzene poisoning patients and four health controls that matched age and gender without benzene exposure were performed using the high resolution Infinium 450K methylation array and Gene Chip Human Gene 2.0ST Arrays, respectively. By integrating DNA methylation and mRNA expression data, we identified 3 hypermethylated genes showing concurrent down-regulation (PRKG1, PARD3, EPHA8) and 2 hypomethylated genes showing increased expression (STAT3, IFNGR1). Signal net analysis of differential methylation genes associated with chronic benzene poisoning showed that two key hypomethylated STAT3 and hypermethylated GNAI1 were identified. Further GO analysis and pathway analysis indicated that hypomethylated STAT3 played central roles through regulation of transcription, DNA-dependent, positive regulation of transcription from RNA polymerase II promoter, JAK-STAT cascade and adipocytokine signaling pathway, Acute myeloid leukemia, and JAK-STAT signaling pathway. In conclusion, the aberrant hypomethylated STAT3 might be a potential biomarker of chronic benzene poisoning.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Adipokines/genetics
- Adult
- Benzene/poisoning
- Biomarkers/metabolism
- Case-Control Studies
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cyclic GMP-Dependent Protein Kinase Type I/genetics
- Cyclic GMP-Dependent Protein Kinase Type I/metabolism
- DNA Methylation
- Down-Regulation
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Gene Expression
- Humans
- Leukocytes, Mononuclear/metabolism
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Middle Aged
- Occupational Exposure/adverse effects
- Oligonucleotide Array Sequence Analysis
- Promoter Regions, Genetic
- RNA, Messenger/genetics
- Receptor, EphA8/genetics
- Receptor, EphA8/metabolism
- Receptors, Interferon/genetics
- Receptors, Interferon/metabolism
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Jing Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Wenlin Bai
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Lin Tian
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Ai Gao
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
181
|
Wheldon LM, Abakir A, Ferjentsik Z, Dudnakova T, Strohbuecker S, Christie D, Dai N, Guan S, Foster JM, Corrêa IR, Loose M, Dixon JE, Sottile V, Johnson AD, Ruzov A. Transient accumulation of 5-carboxylcytosine indicates involvement of active demethylation in lineage specification of neural stem cells. Cell Rep 2014; 7:1353-1361. [PMID: 24882006 DOI: 10.1016/j.celrep.2014.05.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 04/04/2014] [Accepted: 05/02/2014] [Indexed: 01/22/2023] Open
Abstract
5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene activity during differentiation. Tet dioxygenases oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised from DNA by thymine-DNA glycosylase (TDG) followed by regeneration of unmodified cytosine via the base excision repair pathway. Despite evidence that this mechanism is operative in embryonic stem cells, the role of TDG-dependent demethylation in differentiation and development is currently unclear. Here, we demonstrate that widespread oxidation of 5hmC to 5caC occurs in postimplantation mouse embryos. We show that 5fC and 5caC are transiently accumulated during lineage specification of neural stem cells (NSCs) in culture and in vivo. Moreover, 5caC is enriched at the cell-type-specific promoters during differentiation of NSCs, and TDG knockdown leads to increased 5fC/5caC levels in differentiating NSCs. Our data suggest that active demethylation contributes to epigenetic reprogramming determining lineage specification in embryonic brain.
Collapse
Affiliation(s)
- Lee M Wheldon
- Medical Molecular Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | - Abdulkadir Abakir
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Zoltan Ferjentsik
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Tatiana Dudnakova
- School of Biological Sciences, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Stephanie Strohbuecker
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Denise Christie
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Nan Dai
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Shengxi Guan
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Jeremy M Foster
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Ivan R Corrêa
- New England Biolabs, Inc., 240 County Road, Ipswich, MA 01938, USA
| | - Matthew Loose
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - James E Dixon
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Virginie Sottile
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Andrew D Johnson
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - Alexey Ruzov
- Division of Cancer and Stem Cells, School of Medicine, Centre for Biomolecular Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| |
Collapse
|
182
|
Hardwick LJA, Philpott A. Nervous decision-making: to divide or differentiate. Trends Genet 2014; 30:254-61. [PMID: 24791612 PMCID: PMC4046230 DOI: 10.1016/j.tig.2014.04.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 03/31/2014] [Accepted: 04/01/2014] [Indexed: 01/07/2023]
Abstract
Multiple mechanisms coordinate the cell cycle and neuronal differentiation. Lengthening of G1 phase is functionally important for differentiation. Cell cycle components can directly and independently affect neurogenesis. Differentiation factors can directly affect the cell cycle structure and machinery.
The intricate balance between proliferation and differentiation is of fundamental importance in the development of the central nervous system (CNS). The division versus differentiation decision influences both the number and identity of daughter cells produced, thus critically shaping the overall microstructure and function of the CNS. During the past decade, significant advances have been made to characterise the changes in the cell cycle during differentiation, and to uncover the multiple bidirectional links that coordinate these two processes. Here, we explore the nature and mechanistic basis of these links in the context of the developing CNS, highlighting new insights into transcriptional, post-translational, and epigenetic levels of interaction.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Anna Philpott
- Department of Oncology, University of Cambridge, Hutchison/MRC Research Centre, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK.
| |
Collapse
|
183
|
Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014; 156:45-68. [PMID: 24439369 DOI: 10.1016/j.cell.2013.12.019] [Citation(s) in RCA: 795] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Indexed: 12/28/2022]
Abstract
Methylation of cytosines in the mammalian genome represents a key epigenetic modification and is dynamically regulated during development. Compelling evidence now suggests that dynamic regulation of DNA methylation is mainly achieved through a cyclic enzymatic cascade comprised of cytosine methylation, iterative oxidation of methyl group by TET dioxygenases, and restoration of unmodified cytosines by either replication-dependent dilution or DNA glycosylase-initiated base excision repair. In this review, we discuss the mechanism and function of DNA demethylation in mammalian genomes, focusing particularly on how developmental modulation of the cytosine-modifying pathway is coupled to active reversal of DNA methylation in diverse biological processes.
Collapse
Affiliation(s)
- Hao Wu
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA
| | - Yi Zhang
- Howard Hughes Medical Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard Medical School, WAB-149G, 200 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
184
|
Paridaen JTML, Huttner WB. Neurogenesis during development of the vertebrate central nervous system. EMBO Rep 2014; 15:351-64. [PMID: 24639559 DOI: 10.1002/embr.201438447] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
During vertebrate development, a wide variety of cell types and tissues emerge from a single fertilized oocyte. One of these tissues, the central nervous system, contains many types of neurons and glial cells that were born during the period of embryonic and post-natal neuro- and gliogenesis. As to neurogenesis, neural progenitors initially divide symmetrically to expand their pool and switch to asymmetric neurogenic divisions at the onset of neurogenesis. This process involves various mechanisms involving intrinsic as well as extrinsic factors. Here, we discuss the recent advances and insights into regulation of neurogenesis in the developing vertebrate central nervous system. Topics include mechanisms of (a)symmetric cell division, transcriptional and epigenetic regulation, and signaling pathways, using mostly examples from the developing mammalian neocortex.
Collapse
|
185
|
Kanski R, van Strien ME, van Tijn P, Hol EM. A star is born: new insights into the mechanism of astrogenesis. Cell Mol Life Sci 2014; 71:433-47. [PMID: 23907612 PMCID: PMC11113452 DOI: 10.1007/s00018-013-1435-9] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 07/10/2013] [Accepted: 07/22/2013] [Indexed: 12/22/2022]
Abstract
Astrocytes emerge as crucial cells for proper neuronal functioning in the developing and adult brain. Neurons and astrocytes are sequentially generated from the same pool of neural stem cells (NSCs). Tight regulation of the neuron-to-astrocyte switch is critical for (1) the generation of a balanced number of astrocytes and neurons and (2) neuronal circuit formation, since newborn astrocytes regulate synapse formation. This review focuses on signaling pathways that instruct astrogenesis, incorporating recently discovered intrinsic and extrinsic regulators. The canonical pathway of astrocytic gene expression, JAK/STAT signaling, is inhibited during neurogenesis to prevent premature astrocyte differentiation. At the onset of astrogenesis, Notch signaling induces epigenetic remodeling of astrocytic genes like glial fibrillary acidic protein to change NSC competence. In turn, astrogenesis is initiated by signals received from newborn neurons. We highlight how key molecular pathways like JAK/STAT and Notch are integrated in a complex network of environmental signals and epigenetic and transcriptional regulators to determine NSC differentiation. It is essential to understand NSC differentiation in respect to future NSC-based therapies for brain diseases, as transplanted NSCs preferentially become astrocytes. As emphasized in this review, many clues in this respect can be learned from development.
Collapse
Affiliation(s)
- Regina Kanski
- Astrocyte Biology and Neurodegeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Miriam E. van Strien
- Astrocyte Biology and Neurodegeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Paula van Tijn
- Astrocyte Biology and Neurodegeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Hubrecht Institute, an Institute of the Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands
| | - Elly M. Hol
- Astrocyte Biology and Neurodegeneration, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
- Center for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
186
|
Kohwi M, Doe CQ. Temporal fate specification and neural progenitor competence during development. Nat Rev Neurosci 2014; 14:823-38. [PMID: 24400340 DOI: 10.1038/nrn3618] [Citation(s) in RCA: 270] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The vast diversity of neurons and glia of the CNS is generated from a small, heterogeneous population of progenitors that undergo transcriptional changes during development to sequentially specify distinct cell fates. Guided by cell-intrinsic and -extrinsic cues, invertebrate and mammalian neural progenitors carefully regulate when and how many of each cell type is produced, enabling the formation of functional neural circuits. Emerging evidence indicates that neural progenitors also undergo changes in global chromatin architecture, thereby restricting when a particular cell type can be generated. Studies of temporal-identity specification and progenitor competence can provide insight into how we could use neural progenitors to more effectively generate specific cell types for brain repair.
Collapse
|
187
|
Nwaobi SE, Lin E, Peramsetty SR, Olsen ML. DNA methylation functions as a critical regulator of Kir4.1 expression during CNS development. Glia 2014; 62:411-27. [PMID: 24415225 DOI: 10.1002/glia.22613] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 10/29/2013] [Accepted: 11/21/2013] [Indexed: 12/22/2022]
Abstract
Kir4.1, a glial-specific K+ channel, is critical for normal CNS development. Studies using both global and glial-specific knockout of Kir4.1 reveal abnormal CNS development with the loss of the channel. Specifically, Kir4.1 knockout animals are characterized by ataxia, severe hypomyelination, and early postnatal death. Additionally, Kir4.1 has emerged as a key player in several CNS diseases. Notably, decreased Kir4.1 protein expression occurs in several human CNS pathologies including CNS ischemic injury, spinal cord injury, epilepsy, ALS, and Alzheimer's disease. Despite the emerging significance of Kir4.1 in normal and pathological conditions, its mechanisms of regulation are unknown. Here, we report the first epigenetic regulation of a K+ channel in the CNS. Robust developmental upregulation of Kir4.1 expression in rats is coincident with reductions in DNA methylation of the Kir4.1 gene, KCNJ10. Chromatin immunoprecipitation reveals a dynamic interaction between KCNJ10 and DNA methyltransferase 1 during development. Finally, demethylation of the KCNJ10 promoter is necessary for transcription. These findings indicate DNA methylation is a key regulator of Kir4.1 transcription. Given the essential role of Kir4.1 in normal CNS development, understanding the regulation of this K+ channel is critical to understanding normal glial biology.
Collapse
Affiliation(s)
- Sinifunanya E Nwaobi
- Department of Cell, Developmental and Integrative Biology, Center for Glial Biology in Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | | |
Collapse
|
188
|
Kanski R, Sneeboer MAM, van Bodegraven EJ, Sluijs JA, Kropff W, Vermunt MW, Creyghton MP, De Filippis L, Vescovi A, Aronica E, van Tijn P, van Strien ME, Hol EM. Histone acetylation in astrocytes suppresses GFAP and stimulates a re-organization of the intermediate filament network. J Cell Sci 2014; 127:4368-80. [DOI: 10.1242/jcs.145912] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Glial Fibrillary Acidic Protein (GFAP) is the main intermediate filament in astrocytes and is regulated by epigenetic mechanisms during development. We demonstrate that histone acetylation controls GFAP expression also in mature astrocytes. Inhibition of histone deacetylases (HDACs) with Trichostatin-A or Sodium-butyrate reduced GFAP expression in primary human astrocytes and astrocytoma cells. Since splicing occurs co-transcriptional, we investigated whether histone acetylation changes the ratio between the canonical isoform GFAPα and the alternative GFAPδ splice-variant. We observed that decreased transcription of GFAP enhanced alternative isoform expression, as HDAC inhibition increased the GFAPδ/α ratio favouring GFAPδ. Expression of GFAPδ was dependent on the presence and binding of the splicing factors of the SR protein family. Inhibition of HDAC activity also resulted in aggregation of the GFAP network, reminiscent to our earlier findings of a GFAPδ-induced network collapse. Together, our data demonstrate that HDAC inhibition results in changes in transcription, splicing, and organization of GFAP. These data imply that a tight regulation of histone acetylation in astrocytes is essential, since dysregulation of gene expression causes aggregation of GFAP, a hallmark of human diseases like Alexander's disease.
Collapse
|
189
|
Darby MM, Sabunciyan S. Repetitive Elements and Epigenetic Marks in Behavior and Psychiatric Disease. ADVANCES IN GENETICS 2014; 86:185-252. [DOI: 10.1016/b978-0-12-800222-3.00009-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
190
|
Lopez-Ramirez MA, Nicoli S. Role of miRNAs and epigenetics in neural stem cell fate determination. Epigenetics 2013; 9:90-100. [PMID: 24342893 DOI: 10.4161/epi.27536] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The regulation of gene expression that determines stem cell fate determination is tightly controlled by both epigenetic and posttranscriptional mechanisms. Indeed, small non-coding RNAs such as microRNAs (miRNAs) are able to regulate neural stem cell fate by targeting chromatin-remodeling pathways. Here, we aim to summarize the latest findings regarding the feedback network of epigenetics and miRNAs during embryonic and adult neurogenesis.
Collapse
Affiliation(s)
- Miguel Alejandro Lopez-Ramirez
- Yale Cardiovascular Research Center; Section of Cardiovascular Medicine; Yale University School of Medicine; New Haven, CT USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center; Section of Cardiovascular Medicine; Yale University School of Medicine; New Haven, CT USA
| |
Collapse
|
191
|
Li G, Zhang W, Baker MS, Laritsky E, Mattan-Hung N, Yu D, Kunde-Ramamoorthy G, Simerly RB, Chen R, Shen L, Waterland RA. Major epigenetic development distinguishing neuronal and non-neuronal cells occurs postnatally in the murine hypothalamus. Hum Mol Genet 2013; 23:1579-90. [PMID: 24186871 DOI: 10.1093/hmg/ddt548] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prenatal and early postnatal environment can persistently alter one's risk of obesity. Environmental effects on hypothalamic developmental epigenetics constitute a likely mechanism underlying such 'developmental programming' of energy balance regulation. To advance our understanding of these processes, it is essential to develop approaches to disentangle the cellular and regional heterogeneity of hypothalamic developmental epigenetics. We therefore performed genome-scale DNA methylation profiling in hypothalamic neurons and non-neuronal cells at postnatal day 0 (P0) and P21 and found, surprisingly, that most of the DNA methylation differences distinguishing these two cell types are established postnatally. In particular, neuron-specific increases in DNA methylation occurred extensively at genes involved in neuronal development. Quantitative bisulfite pyrosequencing verified our methylation profiling results in all 15 regions examined, and expression differences were associated with DNA methylation at several genes. We also identified extensive methylation differences between the arcuate (ARH) and paraventricular nucleus of the hypothalamus (PVH). Integrating these two data sets showed that genomic regions with PVH versus ARH differential methylation strongly overlap with those undergoing neuron-specific increases from P0 to P21, suggesting that these developmental changes occur preferentially in either the ARH or PVH. In particular, neuron-specific methylation increases at the 3' end of Shh localized to the ARH and were positively associated with gene expression. Our data indicate a key role for DNA methylation in establishing the gene expression potential of diverse hypothalamic cell types, and provide the novel insight that early postnatal life is a critical period for cell type-specific epigenetic development in the murine hypothalamus.
Collapse
Affiliation(s)
- Ge Li
- Department of Pediatrics, Baylor College of Medicine, USDA/ARS Children's Nutrition Research Center
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Chromatin regulators of neural development. Neuroscience 2013; 264:4-16. [PMID: 24144622 DOI: 10.1016/j.neuroscience.2013.10.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/27/2013] [Accepted: 10/07/2013] [Indexed: 12/17/2022]
Abstract
During all stages of neural development-from the fate switches of neural precursor/progenitor cells to activity-dependent synapse maturation-chromatin-level modifications are important regulators of the gene expression that control developmental programs. Such modifications, including both alterations of histone tails and cytosine residues in the DNA, as well as changes in the chromatin structure, act dynamically throughout development and work together to determine the chromatin state at each time point. While many studies have shown localized action of chromatin modifiers at relevant gene loci, recent reports have also indicated that some chromatin modifications work on a more global scale, altering many loci throughout the genome. Here we review recent papers that describe the roles of chromatin-level regulation, at both the local and global scale, in the development of the mouse brain.
Collapse
|
193
|
Gupta K, Chandran S, Hardingham GE. Human stem cell-derived astrocytes and their application to studying Nrf2-mediated neuroprotective pathways and therapeutics in neurodegeneration. Br J Clin Pharmacol 2013; 75:907-18. [PMID: 23126226 PMCID: PMC3612708 DOI: 10.1111/bcp.12022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 10/28/2012] [Indexed: 02/07/2023] Open
Abstract
Glia, including astrocytes, are increasingly at the forefront of neurodegenerative research for their role in the modulation of neuronal function and survival. Improved understanding of underlying disease mechanisms, including the role of the cellular environment in neurodegeneration, is central to therapeutic development for these currently untreatable diseases. In these endeavours, experimental models that more closely reproduce the human condition have the potential to facilitate the transition between experimental studies in model organisms and patient trials. In this review we discuss the growing role of astrocytes in neurodegenerative diseases, and how astrocytes generated from human pluripotent stem cells represent a useful tool for analyzing astrocytic signalling and influence on neuronal function.
Collapse
Affiliation(s)
- Kunal Gupta
- Anne McLaren Laboratory for Regenerative Medicine & Cambridge Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | | | |
Collapse
|
194
|
Yao B, Jin P. Cytosine modifications in neurodevelopment and diseases. Cell Mol Life Sci 2013; 71:405-18. [PMID: 23912899 DOI: 10.1007/s00018-013-1433-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/19/2013] [Accepted: 07/22/2013] [Indexed: 12/11/2022]
Abstract
DNA methylation has been studied comprehensively and linked to both normal neurodevelopment and neurological diseases. The recent identification of several new DNA modifications, including 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine, has given us a new perspective on the previously observed plasticity in 5mC-dependent regulatory processes. Here, we review the latest research into these cytosine modifications, focusing mainly on their roles in neurodevelopment and diseases.
Collapse
Affiliation(s)
- Bing Yao
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Suite 301, Atlanta, GA, 30322, USA
| | | |
Collapse
|
195
|
Lv J, Xin Y, Zhou W, Qiu Z. The epigenetic switches for neural development and psychiatric disorders. J Genet Genomics 2013; 40:339-346. [PMID: 23876774 DOI: 10.1016/j.jgg.2013.04.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 04/19/2013] [Accepted: 04/30/2013] [Indexed: 12/21/2022]
Abstract
The most remarkable feature of the nervous system is that the development and functions of the brain are largely reshaped by postnatal experiences, in joint with genetic landscapes. The nature vs. nurture argument reminds us that both genetic and epigenetic information is indispensable for the normal function of the brain. The epigenetic regulatory mechanisms in the central nervous system have been revealed over last a decade. Moreover, the mutations of epigenetic modulator genes have been shown to be implicated in neuropsychiatric disorders, such as autism spectrum disorders. The epigenetic study has initiated in the neuroscience field for a relative short period of time. In this review, we will summarize recent discoveries about epigenetic regulation on neural development, synaptic plasticity, learning and memory, as well as neuropsychiatric disorders. Although the comprehensive view of how epigenetic regulation contributes to the function of the brain is still not completed, the notion that brain, the most complicated organ of organisms, is profoundly shaped by epigenetic switches is widely accepted.
Collapse
Affiliation(s)
- Jingwen Lv
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai 201102, China
| | | | | | | |
Collapse
|
196
|
Jebbett NJ, Hamilton JW, Rand MD, Eckenstein F. Low level methylmercury enhances CNTF-evoked STAT3 signaling and glial differentiation in cultured cortical progenitor cells. Neurotoxicology 2013; 38:91-100. [PMID: 23845766 DOI: 10.1016/j.neuro.2013.06.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/26/2013] [Accepted: 06/28/2013] [Indexed: 01/18/2023]
Abstract
Although many previous investigations have studied how mercury compounds cause cell death, sub-cytotoxic levels may affect mechanisms essential for the proper development of the nervous system. The present study investigates whether low doses of methylmercury (MeHg) and mercury chloride (HgCl2) can modulate the activity of JAK/STAT signaling, a pathway that promotes gliogenesis. We report that sub-cytotoxic doses of MeHg enhance ciliary neurotrophic factor (CNTF) evoked STAT3 phosphorylation in human SH-SY5Y neuroblastoma and mouse cortical neural progenitor cells (NPCs). This effect is specific for MeHg, since HgCl2 fails to enhance JAK/STAT signaling. Exposing NPCs to these low doses of MeHg (30-300nM) enhances CNTF-induced expression of STAT3-target genes such as glial fibrillary acidic protein (GFAP) and suppressors of cytokine signaling 3 (SOCS3), and increases the proportion of cells expressing GFAP following 2 days of differentiation. Higher, near-cytotoxic concentrations of MeHg and HgCl2 inhibit STAT3 phosphorylation and lead to increased production of superoxide. Lower concentrations of MeHg effective in enhancing JAK/STAT signaling (30nM) do not result in a detectable increase in superoxide nor increased expression of the oxidant-responsive genes, heme oxygenase 1, heat shock protein A5 and sirtuin 1. These findings suggest that low concentrations of MeHg inappropriately enhance STAT3 phosphorylation and glial differentiation, and that the mechanism causing this enhancement is distinct from the reactive oxygen species-associated cell death observed at higher concentrations of MeHg and HgCl2.
Collapse
Affiliation(s)
- Nathan J Jebbett
- University of Vermont, Department of Neurological Sciences, Burlington, VT, United States
| | | | | | | |
Collapse
|
197
|
Zhang RR, Cui QY, Murai K, Lim YC, Smith ZD, Jin S, Ye P, Rosa L, Lee YK, Wu HP, Liu W, Xu ZM, Yang L, Ding YQ, Tang F, Meissner A, Ding C, Shi Y, Xu GL. Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 2013; 13:237-45. [PMID: 23770080 DOI: 10.1016/j.stem.2013.05.006] [Citation(s) in RCA: 270] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 04/02/2013] [Accepted: 05/13/2013] [Indexed: 12/13/2022]
Abstract
DNA hydroxylation catalyzed by Tet dioxygenases occurs abundantly in embryonic stem cells and neurons in mammals. However, its biological function in vivo is largely unknown. Here, we demonstrate that Tet1 plays an important role in regulating neural progenitor cell proliferation in adult mouse brain. Mice lacking Tet1 exhibit impaired hippocampal neurogenesis accompanied by poor learning and memory. In adult neural progenitor cells deficient in Tet1, a cohort of genes involved in progenitor proliferation were hypermethylated and downregulated. Our results indicate that Tet1 is positively involved in the epigenetic regulation of neural progenitor cell proliferation in the adult brain.
Collapse
Affiliation(s)
- Run-Rui Zhang
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
|
199
|
The chromodomain helicase Chd4 is required for Polycomb-mediated inhibition of astroglial differentiation. EMBO J 2013; 32:1598-612. [PMID: 23624931 DOI: 10.1038/emboj.2013.93] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 03/27/2013] [Indexed: 12/21/2022] Open
Abstract
Polycomb group (PcG) proteins form transcriptional repressor complexes with well-established functions during cell-fate determination. Yet, the mechanisms underlying their regulation remain poorly understood. Here, we extend the role of Polycomb complexes in the temporal control of neural progenitor cell (NPC) commitment by demonstrating that the PcG protein Ezh2 is necessary to prevent the premature onset of gliogenesis. In addition, we identify the chromodomain helicase DNA-binding protein 4 (Chd4) as a critical interaction partner of Ezh2 required specifically for PcG-mediated suppression of the key astrogenic marker gene GFAP. Accordingly, in vivo depletion of Chd4 in the developing neocortex promotes astrogenesis. Collectively, these results demonstrate that PcG proteins operate in a highly dynamic, developmental stage-dependent fashion during neural differentiation and suggest that target gene-specific mechanisms regulate Polycomb function during sequential cell-fate decisions.
Collapse
|
200
|
Georgia S, Kanji M, Bhushan A. DNMT1 represses p53 to maintain progenitor cell survival during pancreatic organogenesis. Genes Dev 2013; 27:372-7. [PMID: 23431054 DOI: 10.1101/gad.207001.112] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the developing pancreas, self-renewal of progenitors and patterning of cell fates are coordinated to ensure the correct size and cellular makeup of the organ. How this coordination is achieved, however, is not clear. We report that deletion of DNA methyltransferase 1 (Dnmt1) in pancreatic progenitors results in agenesis of the pancreas due to apoptosis of progenitor cells. We show that DNMT1 is bound to the p53 regulatory region and that loss of Dnmt1 results in derepression of the p53 locus. Haploinsufficiency of p53 rescues progenitor cell survival and cellular makeup of the Dnmt1-deleted pancreas.
Collapse
Affiliation(s)
- Senta Georgia
- Department of Medicine, University of California at Los Angeles, Los Angeles, California 90024, USA.
| | | | | |
Collapse
|