151
|
Xu L, Zhou J, Liu J, Liu Y, Wang L, Jiang R, Diao Z, Yan G, Pèault B, Sun H, Ding L. Different Angiogenic Potentials of Mesenchymal Stem Cells Derived from Umbilical Artery, Umbilical Vein, and Wharton's Jelly. Stem Cells Int 2017; 2017:3175748. [PMID: 28874910 PMCID: PMC5569878 DOI: 10.1155/2017/3175748] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/14/2017] [Accepted: 02/21/2017] [Indexed: 01/02/2023] Open
Abstract
Human mesenchymal stem cells derived from the umbilical cord (UC) are a favorable source for allogeneic cell therapy. Here, we successfully isolated the stem cells derived from three different compartments of the human UC, including perivascular stem cells derived from umbilical arteries (UCA-PSCs), perivascular stem cells derived from umbilical vein (UCV-PSCs), and mesenchymal stem cells derived from Wharton's jelly (WJ-MSCs). These cells had the similar phenotype and differentiation potential toward adipocytes, osteoblasts, and neuron-like cells. However, UCA-PSCs and UCV-PSCs had more CD146+ cells than WJ-MSCs (P < 0.05). Tube formation assay in vitro showed the largest number of tube-like structures and branch points in UCA-PSCs among the three stem cells. Additionally, the total tube length in UCA-PSCs and UCV-PSCs was significantly longer than in WJ-MSCs (P < 0.01). Microarray, qRT-PCR, and Western blot analysis showed that UCA-PSCs had the highest expression of the Notch ligand Jagged1 (JAG1), which is crucial for blood vessel maturation. Knockdown of Jagged1 significantly impaired the angiogenesis in UCA-PSCs. In summary, UCA-PSCs are promising cell populations for clinical use in ischemic diseases.
Collapse
Affiliation(s)
- Lu Xu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Jianjun Zhou
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Jingyu Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Yong Liu
- Central Research Lab, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Lei Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Ruiwei Jiang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Zhenyu Diao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Guijun Yan
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Bruno Pèault
- MRC Center for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
- Orthopedic Hospital Research Center and Broad Stem Cell Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Haixiang Sun
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| | - Lijun Ding
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
- Clinical Center for Stem Cells, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 321 Zhongshan Rd., Nanjing 210008, China
| |
Collapse
|
152
|
Ollauri-Ibáñez C, López-Novoa JM, Pericacho M. Endoglin-based biological therapy in the treatment of angiogenesis-dependent pathologies. Expert Opin Biol Ther 2017; 17:1053-1063. [PMID: 28656781 DOI: 10.1080/14712598.2017.1346607] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Alterations in the process of angiogenesis, either by excess or by defect, are present in different common pathologies. For this reason, great efforts are being made toward the development of pro- and anti-angiogenic therapies. Since endoglin levels are enhanced in tissues undergoing angiogenesis, and changes in its expression lead to alterations in vessel formation, endoglin has become an ideal target for these types of therapies. Areas covered: In this review, the role of endoglin in angiogenesis is summarized. In addition, the authors review pro- and anti-angiogenic therapies that are currently being used and new approaches that target endoglin. The article includes therapies that are both in preclinical and clinical development. Expert opinion: Endoglin is a very good target for anti-angiogenic therapy, as demonstrated by the positive results obtained with anti-endoglin antibodies. However, although endoglin in pro-angiogenic therapies has been successful in vitro, its use has not yet reached clinical settings. Moreover, the authors believe that establishing the exact role of endoglin in angiogenesis is essential and that this should be the next step in this field in the coming years.
Collapse
Affiliation(s)
- Claudia Ollauri-Ibáñez
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| | - José M López-Novoa
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| | - Miguel Pericacho
- a Department of Physiology and Pharmacology , University of Salamanca , Salamanca , Spain.,b Biomedical Research Institute of Salamanca (IBSAL) , Salamanca , Spain
| |
Collapse
|
153
|
Okonkwo UA, DiPietro LA. Diabetes and Wound Angiogenesis. Int J Mol Sci 2017; 18:E1419. [PMID: 28671607 PMCID: PMC5535911 DOI: 10.3390/ijms18071419] [Citation(s) in RCA: 608] [Impact Index Per Article: 76.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/10/2017] [Accepted: 06/22/2017] [Indexed: 12/16/2022] Open
Abstract
Diabetes Mellitus Type II (DM2) is a growing international health concern with no end in sight. Complications of DM2 involve a myriad of comorbidities including the serious complications of poor wound healing, chronic ulceration, and resultant limb amputation. In skin wound healing, which has definite, orderly phases, diabetes leads to improper function at all stages. While the etiology of chronic, non-healing diabetic wounds is multi-faceted, the progression to a non-healing phenotype is closely linked to poor vascular networks. This review focuses on diabetic wound healing, paying special attention to the aberrations that have been described in the proliferative, remodeling, and maturation phases of wound angiogenesis. Additionally, this review considers therapeutics that may offer promise to better wound healing outcomes.
Collapse
Affiliation(s)
- Uzoagu A Okonkwo
- Department of Microbiology and Immunology, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA.
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA.
| | - Luisa A DiPietro
- Center for Wound Healing and Tissue Regeneration, University of Illinois at Chicago College of Dentistry, Chicago, IL 60612, USA.
| |
Collapse
|
154
|
Huang H, Vandekeere S, Kalucka J, Bierhansl L, Zecchin A, Brüning U, Visnagri A, Yuldasheva N, Goveia J, Cruys B, Brepoels K, Wyns S, Rayport S, Ghesquière B, Vinckier S, Schoonjans L, Cubbon R, Dewerchin M, Eelen G, Carmeliet P. Role of glutamine and interlinked asparagine metabolism in vessel formation. EMBO J 2017; 36:2334-2352. [PMID: 28659375 DOI: 10.15252/embj.201695518] [Citation(s) in RCA: 217] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 06/07/2017] [Accepted: 06/08/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial cell (EC) metabolism is emerging as a regulator of angiogenesis, but the precise role of glutamine metabolism in ECs is unknown. Here, we show that depriving ECs of glutamine or inhibiting glutaminase 1 (GLS1) caused vessel sprouting defects due to impaired proliferation and migration, and reduced pathological ocular angiogenesis. Inhibition of glutamine metabolism in ECs did not cause energy distress, but impaired tricarboxylic acid (TCA) cycle anaplerosis, macromolecule production, and redox homeostasis. Only the combination of TCA cycle replenishment plus asparagine supplementation restored the metabolic aberrations and proliferation defect caused by glutamine deprivation. Mechanistically, glutamine provided nitrogen for asparagine synthesis to sustain cellular homeostasis. While ECs can take up asparagine, silencing asparagine synthetase (ASNS, which converts glutamine-derived nitrogen and aspartate to asparagine) impaired EC sprouting even in the presence of glutamine and asparagine. Asparagine further proved crucial in glutamine-deprived ECs to restore protein synthesis, suppress ER stress, and reactivate mTOR signaling. These findings reveal a novel link between endothelial glutamine and asparagine metabolism in vessel sprouting.
Collapse
Affiliation(s)
- Hongling Huang
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Saar Vandekeere
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Joanna Kalucka
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Annalisa Zecchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Ulrike Brüning
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Asjad Visnagri
- Leeds Institute of Cardiovascular & Metabolic Medicine, The University of Leeds, Leeds, UK
| | - Nadira Yuldasheva
- Leeds Institute of Cardiovascular & Metabolic Medicine, The University of Leeds, Leeds, UK
| | - Jermaine Goveia
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Bert Cruys
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Katleen Brepoels
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Sabine Wyns
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Stephen Rayport
- Department of Psychiatry, Columbia University, New York, NY, USA.,Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Bart Ghesquière
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Luc Schoonjans
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Richard Cubbon
- Leeds Institute of Cardiovascular & Metabolic Medicine, The University of Leeds, Leeds, UK
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Guy Eelen
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium .,Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium
| |
Collapse
|
155
|
Ronca R, Benkheil M, Mitola S, Struyf S, Liekens S. Tumor angiogenesis revisited: Regulators and clinical implications. Med Res Rev 2017. [PMID: 28643862 DOI: 10.1002/med.21452] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since Judah Folkman hypothesized in 1971 that angiogenesis is required for solid tumor growth, numerous studies have been conducted to unravel the angiogenesis process, analyze its role in primary tumor growth, metastasis and angiogenic diseases, and to develop inhibitors of proangiogenic factors. These studies have led in 2004 to the approval of the first antiangiogenic agent (bevacizumab, a humanized antibody targeting vascular endothelial growth factor) for the treatment of patients with metastatic colorectal cancer. This approval launched great expectations for the use of antiangiogenic therapy for malignant diseases. However, these expectations have not been met and, as knowledge of blood vessel formation accumulates, many of the original paradigms no longer hold. Therefore, the regulators and clinical implications of angiogenesis need to be revisited. In this review, we discuss recently identified angiogenesis mediators and pathways, new concepts that have emerged over the past 10 years, tumor resistance and toxicity associated with the use of currently available antiangiogenic treatment and potentially new targets and/or approaches for malignant and nonmalignant neovascular diseases.
Collapse
Affiliation(s)
- Roberto Ronca
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Mohammed Benkheil
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| | - Stefania Mitola
- Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Rega Institute for Medical Research, Leuven, Belgium
| | - Sandra Liekens
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, Leuven, Belgium
| |
Collapse
|
156
|
Nakajima H, Yamamoto K, Agarwala S, Terai K, Fukui H, Fukuhara S, Ando K, Miyazaki T, Yokota Y, Schmelzer E, Belting HG, Affolter M, Lecaudey V, Mochizuki N. Flow-Dependent Endothelial YAP Regulation Contributes to Vessel Maintenance. Dev Cell 2017; 40:523-536.e6. [PMID: 28350986 DOI: 10.1016/j.devcel.2017.02.019] [Citation(s) in RCA: 210] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 01/16/2017] [Accepted: 02/24/2017] [Indexed: 11/16/2022]
Abstract
Endothelial cells (ECs) line the inside of blood vessels and respond to mechanical cues generated by blood flow. Mechanical stimuli regulate the localization of YAP by reorganizing the actin cytoskeleton. Here we demonstrate blood-flow-mediated regulation of endothelial YAP in vivo. We indirectly monitored transcriptional activity of Yap1 (zebrafish YAP) and its spatiotemporal localization in living zebrafish and found that Yap1 entered the nucleus and promoted transcription in response to blood flow. In cultured human ECs, laminar shear stress induced nuclear import of YAP and its transcriptional activity in a manner independent of Hippo signaling. We uncovered a molecular mechanism by which flow induced the nuclear translocation of YAP through the regulation of filamentous actin and angiomotin. Yap1 mutant zebrafish showed a defect in vascular stability, indicating an essential role for Yap1 in blood vessels. Our data imply that endothelial Yap1 functions in response to flow to maintain blood vessels.
Collapse
Affiliation(s)
- Hiroyuki Nakajima
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Kimiko Yamamoto
- Laboratory of System Physiology, Department of Biomedical Engineering, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | - Sobhika Agarwala
- Developmental Biology, SFB850, Institute for Biology I, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Kenta Terai
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8315, Japan
| | - Hajime Fukui
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Nippon Medical School, Kawasaki, Kanagawa 211-8533, Japan
| | - Koji Ando
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Takahiro Miyazaki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Yasuhiro Yokota
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Etienne Schmelzer
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Virginie Lecaudey
- Department of Developmental Biology of Vertebrates, Institute for Cell Biology and Neurosciences, Goethe University of Frankfurt, 60438 Frankfurt, Germany
| | - Naoki Mochizuki
- Department of Cell Biology, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan; AMED-CREST, National Cerebral and Cardiovascular Center, 5-7-1, Suita, Osaka 565-8565, Japan.
| |
Collapse
|
157
|
Three-dimensional co-culture microfluidic model and its application for research on cancer stem-like cells inducing migration of endothelial cells. Biotechnol Lett 2017; 39:1425-1432. [DOI: 10.1007/s10529-017-2363-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022]
|
158
|
Mao H, Xie L, Pi X. Low-Density Lipoprotein Receptor-Related Protein-1 Signaling in Angiogenesis. Front Cardiovasc Med 2017; 4:34. [PMID: 28589128 PMCID: PMC5438976 DOI: 10.3389/fcvm.2017.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) plays multifunctional roles in lipid homeostasis, signaling transduction, and endocytosis. It has been recognized as an endocytic receptor for many ligands and is involved in the signaling pathways of many growth factors or cytokines. Dysregulation of LRP1-dependent signaling events contributes to the development of pathophysiologic processes such as Alzheimer’s disease, atherosclerosis, inflammation, and coagulation. Interestingly, recent studies have linked LRP1 with endothelial function and angiogenesis, which has been underappreciated for a long time. During zebrafish embryonic development, LRP1 is required for the formation of vascular network, especially for the venous development. LRP1 depletion in the mouse embryo proper leads to angiogenic defects and disruption of endothelial integrity. Moreover, in a mouse oxygen-induced retinopathy model, specific depletion of LRP1 in endothelial cells results in abnormal development of neovessels. These loss-of-function studies suggest that LRP1 plays a pivotal role in angiogenesis. The review addresses the recent advances in the roles of LRP1-dependent signaling during angiogenesis.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
159
|
Chen D, Tang J, Wan Q, Zhang J, Wang K, Shen Y, Yu Y. E-Prostanoid 3 Receptor Mediates Sprouting Angiogenesis Through Suppression of the Protein Kinase A/β-Catenin/Notch Pathway. Arterioscler Thromb Vasc Biol 2017; 37:856-866. [DOI: 10.1161/atvbaha.116.308587] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 02/16/2017] [Indexed: 01/14/2023]
Abstract
Objective—
Angiogenesis is a hallmark of embryonic development and various ischemic and inflammatory diseases. Prostaglandin E2 receptor subtype 3 (EP3) plays an important role in pathophysiologic angiogenesis; however, the precise mechanisms remain unknown. Here, we investigated the role of EP3 in zebra fish embryo and mouse retina angiogenesis and evaluated the underlying mechanisms.
Approach and Results—
The EP3 receptor was highly expressed in the vasculature in both zebra fish embryos and murine fetal retinas. Pharmacological inhibition or genetic deletion of EP3 significantly reduced vasculature formation in zebra fish embryos and mouse retinas. Further characterization revealed reduced filopodia extension of tip cells in embryonic retinas in EP3-deficient mice. EP3 deletion activated Notch activity by upregulation of delta-like ligand 4 expression in endothelial cells (ECs). Inhibition of Notch signaling rescued the angiogenic defects in EP3-deficient mouse retinas. Moreover, EP3 deficiency led to a significant increase in β-catenin phosphorylation at Ser675 and nuclear accumulation of β-catenin in ECs. Knockdown or inhibition of β-catenin restored the impaired sprouting angiogenesis resulting from EP3 deficiency in ECs. The EP3 receptor depressed protein kinase A activity in ECs by coupling to Gαi. Inhibition of protein kinase A activity significantly reduced Ser675 phosphorylation and nuclear translocation of β-catenin, abolished the increased delta-like ligand 4 expression, and subsequently restored the impaired angiogenic capacity of EP3-deficient ECs both in vitro and in vivo.
Conclusions—
Activation of the EP3 receptor facilitates sprouting angiogenesis through protein kinase A–dependent Notch signaling, suggesting that EP3 and its downstream pathways maybe potential therapeutic targets in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Di Chen
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Juan Tang
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Qiangyou Wan
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Jian Zhang
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Kai Wang
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Yujun Shen
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| | - Ying Yu
- From the Department of Pharmacology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China (D.C., J.Z., Y.S., Y.Y.); and Key Laboratory of Food Safety Research, CAS Center for Excellence in Molecular Cell Science, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China (D.C., J.T., Q.W., K.W., Y.Y.)
| |
Collapse
|
160
|
Mural lymphatic endothelial cells regulate meningeal angiogenesis in the zebrafish. Nat Neurosci 2017; 20:774-783. [PMID: 28459441 DOI: 10.1038/nn.4558] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 03/31/2017] [Indexed: 12/15/2022]
Abstract
Mural cells of the vertebrate brain maintain vascular integrity and function, play roles in stroke and are involved in maintenance of neural stem cells. However, the origins, diversity and roles of mural cells remain to be fully understood. Using transgenic zebrafish, we identified a population of isolated mural lymphatic endothelial cells surrounding meningeal blood vessels. These meningeal mural lymphatic endothelial cells (muLECs) express lymphatic endothelial cell markers and form by sprouting from blood vessels. In larvae, muLECs develop from a lymphatic endothelial loop in the midbrain into a dispersed, nonlumenized mural lineage. muLEC development requires normal signaling through the Vegfc-Vegfd-Ccbe1-Vegfr3 pathway. Mature muLECs produce vascular growth factors and accumulate low-density lipoproteins from the bloodstream. We find that muLECs are essential for normal meningeal vascularization. Together, these data identify an unexpected lymphatic lineage and developmental mechanism necessary for establishing normal meningeal blood vasculature.
Collapse
|
161
|
Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central Role of Metabolism in Endothelial Cell Function and Vascular Disease. Physiology (Bethesda) 2017; 32:126-140. [PMID: 28202623 PMCID: PMC5337830 DOI: 10.1152/physiol.00031.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The importance of endothelial cell (EC) metabolism and its regulatory role in the angiogenic behavior of ECs during vessel formation and in the function of different EC subtypes determined by different vascular beds has been recognized only in the last few years. Even more importantly, apart from a role of nitric oxide and reactive oxygen species in EC dysfunction, deregulations of EC metabolism in disease only recently received increasing attention. Although comprehensive metabolic characterization of ECs still needs further investigation, the concept of targeting EC metabolism to treat vascular disease is emerging. In this overview, we summarize EC-specific metabolic pathways, describe the current knowledge on their deregulation in vascular diseases, and give an outlook on how vascular endothelial metabolism can serve as a target to normalize deregulated endothelium.
Collapse
Affiliation(s)
- Laura Bierhansl
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Mieke Dewerchin
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, Leuven, Belgium; and
- Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, University of Leuven, Leuven, Belgium
| |
Collapse
|
162
|
Epithelial-mesenchymal transition in morphogenesis, cancer progression and angiogenesis. Exp Cell Res 2017; 353:1-5. [PMID: 28257786 DOI: 10.1016/j.yexcr.2017.02.041] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/22/2017] [Accepted: 02/27/2017] [Indexed: 12/18/2022]
Abstract
All organs consist of an epithelium and an associated mesenchyme, so these epithelial-mesenchymal intercations are among the most important phenomena in nature. The aim of this article is the summarize the common mechanisms involved in the establishment of epithelial mesenchymal transition in three biological processes, namely organogenesis, tumor progression and metastasis, and angiogenesis, apparently independent each from other. A common feature of these processes is the fact that specialized epithelial cells lose their features, including cell adhesion and polarity, reorganize their cytoskeleton, and acquire a mesenchymal morphology and the ability to migrate.
Collapse
|
163
|
Abstract
Angiogenesis has traditionally been viewed from the perspective of how endothelial cells (ECs) coordinate migration and proliferation in response to growth factor activation to form new vessel branches. However, ECs must also coordinate their metabolism and adapt metabolic fluxes to the rising energy and biomass demands of branching vessels. Recent studies have highlighted the importance of such metabolic regulation in the endothelium and uncovered core metabolic pathways and mechanisms of regulation that drive the angiogenic process. In this review, we discuss our current understanding of EC metabolism, how it intersects with angiogenic signal transduction, and how alterations in metabolic pathways affect vessel morphogenesis. Understanding EC metabolism promises to reveal new perspectives on disease mechanisms in the vascular system with therapeutic implications for disorders with aberrant vessel growth and function.
Collapse
Affiliation(s)
- Michael Potente
- Angiogenesis and Metabolism Laboratory, Max Planck Institute for Heart and Lung Research, D-61231 Bad Nauheim, Germany; .,International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, D-13347 Berlin, Germany
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, Katholieke Universiteit Leuven, 3000 Leuven, Belgium.,Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, VIB, 3000 Leuven, Belgium
| |
Collapse
|
164
|
Macklin BL, Gerecht S. Bridging the gap: induced pluripotent stem cell derived endothelial cells for 3D vascular assembly. Curr Opin Chem Eng 2017. [DOI: 10.1016/j.coche.2017.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
165
|
Esser JS, Charlet A, Schmidt M, Heck S, Allen A, Lother A, Epting D, Patterson C, Bode C, Moser M. The neuronal transcription factor NPAS4 is a strong inducer of sprouting angiogenesis and tip cell formation. Cardiovasc Res 2017; 113:222-223. [PMID: 28082451 DOI: 10.1093/cvr/cvw248] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 09/01/2016] [Accepted: 12/07/2016] [Indexed: 02/06/2023] Open
Abstract
RATIONALE Regarding branching morphogenesis, neurogenesis and angiogenesis share common principle mechanisms and make use of the same molecules. Therefore, the investigation of neuronal molecules involved in vascular morphogenesis provides new possibilities for pro-angiogenic approaches in cardiovascular diseases. OBJECTIVE In this study, we investigated the role of the neuronal transcription factor NPAS4 in angiogenesis. METHODS AND RESULTS Here, we demonstrate that the neuronal transcription factor NPAS4 is expressed in endothelial cells of different origin using reverse transcription PCR and western blot analysis. To investigate how NPAS4 affects endothelial cell function, NPAS4 was overexpressed by plasmid transfection or depleted from human umbilical vein endothelial cells (HUVECs) by specific siRNAs. In vitro HUVEC sprouting assays showed that sprouting and branching of endothelial cells was enhanced by NPAS4 overexpression. Consistently, silencing of NPAS4 resulted in reduced HUVEC sprouting and branching. Mechanistically, we identified as target gene vascular endothelial adhesion molecule VE-cadherin to be involved in the pro-angiogenic function of NPAS4. In endothelial cell mosaic spheroid sprouting assays, NPAS4 was involved in tip cell formation. In vivo experiments in mouse and zebrafish confirmed our in vitro findings. NPAS4-deficient mice displayed reduced ingrowth of endothelial cells in the Matrigel plug assay. Consistent with a regulatory role of NPAS4 in endothelial cell function silencing of NPAS4 in zebrafish by specific morpholinos resulted in perturbed intersegmental vessels growth. CONCLUSIONS NPAS4 is expressed in endothelial cells, regulates VE-cadherin expression and regulates sprouting angiogenesis.
Collapse
Affiliation(s)
- Jennifer Susanne Esser
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany
| | - Anne Charlet
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Mei Schmidt
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany
| | - Sophia Heck
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany
| | - Anita Allen
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Achim Lother
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Daniel Epting
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Cam Patterson
- New York Presbyterian Hospital, Weill Cornell Medical Center, 525 East 68th Street, Payson 118, New York, NY, USA
| | - Christoph Bode
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany
| | - Martin Moser
- Cardiovascular Biology Group, Department of Cardiology and Angiology I, Heart Center, Faculty of Medicine, University of Freiburg, Breisacher Str.33, 79106 Freiburg, Germany;
| |
Collapse
|
166
|
Núñez-Gómez E, Pericacho M, Ollauri-Ibáñez C, Bernabéu C, López-Novoa JM. The role of endoglin in post-ischemic revascularization. Angiogenesis 2016; 20:1-24. [PMID: 27943030 DOI: 10.1007/s10456-016-9535-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022]
Abstract
Following arterial occlusion, blood vessels respond by forming a new network of functional capillaries (angiogenesis), by reorganizing preexisting capillaries through the recruitment of smooth muscle cells to generate new arteries (arteriogenesis) and by growing and remodeling preexisting collateral arterioles into physiologically relevant arteries (collateral development). All these processes result in the recovery of organ perfusion. The importance of endoglin in post-occlusion reperfusion is sustained by several observations: (1) endoglin expression is increased in vessels showing active angiogenesis/remodeling; (2) genetic endoglin haploinsufficiency in humans causes deficient angiogenesis; and (3) the reduction of endoglin expression by gene disruption or the administration of endoglin-neutralizing antibodies reduces angiogenesis and revascularization. However, the precise role of endoglin in the several processes associated with revascularization has not been completely elucidated and, in some cases, the function ascribed to endoglin by different authors is controversial. The purpose of this review is to organize in a critical way the information available for the role of endoglin in several phenomena (angiogenesis, arteriogenesis and collateral development) associated with post-ischemic revascularization.
Collapse
Affiliation(s)
- Elena Núñez-Gómez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Miguel Pericacho
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Claudia Ollauri-Ibáñez
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain.,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain
| | - Carmelo Bernabéu
- Centro de Investigaciones Biológicas, Spanish National Research Council (CIB, CSIC), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - José M López-Novoa
- Renal and Cardiovascular Research Unit, Department of Physiology and Pharmacology, University of Salamanca, Salamanca, Spain. .,Biomedical Research Institute of Salamanca (IBSAL), Salamanca, Spain.
| |
Collapse
|
167
|
Dew L, English WR, Chong CK, MacNeil S. Investigating Neovascularization in Rat Decellularized Intestine: An In Vitro Platform for Studying Angiogenesis. Tissue Eng Part A 2016; 22:1317-1326. [PMID: 27676406 PMCID: PMC5175441 DOI: 10.1089/ten.tea.2016.0131] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 01/22/2023] Open
Abstract
One of the main challenges currently faced by tissue engineers is the loss of tissues postimplantation due to delayed neovascularization. Several strategies are under investigation to create vascularized tissue, but none have yet overcome this problem. In this study, we produced a decellularized natural vascular scaffold from rat intestine to use as an in vitro platform for neovascularization studies for tissue-engineered constructs. Decellularization resulted in almost complete (97%) removal of nuclei and DNA, while collagen, glycosaminoglycan, and laminin content were preserved. Decellularization did, however, result in the loss of elastin and fibronectin. Some proangiogenic factors were retained, as fragments of decellularized intestine were able to stimulate angiogenesis in the chick chorioallantoic membrane assay. We demonstrated that decellularization left perfusable vascular channels intact, and these could be repopulated with human dermal microvascular endothelial cells. Optimization of reendothelialization of the vascular channels showed that this was improved by continuous perfusion of the vasculature and further improved by infusion of human dermal fibroblasts into the intestinal lumen, from where they invaded into the decellularized tissue. Finally we explored the ability of the perfused cells to form new vessels. In the absence of exogenous angiogenic stimuli, Dll4, a marker of endothelial capillary-tip cell activation during sprouting angiogenesis, was absent, indicating that the reformed vasculature was largely quiescent. However, after addition of vascular endothelial growth factor A, Dll4-positive endothelial cells could be detected, demonstrating that this engineered vascular construct maintained its capacity for neovascularization. In summary, we have demonstrated how a natural xenobiotic vasculature can be used as an in vitro model platform to study neovascularization and provide information on factors that are critical for efficient reendothelialization of decellularized tissue.
Collapse
Affiliation(s)
- Lindsey Dew
- Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - William R. English
- Department of Oncology and Metabolism, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Chuh K. Chong
- Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| | - Sheila MacNeil
- Kroto Research Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
168
|
Time to Decide? Dynamical Analysis Predicts Partial Tip/Stalk Patterning States Arise during Angiogenesis. PLoS One 2016; 11:e0166489. [PMID: 27846305 PMCID: PMC5113036 DOI: 10.1371/journal.pone.0166489] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Accepted: 10/28/2016] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis is a highly dynamic morphogenesis process; however, surprisingly little is known about the timing of the different molecular processes involved. Although the role of the VEGF-notch-DLL4 signaling pathway has been established as essential for tip/stalk cell competition during sprouting, the speed and dynamic properties of the underlying process at the individual cell level has not been fully elucidated. In this study, using mathematical modeling we investigate how specific, biologically meaningful, local conditions around and within an individual cell can influence their unique tip/stalk phenotype switching kinetics. To this end we constructed an ordinary differential equation model of VEGF-notch-DLL4 signaling in a system of two, coupled endothelial cells (EC). Our studies reveal that at any given point in an angiogenic vessel the time it takes a cell to decide to take on a tip or stalk phenotype may be drastically different, and this asynchrony of tip/stalk cell decisions along vessels itself acts to speed up later competitions. We unexpectedly uncover intermediate "partial" yet stable states lying between the tip and stalk cell fates, and identify that internal cellular factors, such as NAD-dependent deacetylase sirtuin-1 (Sirt1) and Lunatic fringe 1 (Lfng1), can specifically determine the length of time a cell spends in these newly identified partial tip/stalk states. Importantly, the model predicts that these partial EC states can arise during normal angiogenesis, in particular during cell rearrangement in sprouts, providing a novel two-stage mechanism for rapid adaptive behavior to the cells highly dynamic environment. Overall, this study demonstrates that different factors (both internal and external to EC) can be used to modulate the speed of tip/stalk decisions, opening up new opportunities and challenges for future biological experiments and therapeutic targeting to manipulate vascular network topology, and our basic understanding of developmental/pathological angiogenesis.
Collapse
|
169
|
Notch regulates BMP responsiveness and lateral branching in vessel networks via SMAD6. Nat Commun 2016; 7:13247. [PMID: 27834400 PMCID: PMC5114582 DOI: 10.1038/ncomms13247] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 09/15/2016] [Indexed: 12/13/2022] Open
Abstract
Functional blood vessel growth depends on generation of distinct but coordinated responses from endothelial cells. Bone morphogenetic proteins (BMP), part of the TGFβ superfamily, bind receptors to induce phosphorylation and nuclear translocation of SMAD transcription factors (R-SMAD1/5/8) and regulate vessel growth. However, SMAD1/5/8 signalling results in both pro- and anti-angiogenic outputs, highlighting a poor understanding of the complexities of BMP signalling in the vasculature. Here we show that BMP6 and BMP2 ligands are pro-angiogenic in vitro and in vivo, and that lateral vessel branching requires threshold levels of R-SMAD phosphorylation. Endothelial cell responsiveness to these pro-angiogenic BMP ligands is regulated by Notch status and Notch sets responsiveness by regulating a cell-intrinsic BMP inhibitor, SMAD6, which affects BMP responses upstream of target gene expression. Thus, we reveal a paradigm for Notch-dependent regulation of angiogenesis: Notch regulates SMAD6 expression to affect BMP responsiveness of endothelial cells and new vessel branch formation. The mechanism underlying endothelial cell responses to BMP signals is unknown. Here, the authors show that the endothelial response to pro-angiogenic BMP ligands is regulated by Notch via its effect on SMAD6, a known inhibitor of BMP intracellular signaling cascade.
Collapse
|
170
|
Palm MM, Dallinga MG, van Dijk E, Klaassen I, Schlingemann RO, Merks RMH. Computational Screening of Tip and Stalk Cell Behavior Proposes a Role for Apelin Signaling in Sprout Progression. PLoS One 2016; 11:e0159478. [PMID: 27828952 PMCID: PMC5102492 DOI: 10.1371/journal.pone.0159478] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 05/24/2016] [Indexed: 12/30/2022] Open
Abstract
Angiogenesis involves the formation of new blood vessels by sprouting or splitting of existing blood vessels. During sprouting, a highly motile type of endothelial cell, called the tip cell, migrates from the blood vessels followed by stalk cells, an endothelial cell type that forms the body of the sprout. To get more insight into how tip cells contribute to angiogenesis, we extended an existing computational model of vascular network formation based on the cellular Potts model with tip and stalk differentiation, without making a priori assumptions about the differences between tip cells and stalk cells. To predict potential differences, we looked for parameter values that make tip cells (a) move to the sprout tip, and (b) change the morphology of the angiogenic networks. The screening predicted that if tip cells respond less effectively to an endothelial chemoattractant than stalk cells, they move to the tips of the sprouts, which impacts the morphology of the networks. A comparison of this model prediction with genes expressed differentially in tip and stalk cells revealed that the endothelial chemoattractant Apelin and its receptor APJ may match the model prediction. To test the model prediction we inhibited Apelin signaling in our model and in an in vitro model of angiogenic sprouting, and found that in both cases inhibition of Apelin or of its receptor APJ reduces sprouting. Based on the prediction of the computational model, we propose that the differential expression of Apelin and APJ yields a "self-generated" gradient mechanisms that accelerates the extension of the sprout.
Collapse
Affiliation(s)
- Margriet M. Palm
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | | | - Erik van Dijk
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
| | - Ingeborg Klaassen
- Ocular Angiogenesis Group, Academic Medical Center, Amsterdam, the Netherlands
| | | | - Roeland M. H. Merks
- Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, the Netherlands
- Mathematical Institute, Leiden University, Leiden, the Netherlands
| |
Collapse
|
171
|
Roberts MA, Kotha SS, Phong KT, Zheng Y. Micropatterning and Assembly of 3D Microvessels. J Vis Exp 2016. [PMID: 27685466 DOI: 10.3791/54457] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In vitro platforms to study endothelial cells and vascular biology are largely limited to 2D endothelial cell culture, flow chambers with polymer or glass based substrates, and hydrogel-based tube formation assays. These assays, while informative, do not recapitulate lumen geometry, proper extracellular matrix, and multi-cellular proximity, which play key roles in modulating vascular function. This manuscript describes an injection molding method to generate engineered vessels with diameters on the order of 100 µm. Microvessels are fabricated by seeding endothelial cells in a microfluidic channel embedded within a native type I collagen hydrogel. By incorporating parenchymal cells within the collagen matrix prior to channel formation, specific tissue microenvironments can be modeled and studied. Additional modulations of hydrodynamic properties and media composition allow for control of complex vascular function within the desired microenvironment. This platform allows for the study of perivascular cell recruitment, blood-endothelium interactions, flow response, and tissue-microvascular interactions. Engineered microvessels offer the ability to isolate the influence from individual components of a vascular niche and precisely control its chemical, mechanical, and biological properties to study vascular biology in both health and disease.
Collapse
Affiliation(s)
| | - Surya S Kotha
- Department of Bioengineering, University of Washington
| | - Kiet T Phong
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington
| | - Ying Zheng
- Department of Bioengineering, University of Washington; Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington;
| |
Collapse
|
172
|
Sidman RL, Li J, Lawrence M, Hu W, Musso GF, Giordano RJ, Cardó-Vila M, Pasqualini R, Arap W. The peptidomimetic Vasotide targets two retinal VEGF receptors and reduces pathological angiogenesis in murine and nonhuman primate models of retinal disease. Sci Transl Med 2016; 7:309ra165. [PMID: 26468327 DOI: 10.1126/scitranslmed.aac4882] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Blood vessel growth from preexisting vessels (angiogenesis) underlies many severe diseases including major blinding retinal diseases such as retinopathy of prematurity (ROP) and aged macular degeneration (AMD). This observation has driven development of antibody inhibitors that block a central factor in AMD, vascular endothelial growth factor (VEGF), from binding to its receptors VEGFR-1 and mainly VEGFR-2. However, some patients are insensitive to current anti-VEGF drugs or develop resistance, and the required repeated intravitreal injection of these large molecules is costly and clinically problematic. We have evaluated a small cyclic retro-inverted peptidomimetic, D(Cys-Leu-Pro-Arg-Cys) [D(CLPRC)], and hereafter named Vasotide, that inhibits retinal angiogenesis by binding selectively to the VEGF receptors VEGFR-1 and neuropilin-1 (NRP-1). Delivery of Vasotide via either eye drops or intraperitoneal injection in a laser-induced monkey model of human wet AMD, a mouse genetic knockout model of the AMD subtype called retinal angiomatous proliferation (RAP), and a mouse oxygen-induced model of ROP decreased retinal angiogenesis in all three animal models. This prototype drug candidate is a promising new dual receptor inhibitor of the VEGF ligand with potential for translation into safer, less-invasive applications to combat pathological angiogenesis in retinal disorders.
Collapse
Affiliation(s)
- Richard L Sidman
- Harvard Medical School and Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | - Jianxue Li
- Harvard Medical School and Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Matthew Lawrence
- RxGen Inc., Hamden, CT 06517, USA. St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | - Wenzheng Hu
- RxGen Inc., Hamden, CT 06517, USA. St. Kitts Biomedical Research Foundation, St. Kitts, West Indies
| | | | - Ricardo J Giordano
- Institute of Chemistry, University of São Paulo, São Paulo 05508, Brazil
| | - Marina Cardó-Vila
- University of New Mexico Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA. Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Renata Pasqualini
- University of New Mexico Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA. Division of Molecular Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | - Wadih Arap
- University of New Mexico Cancer Center, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA. Division of Hematology/Oncology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| |
Collapse
|
173
|
Braun A, Caesar NM, Dang K, Myers KA. High-resolution Time-lapse Imaging and Automated Analysis of Microtubule Dynamics in Living Human Umbilical Vein Endothelial Cells. J Vis Exp 2016. [PMID: 27584860 PMCID: PMC5091855 DOI: 10.3791/54265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The physiological process by which new vasculature forms from existing vasculature requires specific signaling events that trigger morphological changes within individual endothelial cells (ECs). These processes are critical for homeostatic maintenance such as wound healing, and are also crucial in promoting tumor growth and metastasis. EC morphology is defined by the organization of the cytoskeleton, a tightly regulated system of actin and microtubule (MT) dynamics that is known to control EC branching, polarity and directional migration, essential components of angiogenesis. To study MT dynamics, we used high-resolution fluorescence microscopy coupled with computational image analysis of fluorescently-labeled MT plus-ends to investigate MT growth dynamics and the regulation of EC branching morphology and directional migration. Time-lapse imaging of living Human Umbilical Vein Endothelial Cells (HUVECs) was performed following transfection with fluorescently-labeled MT End Binding protein 3 (EB3) and Mitotic Centromere Associated Kinesin (MCAK)-specific cDNA constructs to evaluate effects on MT dynamics. PlusTipTracker software was used to track EB3-labeled MT plus ends in order to measure MT growth speeds and MT growth lifetimes in time-lapse images. This methodology allows for the study of MT dynamics and the identification of how localized regulation of MT dynamics within sub-cellular regions contributes to the angiogenic processes of EC branching and migration.
Collapse
Affiliation(s)
- Alexander Braun
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Nicole M Caesar
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kyvan Dang
- Department of Biological Sciences, University of the Sciences in Philadelphia
| | - Kenneth A Myers
- Department of Biological Sciences, University of the Sciences in Philadelphia;
| |
Collapse
|
174
|
Ochsenbein AM, Karaman S, Proulx ST, Berchtold M, Jurisic G, Stoeckli ET, Detmar M. Endothelial cell-derived semaphorin 3A inhibits filopodia formation by blood vascular tip cells. Development 2016; 143:589-94. [PMID: 26884395 DOI: 10.1242/dev.127670] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vascular endothelial growth factor (VEGF)-A is a well-known major chemoattractant driver of angiogenesis--the formation of new blood vessels from pre-existing ones. However, the repellent factors that fine-tune this angiogenic process remain poorly characterized. We investigated the expression and functional role of endothelial cell-derived semaphorin 3A (Sema3A) in retinal angiogenesis, using genetic mouse models. We found Sema3a mRNA expression in the ganglion cell layer and the presence of Sema3A protein on larger blood vessels and at the growing front of blood vessels in neonatal retinas. The Sema3A receptors neuropilin-1 and plexin-A1 were expressed by retinal blood vessels. To study the endothelial cell-specific role of Sema3A, we generated endothelial cell-specific Sema3A knockout mouse strains by constitutive or inducible vascular endothelial cadherin-Cre-mediated gene disruption. We found that in neonatal retinas of these mice, both the number and the length of tip cell filopodia were significantly increased and the leading edge growth pattern was irregular. Retinal explant experiments showed that recombinant Sema3A significantly decreased VEGF-A-induced filopodia formation. Endothelial cell-specific knockout of Sema3A had no impact on blood vessel density or skin vascular leakage in adult mice. These findings indicate that endothelial cell-derived Sema3A exerts repelling functions on VEGF-A-induced tip cell filopodia and that a lack of this signaling cannot be rescued by paracrine sources of Sema3A.
Collapse
Affiliation(s)
- Alexandra M Ochsenbein
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Sinem Karaman
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Steven T Proulx
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Michaela Berchtold
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Giorgia Jurisic
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| | - Esther T Stoeckli
- Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich 8093, Switzerland
| |
Collapse
|
175
|
Treps L, Conradi LC, Harjes U, Carmeliet P. Manipulating Angiogenesis by Targeting Endothelial Metabolism: Hitting the Engine Rather than the Drivers-A New Perspective? Pharmacol Rev 2016; 68:872-87. [PMID: 27363442 DOI: 10.1124/pr.116.012492] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
Excessive angiogenesis (i.e., the formation of new blood vessels) contributes to different pathologies, among them cancer and ocular disorders. Conversely, dysfunction of endothelial cells (ECs) contributes to cardiovascular complications, as is the case in diabetes. Inhibition of pathologic angiogenesis in blinding eye disease and cancer by targeting growth factors such as vascular endothelial growth factor has become an accepted therapeutic strategy. However, recent studies also unveiled the emerging importance of EC metabolism in controlling angiogenesis. In this overview, we will discuss recent insights in the metabolic regulation of angiogenesis, focusing on the best-characterized metabolic pathways, and highlight deregulation of EC metabolism in cancer and diabetes. We will give an outlook on how targeting EC metabolism can be used for blocking pathologic angiogenesis and for normalizing EC dysfunction.
Collapse
Affiliation(s)
- Lucas Treps
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Lena-Christin Conradi
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Ulrike Harjes
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| | - Peter Carmeliet
- Laboratory of Angiogenesis and Vascular Metabolism, Department of Oncology, University of Leuven, and Laboratory of Angiogenesis and Vascular Metabolism, Vesalius Research Center, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
| |
Collapse
|
176
|
Betz C, Lenard A, Belting HG, Affolter M. Cell behaviors and dynamics during angiogenesis. Development 2016; 143:2249-60. [DOI: 10.1242/dev.135616] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
Vascular networks are formed and maintained through a multitude of angiogenic processes, such as sprouting, anastomosis and pruning. Only recently has it become possible to study the behavior of the endothelial cells that contribute to these networks at a single-cell level in vivo. This Review summarizes what is known about endothelial cell behavior during developmental angiogenesis, focusing on the morphogenetic changes that these cells undergo.
Collapse
Affiliation(s)
- Charles Betz
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| | - Anna Lenard
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| | - Heinz-Georg Belting
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| | - Markus Affolter
- Biozentrum der Universität Basel, Klingelbergstrasse 50/70, Basel CH-4056, Switzerland
| |
Collapse
|
177
|
Stepanova V, Jayaraman PS, Zaitsev SV, Lebedeva T, Bdeir K, Kershaw R, Holman KR, Parfyonova YV, Semina EV, Beloglazova IB, Tkachuk VA, Cines DB. Urokinase-type Plasminogen Activator (uPA) Promotes Angiogenesis by Attenuating Proline-rich Homeodomain Protein (PRH) Transcription Factor Activity and De-repressing Vascular Endothelial Growth Factor (VEGF) Receptor Expression. J Biol Chem 2016; 291:15029-45. [PMID: 27151212 DOI: 10.1074/jbc.m115.678490] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Indexed: 01/09/2023] Open
Abstract
Urokinase-type plasminogen activator (uPA) regulates angiogenesis and vascular permeability through proteolytic degradation of extracellular matrix and intracellular signaling initiated upon its binding to uPAR/CD87 and other cell surface receptors. Here, we describe an additional mechanism by which uPA regulates angiogenesis. Ex vivo VEGF-induced vascular sprouting from Matrigel-embedded aortic rings isolated from uPA knock-out (uPA(-/-)) mice was impaired compared with vessels emanating from wild-type mice. Endothelial cells isolated from uPA(-/-) mice show less proliferation and migration in response to VEGF than their wild type counterparts or uPA(-/-) endothelial cells in which expression of wild type uPA had been restored. We reported previously that uPA is transported from cell surface receptors to nuclei through a mechanism that requires its kringle domain. Intranuclear uPA modulates gene transcription by binding to a subset of transcription factors. Here we report that wild type single-chain uPA, but not uPA variants incapable of nuclear transport, increases the expression of cell surface VEGF receptor 1 (VEGFR1) and VEGF receptor 2 (VEGFR2) by translocating to the nuclei of ECs. Intranuclear single-chain uPA binds directly to and interferes with the function of the transcription factor hematopoietically expressed homeodomain protein or proline-rich homeodomain protein (HHEX/PRH), which thereby lose their physiologic capacity to repress the activity of vehgr1 and vegfr2 gene promoters. These studies identify uPA-dependent de-repression of vegfr1 and vegfr2 gene transcription through binding to HHEX/PRH as a novel mechanism by which uPA mediates the pro-angiogenic effects of VEGF and identifies a potential new target for control of pathologic angiogenesis.
Collapse
Affiliation(s)
| | - Padma-Sheela Jayaraman
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Sergei V Zaitsev
- Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | | | - Khalil Bdeir
- From the Departments of Pathology and Laboratory Medicine and
| | - Rachael Kershaw
- School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B152TT, United Kingdom
| | - Kelci R Holman
- College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104
| | - Yelena V Parfyonova
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | - Ekaterina V Semina
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | | | - Vsevolod A Tkachuk
- Russian Cardiology Research Center, Moscow 121552, Russia, School (Faculty) of Fundamental Medicine, Lomonosov Moscow State University, Moscow, 117192, Russia, and
| | - Douglas B Cines
- From the Departments of Pathology and Laboratory Medicine and
| |
Collapse
|
178
|
Liu C, Wu C, Yang Q, Gao J, Li L, Yang D, Luo L. Macrophages Mediate the Repair of Brain Vascular Rupture through Direct Physical Adhesion and Mechanical Traction. Immunity 2016; 44:1162-76. [PMID: 27156384 DOI: 10.1016/j.immuni.2016.03.008] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Revised: 01/11/2016] [Accepted: 03/22/2016] [Indexed: 01/11/2023]
Abstract
Hemorrhagic stroke and brain microbleeds are caused by cerebrovascular ruptures. Fast repair of such ruptures is the most promising therapeutic approach. Due to a lack of high-resolution in vivo real-time studies, the dynamic cellular events involved in cerebrovascular repair remain unknown. Here, we have developed a cerebrovascular rupture system in zebrafish by using multi-photon laser, which generates a lesion with two endothelial ends. In vivo time-lapse imaging showed that a macrophage arrived at the lesion and extended filopodia or lamellipodia to physically adhere to both endothelial ends. This macrophage generated mechanical traction forces to pull the endothelial ends and facilitate their ligation, thus mediating the repair of the rupture. Both depolymerization of microfilaments and inhibition of phosphatidylinositide 3-kinase or Rac1 activity disrupted macrophage-endothelial adhesion and impaired cerebrovascular repair. Our study reveals a hitherto unexpected role for macrophages in mediating repair of cerebrovascular ruptures through direct physical adhesion and mechanical traction.
Collapse
Affiliation(s)
- Chi Liu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Chuan Wu
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Qifen Yang
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Jing Gao
- Department of Endodontics and Operative Dentistry, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, 401147 Chongqing, China
| | - Li Li
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China
| | - Deqin Yang
- Department of Endodontics and Operative Dentistry, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, The Affiliated Hospital of Stomatology, Chongqing Medical University, 401147 Chongqing, China.
| | - Lingfei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Beibei, 400715 Chongqing, China.
| |
Collapse
|
179
|
Microtubule-dependent balanced cell contraction and luminal-matrix modification accelerate epithelial tube fusion. Nat Commun 2016; 7:11141. [PMID: 27067650 PMCID: PMC4832058 DOI: 10.1038/ncomms11141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/25/2016] [Indexed: 01/22/2023] Open
Abstract
Connection of tubules into larger networks is the key process for the development of circulatory systems. In Drosophila development, tip cells of the tracheal system lead the migration of each branch and connect tubules by adhering to each other and simultaneously changing into a torus-shape. We show that as adhesion sites form between fusion cells, myosin and microtubules form polarized bundles that connect the new adhesion site to the cells' microtubule-organizing centres, and that E-cadherin and retrograde recycling endosomes are preferentially deposited at the new adhesion site. We demonstrate that microtubules help balancing tip cell contraction, which is driven by myosin, and is required for adhesion and tube fusion. We also show that retrograde recycling and directed secretion of a specific matrix protein into the fusion-cell interface promote fusion. We propose that microtubule bundles connecting these cell–cell interfaces coordinate cell contractility and apical secretion to facilitate tube fusion. During tracheal tube fusion in Drosophila, a pair of tip cells form an adherens junction and then fuse their plasma membranes. Here the authors show that a balanced pulling force mediated by myosin and microtubules, as well as localized deposition of matrix, promotes plasma membrane fusion.
Collapse
|
180
|
Hashimoto T, Tsuneki M, Foster TR, Santana JM, Bai H, Wang M, Hu H, Hanisch JJ, Dardik A. Membrane-mediated regulation of vascular identity. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2016; 108:65-84. [PMID: 26992081 PMCID: PMC5310768 DOI: 10.1002/bdrc.21123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/22/2016] [Indexed: 02/06/2023]
Abstract
Vascular diseases span diverse pathology, but frequently arise from aberrant signaling attributed to specific membrane-associated molecules, particularly the Eph-ephrin family. Originally recognized as markers of embryonic vessel identity, Eph receptors and their membrane-associated ligands, ephrins, are now known to have a range of vital functions in vascular physiology. Interactions of Ephs with ephrins at cell-to-cell interfaces promote a variety of cellular responses such as repulsion, adhesion, attraction, and migration, and frequently occur during organ development, including vessel formation. Elaborate coordination of Eph- and ephrin-related signaling among different cell populations is required for proper formation of the embryonic vessel network. There is growing evidence supporting the idea that Eph and ephrin proteins also have postnatal interactions with a number of other membrane-associated signal transduction pathways, coordinating translation of environmental signals into cells. This article provides an overview of membrane-bound signaling mechanisms that define vascular identity in both the embryo and the adult, focusing on Eph- and ephrin-related signaling. We also discuss the role and clinical significance of this signaling system in normal organ development, neoplasms, and vascular pathologies.
Collapse
Affiliation(s)
- Takuya Hashimoto
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
- Department of Vascular Surgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Tsuneki
- Division of Cancer Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Trenton R. Foster
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jeans M. Santana
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Hualong Bai
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Vascular Surgery, The 1st Affiliated Hospital of Zhengzhou University, Henan, China
| | - Mo Wang
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Haidi Hu
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Jesse J. Hanisch
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
| | - Alan Dardik
- The Department of Surgery and the Vascular Biology and Therapeutics Program, Yale University, New Haven, Connecticut
- Department of Surgery, VA Connecticut Healthcare Systems, West Haven, Connecticut
| |
Collapse
|
181
|
Yan XC, Cao J, Liang L, Wang L, Gao F, Yang ZY, Duan JL, Chang TF, Deng SM, Liu Y, Dou GR, Zhang J, Zheng QJ, Zhang P, Han H. miR-342-5p Is a Notch Downstream Molecule and Regulates Multiple Angiogenic Pathways Including Notch, Vascular Endothelial Growth Factor and Transforming Growth Factor β Signaling. J Am Heart Assoc 2016; 5:JAHA.115.003042. [PMID: 26857067 PMCID: PMC4802463 DOI: 10.1161/jaha.115.003042] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background Endothelial cells (ECs) form blood vessels through angiogenesis that is regulated by coordination of vascular endothelial growth factor (VEGF), Notch, transforming growth factor β, and other signals, but the detailed molecular mechanisms remain unclear. Methods and Results Small RNA sequencing initially identified miR‐342‐5p as a novel downstream molecule of Notch signaling in ECs. Reporter assay, quantitative reverse transcription polymerase chain reaction and Western blot analysis indicated that miR‐342‐5p targeted endoglin and modulated transforming growth factor β signaling by repressing SMAD1/5 phosphorylation in ECs. Transfection of miR‐342‐5p inhibited EC proliferation and lumen formation and reduced angiogenesis in vitro and in vivo, as assayed by using a fibrin beads–based sprouting assay, mouse aortic ring culture, and intravitreal injection of miR‐342‐5p agomir in P3 pups. Moreover, miR‐342‐5p promoted the migration of ECs, accompanied by reduced endothelial markers and increased mesenchymal markers, indicative of increased endothelial–mesenchymal transition. Transfection of endoglin at least partially reversed endothelial–mesenchymal transition induced by miR‐342‐5p. The expression of miR‐342‐5p was upregulated by transforming growth factor β, and inhibition of miR‐342‐5p attenuated the inhibitory effects of transforming growth factor β on lumen formation and sprouting by ECs. In addition, VEGF repressed miR‐342‐5p expression, and transfection of miR‐342‐5p repressed VEGFR2 and VEGFR3 expression and VEGF‐triggered Akt phosphorylation in ECs. miR‐342‐5p repressed angiogenesis in a laser‐induced choroidal neovascularization model in mice, highlighting its clinical potential. Conclusions miR‐342‐5p acts as a multifunctional angiogenic repressor mediating the effects and interaction among angiogenic pathways.
Collapse
Affiliation(s)
- Xian-Chun Yan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jing Cao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Liang Liang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Li Wang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fang Gao
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Zi-Yan Yang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Juan-Li Duan
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Tian-Fang Chang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - San-Ming Deng
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yuan Liu
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Guo-Rui Dou
- Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jian Zhang
- Department of Respiratory Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Qi-Jun Zheng
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ping Zhang
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Hua Han
- State Key Laboratory of Cancer Biology, Department of Medical Genetics and Developmental Biology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
182
|
Morrell NW, Bloch DB, ten Dijke P, Goumans MJTH, Hata A, Smith J, Yu PB, Bloch KD. Targeting BMP signalling in cardiovascular disease and anaemia. Nat Rev Cardiol 2016; 13:106-20. [PMID: 26461965 PMCID: PMC4886232 DOI: 10.1038/nrcardio.2015.156] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bone morphogenetic proteins (BMPs) and their receptors, known to be essential regulators of embryonic patterning and organogenesis, are also critical for the regulation of cardiovascular structure and function. In addition to their contributions to syndromic disorders including heart and vascular development, BMP signalling is increasingly recognized for its influence on endocrine-like functions in postnatal cardiovascular and metabolic homeostasis. In this Review, we discuss several critical and novel aspects of BMP signalling in cardiovascular health and disease, which highlight the cell-specific and context-specific nature of BMP signalling. Based on advancing knowledge of the physiological roles and regulation of BMP signalling, we indicate opportunities for therapeutic intervention in a range of cardiovascular conditions including atherosclerosis and pulmonary arterial hypertension, as well as for anaemia of inflammation. Depending on the context and the repertoire of ligands and receptors involved in specific disease processes, the selective inhibition or enhancement of signalling via particular BMP ligands (such as in atherosclerosis and pulmonary arterial hypertension, respectively) might be beneficial. The development of selective small molecule antagonists of BMP receptors, and the identification of ligands selective for BMP receptor complexes expressed in the vasculature provide the most immediate opportunities for new therapies.
Collapse
Affiliation(s)
- Nicholas W Morrell
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Donald B Bloch
- Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, 149 13th Street, Charlestown, MA 02129, USA
| | - Peter ten Dijke
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Marie-Jose T H Goumans
- Department of Molecular Cell Biology and Cancer Genomics Centre Netherlands, Leiden University Medicine Centre, Albinusdreef 2, 2333 ZA Leiden, Netherlands
| | - Akiko Hata
- Cardiovascular Research Institute, University of California, 500 Parnassus Avenue, San Francisco, CA 94143, USA
| | - Jim Smith
- MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK
| | - Paul B Yu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Kenneth D Bloch
- Anaesthesia Centre for Critical Care Research, Department of Anaesthesia, Critical Care and Pain Medicine, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
183
|
Tsuji-Tamura K, Ogawa M. Inhibition of the PI3K-Akt and mTORC1 signaling pathways promotes the elongation of vascular endothelial cells. J Cell Sci 2016; 129:1165-78. [PMID: 26826185 DOI: 10.1242/jcs.178434] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 01/21/2016] [Indexed: 12/20/2022] Open
Abstract
Endothelial cell morphology needs to be properly regulated during angiogenesis. Vascular endothelial growth factor (VEGF) induces endothelial cell elongation, which promotes sprouting of pre-existing vessels. However, therapeutic angiogenesis using VEGF has been hampered by side effects such as elevated vascular permeability. Here, we attempted to induce endothelial cell elongation without an overdose of VEGF. By screening a library of chemical inhibitors, we identified phosphatidylinositol 3-kinase (PI3K)-Akt pathway inhibitors and mammalian target of rapamycin complex 1 (mTORC1) inhibitors as potent inducers of endothelial cell elongation. The elongation required VEGF at a low concentration, which was insufficient to elicit the same effect by itself. The elongation also depended on Foxo1, a transcription factor indispensable for angiogenesis. Interestingly, the Foxo1 dependency of the elongation was overridden by inhibition of mTORC1, but not by PI3K-Akt, under stimulation by a high concentration of VEGF. Dual inhibition of mTORC1 and mTORC2 failed to induce cell elongation, revealing mTORC2 as a positive regulator of elongation. Our findings suggest that the PI3K-Akt-Foxo1 and mTORC1-mTORC2 pathways differentially regulate endothelial cell elongation, depending on the microenvironmental levels of VEGF.
Collapse
Affiliation(s)
- Kiyomi Tsuji-Tamura
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
184
|
Rana U, Liu Z, Kumar SN, Zhao B, Hu W, Bordas M, Cossette S, Szabo S, Foeckler J, Weiler H, Chrzanowska-Wodnicka M, Holtz ML, Misra RP, Salato V, North PE, Ramchandran R, Miao QR. Nogo-B receptor deficiency causes cerebral vasculature defects during embryonic development in mice. Dev Biol 2015; 410:190-201. [PMID: 26746789 DOI: 10.1016/j.ydbio.2015.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 01/07/2023]
Abstract
Nogo-B receptor (NgBR) was identified as a receptor specific for Nogo-B. Our previous work has shown that Nogo-B and its receptor (NgBR) are essential for chemotaxis and morphogenesis of endothelial cells in vitro and intersomitic vessel formation via Akt pathway in zebrafish. Here, we further demonstrated the roles of NgBR in regulating vasculature development in mouse embryo and primitive blood vessel formation in embryoid body culture systems, respectively. Our results showed that NgBR homozygous knockout mice are embryonically lethal at E7.5 or earlier, and Tie2Cre-mediated endothelial cell-specific NgBR knockout (NgBR ecKO) mice die at E11.5 and have severe blood vessel assembly defects in embryo. In addition, mutant embryos exhibit dilation of cerebral blood vessel, resulting in thin-walled endothelial caverns. The similar vascular defects also were detected in Cdh5(PAC)-CreERT2 NgBR inducible ecKO mice. Murine NgBR gene-targeting embryonic stem cells (ESC) were generated by homologous recombination approaches. Homozygous knockout of NgBR in ESC results in cell apoptosis. Heterozygous knockout of NgBR does not affect ESC cell survival, but reduces the formation and branching of primitive blood vessels in embryoid body culture systems. Mechanistically, NgBR knockdown not only decreases both Nogo-B and VEGF-stimulated endothelial cell migration by abolishing Akt phosphorylation, but also decreases the expression of CCM1 and CCM2 proteins. Furthermore, we performed immunofluorescence (IF) staining of NgBR in human cerebral cavernous malformation patient tissue sections. The quantitative analysis results showed that NgBR expression levels in CD31 positive endothelial cells is significantly decreased in patient tissue sections. These results suggest that NgBR may be one of important genes coordinating the cerebral vasculature development.
Collapse
Affiliation(s)
- Ujala Rana
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Zhong Liu
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Suresh N Kumar
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Baofeng Zhao
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wenquan Hu
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Michelle Bordas
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stephanie Cossette
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Sara Szabo
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jamie Foeckler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | - Hartmut Weiler
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; BloodCenter of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Mary L Holtz
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ravindra P Misra
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Valerie Salato
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Paula E North
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Department of Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Qing Robert Miao
- Division of Pediatric Surgery, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226, USA; Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
185
|
Diaz-Santana A, Shan M, Stroock AD. Endothelial cell dynamics during anastomosis in vitro. Integr Biol (Camb) 2015; 7:454-66. [PMID: 25790315 DOI: 10.1039/c5ib00052a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Vascular anastomosis - the fusion of vessels from two distinct branches of the vascular system - represents a critical step in vascular growth under both healthy and pathological conditions, in vivo, and presents an important target for engineering of vascularized tissues, in vitro. Recent works in animal models have advanced our understanding of the molecular and cellular players in vascular anastomosis, but questions remain related to cellular dynamics and control of this process, in vitro. In this study, we exploited a three-dimensional (3-D) culture platform to examine the dynamics of endothelial cell (EC) during and after vascular anastomosis by allowing angiogenesis and vasculogenesis to proceed in parallel. We show that anastomosis occurs between sprouts formed by angiogenesis from an endothelium and tubes formed by vasculogenesis in the bulk of a 3-D matrix. This fusion leads to highly connected vessels that span from the surface of the matrix into the bulk in a manner that depends on cell density and identity. Further, we observe and analyze intermixing of endothelial cells of distinct origin (surface versus bulk) within the vessels structures that are formed; we provide evidence that the cells migrate along pre-existing vessels segments as part of this intermixing process. We conclude that anastomosis can occur between vessels emerging by angiogenesis and vasculogenesis and that this process may play an important role in contexts such as wound healing.
Collapse
Affiliation(s)
- Anthony Diaz-Santana
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, USA.
| | | | | |
Collapse
|
186
|
Mitsi M, Schulz MMP, Gousopoulos E, Ochsenbein AM, Detmar M, Vogel V. Walking the Line: A Fibronectin Fiber-Guided Assay to Probe Early Steps of (Lymph)angiogenesis. PLoS One 2015; 10:e0145210. [PMID: 26689200 PMCID: PMC4686943 DOI: 10.1371/journal.pone.0145210] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 12/01/2015] [Indexed: 11/24/2022] Open
Abstract
Angiogenesis and lymphangiogenesis are highly complex morphogenetic processes, central to many physiological and pathological conditions, including development, cancer metastasis, inflammation and wound healing. While it is described that extracellular matrix (ECM) fibers are involved in the spatiotemporal regulation of angiogenesis, current angiogenesis assays are not specifically designed to dissect and quantify the underlying molecular mechanisms of how the fibrillar nature of ECM regulates vessel sprouting. Even less is known about the role of the fibrillar ECM during the early stages of lymphangiogenesis. To address such questions, we introduced here an in vitro (lymph)angiogenesis assay, where we used microbeads coated with endothelial cells as simple sprouting sources and deposited them on single Fn fibers used as substrates to mimic fibrillar ECM. The fibers were deposited on a transparent substrate, suitable for live microscopic observation of the ensuing cell outgrowth events at the single cell level. Our proof-of-concept studies revealed that fibrillar Fn, compared to Fn-coated surfaces, provides far stronger sprouting and guidance cues to endothelial cells, independent of the tested mechanical strains of the Fn fibers. Additionally, we found that VEGF-A, but not VEGF-C, stimulates the collective outgrowth of lymphatic endothelial cells (LEC), while the collective outgrowth of blood vascular endothelial cells (HUVEC) was prominent even in the absence of these angiogenic factors. In addition to the findings presented here, the modularity of our assay allows for the use of different ECM or synthetic fibers as substrates, as well as of other cell types, thus expanding the range of applications in vascular biology and beyond.
Collapse
Affiliation(s)
- Maria Mitsi
- Laboratory of Applied Mechanobiology, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Michael Detmar
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Viola Vogel
- Laboratory of Applied Mechanobiology, ETH Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
187
|
Ozawa S, Ueda S, Imamura H, Mori K, Asanuma K, Yanagita M, Nakagawa T. Glycolysis, but not Mitochondria, responsible for intracellular ATP distribution in cortical area of podocytes. Sci Rep 2015; 5:18575. [PMID: 26677804 PMCID: PMC4683464 DOI: 10.1038/srep18575] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/23/2015] [Indexed: 12/15/2022] Open
Abstract
Differentiated podocytes, a type of renal glomerular cells, require substantial levels of energy to maintain glomerular physiology. Mitochondria and glycolysis are two major producers of ATP, but the precise roles of each in podocytes remain unknown. This study evaluated the roles of mitochondria and glycolysis in differentiated and differentiating podocytes. Mitochondria in differentiated podocytes are located in the central part of cell body while blocking mitochondria had minor effects on cell shape and migratory ability. In contrast, blocking glycolysis significantly reduced the formation of lamellipodia, a cortical area of these cells, decreased the cell migratory ability and induced the apoptosis. Consistently, the local ATP production in lamellipodia was predominantly regulated by glycolysis. In turn, synaptopodin expression was ameliorated by blocking either mitochondrial respiration or glycolysis. Similar to differentiated podocytes, the differentiating podocytes utilized the glycolysis for regulating apoptosis and lamellipodia formation while synaptopodin expression was likely involved in both mitochondrial OXPHOS and glycolysis. Finally, adult mouse podocytes have most of mitochondria predominantly in the center of the cytosol whereas phosphofructokinase, a rate limiting enzyme for glycolysis, was expressed in foot processes. These data suggest that mitochondria and glycolysis play parallel but distinct roles in differentiated and differentiating podocytes.
Collapse
Affiliation(s)
- Shota Ozawa
- TMK project, Medical Innovation Center, Kyoto University, Kyoto, Japan.,Pharmacology Research Laboratories II, Mitsubishi Tanabe Pharma Corporation, Saitama, Japan
| | - Shuko Ueda
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Hiromi Imamura
- Laboratory of Functional Biology, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kiyoshi Mori
- TMK project, Medical Innovation Center, Kyoto University, Kyoto, Japan
| | - Katsuhiko Asanuma
- TMK project, Medical Innovation Center, Kyoto University, Kyoto, Japan
| | - Motoko Yanagita
- TMK project, Medical Innovation Center, Kyoto University, Kyoto, Japan.,Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiko Nakagawa
- TMK project, Medical Innovation Center, Kyoto University, Kyoto, Japan
| |
Collapse
|
188
|
Critical roles for murine Reck in the regulation of vascular patterning and stabilization. Sci Rep 2015; 5:17860. [PMID: 26658478 PMCID: PMC4675993 DOI: 10.1038/srep17860] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022] Open
Abstract
Extracellular matrix (ECM) is known to play several important roles in vascular development, although the molecular mechanisms behind these remain largely unknown. RECK, a tumor suppressor downregulated in a wide variety of cancers, encodes a membrane-anchored matrix-metalloproteinase-regulator. Mice lacking functional Reck die in utero, demonstrating its importance for mammalian embryogenesis; however, the underlying causes of mid-gestation lethality remain unclear. Using Reck conditional knockout mice, we have now demonstrated that the lack of Reck in vascular mural cells is largely responsible for mid-gestation lethality. Experiments using cultured aortic explants further revealed that Reck is essential for at least two events in sprouting angiogenesis; (1) correct association of mural and endothelial tip cells to the microvessels and (2) maintenance of fibronectin matrix surrounding the vessels. These findings demonstrate the importance of appropriate cell-cell interactions and ECM maintenance for angiogenesis and the involvement of Reck as a critical regulator of these events.
Collapse
|
189
|
Blinder YJ, Freiman A, Raindel N, Mooney DJ, Levenberg S. Vasculogenic dynamics in 3D engineered tissue constructs. Sci Rep 2015; 5:17840. [PMID: 26648270 PMCID: PMC4673462 DOI: 10.1038/srep17840] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 11/02/2015] [Indexed: 12/21/2022] Open
Abstract
Implantable 3D engineered vascular tissue constructs can be formed by co-culturing endothelial and fibroblast cells on macroporous scaffolds. Here we show that these constructs can be used for studying the dynamics of neovascular formation in-vitro by a combination of live confocal imaging and an array of image processing and analysis tools, revealing multiple distinct stages of morphogenesis. We show that this process involves both vasculogenic and angiogenic elements, including an initial endothelial multicellular cluster formation followed by rapid extensive sprouting, ultimately resulting in a stable interconnected endothelial network morphology. This vascular morphogenesis is time-correlated with the deposition and formation of an extensive extra-cellular matrix environment. We further show that endothelial network junctions are formed by two separate morphogenic mechanisms of anastomosis and cluster thinning.
Collapse
Affiliation(s)
- Yaron J Blinder
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States
| | - Alina Freiman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Noa Raindel
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - David J Mooney
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, United States.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, United States
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
190
|
Dubrac A, Genet G, Ola R, Zhang F, Pibouin-Fragner L, Han J, Zhang J, Thomas JL, Chedotal A, Schwartz MA, Eichmann A. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neovascularization. Circulation 2015; 133:409-21. [PMID: 26659946 DOI: 10.1161/circulationaha.115.017537] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here, we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. METHODS AND RESULTS Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2- and VEGF-induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, and pathological ocular neovascularization and wound healing, as well. CONCLUSIONS These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2, and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis.
Collapse
Affiliation(s)
- Alexandre Dubrac
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Gael Genet
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Roxana Ola
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Feng Zhang
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Laurence Pibouin-Fragner
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jinah Han
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jiasheng Zhang
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Jean-Léon Thomas
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Alain Chedotal
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Martin A Schwartz
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.)
| | - Anne Eichmann
- From Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT (A.D., G.G., R.O., F.Z., J.H., J.Z., J.-L.T., A.E.); INSERM U1050, Collège de France, Center for Interdisciplinary Research in Biology (CIRB), Paris (L.P.-F., A.E.); Department of Neurology, Yale University School of Medicine, New Haven, CT (J.-L.T.); Institut du Cerveau et de la Moelle, Inserm, Université Pierre et Marie Curie, Paris, France (J.-L.T.); Sorbonne Universités, UPMC Universités Paris 06, INSERM, UMR-S968, CNRS, UMR-7210, Institut de la Vision, France (A.C.); Departments of Cell Biology and Biomedical Engineering, Yale University, New Haven, CT (M.A.S.); and Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT (A.E.).
| |
Collapse
|
191
|
Nozawa-Inoue K, Harada F, Magara J, Ohazama A, Maeda T. Contribution of synovial lining cells to synovial vascularization of the rat temporomandibular joint. J Anat 2015; 228:520-9. [PMID: 26642772 DOI: 10.1111/joa.12426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2015] [Indexed: 01/10/2023] Open
Abstract
The lining layer of the synovial membrane in the temporomandibular joint (TMJ) contains two types of lining cells: macrophage-like type A and fibroblast-like type B cells. The type B cells are particularly heterogeneous in their morphology and immunoreactivity, so that details of their functions remain unclear. Some of the type B cells exhibit certain resemblances in their ultrastructure to those of an activated capillary pericyte at the initial stage of the angiogenesis. The articular surface, composed of cartilage and the disc in the TMJ, has few vasculatures, whereas the synovial lining layer is richly equipped with blood capillaries to produce the constituent of synovial fluid. The present study investigated at both the light and electron microscopic levels the immunocytochemical characteristics of the synovial lining cells in the adult rat TMJ, focusing on their contribution to the synovial vascularization. It also employed an intravascular perfusion with Lycopersicon esculentum (tomato) lectin to identify functional vessels in vivo. Results showed that several type B cells expressed desmin, a muscle-specific intermediate filament which is known as the earliest protein to appear during myogenesis as well as being a marker for the immature capillary pericyte. These desmin-positive type B cells showed immunoreactions for vimentin and pericyte markers (neuron-glial 2; NG2 and PDGFRβ) but not for the other markers of myogenic cells (MyoD and myogenin) or a contractile apparatus (αSMA and caldesmon). Immunoreactivity for RECA-1, an endothelial marker, was observed in the macrophage-like type A cells. The arterioles and venules inside the synovial folds extended numerous capillaries with RECA-1-positive endothelial cells and desmin-positive pericytes to distribute densely in the lining layer. The distal portion of these capillaries showing RECA-1-immunoreactivity lacked lectin-staining, indicating a loss of blood-circulation due to sprouting or termination in the lining layer. The desmin-positive type B and RECA-1-positive type A cells attached to this portion of the capillaries. Some capillaries in the lining layer also expressed ninein, a marker for sprouting endothelial cells, called tip cells. Since an activated pericyte, macrophage and tip cell are known to act together at the forefront of the vessel sprout during angiogenesis, the desmin-positive type B cell and RECA-1-positive type A cell might serve as these angiogenic cells in the synovial lining layer. Tomato lectin perfusion following decalcification would be a highly useful tool for research on the vasculature of the mineralized tissue. Use of this technique combined with immunohistochemistry should permit future extensive investigations on the presence of the physiological angiogenesis and on the function of the lining cells in the synovial membrane.
Collapse
Affiliation(s)
- Kayoko Nozawa-Inoue
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Fumiko Harada
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jin Magara
- Division of Dysphagia Rehabilitation, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Atsushi Ohazama
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeyasu Maeda
- Division of Oral Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
192
|
Haas TL, Nwadozi E. Regulation of skeletal muscle capillary growth in exercise and disease. Appl Physiol Nutr Metab 2015; 40:1221-32. [PMID: 26554747 DOI: 10.1139/apnm-2015-0336] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Capillaries, which are the smallest and most abundant type of blood vessel, form the primary site of gas, nutrient, and waste transfer between the vascular and tissue compartments. Skeletal muscle exhibits the capacity to generate new capillaries (angiogenesis) as an adaptation to exercise training, thus ensuring that the heightened metabolic demand of the active muscle is matched by an improved capacity for distribution of gases, nutrients, and waste products. This review summarizes the current understanding of the regulation of skeletal muscle capillary growth. The multi-step process of angiogenesis is coordinated through the integration of a diverse array of signals associated with hypoxic, metabolic, hemodynamic, and mechanical stresses within the active muscle. The contributions of metabolic and mechanical factors to the modulation of key pro- and anti-angiogenic molecules are discussed within the context of responses to a single aerobic exercise bout and short-term and long-term training. Finally, the paradoxical lack of angiogenesis in peripheral artery disease and diabetes and the implications for disease progression and muscle health are discussed. Future studies that emphasize an integrated analysis of the mechanisms that control skeletal muscle capillary growth will enable development of targeted exercise programs that effectively promote angiogenesis in healthy individuals and in patient populations.
Collapse
Affiliation(s)
- Tara L Haas
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| | - Emmanuel Nwadozi
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
- Angiogenesis Research Group, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
193
|
Koltowska K, Lagendijk A, Pichol-Thievend C, Fischer J, Francois M, Ober E, Yap A, Hogan B. Vegfc Regulates Bipotential Precursor Division and Prox1 Expression to Promote Lymphatic Identity in Zebrafish. Cell Rep 2015; 13:1828-41. [DOI: 10.1016/j.celrep.2015.10.055] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022] Open
|
194
|
Estrada R, Allingham MJ, Mettu PS, Cousins SW, Tomasi C, Farsiu S. Retinal Artery-Vein Classification via Topology Estimation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2015; 34:2518-34. [PMID: 26068204 PMCID: PMC4685460 DOI: 10.1109/tmi.2015.2443117] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We propose a novel, graph-theoretic framework for distinguishing arteries from veins in a fundus image. We make use of the underlying vessel topology to better classify small and midsized vessels. We extend our previously proposed tree topology estimation framework by incorporating expert, domain-specific features to construct a simple, yet powerful global likelihood model. We efficiently maximize this model by iteratively exploring the space of possible solutions consistent with the projected vessels. We tested our method on four retinal datasets and achieved classification accuracies of 91.0%, 93.5%, 91.7%, and 90.9%, outperforming existing methods. Our results show the effectiveness of our approach, which is capable of analyzing the entire vasculature, including peripheral vessels, in wide field-of-view fundus photographs. This topology-based method is a potentially important tool for diagnosing diseases with retinal vascular manifestation.
Collapse
Affiliation(s)
- Rolando Estrada
- Department of Ophthalmology, Duke University, Durham, NC 27708 USA
| | | | | | - Scott W. Cousins
- Department of Ophthalmology, Duke University, Durham, NC 27708 USA
| | - Carlo Tomasi
- Department of Computer Science, Duke University, Durham, NC 27708 USA
| | - Sina Farsiu
- Departments of Biomedical Engineering, Ophthalmology, Electrical and Computer Engineering, and Computer Science, Duke University, Durham, NC, 27708 USA
| |
Collapse
|
195
|
Goi M, Childs SJ. Patterning mechanisms of the sub-intestinal venous plexus in zebrafish. Dev Biol 2015; 409:114-128. [PMID: 26477558 DOI: 10.1016/j.ydbio.2015.10.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 10/05/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
Abstract
Despite considerable interest in angiogenesis, organ-specific angiogenesis remains less well characterized. The vessels that absorb nutrients from the yolk and later provide blood supply to the developing digestive system are primarily venous in origin. In zebrafish, these are the vessels of the Sub-intestinal venous plexus (SIVP) and they represent a new candidate model to gain an insight into the mechanisms of venous angiogenesis. Unlike other vessel beds in zebrafish, the SIVP is not stereotypically patterned and lacks obvious sources of patterning information. However, by examining the area of vessel coverage, number of compartments, proliferation and migration speed we have identified common developmental steps in SIVP formation. We applied our analysis of SIVP development to obd mutants that have a mutation in the guidance receptor PlexinD1. obd mutants show dysregulation of nearly all parameters of SIVP formation. We show that the SIVP responds to a unique combination of pathways that control both arterial and venous growth in other systems. Blocking Shh, Notch and Pdgf signaling has no effect on SIVP growth. However Vegf promotes sprouting of the predominantly venous plexus and Bmp promotes outgrowth of the structure. We propose that the SIVP is a unique model to understand novel mechanisms utilized in organ-specific angiogenesis.
Collapse
Affiliation(s)
- Michela Goi
- Department of Biochemistry and Molecular Biology and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1
| | - Sarah J Childs
- Department of Biochemistry and Molecular Biology and Alberta Children's Hospital Research Institute, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, Canada T2N 4N1.
| |
Collapse
|
196
|
Bernabeu MO, Jones ML, Nielsen JH, Krüger T, Nash RW, Groen D, Schmieschek S, Hetherington J, Gerhardt H, Franco CA, Coveney PV. Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis. J R Soc Interface 2015; 11:rsif.2014.0543. [PMID: 25079871 PMCID: PMC4233731 DOI: 10.1098/rsif.2014.0543] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
There is currently limited understanding of the role played by haemodynamic forces on the processes governing vascular development. One of many obstacles to be overcome is being able to measure those forces, at the required resolution level, on vessels only a few micrometres thick. In this paper, we present an in silico method for the computation of the haemodynamic forces experienced by murine retinal vasculature (a widely used vascular development animal model) beyond what is measurable experimentally. Our results show that it is possible to reconstruct high-resolution three-dimensional geometrical models directly from samples of retinal vasculature and that the lattice-Boltzmann algorithm can be used to obtain accurate estimates of the haemodynamics in these domains. We generate flow models from samples obtained at postnatal days (P) 5 and 6. Our simulations show important differences between the flow patterns recovered in both cases, including observations of regression occurring in areas where wall shear stress (WSS) gradients exist. We propose two possible mechanisms to account for the observed increase in velocity and WSS between P5 and P6: (i) the measured reduction in typical vessel diameter between both time points and (ii) the reduction in network density triggered by the pruning process. The methodology developed herein is applicable to other biomedical domains where microvasculature can be imaged but experimental flow measurements are unavailable or difficult to obtain.
Collapse
Affiliation(s)
- Miguel O Bernabeu
- CoMPLEX, University College London, Physics Building, Gower St., London WC1E 6BT, UK Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Martin L Jones
- Vascular Biology Laboratory, London Research Institute, Cancer Research UK, Lincoln's Inn Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Jens H Nielsen
- Research Software Development Team, Research Computing and Facilitating Services, University College London, Podium Building-1st Floor, Gower St., London WC1E 6BT, UK
| | - Timm Krüger
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK Institute for Materials and Processes, School of Engineering, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Rupert W Nash
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Derek Groen
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - Sebastian Schmieschek
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK
| | - James Hetherington
- Research Software Development Team, Research Computing and Facilitating Services, University College London, Podium Building-1st Floor, Gower St., London WC1E 6BT, UK
| | - Holger Gerhardt
- Vascular Biology Laboratory, London Research Institute, Cancer Research UK, Lincoln's Inn Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Claudio A Franco
- Vascular Biology Laboratory, London Research Institute, Cancer Research UK, Lincoln's Inn Laboratories, 44 Lincoln's Inn Fields, London WC2A 3LY, UK Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry, University College London, 20 Gordon St., London WC1H 0AJ, UK
| |
Collapse
|
197
|
Abstract
The vascular and the nervous system are responsible for oxygen, nutrient, and information transfer and thereby constitute highly important communication systems in higher organisms. These functional similarities are reflected at the anatomical, cellular, and molecular levels, where common developmental principles and mutual crosstalks have evolved to coordinate their action. This resemblance of the two systems at different levels of complexity has been termed the "neurovascular link." Most of the evidence demonstrating neurovascular interactions derives from studies outside the CNS and from the CNS tissue of the retina. However, little is known about the specific properties of the neurovascular link in the brain. Here, we focus on regulatory effects of molecules involved in the neurovascular link on angiogenesis in the periphery and in the brain and distinguish between general and CNS-specific cues for angiogenesis. Moreover, we discuss the emerging molecular interactions of these angiogenic cues with the VEGF-VEGFR-Delta-like ligand 4 (Dll4)-Jagged-Notch pathway.
Collapse
|
198
|
Pitulescu ME, Adams RH. Regulation of signaling interactions and receptor endocytosis in growing blood vessels. Cell Adh Migr 2015; 8:366-77. [PMID: 25482636 DOI: 10.4161/19336918.2014.970010] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Blood vessels and the lymphatic vasculature are extensive tubular networks formed by endothelial cells that have several indispensable functions in the developing and adult organism. During growth and tissue regeneration but also in many pathological settings, these vascular networks expand, which is critically controlled by the receptor EphB4 and the ligand ephrin-B2. An increasing body of evidence links Eph/ephrin molecules to the function of other receptor tyrosine kinases and cell surface receptors. In the endothelium, ephrin-B2 is required for clathrin-dependent internalization and full signaling activity of VEGFR2, the main receptor for vascular endothelial growth factor. In vascular smooth muscle cells, ephrin-B2 antagonizes clathrin-dependent endocytosis of PDGFRβ and controls the balanced activation of different signal transduction processes after stimulation with platelet-derived growth factor. This review summarizes the important roles of Eph/ephrin molecules in vascular morphogenesis and explains the function of ephrin-B2 as a molecular hub for receptor endocytosis in the vasculature.
Collapse
Key Words
- Ang, angiopoietin
- CHC, clathrin heavy chains
- CLASP, clathrin-associated-sorting protein
- CV, cardinal vein
- DA, dorsal aorta
- EC, endothelial cell
- EEA1, early antigen 1
- Eph
- Ephrin-B2ΔV, ephrin-B2 deletion of C-terminal PDZ binding motif
- HSPG, heparan sulfate proteoglycan
- JNK, c-Jun N-terminal kinase
- LEC, lymphatic endothelial cells
- LRP1, Low density lipoprotein receptor-related protein 1
- MVB, multivesicular body
- NRP, neuropilin
- PC, pericytes
- PDGF, platelet-derived growth factor
- PDGFR, platelet-derived growth factor receptor
- PTC, peritubular capillary
- PlGF, placental growth factor
- RTK, receptor tyrosine kinase
- VEGF, Vascular endothelial growth factor
- VEGFR, Vascular endothelial growth factor receptor
- VSMC, vascular smooth muscle cells.
- aPKC, atypical protein kinase C
- endocytosis
- endothelial cells
- ephrin
- mural cells
- receptor
Collapse
Affiliation(s)
- Mara E Pitulescu
- a Department of Tissue Morphogenesis; Max Planck Institute for Molecular Biomedicine; and Faculty of Medicine , University of Münster ; Münster , Germany
| | | |
Collapse
|
199
|
Bichsel CA, Hall SR, Schmid RA, Guenat OT, Geiser T. Primary Human Lung Pericytes Support and Stabilize In Vitro Perfusable Microvessels. Tissue Eng Part A 2015; 21:2166-76. [DOI: 10.1089/ten.tea.2014.0545] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Colette A. Bichsel
- Lung Regeneration Technologies, ARTORG Center, University of Bern, Bern, Switzerland
- Division of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
| | - Sean R.R. Hall
- Division of Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Ralph A. Schmid
- Division of Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| | - Olivier T. Guenat
- Lung Regeneration Technologies, ARTORG Center, University of Bern, Bern, Switzerland
- Division of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Division of Thoracic Surgery, University Hospital of Bern, Bern, Switzerland
| | - Thomas Geiser
- Division of Pulmonary Medicine, University Hospital of Bern, Bern, Switzerland
- Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
200
|
Abstract
The developing central nervous system (CNS) is vascularised through the angiogenic invasion of blood vessels from a perineural vascular plexus, followed by continued sprouting and remodelling until a hierarchical vascular network is formed. Remarkably, vascularisation occurs without perturbing the intricate architecture of the neurogenic niches or the emerging neural networks. We discuss the mouse hindbrain, forebrain and retina as widely used models to study developmental angiogenesis in the mammalian CNS and provide an overview of key cellular and molecular mechanisms regulating the vascularisation of these organs. CNS vascularisation is initiated during embryonic development. CNS vascularisation is studied in the mouse forebrain, hindbrain and retina models. Neuroglial cells interact with endothelial cells to promote angiogenesis. Neuroglial cells produce growth factors and matrix cues to pattern vessels.
Collapse
|