151
|
Asahara H, Inui M, Lotz MK. Tendons and Ligaments: Connecting Developmental Biology to Musculoskeletal Disease Pathogenesis. J Bone Miner Res 2017; 32:1773-1782. [PMID: 28621492 PMCID: PMC5585011 DOI: 10.1002/jbmr.3199] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 06/08/2017] [Accepted: 06/14/2017] [Indexed: 01/09/2023]
Abstract
Tendons and ligaments provide connections between muscle and bone or bone and bone to enable locomotion. Damage to tendons and ligaments caused by acute or chronic injury or associated with aging and arthritis is a prevalent cause of disability. Improvements in approaches for the treatment of these conditions depend on a better understanding of tendon and ligament development, cell biology, and pathophysiology. This review focuses on recent advances in the discovery of transcription factors that control ligament and tendon cell differentiation, how cell and extracellular matrix homeostasis are altered in disease, and how this new insight can lead to novel therapeutic approaches. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hiroshi Asahara
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
- Department of Systems BioMedicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masafumi Inui
- Laboratory of Animal Regeneration Systemology, Department of Life Science, School of Agriculture, Meiji University, Kanagawa, 214-8571
| | - Martin K. Lotz
- Department of Molecular Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, USA
| |
Collapse
|
152
|
Vargas AO, Ruiz-Flores M, Soto-Acuña S, Haidr N, Acosta-Hospitaleche C, Ossa-Fuentes L, Muñoz-Walther V. The Origin and Evolutionary Consequences of Skeletal Traits Shaped by Embryonic Muscular Activity, from Basal Theropods to Modern Birds. Integr Comp Biol 2017; 57:1281-1292. [DOI: 10.1093/icb/icx074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
153
|
Arvind V, Huang AH. Mechanobiology of limb musculoskeletal development. Ann N Y Acad Sci 2017; 1409:18-32. [PMID: 28833194 DOI: 10.1111/nyas.13427] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/30/2017] [Accepted: 06/07/2017] [Indexed: 12/26/2022]
Abstract
While there has been considerable progress in identifying molecular regulators of musculoskeletal development, the role of physical forces in regulating induction, differentiation, and patterning events is less well understood. Here, we highlight recent findings in this area, focusing primarily on model systems that test the mechanical regulation of skeletal and tendon development in the limb. We also discuss a few of the key signaling pathways and mechanisms that have been implicated in mechanotransduction and highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Varun Arvind
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
154
|
Nemec S, Luxey M, Jain D, Huang Sung A, Pastinen T, Drouin J. Pitx1 directly modulates the core limb development program to implement hindlimb identity. Development 2017; 144:3325-3335. [PMID: 28807899 DOI: 10.1242/dev.154864] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/04/2017] [Indexed: 01/24/2023]
Abstract
Forelimbs (FLs) and hindlimbs (HLs) develop complex musculoskeletal structures that rely on the deployment of a conserved developmental program. Pitx1, a transcription factor gene with expression restricted to HL and absent from FL, plays an important role in generating HL features. The genomic mechanisms by which Pitx1 effects HL identity remain poorly understood. Here, we use expression profiling and analysis of direct Pitx1 targets to characterize the HL- and FL-restricted genetic programs in mouse and situate the Pitx1-dependent gene network within the context of limb-specific gene regulation. We show that Pitx1 is a crucial component of a narrow network of HL-restricted regulators, acting on a developmental program that is shared between FL and HL. Pitx1 targets sites that are in a similar chromatin state in FL and HL and controls expression of patterning genes as well as the chondrogenic program, consistent with impaired chondrogenesis in Pitx1-/- HL. These findings support a model in which multifactorial actions of a limited number of HL regulators redirect the generic limb development program in order to generate the unique structural features of the limb.
Collapse
Affiliation(s)
- Stephen Nemec
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada.,Department of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1 Canada
| | - Maëva Luxey
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada
| | - Deepak Jain
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada.,Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6 Canada
| | - Aurélie Huang Sung
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1 Canada
| | - Jacques Drouin
- Institut de Recherches Cliniques de Montréal, Montréal, QC, H2W 1R7 Canada .,Department of Experimental Medicine, McGill University, Montreal, QC, H4A 3J1 Canada.,Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6 Canada
| |
Collapse
|
155
|
Nara M, Kitamura K, Yamamoto M, Nagakura R, Mitomo K, Matsunaga S, Abe S. Developmental mechanism of muscle-tendon-bone complex in the fetal soft palate. Arch Oral Biol 2017; 82:71-78. [PMID: 28618344 DOI: 10.1016/j.archoralbio.2017.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 06/02/2017] [Accepted: 06/02/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVE This study was performed to investigate how the palatine aponeurosis, medial pterygoid process (MPP) of the sphenoid bone, and tensor veli palatini (TVP) muscle form the pulley: muscle-tendon-bone complex. DESIGN Mice at embryonic day (ED) 14-17 were used as sample in this study. Azan staining was performed to observe the morphology, and immunohistochemical staining of desmin was performed to closely observe the development of the myotendinous junction. To confirm the bone formation process, immunohistochemical staining of type II collagen (col II), tartrate-resistant acid phosphatase (TRAP), and alkaline phosphatase (ALP) staining were performed. Furthermore, to objectively evaluate bone formation, the major axis and width of the MPP were measured, and osteoclasts that appeared in the MPP were counted. RESULTS At ED 14 and 14.5, ALP showed a reaction throughout the MPP. The col II-positive area expanded until ED 16.5, but it was markedly reduced at ED 17. The TVP initially contacted with the palatine aponeurosis at ED 16.5. The major axis and width of the MPP and the number of TRAP-positive osteoclasts were significantly increased as the TVP and palatine aponeurosis joined. CONCLUSIONS Therefore, in addition to the tissue units: muscle, tendon, and bone, the interaction in organogenesis promotes rapid growth of the pulley: muscle-tendon-bone complex.
Collapse
Affiliation(s)
- Michiyuki Nara
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Kei Kitamura
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan.
| | - Masahito Yamamoto
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Ryotaro Nagakura
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Keisuke Mitomo
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Satoru Matsunaga
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| | - Shinichi Abe
- Department of Anatomy, Tokyo Dental College, 2-9-18 Misaki-cho, Tokyo, Japan
| |
Collapse
|
156
|
Font Tellado S, Bonani W, Balmayor ER, Foehr P, Motta A, Migliaresi C, van Griensven M. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering. Tissue Eng Part A 2017; 23:859-872. [PMID: 28330431 DOI: 10.1089/ten.tea.2016.0460] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were <100-300 μm. Young's modulus varied from 689 to 1322 kPa depending on the type of construct. In addition, human adipose-derived mesenchymal stem cells were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon/ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.
Collapse
Affiliation(s)
- Sònia Font Tellado
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Walter Bonani
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy .,3 Trento Research Unit, INSTM-National Interuniversity Consortium of Materials Science and Technology , Trento, Italy
| | - Elizabeth R Balmayor
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Peter Foehr
- 4 Department of Orthopaedics and Sports Orthopaedics, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| | - Antonella Motta
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy
| | - Claudio Migliaresi
- 2 Department of Industrial Engineering, BIOtech Research Center and European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Trento , Trento, Italy .,3 Trento Research Unit, INSTM-National Interuniversity Consortium of Materials Science and Technology , Trento, Italy
| | - Martijn van Griensven
- 1 Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University of Munich , Munich, Germany
| |
Collapse
|
157
|
Korntner S, Kunkel N, Lehner C, Gehwolf R, Wagner A, Augat P, Stephan D, Heu V, Bauer HC, Traweger A, Tempfer H. A high-glucose diet affects Achilles tendon healing in rats. Sci Rep 2017; 7:780. [PMID: 28396584 PMCID: PMC5429625 DOI: 10.1038/s41598-017-00700-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 03/08/2017] [Indexed: 01/31/2023] Open
Abstract
Chronic and acute tendinopathies are difficult to treat and tendon healing is generally a very slow and incomplete process and our general understanding of tendon biology and regeneration lags behind that of muscle or bone. Although still largely unexplored, several studies suggest a positive effect of nutritional interventions on tendon health and repair. With this study, we aim to reveal effects of a high-glucose diet on tendon neoformation in a non-diabetic rat model of Achilles tenotomy. After surgery animals received either a high-glucose diet or a control diet for 2 and 4 weeks, respectively. Compared to the control group, tendon repair tissue thickness and stiffness were increased in the high-glucose group after 2 weeks and gait pattern was altered after 1 and 2 weeks. Cell proliferation was up to 3-fold higher and the expression of the chondrogenic marker genes Sox9, Col2a1, Acan and Comp was significantly increased 2 and 4 weeks post-surgery. Further, a moderate increase in cartilage-like areas within the repair tissue was evident after 4 weeks of a high-glucose diet regimen. In summary, we propose that a high-glucose diet significantly affects tendon healing after injury in non-diabetic rats, potentially driving chondrogenic degeneration.
Collapse
Affiliation(s)
- Stefanie Korntner
- Institute of Tendon & Bone Regeneration, Paracelsus Medical University Salzburg, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Salzburg, AT, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, AT, Austria
| | - Nadja Kunkel
- Institute of Tendon & Bone Regeneration, Paracelsus Medical University Salzburg, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Salzburg, AT, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, AT, Austria
- University Hospital of Salzburg, Department of Trauma Surgery and Sports Injuries, Salzburg, AT, Austria
| | - Christine Lehner
- Institute of Tendon & Bone Regeneration, Paracelsus Medical University Salzburg, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Salzburg, AT, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, AT, Austria
| | - Renate Gehwolf
- Institute of Tendon & Bone Regeneration, Paracelsus Medical University Salzburg, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Salzburg, AT, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, AT, Austria
| | - Andrea Wagner
- Institute of Tendon & Bone Regeneration, Paracelsus Medical University Salzburg, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Salzburg, AT, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, AT, Austria
| | - Peter Augat
- Institute of Biomechanics, Trauma Center Murnau, Murnau, DE, Germany
| | - Daniel Stephan
- Institute of Biomechanics, Trauma Center Murnau, Murnau, DE, Germany
| | - Verena Heu
- University Hospital of Salzburg, Department of Paediatrics, Salzburg, AT, Austria
| | - Hans-Christian Bauer
- Institute of Tendon & Bone Regeneration, Paracelsus Medical University Salzburg, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Salzburg, AT, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, AT, Austria
| | - Andreas Traweger
- Institute of Tendon & Bone Regeneration, Paracelsus Medical University Salzburg, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Salzburg, AT, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, AT, Austria
| | - Herbert Tempfer
- Institute of Tendon & Bone Regeneration, Paracelsus Medical University Salzburg, Spinal Cord Injury and Tissue Regeneration Centre Salzburg, Salzburg, AT, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, AT, Austria.
| |
Collapse
|
158
|
Huang AH. Coordinated development of the limb musculoskeletal system: Tendon and muscle patterning and integration with the skeleton. Dev Biol 2017; 429:420-428. [PMID: 28363737 DOI: 10.1016/j.ydbio.2017.03.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022]
Abstract
Functional movement and stability of the limb depends on an organized and fully integrated musculoskeletal system composed of skeleton, muscle, and tendon. Much of our current understanding of musculoskeletal development is based on studies that focused on the development and differentiation of individual tissues. Likewise, research on patterning events have been largely limited to the primary skeletal elements and the mechanisms that regulate soft tissue patterning, the development of the connections between tissues, and their interdependent development are only beginning to be elucidated. This review will therefore highlight recent exciting discoveries in this field, with an emphasis on tendon and muscle patterning and their integrated development with the skeleton and skeletal attachments.
Collapse
Affiliation(s)
- Alice H Huang
- Icahn School of Medicine at Mount Sinai, Department of Orthopaedics, 1 Gustave Levy Place, Box 1188, New York, NY 10029, United States.
| |
Collapse
|
159
|
Howell K, Chien C, Bell R, Laudier D, Tufa SF, Keene DR, Andarawis-Puri N, Huang AH. Novel Model of Tendon Regeneration Reveals Distinct Cell Mechanisms Underlying Regenerative and Fibrotic Tendon Healing. Sci Rep 2017; 7:45238. [PMID: 28332620 PMCID: PMC5362908 DOI: 10.1038/srep45238] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/19/2022] Open
Abstract
To date, the cell and molecular mechanisms regulating tendon healing are poorly understood. Here, we establish a novel model of tendon regeneration using neonatal mice and show that neonates heal via formation of a ‘neo-tendon’ that differentiates along the tendon specific lineage with functional restoration of gait and mechanical properties. In contrast, adults heal via fibrovascular scar, aberrant differentiation toward cartilage and bone, with persistently impaired function. Lineage tracing identified intrinsic recruitment of Scx-lineage cells as a key cellular mechanism of neonatal healing that is absent in adults. Instead, adult Scx-lineage tenocytes are not recruited into the defect but transdifferentiate into ectopic cartilage; in the absence of tenogenic cells, extrinsic αSMA-expressing cells persist to form a permanent scar. Collectively, these results establish an exciting model of tendon regeneration and uncover a novel cellular mechanism underlying regenerative vs non-regenerative tendon healing.
Collapse
Affiliation(s)
- Kristen Howell
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Chun Chien
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Rebecca Bell
- Dept. of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Damien Laudier
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Sara F Tufa
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Douglas R Keene
- Micro-Imaging Center, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Nelly Andarawis-Puri
- Dept. of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853 USA
| | - Alice H Huang
- Dept. of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
160
|
Scleraxis is required for maturation of tissue domains for proper integration of the musculoskeletal system. Sci Rep 2017; 7:45010. [PMID: 28327634 PMCID: PMC5361204 DOI: 10.1038/srep45010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/20/2017] [Indexed: 12/17/2022] Open
Abstract
Scleraxis (Scx) is a basic helix-loop-helix transcription factor that is expressed persistently in tendons/ligaments, but transiently in entheseal cartilage. In this study, we generated a novel ScxCre knock-in (KI) allele, by in-frame replacement of most of Scx exon 1 with Cre recombinase (Cre), to drive Cre expression using Scx promoter and to inactivate the endogenous Scx. Reflecting the intensity and duration of endogenous expression, Cre-mediated excision occurs in tendinous and ligamentous tissues persistently expressing Scx. Expression of tenomodulin, a marker of mature tenocytes and ligamentocytes, was almost absent in tendons and ligaments of ScxCre/Cre KI mice lacking Scx to indicate defective maturation. In homozygotes, the transiently Scx-expressing entheseal regions such as the rib cage, patella cartilage, and calcaneus were small and defective and cartilaginous tuberosity was missing. Decreased Sox9 expression and phosphorylation of Smad1/5 and Smad3 were also observed in the developing entheseal cartilage, patella, and deltoid tuberosity of ScxCre/Cre KI mice. These results highlighted the functional importance of both transient and persistent expression domains of Scx for proper integration of the musculoskeletal components.
Collapse
|
161
|
Rothrauff BB, Pauyo T, Debski RE, Rodosky MW, Tuan RS, Musahl V. The Rotator Cuff Organ: Integrating Developmental Biology, Tissue Engineering, and Surgical Considerations to Treat Chronic Massive Rotator Cuff Tears. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:318-335. [PMID: 28084902 DOI: 10.1089/ten.teb.2016.0446] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The torn rotator cuff remains a persistent orthopedic challenge, with poor outcomes disproportionately associated with chronic, massive tears. Degenerative changes in the tissues that comprise the rotator cuff organ, including muscle, tendon, and bone, contribute to the poor healing capacity of chronic tears, resulting in poor function and an increased risk for repair failure. Tissue engineering strategies to augment rotator cuff repair have been developed in an effort to improve rotator cuff healing and have focused on three principal aims: (1) immediate mechanical augmentation of the surgical repair, (2) restoration of muscle quality and contractility, and (3) regeneration of native enthesis structure. Work in these areas will be reviewed in sequence, highlighting the relevant pathophysiology, developmental biology, and biomechanics, which must be considered when designing therapeutic applications. While the independent use of these strategies has shown promise, synergistic benefits may emerge from their combined application given the interdependence of the tissues that constitute the rotator cuff organ. Furthermore, controlled mobilization of augmented rotator cuff repairs during postoperative rehabilitation may provide mechanotransductive cues capable of guiding tissue regeneration and restoration of rotator cuff function. Present challenges and future possibilities will be identified, which if realized, may provide solutions to the vexing condition of chronic massive rotator cuff tears.
Collapse
Affiliation(s)
- Benjamin B Rothrauff
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Thierry Pauyo
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Richard E Debski
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark W Rodosky
- 3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Rocky S Tuan
- 1 Department of Orthopaedic Surgery, Center for Cellular and Molecular Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania.,2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Volker Musahl
- 2 McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania.,3 Division of Sports Medicine, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania.,4 Orthopaedic Robotics Laboratory, Department of Orthopaedic Surgery, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
162
|
|
163
|
Hu JJ, Yin Z, Shen WL, Xie YB, Zhu T, Lu P, Cai YZ, Kong MJ, Heng BC, Zhou YT, Chen WS, Chen X, Ouyang HW. Pharmacological Regulation of In Situ Tissue Stem Cells Differentiation for Soft Tissue Calcification Treatment. Stem Cells 2017; 34:1083-96. [PMID: 26851078 DOI: 10.1002/stem.2306] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/25/2015] [Accepted: 11/29/2015] [Indexed: 01/24/2023]
Abstract
Calcification of soft tissues, such as heart valves and tendons, is a common clinical problem with limited therapeutics. Tissue specific stem/progenitor cells proliferate to repopulate injured tissues. But some of them become divergent to the direction of ossification in the local pathological microenvironment, thereby representing a cellular target for pharmacological approach. We observed that HIF-2alpha (encoded by EPAS1 inclined form) signaling is markedly activated within stem/progenitor cells recruited at calcified sites of diseased human tendons and heart valves. Proinflammatory microenvironment, rather than hypoxia, is correlated with HIF-2alpha activation and promoted osteochondrogenic differentiation of tendon stem/progenitor cells (TSPCs). Abnormal upregulation of HIF-2alpha served as a key switch to direct TSPCs differentiation into osteochondral-lineage rather than teno-lineage. Notably, Scleraxis (Scx), an essential tendon specific transcription factor, was suppressed on constitutive activation of HIF-2alpha and mediated the effect of HIF-2alpha on TSPCs fate decision. Moreover, pharmacological inhibition of HIF-2alpha with digoxin, which is a widely utilized drug, can efficiently inhibit calcification and enhance tenogenesis in vitro and in the Achilles's tendinopathy model. Taken together, these findings reveal the significant role of the tissue stem/progenitor cells fate decision and suggest that pharmacological regulation of HIF-2alpha function is a promising approach for soft tissue calcification treatment.
Collapse
Affiliation(s)
- Jia-Jie Hu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Wei-Liang Shen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital , School of Medicine Zhejiang University, Zhejiang, 310009, China
| | - Yu-Bin Xie
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Ting Zhu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Ping Lu
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - You-Zhi Cai
- Department of Orthopedic Surgery, 1st Affiliated Hospital, School of Medicine Zhejiang University, Zhejiang, 310009, China
| | - Min-Jian Kong
- Department of Orthopedic Surgery, 2nd Affiliated Hospital , School of Medicine Zhejiang University, Zhejiang, 310009, China
| | - Boon Chin Heng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Yi-Ting Zhou
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Department of Biochemistry and Molecular Biology, Zhejiang University, Hangzhou, Zhejiang, 310000, China
| | - Wei-Shan Chen
- Department of Orthopedic Surgery, 2nd Affiliated Hospital , School of Medicine Zhejiang University, Zhejiang, 310009, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, 310009, China
| | - Hong-Wei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Zhejiang, 310009, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310000, China.,State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed)
| |
Collapse
|
164
|
Locke RC, Abraham AC, Killian ML. Orthopedic Interface Repair Strategies Based on Native Structural and Mechanical Features of the Multiscale Enthesis. ACS Biomater Sci Eng 2016; 3:2633-2643. [PMID: 32832593 DOI: 10.1021/acsbiomaterials.6b00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The enthesis is an organ that connects a soft, aligned tissue (tendon/ligament) to a hard, amorphous tissue (bone) via a fibrocartilage interface. Mechanically, the enthesis sustains a dynamic loading environment that includes tensile, compressive, and shear forces. The structural components of the enthesis act to minimize stress concentrations and control stretch at the interface. Current surgical repair of the enthesis, such as in rotator cuff repair and anterior cruciate ligament reconstruction, aim to bridge the gap between the injured ends via reattachment of soft-to-hard tissues or graft replacement. In this review, we discuss the multiscale, morphological, and mechanical characteristics of the fibrocartilage attachment. Additionally, we review historical and recent clinical approaches to treating enthesis injury. Lastly, we explore new technological advancements in tissue-engineered biomaterials that have shown promise in preclinical studies.
Collapse
Affiliation(s)
- Ryan C Locke
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Adam C Abraham
- Department of Orthopedic Surgery, Columbia University Medical Center, New York, New York 10032, United States
| | - Megan L Killian
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
165
|
McKenzie JA, Buettmann E, Abraham AC, Gardner MJ, Silva MJ, Killian ML. Loss of scleraxis in mice leads to geometric and structural changes in cortical bone, as well as asymmetry in fracture healing. FASEB J 2016; 31:882-892. [PMID: 27864378 DOI: 10.1096/fj.201600969r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/07/2016] [Indexed: 01/08/2023]
Abstract
Scleraxis (Scx) is a known regulator of tendon development, and recent work has identified the role of Scx in bone modeling. However, the role of Scx in fracture healing has not yet been explored. This study was conducted to identify the role of Scx in cortical bone development and fracture healing. Scx green fluorescent protein-labeled (ScxGFP) reporter and Scx-knockout (Scx-mutant) mice were used to assess bone morphometry and the effects of fracture healing on Scx localization and gene expression, as well as callus healing response. Botulinum toxin (BTX) was used to investigate muscle unloading effects on callus shape. Scx-mutant long bones had structural and mechanical defects. Scx gene expression was elevated and bmp4 was decreased at 24 h after fracture. ScxGFP+ cells were localized throughout the healing callus after fracture. Scx-mutant mice demonstrated disrupted callus healing and asymmetry. Asymmetry of Scx-mutant callus was not due to muscle unloading. Wild-type littermates (age matched) served as controls. This is the first study to explore the role of Scx in cortical bone mechanics and fracture healing. Deletion of Scx during development led to altered long bone properties and callus healing. This study also demonstrated that Scx may play a role in the periosteal response during fracture healing.-McKenzie, J. A., Buettmann, E., Abraham, A. C., Gardner, M. J., Silva, M. J., Killian, M. L. Loss of scleraxis in mice leads to geometric and structural changes in cortical bone, as well as asymmetry in fracture healing.
Collapse
Affiliation(s)
- Jennifer A McKenzie
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Evan Buettmann
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Adam C Abraham
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Michael J Gardner
- Department of Orthopedic Surgery, Stanford University, Redwood City, California, USA; and
| | - Matthew J Silva
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Megan L Killian
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Biomedical Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
166
|
Abstract
Tendons are important components of our musculoskeletal system. Injuries to these tissues are very common, resulting from occupational-related injuries, sports-related trauma, and age-related degeneration. Unfortunately, there are few treatment options, and current therapies rarely restore injured tendons to their original function. An improved understanding of the pathways regulating their development and repair would have significant impact in stimulating the formulation of regenerative-based approaches for tendon injury. The zebrafish provides an ideal system in which to perform genetic and chemical screens to identify new pathways involved in tendon biology. Until recently, there had been few descriptions of tendons and ligaments in the zebrafish and their similarity to mammalian tendon tissues. In this chapter, we describe the development of the zebrafish tendon and ligament tissues in the context of their gene expression, structure, and interactions with neighboring musculoskeletal tissues. We highlight the similarities with tendon development in higher vertebrates, showing that the craniofacial tendons and ligaments in zebrafish morphologically, molecularly, and structurally resemble mammalian tendons and ligaments from embryonic to adult stages. We detail methods for fluorescent in situ hybridization and immunohistochemistry as an assay to examine morphological changes in the zebrafish musculoskeleton. Staining assays such as these could provide the foundation for screen-based approaches to identify new regulators of tendon development, morphogenesis, and repair. These discoveries would provide new targets and pathways to study in the context of regenerative medicine-based approaches to improve tendon healing.
Collapse
Affiliation(s)
- J W Chen
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - J L Galloway
- Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
167
|
Agarwal S, Loder SJ, Cholok D, Peterson J, Li J, Breuler C, Cameron Brownley R, Hsin Sung H, Chung MT, Kamiya N, Li S, Zhao B, Kaartinen V, Davis TA, Qureshi AT, Schipani E, Mishina Y, Levi B. Scleraxis-Lineage Cells Contribute to Ectopic Bone Formation in Muscle and Tendon. Stem Cells 2016; 35:705-710. [PMID: 27862618 DOI: 10.1002/stem.2515] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 09/16/2016] [Indexed: 11/11/2022]
Abstract
The pathologic development of heterotopic ossification (HO) is well described in patients with extensive trauma or with hyperactivating mutations of the bone morphogenetic protein (BMP) receptor ACVR1. However, identification of progenitor cells contributing to this process remains elusive. Here we show that connective tissue cells contribute to a substantial amount of HO anlagen caused by trauma using postnatal, tamoxifen-inducible, scleraxis-lineage restricted reporter mice (Scx-creERT2/tdTomatofl/fl ). When the scleraxis-lineage is restricted specifically to adults prior to injury marked cells contribute to each stage of the developing HO anlagen and coexpress markers of endochondral ossification (Osterix, SOX9). Furthermore, these adult preinjury restricted cells coexpressed mesenchymal stem cell markers including PDGFRα, Sca1, and S100A4 in HO. When constitutively active ACVR1 (caACVR1) was expressed in scx-cre cells in the absence of injury (Scx-cre/caACVR1fl/fl ), tendons and joints formed HO. Postnatal lineage-restricted, tamoxifen-inducible caACVR1 expression (Scx-creERT2/caACVR1fl/fl ) was sufficient to form HO after directed cardiotoxin-induced muscle injury. These findings suggest that cells expressing scleraxis within muscle or tendon contribute to HO in the setting of both trauma or hyperactive BMP receptor (e.g., caACVR1) activity. Stem Cells 2017;35:705-710.
Collapse
Affiliation(s)
- Shailesh Agarwal
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - Shawn J Loder
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - David Cholok
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - Joshua Peterson
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - John Li
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - Christopher Breuler
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - R Cameron Brownley
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - Hsiao Hsin Sung
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - Michael T Chung
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | | | - Shuli Li
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| | - Bin Zhao
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Michigan, USA
| | - Thomas A Davis
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Ammar T Qureshi
- Regenerative Medicine Department, Naval Medical Research Center, Silver Spring, Maryland, USA
| | - Ernestina Schipani
- Department of Orthopaedic Surgery, Orthopaedic Research Laboratories, University of Michigan, Michigan, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Michigan, USA
| | - Benjamin Levi
- Department of Surgery, Section of Plastic Surgery, Burn/Wound and Regenerative Medicine Laboratory, University of Michigan, Michigan, USA
| |
Collapse
|
168
|
Paredes JJ, Andarawis-Puri N. Therapeutics for tendon regeneration: a multidisciplinary review of tendon research for improved healing. Ann N Y Acad Sci 2016; 1383:125-138. [PMID: 27768813 DOI: 10.1111/nyas.13228] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
Abstract
Tendon injuries, known as tendinopathies, are common musculoskeletal injuries that affect a wide range of the population. Canonical tendon healing is characterized by fibrosis, scar formation, and the loss of tissue mechanical and structural properties. Understanding the regenerative tendon environment is an area of increasing interest in the field of musculoskeletal research. Previous studies have focused on utilizing individual elements from the fields of biomechanics, developmental biology, cell and growth factor therapy, and tissue engineering in an attempt to develop regenerative tendon therapeutics. Still, the specific mechanism for regenerative healing remains unknown. In this review, we highlight some of the current approaches of tendon therapeutics and elucidate the differences along the tendon midsubstance and enthesis, exhibiting the necessity of location-specific tendon therapeutics. Furthermore, we emphasize the necessity of further interdisciplinary research in order to reach the desired goal of fully understanding the mechanisms underlying regenerative healing.
Collapse
Affiliation(s)
| | - Nelly Andarawis-Puri
- Meinig School of Biomedical Engineering.,Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| |
Collapse
|
169
|
Colasanto MP, Eyal S, Mohassel P, Bamshad M, Bonnemann CG, Zelzer E, Moon AM, Kardon G. Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3. Dis Model Mech 2016; 9:1257-1269. [PMID: 27491074 PMCID: PMC5117227 DOI: 10.1242/dmm.025874] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/28/2016] [Indexed: 01/02/2023] Open
Abstract
In the vertebrate limb over 40 muscles are arranged in a precise pattern of attachment via muscle connective tissue and tendon to bone and provide an extensive range of motion. How the development of somite-derived muscle is coordinated with the development of lateral plate-derived muscle connective tissue, tendon and bone to assemble a functional limb musculoskeletal system is a long-standing question. Mutations in the T-box transcription factor, TBX3, have previously been identified as the genetic cause of ulnar-mammary syndrome (UMS), characterized by distinctive defects in posterior forelimb bones. Using conditional mutagenesis in mice, we now show that TBX3 has a broader role in limb musculoskeletal development. TBX3 is not only required for development of posterior forelimb bones (ulna and digits 4 and 5), but also for a subset of posterior muscles (lateral triceps and brachialis) and their bone eminence attachment sites. TBX3 specification of origin and insertion sites appears to be tightly linked with whether these particular muscles develop and may represent a newly discovered mechanism for specification of anatomical muscles. Re-examination of an individual with UMS reveals similar previously unrecognized muscle and bone eminence defects and indicates a conserved role for TBX3 in regulating musculoskeletal development. Summary: The ulnar-mammary syndrome (UMS) gene, Tbx3, is required for development of posterior forelimb bones, muscles and their attachment sites. This broadens the UMS phenotype and suggests a new muscle-specification model.
Collapse
Affiliation(s)
- Mary P Colasanto
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Shai Eyal
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Building 35, Room 2A-116, MSC 3705, 35 Convent Drive, Bethesda, MD 20892-3705, USA
| | - Michael Bamshad
- University of Washington School of Medicine, Department of Pediatrics, Division of Genetic Medicine, 1959 NE Pacific Street HSB I-607-F, Seattle, WA 98195-7371, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Building 35, Room 2A-116, MSC 3705, 35 Convent Drive, Bethesda, MD 20892-3705, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Anne M Moon
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
170
|
Shwartz Y, Viukov S, Krief S, Zelzer E. Joint Development Involves a Continuous Influx of Gdf5-Positive Cells. Cell Rep 2016; 15:2577-87. [PMID: 27292641 PMCID: PMC4920976 DOI: 10.1016/j.celrep.2016.05.055] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/28/2016] [Accepted: 05/15/2016] [Indexed: 11/20/2022] Open
Abstract
Synovial joints comprise several tissue types, including articular cartilage, the capsule, and ligaments. All of these compartments are commonly assumed to originate from an early set of Gdf5-expressing progenitors populating the interzone domain. Here, we provide evidence that joints develop through a continuous influx of cells into the interzone, where they contribute differentially to forming joint tissues. Using a knockin Gdf5-CreER(T2) mouse, we show that early labeling of Gdf5-positive interzone cells failed to mark the entire organ. Conversely, multiple Cre activation steps indicated a contribution of these cells to various joint compartments later in development. Spatiotemporal differences between Gdf5 and tdTomato reporter expression support the notion of a continuous recruitment process. Finally, differential contribution of Gdf5-positive cells to various tissues suggests that the spatiotemporal dynamics of Gdf5 expression may instruct lineage divergence. This work supports the influx model of joint development, which may apply to other organogenic processes.
Collapse
Affiliation(s)
- Yulia Shwartz
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sergey Viukov
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sharon Krief
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
171
|
Kanazawa T, Gotoh M, Ohta K, Shiba N, Nakamura KI. Three-dimensional ultrastructural analysis of development at the supraspinatus insertion by using focused ion beam/scanning electron microscope tomography in rats. J Orthop Res 2016; 34:969-76. [PMID: 26599103 DOI: 10.1002/jor.23111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 11/20/2015] [Indexed: 02/04/2023]
Abstract
To obtain a successful outcome after rotator cuff repair, the repaired tendon must be biologically anchored to the bone. However, the histological structure at the repaired tendon-bone interface differs from that of the site of normal tendon insertion. Therefore, analyzing postnatal development in detail will contribute to understanding the repaired tendon-bone interface after rotator cuff repair. In this study, we analyzed postnatal development at the tendon-bone insertion in terms of temporal changes in SOX9/SCX expression and three-dimensional (3D) ultrastructure with FIB/SEM tomography, a new scanning electron microscopic method. Sixteen postnatal Sprague-Dawley rats were used for the study. One-, two-, three-, and four-week-old rats were sacrificed and both right and left shoulders were removed; eight normal supraspinatus tendon insertions were isolated for each time point. At each time point, four specimens were evaluated with fluorescent immunostaining for SOX9/SCX expression, and the remaining four specimens were evaluated with FIB/SEM tomography. Even in postnatal development, SOX9(+) /SCX(+) expression was observed at the tendon insertion; expression gradually decreased with postnatal development at the normal tendon insertion. In 3D ultrastructure, the morphology of the cells and the number/orientation of the cell processes drastically changed by postnatal week 4. The pattern of SOX9/SCX expression and 3D ultrastructural changes obtained in this study contribute to an understanding of the complicated development of normal tendon-bone insertion. Therefore, this study helps elucidate the pathophysiology of tendon-bone insertion, especially in cases of rotator cuff tear and repair. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:969-976, 2016.
Collapse
Affiliation(s)
- Tomonoshin Kanazawa
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka, 830-0011, Japan.,Department of Orthopaedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Fukuoka, Kurume City, Fukuoka, 830-0011, Japan
| | - Masafumi Gotoh
- Department of Orthopaedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Fukuoka, Kurume City, Fukuoka, 830-0011, Japan
| | - Keisuke Ohta
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka, 830-0011, Japan
| | - Naoto Shiba
- Department of Orthopaedic Surgery, Kurume University School of Medicine, 67 Asahi-machi, Fukuoka, Kurume City, Fukuoka, 830-0011, Japan
| | - Kei-Ichiro Nakamura
- Division of Microscopic and Development Anatomy, Department of Anatomy, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka, 830-0011, Japan
| |
Collapse
|
172
|
Subramanian A, Schilling TF. Tendon development and musculoskeletal assembly: emerging roles for the extracellular matrix. Development 2016; 142:4191-204. [PMID: 26672092 DOI: 10.1242/dev.114777] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Tendons and ligaments are extracellular matrix (ECM)-rich structures that interconnect muscles and bones. Recent work has shown how tendon fibroblasts (tenocytes) interact with muscles via the ECM to establish connectivity and strengthen attachments under tension. Similarly, ECM-dependent interactions between tenocytes and cartilage/bone ensure that tendon-bone attachments form with the appropriate strength for the force required. Recent studies have also established a close lineal relationship between tenocytes and skeletal progenitors, highlighting the fact that defects in signals modulated by the ECM can alter the balance between these fates, as occurs in calcifying tendinopathies associated with aging. The dynamic fine-tuning of tendon ECM composition and assembly thus gives rise to the remarkable characteristics of this unique tissue type. Here, we provide an overview of the functions of the ECM in tendon formation and maturation that attempts to integrate findings from developmental genetics with those of matrix biology.
Collapse
Affiliation(s)
- Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697-2300, USA
| |
Collapse
|
173
|
Shukunami C, Yoshimoto Y, Takimoto A, Yamashita H, Hiraki Y. Molecular characterization and function of tenomodulin, a marker of tendons and ligaments that integrate musculoskeletal components. JAPANESE DENTAL SCIENCE REVIEW 2016; 52:84-92. [PMID: 28408960 PMCID: PMC5390337 DOI: 10.1016/j.jdsr.2016.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/16/2016] [Accepted: 04/01/2016] [Indexed: 01/14/2023] Open
Abstract
Tendons and ligaments are dense fibrous bands of connective tissue that integrate musculoskeletal components in vertebrates. Tendons connect skeletal muscles to the bone and function as mechanical force transmitters, whereas ligaments bind adjacent bones together to stabilize joints and restrict unwanted joint movement. Fibroblasts residing in tendons and ligaments are called tenocytes and ligamentocytes, respectively. Tenomodulin (Tnmd) is a type II transmembrane glycoprotein that is expressed at high levels in tenocytes and ligamentocytes, and is also present in periodontal ligament cells and tendon stem/progenitor cells. Tnmd is related to chondromodulin-1 (Chm1), a cartilage-derived angiogenesis inhibitor, and both Tnmd and Chm1 are expressed in the CD31− avascular mesenchyme. The conserved C-terminal hydrophobic domain of these proteins, which is characterized by the eight Cys residues to form four disulfide bonds, may have an anti-angiogenic function. This review highlights the molecular characterization and function of Tnmd, a specific marker of tendons and ligaments.
Collapse
Affiliation(s)
- Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Aki Takimoto
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Hiroshi Yamashita
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
174
|
Rockel JS, Yu C, Whetstone H, Craft AM, Reilly K, Ma H, Tsushima H, Puviindran V, Al-Jazrawe M, Keller GM, Alman BA. Hedgehog inhibits β-catenin activity in synovial joint development and osteoarthritis. J Clin Invest 2016; 126:1649-63. [PMID: 27018594 DOI: 10.1172/jci80205] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/11/2016] [Indexed: 12/21/2022] Open
Abstract
Both the WNT/β-catenin and hedgehog signaling pathways are important in the regulation of limb development, chondrocyte differentiation, and degeneration of articular cartilage in osteoarthritis (OA). It is not clear how these signaling pathways interact in interzone cell differentiation and synovial joint morphogenesis. Here, we determined that constitutive activation of hedgehog signaling specifically within interzone cells induces joint morphological changes by selectively inhibiting β-catenin-induced Fgf18 expression. Stabilization of β-catenin or treatment with FGF18 rescued hedgehog-induced phenotypes. Hedgehog signaling induced expression of a dominant negative isoform of TCF7L2 (dnTCF7L2) in interzone progeny, which may account for the selective regulation of β-catenin target genes observed. Knockdown of TCF7L2 isoforms in mouse chondrocytes rescued hedgehog signaling-induced Fgf18 downregulation, while overexpression of the human dnTCF7L2 orthologue (dnTCF4) in human chondrocytes promoted the expression of catabolic enzymes associated with OA. Similarly, expression of dnTCF4 in human chondrocytes positively correlated with the aggrecanase ADAMTS4. Consistent with our developmental findings, activation of β-catenin also attenuated hedgehog-induced or surgically induced articular cartilage degeneration in mouse models of OA. Thus, our results demonstrate that hedgehog inhibits selective β-catenin target gene expression to direct interzone progeny fates and articular cartilage development and disease. Moreover, agents that increase β-catenin activity have the potential to therapeutically attenuate articular cartilage degeneration as part of OA.
Collapse
|
175
|
Cesario JM, Almaidhan AA, Jeong J. Expression of forkhead box transcription factor genes Foxp1 and Foxp2 during jaw development. Gene Expr Patterns 2016; 20:111-9. [PMID: 26969076 DOI: 10.1016/j.gep.2016.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/22/2016] [Accepted: 03/04/2016] [Indexed: 01/08/2023]
Abstract
Development of the face is regulated by a large number of genes that are expressed in temporally and spatially specific patterns. While significant progress has been made on characterizing the genes that operate in the oral region of the face, those regulating development of the aboral (lateral) region remain largely unknown. Recently, we discovered that transcription factors LIM homeobox (LHX) 6 and LHX8, which are key regulators of oral development, repressed the expression of the genes encoding forkhead box transcription factors, Foxp1 and Foxp2, in the oral region. To gain insights into the potential role of the Foxp genes in region-specific development of the face, we examined their expression patterns in the first pharyngeal arch (primordium for the jaw) of mouse embryos at a high spatial and temporal resolution. Foxp1 and Foxp2 were preferentially expressed in the aboral and posterior parts of the first pharyngeal arch, including the developing temporomandibular joint. Through double immunofluorescence and double fluorescent RNA in situ hybridization, we found that Foxp1 was expressed in the progenitor cells for the muscle, bone, and connective tissue. Foxp2 was expressed in subsets of bone and connective tissue progenitors but not in the myoblasts. Neither gene was expressed in the dental mesenchyme nor in the oral half of the palatal shelf undergoing extensive growth and morphogenesis. Together, we demonstrated for the first time that Foxp1 and Foxp2 are expressed during craniofacial development. Our data suggest that the Foxp genes may regulate development of the aboral and posterior regions of the jaw.
Collapse
Affiliation(s)
- Jeffry M Cesario
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010 United States
| | - Asma A Almaidhan
- Department of Orthodontics, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010 United States
| | - Juhee Jeong
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, 345 East 24th Street, New York, NY 10010 United States.
| |
Collapse
|
176
|
Tsutsumi R, Yamada S, Agata K. Functional joint regeneration is achieved using reintegration mechanism in Xenopus laevis. REGENERATION (OXFORD, ENGLAND) 2016; 3:26-38. [PMID: 27499877 PMCID: PMC4857750 DOI: 10.1002/reg2.49] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/16/2015] [Accepted: 10/16/2015] [Indexed: 01/08/2023]
Abstract
A functional joint requires integration of multiple tissues: the apposing skeletal elements should form an interlocking structure, and muscles should insert into skeletal tissues via tendons across the joint. Whereas newts can regenerate functional joints after amputation, Xenopus laevis regenerates a cartilaginous rod without joints, a "spike." Previously we reported that the reintegration mechanism between the remaining and regenerated tissues has a significant effect on regenerating joint morphogenesis during elbow joint regeneration in newt. Based on this insight into the importance of reintegration, we amputated frogs' limbs at the elbow joint and found that frogs could regenerate a functional elbow joint between the remaining tissues and regenerated spike. During regeneration, the regenerating cartilage was partially connected to the remaining articular cartilage to reform the interlocking structure of the elbow joint at the proximal end of the spike. Furthermore, the muscles of the remaining part inserted into the regenerated spike cartilage via tendons. This study might open up an avenue for analyzing molecular and cellular mechanisms of joint regeneration using Xenopus.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Department of Biophysics, Graduate School of Science Kyoto University Kyoto Japan
| | - Shigehito Yamada
- Human Health Science, Graduate School of Medicine Kyoto University Kyoto Japan; Congenital Anomaly Research Center, Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science Kyoto University Kyoto Japan
| |
Collapse
|
177
|
Cell Signaling in Tenocytes: Response to Load and Ligands in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:79-95. [DOI: 10.1007/978-3-319-33943-6_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
178
|
Font Tellado S, Balmayor ER, Van Griensven M. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors. Adv Drug Deliv Rev 2015; 94:126-40. [PMID: 25777059 DOI: 10.1016/j.addr.2015.03.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/27/2015] [Accepted: 03/07/2015] [Indexed: 02/06/2023]
Abstract
Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli.
Collapse
Affiliation(s)
- Sonia Font Tellado
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany.
| | - Elizabeth R Balmayor
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Martijn Van Griensven
- Department of Experimental Trauma Surgery, Klinikum rechts der Isar, Technical University Munich, Ismaninger Strasse 22, 81675 Munich, Germany
| |
Collapse
|
179
|
Abstract
The development of the vertebrate skeleton reflects its evolutionary history. Cartilage formation came before biomineralization and a head skeleton evolved before the formation of axial and appendicular skeletal structures. This review describes the processes that result in endochondral and intramembranous ossification, the important roles of growth and transcription factors, and the consequences of mutations in some of the genes involved. Following a summary of the origin of cartilage, muscle, and tendon cell lineages in the axial skeleton, we discuss the role of muscle forces in the formation of skeletal architecture and assembly of musculoskeletal functional units. Finally, ontogenetic patterning of bones in response to mechanical loading is reviewed.This article is part of a Special Issue entitled "Muscle Bone Interactions".
Collapse
Affiliation(s)
- Agnes D Berendsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, USA
| | - Bjorn R Olsen
- Department of Developmental Biology, Harvard School of Dental Medicine, Harvard University, USA.
| |
Collapse
|
180
|
Killian ML, Thomopoulos S. Scleraxis is required for the development of a functional tendon enthesis. FASEB J 2015; 30:301-11. [PMID: 26443819 DOI: 10.1096/fj.14-258236] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 09/08/2015] [Indexed: 11/11/2022]
Abstract
The attachment of dissimilar materials is a major engineering challenge, yet this challenge is seemingly overcome in biology. This study aimed to determine how the transcription factor Scleraxis (Scx) influences the development and maturation of the tendon-to-bone attachment (enthesis). Mice with conditional knockout (cKO) for Scx (Scx(flx/-), Prx1Cre(+)) and wild-type [(WT) Scx(flx/+) or Scx(flx/flx)] littermates were killed at postnatal days 7-56 (P7-P56). Enthesis morphometry, histology, and collagen alignment were investigated throughout postnatal growth. Enthesis tensile mechanical properties were also assessed. Laser microdissection of distinct musculoskeletal tissues was performed at P7 for WT, cKO, and muscle-unloaded (botulinum toxin A treated) attachments for quantitative PCR. cKO mice were smaller, with altered bone shape and impaired enthesis morphology, morphometry, and organization. Structural alterations led to altered mechanical properties; cKO entheses demonstrated reduced strength and stiffness. In P7 attachments, cKO mice had reduced expression of transforming growth factor (TGF) superfamily genes in fibrocartilage compared with WT mice. In conclusion, deletion of Scx led to impairments in enthesis structure, which translated into impaired functional (i.e., mechanical) outcomes. These changes may be driven by transient signaling cues from mechanical loading and growth factors.
Collapse
Affiliation(s)
- Megan L Killian
- Department of Orthopedic Surgery, Washington University, St. Louis, Missouri, USA
| | - Stavros Thomopoulos
- Department of Orthopedic Surgery, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
181
|
Taylor SH, Yeung CYC, Kalson NS, Lu Y, Zigrino P, Starborg T, Warwood S, Holmes DF, Canty-Laird EG, Mauch C, Kadler KE. Matrix metalloproteinase 14 is required for fibrous tissue expansion. eLife 2015; 4:e09345. [PMID: 26390284 PMCID: PMC4684142 DOI: 10.7554/elife.09345] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/20/2015] [Indexed: 12/13/2022] Open
Abstract
Type I collagen-containing fibrils are major structural components of the extracellular matrix of vertebrate tissues, especially tendon, but how they are formed is not fully understood. MMP14 is a potent pericellular collagenase that can cleave type I collagen in vitro. In this study, we show that tendon development is arrested in Scleraxis-Cre::Mmp14 lox/lox mice that are unable to release collagen fibrils from plasma membrane fibripositors. In contrast to its role in collagen turnover in adult tissue, MMP14 promotes embryonic tissue formation by releasing collagen fibrils from the cell surface. Notably, the tendons grow to normal size and collagen fibril release from fibripositors occurs in Col-r/r mice that have a mutated collagen-I that is uncleavable by MMPs. Furthermore, fibronectin (not collagen-I) accumulates in the tendons of Mmp14-null mice. We propose a model for cell-regulated collagen fibril assembly during tendon development in which MMP14 cleaves a molecular bridge tethering collagen fibrils to the plasma membrane of fibripositors. DOI:http://dx.doi.org/10.7554/eLife.09345.001 A scaffold of proteins called the extracellular matrix surrounds each of the cells that make up our organs and tissues. This matrix, which contains fibres made of proteins called collagens, provides the physical support needed to hold organs and tissues together. This support is especially important in the tendons—a tough tissue that connects the muscle to bone—and other ‘connective’ tissues. An enzyme called MMP14 is able to cut through chains of collagen proteins. It belongs to a family of proteins that are involved in breaking down the extracellular matrix to enable cells to divide and for other important processes in cells. Some cancer cells exploit MMP14 to enable them to leave their tissue of origin and spread around the body. Therefore, when researchers bred mutant mice that lacked MMP14, they expected to see excessive growth of collagen fibres in the connective tissues of the mice. However, these mice actually have extremely thin, fragile connective tissue and die soon after birth. Earlier in 2015, a group of researchers demonstrated that the first stage of tendon development in mice involves the formation of collagen fibres, which are attached to structures that project from tendon cells called fibripositors. Then, soon after the mice are born, the fibripositors disappear and the collagen fibres are released into the extracellular matrix where they grow longer and become thicker. Now, Taylor, Yeung, Kalson et al.—including some of the researchers from the earlier work—have used electron microscopy to investigate how a lack of MMP14 leads to fragile tendons in young mice. The experiments show that MMP14 plays a crucial role in the first stage of tendon development by detaching the collagen fibres from the fibripositors. MMP14 also promotes the formation of new collagen fibres; the tendons of mutant mice that lack MMP14 have fewer collagen fibres than normal mice. Further experiments revealed that the release of collagen fibres from fibripositors does not require MMP14 to cleave the chains of collagen proteins themselves. Instead, it appears that MMP14 cleaves another protein that is associated with the fibres, called fibronectin. Taylor, Yeung, Kalson et al.'s findings show that MMP14 plays an important role in the development of tendons by releasing collagen fibres from fibripositors and promoting the formation of new fibres. The next challenge is to find out how MMP14 regulates the number of collagen fibres in mature tendons and other tissues, and how defects in this enzyme can lead to cancer and other diseases. DOI:http://dx.doi.org/10.7554/eLife.09345.002
Collapse
Affiliation(s)
- Susan H Taylor
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Ching-Yan Chloé Yeung
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Nicholas S Kalson
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Yinhui Lu
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Paola Zigrino
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Tobias Starborg
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Stacey Warwood
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - David F Holmes
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Elizabeth G Canty-Laird
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cornelia Mauch
- Department of Dermatology, Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Karl E Kadler
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
182
|
Diogo R, Smith CM, Ziermann JM. Evolutionary developmental pathology and anthropology: A new field linking development, comparative anatomy, human evolution, morphological variations and defects, and medicine. Dev Dyn 2015; 244:1357-74. [DOI: 10.1002/dvdy.24336] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/10/2015] [Accepted: 08/12/2015] [Indexed: 01/24/2023] Open
Affiliation(s)
- Rui Diogo
- Department of Anatomy; Howard University College of Medicine; Washington DC
| | | | - Janine M. Ziermann
- Department of Anatomy; Howard University College of Medicine; Washington DC
| |
Collapse
|
183
|
Gaut L, Duprez D. Tendon development and diseases. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 5:5-23. [PMID: 26256998 DOI: 10.1002/wdev.201] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/15/2015] [Accepted: 06/20/2015] [Indexed: 12/22/2022]
Abstract
Tendon is a uniaxial connective tissue component of the musculoskeletal system. Tendon is involved in force transmission between muscle and bone. Tendon injury is very common and debilitating but tendon repair remains a clinical challenge for orthopedic medicine. In vertebrates, tendon is mainly composed of type I collagen fibrils, displaying a parallel organization along the tendon axis. The tendon-specific spatial organization of type I collagen provides the mechanical properties for tendon function. In contrast to other components of the musculoskeletal system, tendon biology is poorly understood. An important goal in tendon biology is to understand the mechanisms involved in the production and assembly of type I collagen fibrils during development, postnatal formation, and healing processes in order to design new therapies for tendon repair. In this review we highlight the current understanding of the molecular and mechanical signals known to be involved in tenogenesis during development, and how development provides insights into tendon healing processes. WIREs Dev Biol 2016, 5:5-23. doi: 10.1002/wdev.201 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Ludovic Gaut
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris, France.,Inserm U1156, Paris, France
| | - Delphine Duprez
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris, France.,Inserm U1156, Paris, France
| |
Collapse
|
184
|
Stern T, Aviram R, Rot C, Galili T, Sharir A, Kalish Achrai N, Keller Y, Shahar R, Zelzer E. Isometric Scaling in Developing Long Bones Is Achieved by an Optimal Epiphyseal Growth Balance. PLoS Biol 2015; 13:e1002212. [PMID: 26241802 PMCID: PMC4524611 DOI: 10.1371/journal.pbio.1002212] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 06/26/2015] [Indexed: 11/19/2022] Open
Abstract
One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Although organ scaling is fundamental for development and function, little is known about the mechanisms that regulate it. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation and, therefore, their position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, we document the process of longitudinal scaling in developing mouse long bones and uncover the mechanism that regulates it. To that end, we performed a computational analysis of hundreds of three-dimensional micro-CT images, using a newly developed method for recovering the morphogenetic sequence of developing bones. Strikingly, analysis revealed that the relative position of all superstructures along the bone is highly preserved during more than a 5-fold increase in length, indicating isometric scaling. It has been suggested that during development, bone superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. Surprisingly, our results showed that most superstructures did not drift at all. Instead, we identified a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between proximal and distal growth rates, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process. Our study reveals a general mechanism for the scaling of developing bones. More broadly, these findings suggest an evolutionary mechanism that facilitates variability in bone morphology by controlling the activity of individual epiphyseal plates. A novel computational approach for studying bone morphogenesis reveals that the longitudinal proportions of developing long bones are accurately maintained throughout elongation by the balance between proximal and distal growth rates. One of the major challenges that developing organs face is scaling, that is, the adjustment of physical proportions during the massive increase in size. Bone superstructures are projections that typically serve for tendon and ligament insertion or articulation. Therefore, superstructure position along the bone is crucial for musculoskeletal functionality. As bones are rigid structures that elongate only from their ends, it is unclear how superstructure positions are regulated during growth to end up in the right locations. Here, by analyzing a massive database of micro-CT images of developing mouse long bones, we show that all superstructures maintain their relative positions throughout development. It has been suggested that during development, superstructures are continuously reconstructed and relocated along the shaft, a process known as drift. However, our analysis reveals that most superstructures did not drift at all, implying the involvement of another mechanism. Indeed, we identify a novel mechanism for bone scaling, whereby each bone exhibits a specific and unique balance between the growth rates from its two ends, which accurately maintains the relative position of its superstructures. Moreover, we show mathematically that this mechanism minimizes the cumulative drift of all superstructures, thereby optimizing the scaling process.
Collapse
Affiliation(s)
- Tomer Stern
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| | - Rona Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Chagai Rot
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Tal Galili
- Department of Statistics and Operations Research, Tel-Aviv University, Tel-Aviv, Israel
| | - Amnon Sharir
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noga Kalish Achrai
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Yosi Keller
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Ron Shahar
- Laboratory of Bone Biomechanics, Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- * E-mail: (TS); (EZ)
| |
Collapse
|
185
|
Dyment NA, Breidenbach AP, Schwartz AG, Russell RP, Aschbacher-Smith L, Liu H, Hagiwara Y, Jiang R, Thomopoulos S, Butler DL, Rowe DW. Gdf5 progenitors give rise to fibrocartilage cells that mineralize via hedgehog signaling to form the zonal enthesis. Dev Biol 2015; 405:96-107. [PMID: 26141957 DOI: 10.1016/j.ydbio.2015.06.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/03/2015] [Accepted: 06/24/2015] [Indexed: 02/01/2023]
Abstract
The sequence of events that leads to the formation of a functionally graded enthesis is not clearly defined. The current study demonstrates that clonal expansion of Gdf5 progenitors contributes to linear growth of the enthesis. Prior to mineralization, Col1+ cells in the enthesis appose Col2+ cells of the underlying primary cartilage. At the onset of enthesis mineralization, cells at the base of the enthesis express alkaline phosphatase, Indian hedgehog, and ColX as they mineralize. The mineralization front then extends towards the tendon midsubstance as cells above the front become encapsulated in mineralized fibrocartilage over time. The hedgehog (Hh) pathway regulates this process, as Hh-responsive Gli1+ cells within the developing enthesis mature from unmineralized to mineralized fibrochondrocytes in response to activated signaling. Hh signaling is required for mineralization, as tissue-specific deletion of its obligate transducer Smoothened in the developing tendon and enthesis cells leads to significant reductions in the apposition of mineralized fibrocartilage. Together, these findings provide a spatiotemporal map of events - from expansion of the embryonic progenitor pool to synthesis of the collagen template and finally mineralization of this template - that leads to the formation of the mature zonal enthesis. These results can inform future tendon-to-bone repair strategies to create a mechanically functional enthesis in which tendon collagen fibers are anchored to bone through mineralized fibrocartilage.
Collapse
Affiliation(s)
- Nathaniel A Dyment
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, United States.
| | - Andrew P Breidenbach
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, United States
| | - Andrea G Schwartz
- Department of Orthopaedic Surgery, Washington University in St. Louis, United States
| | - Ryan P Russell
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, United States
| | | | - Han Liu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, United States
| | - Yusuke Hagiwara
- Department of Orthopaedic Surgery, Nippon Medical School Hospital, Tokyo, Japan
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, United States
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Washington University in St. Louis, United States
| | - David L Butler
- Biomedical Engineering Program, College of Engineering and Applied Science, University of Cincinnati, United States
| | - David W Rowe
- Center for Regenerative Medicine and Skeletal Development, School of Dental Medicine, University of Connecticut Health Center, United States
| |
Collapse
|
186
|
Huang AH, Riordan TJ, Pryce B, Weibel JL, Watson SS, Long F, Lefebvre V, Harfe BD, Stadler HS, Akiyama H, Tufa SF, Keene DR, Schweitzer R. Musculoskeletal integration at the wrist underlies the modular development of limb tendons. Development 2015; 142:2431-41. [PMID: 26062940 DOI: 10.1242/dev.122374] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/02/2015] [Indexed: 01/18/2023]
Abstract
The long tendons of the limb extend from muscles that reside in the zeugopod (arm/leg) to their skeletal insertions in the autopod (paw). How these connections are established along the length of the limb remains unknown. Here, we show that mouse limb tendons are formed in modular units that combine to form a functional contiguous structure; in muscle-less limbs, tendons develop in the autopod but do not extend into the zeugopod, and in the absence of limb cartilage the zeugopod segments of tendons develop despite the absence of tendons in the autopod. Analyses of cell lineage and proliferation indicate that distinct mechanisms govern the growth of autopod and zeugopod tendon segments. To elucidate the integration of these autopod and zeugopod developmental programs, we re-examined early tendon development. At E12.5, muscles extend across the full length of a very short zeugopod and connect through short anlagen of tendon progenitors at the presumptive wrist to their respective autopod tendon segment, thereby initiating musculoskeletal integration. Zeugopod tendon segments are subsequently generated by proximal elongation of the wrist tendon anlagen, in parallel with skeletal growth, underscoring the dependence of zeugopod tendon development on muscles for tendon anchoring. Moreover, a subset of extensor tendons initially form as fused structures due to initial attachment of their respective wrist tendon anlage to multiple muscles. Subsequent individuation of these tendons depends on muscle activity. These results establish an integrated model for limb tendon development that provides a framework for future analyses of tendon and musculoskeletal phenotypes.
Collapse
Affiliation(s)
- Alice H Huang
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Timothy J Riordan
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Brian Pryce
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Jennifer L Weibel
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Spencer S Watson
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Fanxin Long
- Department of Orthopaedics, Washington University, St Louis, MO 63110, USA
| | - Veronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Brian D Harfe
- Department of Molecular Genetics and Microbiology and the Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - H Scott Stadler
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Haruhiko Akiyama
- Department of Orthopaedics, Gifu University, Gifu City, 501-1193, Japan
| | - Sara F Tufa
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Douglas R Keene
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97209, USA
| |
Collapse
|
187
|
Huang AH, Lu HH, Schweitzer R. Molecular regulation of tendon cell fate during development. J Orthop Res 2015; 33:800-12. [PMID: 25664867 DOI: 10.1002/jor.22834] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/16/2015] [Indexed: 02/04/2023]
Abstract
Although there have been several advances identifying novel mediators of tendon induction, differentiation, and patterning, much of the basic landscape of tendon biology from developmental stages onward remain almost completely undefined. During the New Frontiers in Tendon Research meeting, a group of developmental biologists with expertise across musculoskeletal disciplines identified key challenges for the tendon development field. The tools generated and the molecular regulators identified in developmental research have enhanced mechanistic studies in tendon injury and repair, both by defining benchmarks for success, as well as informing regenerative strategies. To address the needs of the orthopedic research community, this review will therefore focus on three key areas in tendon development that may have critical implications for the fields of tendon repair/regeneration and tendon tissue engineering, including functional markers of tendon cell identity, signaling regulators of tendon induction and differentiation, and in vitro culture models for tendon cell differentiation. Our goal is to provide a useful list of the currently known molecular players and their function in tendon differentiation within the context of development.
Collapse
Affiliation(s)
- Alice H Huang
- Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | |
Collapse
|
188
|
Zelzer E, Blitz E, Killian ML, Thomopoulos S. Tendon-to-bone attachment: from development to maturity. ACTA ACUST UNITED AC 2015; 102:101-12. [PMID: 24677726 DOI: 10.1002/bdrc.21056] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/14/2014] [Indexed: 12/13/2022]
Abstract
The attachment between tendon and bone occurs across a complex transitional tissue that minimizes stress concentrations and allows for load transfer between muscles and skeleton. This unique tissue cannot be reconstructed following injury, leading to high incidence of recurrent failure and stressing the need for new clinical approaches. This review describes the current understanding of the development and function of the attachment site between tendon and bone. The embryonic attachment unit, namely, the tip of the tendon and the bone eminence into which it is inserted, was recently shown to develop modularly from a unique population of Sox9- and Scx-positive cells, which are distinct from tendon fibroblasts and chondrocytes. The fate and differentiation of these cells is regulated by transforming growth factor beta and bone morphogenetic protein signaling, respectively. Muscle loads are then necessary for the tissue to mature and mineralize. Mineralization of the attachment unit, which occurs postnatally at most sites, is largely controlled by an Indian hedgehog/parathyroid hormone-related protein feedback loop. A number of fundamental questions regarding the development of this remarkable attachment system require further study. These relate to the signaling mechanism that facilitates the formation of an interface with a gradient of cellular and extracellular phenotypes, as well as to the interactions between tendon and bone at the point of attachment.
Collapse
Affiliation(s)
- Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
189
|
Eyal S, Blitz E, Shwartz Y, Akiyama H, Schweitzer R, Zelzer E. On the development of the patella. Development 2015; 142:1831-9. [PMID: 25926361 DOI: 10.1242/dev.121970] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/25/2015] [Indexed: 11/20/2022]
Abstract
The current view of skeletal patterning fails to explain the formation of sesamoid bones. These small bones, which facilitate musculoskeletal function, are exceptionally embedded within tendons. Although their structural design has long puzzled researchers, only a limited model for sesamoid bone development has emerged. To date, sesamoids are thought to develop inside tendons in response to mechanical signals from the attaching muscles. However, this widely accepted model has lacked substantiation. Here, we show that, contrary to the current view, in the mouse embryo the patella initially develops as a bony process at the anteriodistal surface of the femur. Later, the patella is separated from the femur by a joint formation process that is regulated by mechanical load. Concurrently, the patella becomes superficially embedded within the quadriceps tendon. At the cellular level, we show that, similar to bone eminences, the patella is formed secondarily by a distinct pool of Sox9- and Scx-positive progenitor cells. Finally, we show that TGFβ signaling is necessary for the specification of patella progenitors, whereas the BMP4 pathway is required for their differentiation. These findings establish an alternative model for patella development and provide the mechanical and molecular mechanisms that underlie this process. More broadly, our finding that activation of a joint formation program can be used to switch between the formation of bony processes and of new auxiliary bones provides a new perspective on plasticity during skeletal patterning and evolution.
Collapse
Affiliation(s)
- Shai Eyal
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Einat Blitz
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Yulia Shwartz
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| | - Haruhiko Akiyama
- Gifu University, Department of Orthopedics, Gifu City 501-1194, Japan
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97201, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
190
|
Kozhemyakina E, Lassar AB, Zelzer E. A pathway to bone: signaling molecules and transcription factors involved in chondrocyte development and maturation. Development 2015; 142:817-31. [PMID: 25715393 DOI: 10.1242/dev.105536] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Decades of work have identified the signaling pathways that regulate the differentiation of chondrocytes during bone formation, from their initial induction from mesenchymal progenitor cells to their terminal maturation into hypertrophic chondrocytes. Here, we review how multiple signaling molecules, mechanical signals and morphological cell features are integrated to activate a set of key transcription factors that determine and regulate the genetic program that induces chondrogenesis and chondrocyte differentiation. Moreover, we describe recent findings regarding the roles of several signaling pathways in modulating the proliferation and maturation of chondrocytes in the growth plate, which is the 'engine' of bone elongation.
Collapse
Affiliation(s)
- Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Building C-Room 305A, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Elazar Zelzer
- Weizmann Institute of Science, Department of Molecular Genetics, PO Box 26, Rehovot 76100, Israel
| |
Collapse
|
191
|
Takimoto A, Kawatsu M, Yoshimoto Y, Kawamoto T, Seiryu M, Takano-Yamamoto T, Hiraki Y, Shukunami C. Scleraxis and osterix antagonistically regulate tensile force-responsive remodeling of the periodontal ligament and alveolar bone. Development 2015; 142:787-96. [PMID: 25670797 DOI: 10.1242/dev.116228] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The periodontal ligament (PDL) is a mechanosensitive noncalcified fibrous tissue connecting the cementum of the tooth and the alveolar bone. Here, we report that scleraxis (Scx) and osterix (Osx) antagonistically regulate tensile force-responsive PDL fibrogenesis and osteogenesis. In the developing PDL, Scx was induced during tooth eruption and co-expressed with Osx. Scx was highly expressed in elongated fibroblastic cells aligned along collagen fibers, whereas Osx was highly expressed in the perialveolar/apical osteogenic cells. In an experimental model of tooth movement, Scx and Osx expression was significantly upregulated in parallel with the activation of bone morphogenetic protein (BMP) signaling on the tension side, in which bone formation compensates for the widened PDL space away from the bone under tensile force by tooth movement. Scx was strongly expressed in Scx(+)/Osx(+) and Scx(+)/Osx(-) fibroblastic cells of the PDL that does not calcify; however, Scx(-)/Osx(+) osteogenic cells were dominant in the perialveolar osteogenic region. Upon BMP6-driven osteoinduction, osteocalcin, a marker for bone formation was downregulated and upregulated by Scx overexpression and knockdown of endogenous Scx in PDL cells, respectively. In addition, mineralization by osteoinduction was significantly inhibited by Scx overexpression in PDL cells without affecting Osx upregulation, suggesting that Scx counteracts the osteogenic activity regulated by Osx in the PDL. Thus, Scx(+)/Osx(-), Scx(+)/Osx(+) and Scx(-)/Osx(+) cell populations participate in the regulation of tensile force-induced remodeling of periodontal tissues in a position-specific manner.
Collapse
Affiliation(s)
- Aki Takimoto
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Masayoshi Kawatsu
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan Department of Orthodontic and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yuki Yoshimoto
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Tadafumi Kawamoto
- Radioisotope Research Institute, Tsurumi University School of Dental Medicine, Tsurumi, Yokohama 230-8501, Japan
| | - Masahiro Seiryu
- Department of Orthodontic and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Teruko Takano-Yamamoto
- Department of Orthodontic and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Yuji Hiraki
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Chisa Shukunami
- Department of Cellular Differentiation, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| |
Collapse
|
192
|
Tsutsumi R, Inoue T, Yamada S, Agata K. Reintegration of the regenerated and the remaining tissues during joint regeneration in the newt Cynops pyrrhogaster. ACTA ACUST UNITED AC 2015; 2:26-36. [PMID: 27499865 PMCID: PMC4895332 DOI: 10.1002/reg2.28] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 01/09/2015] [Accepted: 01/09/2015] [Indexed: 02/05/2023]
Abstract
Urodele amphibians, such as newts, can regenerate a functional limb, including joints, after amputation at any level along the proximal−distal axis of the limb. The blastema can regenerate the limb morphology largely independently of the stump after proximal−distal identity has been established, but the remaining and regenerated tissues must be structurally reintegrated (matched in size and shape). Here we used newt joint regeneration as a model to investigate reintegration, because a functionally interlocking joint requires structural integration between its opposing skeletal elements. After forelimbs were amputated at the elbow joint, the joint was regenerated between the remaining and regenerated skeletal elements. The regenerated cartilage was thick around the amputated joint to make a reciprocally interlocking joint structure with the remaining bone. Furthermore, during regeneration, the extracellular matrix of the remaining tissues was lost, suggesting that the remaining tissues might contribute to the morphogenesis of regenerating cartilage. Our results showed that the area of the regenerated cartilage matched the area of the apposed remaining cartilage, thus contributing to formation of a functional structure.
Collapse
Affiliation(s)
- Rio Tsutsumi
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| | - Takeshi Inoue
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| | - Shigehito Yamada
- Human Health Science Graduate School of Medicine Kyoto University Kyoto Japan; Congenital Anomaly Research Center Graduate School of Medicine Kyoto University Kyoto Japan
| | - Kiyokazu Agata
- Department of Biophysics Graduate School of Science Kyoto University Kyoto Japan
| |
Collapse
|
193
|
Diogo R, Walsh S, Smith C, Ziermann JM, Abdala V. Towards the resolution of a long-standing evolutionary question: muscle identity and attachments are mainly related to topological position and not to primordium or homeotic identity of digits. J Anat 2015; 226:523-9. [PMID: 25851747 DOI: 10.1111/joa.12301] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2015] [Indexed: 12/27/2022] Open
Abstract
Signaling for limb bone development usually precedes that for muscle development, such that cartilage is generally present before muscle formation. It remains obscure, however, if: (i) tetrapods share a general, predictable spatial correlation between bones and muscles; and, if that is the case, if (ii) such a correlation would reflect an obligatory association between the signaling involved in skeletal and muscle morphogenesis. We address these issues here by using the results of a multidisciplinary analysis of the appendicular muscles of all major tetrapod groups integrating dissections, muscle antibody stainings, regenerative and ontogenetic analyses of fluorescently-labeled (GFP) animals, and studies of non-pentadactyl human limbs related to birth defects. Our synthesis suggests that there is a consistent, surprising anatomical pattern in both normal and abnormal phenotypes, in which the identity and attachments of distal limb muscles are mainly related to the topological position, and not to the developmental primordium (anlage) or even the homeotic identity, of the digits to which they are attached. This synthesis is therefore a starting point towards the resolution of a centuries-old question raised by authors such as Owen about the specific associations between limb bones and muscles. This question has crucial implications for evolutionary and developmental biology, and for human medicine because non-pentadactyly is the most common birth defect in human limbs. In particular, this synthesis paves the way for future developmental experimental and mechanistic studies, which are needed to clarify the processes that may be involved in the elaboration of the anatomical patterns described here, and to specifically test the hypothesis that distal limb muscle identity/attachment is mainly related to digit topology.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Sean Walsh
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Christopher Smith
- Department of Art as Applied to Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC, USA
| | - Virginia Abdala
- Fundación Miguel Lillo-CONICET, Fac. de Cs. Naturales (UNT), Instituto de Herpetología, Tucumán, Argentina
| |
Collapse
|
194
|
Abstract
Tendon is a crucial component of the musculoskeletal system. Tendons connect muscle to bone and transmit forces to produce motion. Chronic and acute tendon injuries are very common and result in considerable pain and disability. The management of tendon injuries remains a challenge for clinicians. Effective treatments for tendon injuries are lacking because the understanding of tendon biology lags behind that of the other components of the musculoskeletal system. Animal and cellular models have been developed to study tendon-cell differentiation and tendon repair following injury. These studies have highlighted specific growth factors and transcription factors involved in tenogenesis during developmental and repair processes. Mechanical factors also seem to be essential for tendon development, homeostasis and repair. Mechanical signals are transduced via molecular signalling pathways that trigger adaptive responses in the tendon. Understanding the links between the mechanical and biological parameters involved in tendon development, homeostasis and repair is prerequisite for the identification of effective treatments for chronic and acute tendon injuries.
Collapse
Affiliation(s)
- Geoffroy Nourissat
- Service de chirurgie orthopédique et traumatologique, INSERM UMR_S938, DHU i2B, Assistance Publique-Hopitaux de Paris, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Francis Berenbaum
- Service de rhumatologie, INSERM UMR_S938, DHU i2B, Assistance Publique-Hopitaux de Paris, Hôpital Saint-Antoine, 184 rue du Faubourg Saint-Antoine, Paris 75012, France
| | - Delphine Duprez
- Centre national de la recherche scientifique UMR 7622, IBPS Developmental Biology Laboratory, F-75005, Paris 5005, France
| |
Collapse
|
195
|
Schwartz AG, Long F, Thomopoulos S. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment. Development 2015; 142:196-206. [PMID: 25516975 DOI: 10.1242/dev.112714] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tendon attaches to bone across a specialized tissue called the enthesis. This tissue modulates the transfer of muscle forces between two materials, i.e. tendon and bone, with vastly different mechanical properties. The enthesis for many tendons consists of a mineralized graded fibrocartilage that develops postnatally, concurrent with epiphyseal mineralization. Although it is well described that the mineralization and development of functional maturity requires muscle loading, the biological factors that modulate enthesis development are poorly understood. By genetically demarcating cells expressing Gli1 in response to Hedgehog (Hh) signaling, we discovered a unique population of Hh-responsive cells in the developing murine enthesis that were distinct from tendon fibroblasts and epiphyseal chondrocytes. Lineage-tracing experiments revealed that the Gli1 lineage cells that originate in utero eventually populate the entire mature enthesis. Muscle paralysis increased the number of Hh-responsive cells in the enthesis, demonstrating that responsiveness to Hh is modulated in part by muscle loading. Ablation of the Hh-responsive cells during the first week of postnatal development resulted in a loss of mineralized fibrocartilage, with very little tissue remodeling 5 weeks after cell ablation. Conditional deletion of smoothened, a molecule necessary for responsiveness to Ihh, from the developing tendon and enthesis altered the differentiation of enthesis progenitor cells, resulting in significantly reduced fibrocartilage mineralization and decreased biomechanical function. Taken together, these results demonstrate that Hh signaling within developing enthesis fibrocartilage cells is required for enthesis formation.
Collapse
Affiliation(s)
- Andrea G Schwartz
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO 63110, USA
| | - Fanxin Long
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO 63110, USA Department of Medicine, Washington University in St Louis, St Louis, MO 63110, USA Department of Developmental Biology, Washington University in St Louis, St Louis, MO 63110, USA
| | - Stavros Thomopoulos
- Department of Orthopaedic Surgery, Washington University in St Louis, St Louis, MO 63110, USA Department of Biomedical Engineering, Washington University in St Louis, St Louis, MO 63110, USA Department of Mechanical Engineering & Materials Science, Washington University in St Louis, St Louis, MO 63110, USA
| |
Collapse
|
196
|
Costa-Almeida R, Gonçalves AI, Gershovich P, Rodrigues MT, Reis RL, Gomes ME. Tendon Stem Cell Niche. TISSUE-SPECIFIC STEM CELL NICHE 2015. [DOI: 10.1007/978-3-319-21705-5_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
197
|
|
198
|
Abstract
In the musculoskeletal system, muscle, tendon, and bone tissues develop in a spatially and temporally coordinated manner, and integrate into a cohesive functional unit by forming specific connections unique to each region of the musculoskeletal system. The mechanisms of these patterning and integration events are an area of great interest in musculoskeletal biology. Hox genes are a family of important developmental regulators and play critical roles in skeletal patterning throughout the axial and appendicular skeleton. Unexpectedly, Hox genes are not expressed in the differentiated cartilage or other skeletal cells, but rather are highly expressed in the tightly associated stromal connective tissues as well as regionally expressed in tendons and muscle connective tissue. Recent work has revealed a previously unappreciated role for Hox in patterning all the musculoskeletal tissues of the limb. These observations suggest that integration of the musculoskeletal system is regulated, at least in part, by Hox function in the stromal connective tissue. This review will outline our current understanding of Hox function in patterning and integrating the musculoskeletal tissues.
Collapse
Affiliation(s)
- Kyriel M Pineault
- Program in Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Deneen M Wellik
- Department of Internal Medicine, Division of Molecular Medicine and Genetics, University of Michigan, Ann Arbor, MI 48109-2200, USA
- Corresponding author: , Phone: 734-936-8902, Fax: 734-763-2162
| |
Collapse
|
199
|
Tokita M. How the pterosaur got its wings. Biol Rev Camb Philos Soc 2014; 90:1163-78. [PMID: 25361444 DOI: 10.1111/brv.12150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 09/10/2014] [Accepted: 10/01/2014] [Indexed: 12/19/2022]
Abstract
Throughout the evolutionary history of life, only three vertebrate lineages took to the air by acquiring a body plan suitable for powered flight: birds, bats, and pterosaurs. Because pterosaurs were the earliest vertebrate lineage capable of powered flight and included the largest volant animal in the history of the earth, understanding how they evolved their flight apparatus, the wing, is an important issue in evolutionary biology. Herein, I speculate on the potential basis of pterosaur wing evolution using recent advances in the developmental biology of flying and non-flying vertebrates. The most significant morphological features of pterosaur wings are: (i) a disproportionately elongated fourth finger, and (ii) a wing membrane called the brachiopatagium, which stretches from the posterior surface of the arm and elongated fourth finger to the anterior surface of the leg. At limb-forming stages of pterosaur embryos, the zone of polarizing activity (ZPA) cells, from which the fourth finger eventually differentiates, could up-regulate, restrict, and prolong expression of 5'-located Homeobox D (Hoxd) genes (e.g. Hoxd11, Hoxd12, and Hoxd13) around the ZPA through pterosaur-specific exploitation of sonic hedgehog (SHH) signalling. 5'Hoxd genes could then influence downstream bone morphogenetic protein (BMP) signalling to facilitate chondrocyte proliferation in long bones. Potential expression of Fgf10 and Tbx3 in the primordium of the brachiopatagium formed posterior to the forelimb bud might also facilitate elongation of the phalanges of the fourth finger. To establish the flight-adapted musculoskeletal morphology shared by all volant vertebrates, pterosaurs probably underwent regulatory changes in the expression of genes controlling forelimb and pectoral girdle musculoskeletal development (e.g. Tbx5), as well as certain changes in the mode of cell-cell interactions between muscular and connective tissues in the early phase of their evolution. Developmental data now accumulating for extant vertebrate taxa could be helpful in understanding the cellular and molecular mechanisms of body-plan evolution in extinct vertebrates as well as extant vertebrates with unique morphology whose embryonic materials are hard to obtain.
Collapse
Affiliation(s)
- Masayoshi Tokita
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, U.S.A
| |
Collapse
|
200
|
Havis E, Bonnin MA, Olivera-Martinez I, Nazaret N, Ruggiu M, Weibel J, Durand C, Guerquin MJ, Bonod-Bidaud C, Ruggiero F, Schweitzer R, Duprez D. Transcriptomic analysis of mouse limb tendon cells during development. Development 2014; 141:3683-96. [PMID: 25249460 DOI: 10.1242/dev.108654] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular signals driving tendon development are not fully identified. We have undertaken a transcriptome analysis of mouse limb tendon cells that were isolated at different stages of development based on scleraxis (Scx) expression. Microarray comparisons allowed us to establish a list of genes regulated in tendon cells during mouse limb development. Bioinformatics analysis of the tendon transcriptome showed that the two most strongly modified signalling pathways were TGF-β and MAPK. TGF-β/SMAD2/3 gain- and loss-of-function experiments in mouse limb explants and mesenchymal stem cells showed that TGF-β signalling was sufficient and required via SMAD2/3 to drive mouse mesodermal stem cells towards the tendon lineage ex vivo and in vitro. TGF-β was also sufficient for tendon gene expression in late limb explants during tendon differentiation. FGF does not have a tenogenic effect and the inhibition of the ERK MAPK signalling pathway was sufficient to activate Scx in mouse limb mesodermal progenitors and mesenchymal stem cells.
Collapse
Affiliation(s)
- Emmanuelle Havis
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris F-75005, France Inserm U1156, Paris F-75005, France
| | - Marie-Ange Bonnin
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris F-75005, France Inserm U1156, Paris F-75005, France
| | - Isabel Olivera-Martinez
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris F-75005, France
| | - Nicolas Nazaret
- ProfileXpert, SFR Lyon-Est, UMS 3453 CNRS/US7 INSERM, Lyon F-69008, France
| | - Mathilde Ruggiu
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris F-75005, France
| | - Jennifer Weibel
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Charles Durand
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris F-75005, France
| | - Marie-Justine Guerquin
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris F-75005, France
| | - Christelle Bonod-Bidaud
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon F-69007, France
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Université Lyon 1, CNRS UMR5242, Ecole Normale Supérieure de Lyon, Lyon F-69007, France
| | - Ronen Schweitzer
- Research Division, Shriners Hospital for Children, Portland, OR 97239, USA
| | - Delphine Duprez
- CNRS UMR 7622, IBPS-Developmental Biology Laboratory, Paris F-75005, France Sorbonne Universités, UPMC Univ Paris 06, IBPS-Developmental Biology Laboratory, Paris F-75005, France Inserm U1156, Paris F-75005, France
| |
Collapse
|