151
|
Chen L, Guo X, Cui Y, Zheng X, Yang H. Comparative Transcriptome Analysis Reveals Hormone Signaling Genes Involved in the Launch of Culm-Shape Differentiation in Dendrocalamus sinicus. Genes (Basel) 2017; 9:E4. [PMID: 29271945 PMCID: PMC5793157 DOI: 10.3390/genes9010004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/09/2017] [Accepted: 12/20/2017] [Indexed: 12/23/2022] Open
Abstract
Dendrocalamus sinicus is a sympodial bamboo species endemic to Yunnan Province, China, and is the strongest bamboo species in the world. However, there is substantial variation in the basal culm shape, i.e., straight culm (SC) and bent culm (BC), among different D. sinicus as a result of genetic and growth factors. This study performed a comparative transcriptomic analysis of bamboo shoots of two variants at the early, mid-, and late shoot-development stages to examine the molecular basis of this variation. In total, 98,479 unigenes were annotated, of which 13,495 were differentially expressed in pairwise comparisons of the six libraries. More differentially expressed genes (DEGs) were involved in SC than in BC culm development. The DEGs between BC and SC were assigned to 108 metabolic pathways. The 1064 DEGs in early development might mainly control the launch of culm-shape differentiation. Sixty genes encoding components of hormone signaling pathways were differentially expressed between BC5 and SC5, indicating complex hormonal regulation of culm differentiation. The AUX/IAA, ARF, PP2C, SnRK2, and ABF genes involved in auxin and abscisic acid signaling played key roles. These results help us to understand the molecular mechanism of culm variation and other aspects of culm development in D. sinicus.
Collapse
Affiliation(s)
- Lingna Chen
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| | - Xiaojuan Guo
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| | - Yongzhong Cui
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| | - Xianggan Zheng
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| | - Hanqi Yang
- Research Institute of Resources Insects, Chinese Academy of Forestry, Bailongsi, Panlong, Kunming 650233, China.
| |
Collapse
|
152
|
Chomicki G, Coiro M, Renner SS. Evolution and ecology of plant architecture: integrating insights from the fossil record, extant morphology, developmental genetics and phylogenies. ANNALS OF BOTANY 2017; 120:855-891. [PMID: 29165551 PMCID: PMC5710528 DOI: 10.1093/aob/mcx113] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 10/03/2017] [Indexed: 05/22/2023]
Abstract
BACKGROUND In contrast to most animals, plants have an indeterminate body plan, which allows them to add new body parts during their lifetime. A plant's realized modular construction is the result of exogenous constraints and endogenous processes. This review focuses on endogenous processes that shape plant architectures and their evolution. SCOPE The phylogenetic distribution of plant growth forms across the phylogeny implies that body architectures have originated and been lost repeatedly, being shaped by a limited set of genetic pathways. We (1) synthesize concepts of plant architecture, so far captured in 23 models; (2) extend them to the fossil record; (3) summarize what is known about their developmental genetics; (4) use a phylogenetic approach in several groups to infer how plant architecture has changed and by which intermediate steps; and (5) discuss which macroecological factors may constrain the geographic and ecological distribution of plant architectures. CONCLUSIONS Dichotomously branching Paleozoic plants already encompassed a considerable diversity of growth forms, here captured in 12 new architectural models. Plotting the frequency of branching types through time based on an analysis of 58 927 land plant fossils revealed a decrease in dichotomous branching throughout the Devonian and Carboniferous, mirrored by an increase in other branching types including axillary branching. We suggest that the evolution of seed plant megaphyllous leaves enabling axillary branching contributed to the demise of dichotomous architectures. The developmental-genetic bases for key architectural traits underlying sympodial vs. monopodial branching, rhythmic vs. continuous growth, and axillary branching and its localization are becoming well understood, while the molecular basis of dichotomous branching and plagiotropy remains elusive. Three phylogenetic case studies of architecture evolution in conifers, Aloe and monocaulous arborescent vascular plants reveal relationships between architectural models and show that some are labile in given groups, whereas others are widely conserved, apparently shaped by ecological factors, such as intercepted sunlight, temperature, humidity and seasonality.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, Germany
| | - Mario Coiro
- Institute of Systematic Botany, University of Zürich, Zürich, Switzerland
| | - Susanne S Renner
- Systematic Botany and Mycology, Department of Biology, University of Munich (LMU), Munich, Germany
| |
Collapse
|
153
|
Gao J, Huang BH, Wan YT, Chang J, Li JQ, Liao PC. Functional divergence and intron variability during evolution of angiosperm TERMINAL FLOWER1 (TFL1) genes. Sci Rep 2017; 7:14830. [PMID: 29093470 PMCID: PMC5666015 DOI: 10.1038/s41598-017-13645-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/29/2017] [Indexed: 12/29/2022] Open
Abstract
The protein encoded by the TERMINAL FLOWER1 (TFL1) gene maintains indeterminacy in inflorescence meristem to repress flowering, and has undergone multiple duplications. However, basal angiosperms have one copy of a TFL1-like gene, which clusters with eudicot TFL1/CEN paralogs. Functional conservation has been reported in the paralogs CENTRORADIALIS (CEN) in eudicots, and ROOTS CURL IN NPA (RCNs) genes in monocots. In this study, long-term functional conservation and selective constraints were found between angiosperms, while the relaxation of selective constraints led to subfunctionalisation between paralogs. Long intron lengths of magnoliid TFL1-like gene contain more conserved motifs that potentially regulate TFL1/CEN/RCNs expression. These might be relevant to the functional flexibility of the non-duplicate TFL1-like gene in the basal angiosperms in comparison with the short, lower frequency intron lengths in eudicot and monocot TFL1/CEN/RCNs paralogs. The functionally conserved duplicates of eudicots and monocots evolved according to the duplication-degeneration-complementation model, avoiding redundancy by relaxation of selective constraints on exon 1 and exon 4. These data suggest that strong purifying selection has maintained the relevant functions of TFL1/CEN/RCNs paralogs on flowering regulation throughout the evolution of angiosperms, and the shorter introns with radical amino acid changes are important for the retention of paralogous duplicates.
Collapse
Affiliation(s)
- Jian Gao
- College of Forestry, Beijing Forestry University, No.35, Tsinghua East Rd., Haidian Dist., Beijing, 100083, People's Republic of China
| | - Bing-Hong Huang
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China
| | - Yu-Ting Wan
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China
| | - JenYu Chang
- Department of Horticulture, Chiayi Agricultural Experiment Branch, Taiwan Agricultural Research Institute No. 1, Nung-Kai-Chang, Lutsao township, Chiayi, 611, Taiwan, Republic of China
| | - Jun-Qing Li
- College of Forestry, Beijing Forestry University, No.35, Tsinghua East Rd., Haidian Dist., Beijing, 100083, People's Republic of China
| | - Pei-Chun Liao
- Department of Life Science, National Taiwan Normal University, No.88, Sec. 4, Tingjhou Rd., Wunshan Dist., Taipei, 116, Taiwan, Republic of China.
| |
Collapse
|
154
|
Hollwey E, Out S, Watson MR, Heidmann I, Meyer P. TET3-mediated demethylation in tomato activates expression of a CETS gene that stimulates vegetative growth. PLANT DIRECT 2017; 1:e00022. [PMID: 31245668 PMCID: PMC6508569 DOI: 10.1002/pld3.22] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 09/20/2017] [Indexed: 05/16/2023]
Abstract
Expression of the mammalian DNA demethylase enzyme TET3 in plants can be used to induce hypomethylation of DNA. In tomato lines that express a TET3 transgene, we observed distinct phenotypes including an increase in the length and number of leaves of primary shoots. As these changes resemble phenotypes observed in plants with strong expression of SELF PRUNING (SP), a member of the PEBP/CETS family, we investigated in TET3 lines the expression levels of members of the PEBP/CETS gene family, which affect shoot architecture and growth of sympodial units in tomato. We did not detect any changes in SP expression in TET3 lines, but for CEN1.1, a putative family member that has not been functionally characterized, we identified changes in gene expression that corresponded to hypomethylation in the upstream region. In tomato wild type, CEN1.1 is expressed in roots, petals, and shoot apices but not in mature leaves. In contrast, in TET3 transformants, the CEN1.1 gene became hypomethylated and activated in leaves. Ectopic expression of CEN1.1 in tomato caused similar phenotypes to those seen in TET3 transformants. Vegetative growth was increased, resulting both in a delay in inflorescence development and in an instability of the inflorescences, which frequently reverted to a vegetative state. Ectopic expression of CEN1.1 in Arabidopsis thaliana also caused floral repression. Our data suggest that the phenotypes observed in TET3 lines are a consequence of ectopic activation of CEN1.1, which promotes vegetative growth, and that CEN1.1 expression is sensitive to DNA methylation changes.
Collapse
Affiliation(s)
| | - Suzan Out
- ENZA ZADEN Research and DevelopmentEnkhuizenThe Netherlands
| | | | - Iris Heidmann
- ENZA ZADEN Research and DevelopmentEnkhuizenThe Netherlands
| | - Peter Meyer
- Centre for Plant SciencesUniversity of LeedsLeedsUK
| |
Collapse
|
155
|
Ma Q, Liu X, Franks RG, Xiang QYJ. Alterations of CorTFL1 and CorAP1 expression correlate with major evolutionary shifts of inflorescence architecture in Cornus (Cornaceae) - a proposed model for variation of closed inflorescence forms. THE NEW PHYTOLOGIST 2017; 216:519-535. [PMID: 27662246 DOI: 10.1111/nph.14197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
TFL1-, AP1- and LFY-like genes are known to be key regulators of inflorescence development. However, it remains to be tested whether the evolutionary modifications of inflorescence morphology result from shifts in their expression patterns. We compared the spatiotemporal expression patterns of CorTFL1, CorAP1 and CorLFY in six closely related Cornus species that display four types of closed inflorescence morphology using quantitative real-time polymerase chain reaction (qRT-PCR) and RNA in situ hybridization. Character mapping on the phylogeny was conducted to identify evolutionary changes and to assess the correlation between changes in gene expression and inflorescence morphology. Results demonstrated variation of gene expression patterns among species and a strong correlation between CorTFL1 expression and the branch index of the inflorescence type. Evolutionary changes in CorTFL1 and CorAP1 expression co-occurred on the phylogeny with the morphological changes underpinning inflorescence divergence. The study found a clear correlation between the expression patterns of CorTFL1 and CorAP1 and the inflorescence architecture in a natural system displaying closed inflorescences. The results suggest a role for the alteration in CorTFL1 and CorAP1 expression during the evolutionary modification of inflorescences in Cornus. We propose that a TFL1-like and AP1-like gene-based model may explain variation of closed inflorescences in Cornus and other lineages.
Collapse
Affiliation(s)
- Qing Ma
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
- Key laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiang Liu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Qiu-Yun Jenny Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| |
Collapse
|
156
|
Haberman A, Bakhshian O, Cerezo-Medina S, Paltiel J, Adler C, Ben-Ari G, Mercado JA, Pliego-Alfaro F, Lavee S, Samach A. A possible role for flowering locus T-encoding genes in interpreting environmental and internal cues affecting olive (Olea europaea L.) flower induction. PLANT, CELL & ENVIRONMENT 2017; 40:1263-1280. [PMID: 28103403 DOI: 10.1111/pce.12922] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 05/09/2023]
Abstract
Olive (Olea europaea L.) inflorescences, formed in lateral buds, flower in spring. However, there is some debate regarding time of flower induction and inflorescence initiation. Olive juvenility and seasonality of flowering were altered by overexpressing genes encoding flowering locus T (FT). OeFT1 and OeFT2 caused early flowering under short days when expressed in Arabidopsis. Expression of OeFT1/2 in olive leaves and OeFT2 in buds increased in winter, while initiation of inflorescences occurred i n late winter. Trees exposed to an artificial warm winter expressed low levels of OeFT1/2 in leaves and did not flower. Olive flower induction thus seems to be mediated by an increase in FT levels in response to cold winters. Olive flowering is dependent on additional internal factors. It was severely reduced in trees that carried a heavy fruit load the previous season (harvested in November) and in trees without fruit to which cold temperatures were artificially applied in summer. Expression analysis suggested that these internal factors work either by reducing the increase in OeFT1/2 expression or through putative flowering repressors such as TFL1. With expected warmer winters, future consumption of olive oil, as part of a healthy Mediterranean diet, should benefit from better understanding these factors.
Collapse
Affiliation(s)
- Amnon Haberman
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Ortal Bakhshian
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Sergio Cerezo-Medina
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Judith Paltiel
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Chen Adler
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Giora Ben-Ari
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Jose Angel Mercado
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Fernando Pliego-Alfaro
- Instituto de Hortofruticultura Subtropical y Mediterránea 'La Mayora', IHSM-UMA-CSIC, Departamento de Biología Vegetal, Universidad de Málaga, Málaga, 29071, Spain
| | - Shimon Lavee
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
- Institute of Plant Sciences, The Volcani Center, Agricultural Research Organization, Bet-Dagan, 50250, Israel
| | - Alon Samach
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
157
|
Xu C, Park SJ, Van Eck J, Lippman ZB. Control of inflorescence architecture in tomato by BTB/POZ transcriptional regulators. Genes Dev 2017; 30:2048-2061. [PMID: 27798848 PMCID: PMC5066612 DOI: 10.1101/gad.288415.116] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 09/14/2016] [Indexed: 11/25/2022]
Abstract
In tomatoes, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcription factor gene TERMINATING FLOWER (TMF). Xu et al. show that TMF protein acts together with homologs of the Arabidopsis BLADE-ON-PETIOLE (BOP) transcriptional cofactors, defined by the conserved BTB/POZ domain. Plant productivity depends on inflorescences, flower-bearing shoots that originate from the stem cell populations of shoot meristems. Inflorescence architecture determines flower production, which can vary dramatically both between and within species. In tomato plants, formation of multiflowered inflorescences depends on a precisely timed process of meristem maturation mediated by the transcription factor gene TERMINATING FLOWER (TMF), but the underlying mechanism is unknown. We show that TMF protein acts together with homologs of the Arabidopsis BLADE-ON-PETIOLE (BOP) transcriptional cofactors, defined by the conserved BTB (Broad complex, Tramtrack, and Bric-a-brac)/POZ (POX virus and zinc finger) domain. TMF and three tomato BOPs (SlBOPs) interact with themselves and each other, and TMF recruits SlBOPs to the nucleus, suggesting formation of a transcriptional complex. Like TMF, SlBOP gene expression is highest during vegetative and transitional stages of meristem maturation, and CRISPR/Cas9 elimination of SlBOP function causes pleiotropic defects, most notably simplification of inflorescences into single flowers, resembling tmf mutants. Flowering defects are enhanced in higher-order slbop tmf mutants, suggesting that SlBOPs function with additional factors. In support of this, SlBOPs interact with TMF homologs, mutations in which cause phenotypes like slbop mutants. Our findings reveal a new flowering module defined by SlBOP–TMF family interactions that ensures a progressive meristem maturation to promote inflorescence complexity.
Collapse
Affiliation(s)
- Cao Xu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | - Soon Ju Park
- Division of Biological Sciences and Research Institute for Basic Science, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Joyce Van Eck
- The Boyce Thompson Institute, Ithaca, New York 14853, USA
| | - Zachary B Lippman
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| |
Collapse
|
158
|
Sedivy EJ, Wu F, Hanzawa Y. Soybean domestication: the origin, genetic architecture and molecular bases. THE NEW PHYTOLOGIST 2017; 214:539-553. [PMID: 28134435 DOI: 10.1111/nph.14418] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/28/2016] [Indexed: 05/20/2023]
Abstract
Domestication provides an important model for the study of evolution, and information learned from domestication research aids in the continued improvement of crop species. Recent progress in de novo assembly and whole-genome resequencing of wild and cultivated soybean genomes, in addition to new archeological discoveries, sheds light on the origin of this important crop and provides a clearer view on the modes of artificial selection that drove soybean domestication and diversification. This novel genomic information enables the search for polymorphisms that underlie variation in agronomic traits and highlights genes that exhibit a signature of selection, leading to the identification of a number of candidate genes that may have played important roles in soybean domestication, diversification and improvement. These discoveries provide a novel point of comparison on the evolutionary bases of important agronomic traits among different crop species.
Collapse
Affiliation(s)
- Eric J Sedivy
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Faqiang Wu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoshie Hanzawa
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
159
|
Voogd C, Brian LA, Wang T, Allan AC, Varkonyi-Gasic E. Three FT and multiple CEN and BFT genes regulate maturity, flowering, and vegetative phenology in kiwifruit. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1539-1553. [PMID: 28369532 PMCID: PMC5441913 DOI: 10.1093/jxb/erx044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Kiwifruit is a woody perennial horticultural crop, characterized by excessive vegetative vigor, prolonged juvenility, and low productivity. To understand the molecular factors controlling flowering and winter dormancy, here we identify and characterize the kiwifruit PEBP (phosphatidylethanolamine-binding protein) gene family. Five CEN-like and three BFT-like genes are differentially expressed and act as functionally conserved floral repressors, while two MFT-like genes have no impact on flowering time. FT-like genes are differentially expressed, with AcFT1 confined to shoot tip and AcFT2 to mature leaves. Both act as potent activators of flowering, but expression of AcFT2 in Arabidopsis resulted in a greater impact on plant morphology than that of AcFT1. Constitutive expression of either construct in kiwifruit promoted in vitro flowering, but AcFT2 displayed a greater flowering activation efficiency than AcFT1, leading to immediate floral transition and restriction of leaf development. Both leaf and flower differentiation were observed in AcFT1 kiwifruit lines. Sequential activation of specific PEBP genes in axillary shoot buds during growth and dormancy cycles indicated specific roles in regulation of kiwifruit vegetative and reproductive phenologies. AcCEN and AcCEN4 marked active growth, AcBFT2 was associated with suppression of latent bud growth during winter, and only AcFT was activated after cold accumulation and dormancy release.
Collapse
Affiliation(s)
- Charlotte Voogd
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Lara A Brian
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Tianchi Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Erika Varkonyi-Gasic
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
160
|
Zsögön A, Cermak T, Voytas D, Peres LEP. Genome editing as a tool to achieve the crop ideotype and de novo domestication of wild relatives: Case study in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 256:120-130. [PMID: 28167025 DOI: 10.1016/j.plantsci.2016.12.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/21/2016] [Accepted: 12/23/2016] [Indexed: 05/02/2023]
Abstract
The ideotype is a theoretical model of an archetypal cultivated plant. Recent progress in genome editing is aiding the pursuit of this ideal in crop breeding. Breeding is relatively straightforward when the traits in question are monogenic in nature and show Mendelian inheritance. Conversely, traits with a diffuse, polygenic basis such as abiotic stress resistance are more difficult to harness. In recent years, many genes have been identified that are important for plant domestication and act by increasing yield, grain or fruit size or altering plant architecture. Here, we propose that (a) key monogenic traits whose physiology has been unveiled can be molecularly tailored to achieve the ideotype; and (b) wild relatives of crops harboring polygenic stress resistance genes or other traits of interest could be de novo domesticated by manipulating monogenic yield-related traits through state-of-the-art gene editing techniques. An overview of the genomic and physiological challenges in the world's main staple crops is provided. We focus on tomato and its wild Solanum (section Lycopersicon) relatives as a suitable model for molecular design in the pursuit of the ideotype for elite cultivars and to test de novo domestication of wild relatives.
Collapse
Affiliation(s)
- Agustin Zsögön
- Laboratory of Molecular Plant Physiology, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Tomas Cermak
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Dan Voytas
- Department of Genetics, Cell Biology and Development, Center for Genome Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Lázaro Eustáquio Pereira Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas, Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, CP 09 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
161
|
Basile A, Fambrini M, Pugliesi C. The vascular plants: open system of growth. Dev Genes Evol 2017; 227:129-157. [PMID: 28214944 DOI: 10.1007/s00427-016-0572-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
Abstract
What is fascinating in plants (true also in sessile animals such as corals and hydroids) is definitely their open and indeterminate growth, as a result of meristematic activity. Plants as well as animals are characterized by a multicellular organization, with which they share a common set of genes inherited from a common eukaryotic ancestor; nevertheless, circa 1.5 billion years of evolutionary history made the two kingdoms very different in their own developmental biology. Flowering plants, also known as angiosperms, arose during the Cretaceous Period (145-65 million years ago), and up to date, they count around 235,000 species, representing the largest and most diverse group within the plant kingdom. One of the foundations of their success relies on the plant-pollinator relationship, essentially unique to angiosperms that pushed large speciation in both plants and insects and on the presence of the carpel, the structure devoted to seed enclosure. A seed represents the main organ preserving the genetic information of a plant; during embryogenesis, the primary axis of development is established by two groups of pluripotent cells: the shoot apical meristem (SAM), responsible for gene rating all aboveground organs, and the root apical meristem (RAM), responsible for producing all underground organs. During postembryonic shoot development, axillary meristem (AM) initiation and outgrowth are responsible for producing all secondary axes of growth including inflorescence branches or flowers. The production of AMs is tightly linked to the production of leaves and their separation from SAM. As leaf primordia are formed on the flanks of the SAM, a region between the apex and the developing organ is established and referred to as boundary zone. Interaction between hormones and the gene network in the boundary zone is fundamental for AM initiation. AMs only develop at the adaxial base of the leaf; thus, AM initiation is also strictly associated with leaf polarity. AMs function as new SAMs: form axillary buds with a few leaves and then the buds can either stay dormant or develop into shoot branches to define a plant architecture, which in turn affects assimilate production and reproductive efficiency. Therefore, the radiation of angiosperms was accompanied by a huge diversification in growth forms that determine an enormous morphological plasticity helping plants to environmental changes. In this review, we focused on the developmental processes of AM initiation and outgrowth. In particular, we summarized the primary growth of SAM, the key role of positional signals for AM initiation, and the dissection of molecular players involved in AM initiation and outgrowth. Finally, the interaction between phytohormone signals and gene regulatory network controlling AM development was discussed.
Collapse
Affiliation(s)
- Alice Basile
- Institute of Biology, RWTH Aachen University, Aachen, Germany
| | - Marco Fambrini
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università degli Studi di Pisa, Pisa, Italy
| | - Claudio Pugliesi
- Dipartimento di Scienze Agrarie, Ambientali e Agro-alimentari, Università degli Studi di Pisa, Pisa, Italy.
| |
Collapse
|
162
|
Wang Z, Yang R, Devisetty UK, Maloof JN, Zuo Y, Li J, Shen Y, Zhao J, Bao M, Ning G. The Divergence of Flowering Time Modulated by FT/TFL1 Is Independent to Their Interaction and Binding Activities. FRONTIERS IN PLANT SCIENCE 2017; 8:697. [PMID: 28533784 PMCID: PMC5421193 DOI: 10.3389/fpls.2017.00697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/18/2017] [Indexed: 05/09/2023]
Abstract
FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1) proteins share highly conserved amino acid residues but they play opposite regulatory roles in promoting and repressing the flowering response, respectively. Previous substitution models and functional analysis have identified several key amino acid residues which are critical for the promotion of flowering. However, the precise relationship between naturally occurring FT/TFL1 homologs and the mechanism of their role in flowering is still unclear. In this study, FT/TFL1 homologs from eight Rosaceae species, namely, Spiraea cantoniensis, Pyracantha fortuneana, Photinia serrulata, Fragaria ananassa, Rosa hybrida, Prunus mume, Prunus persica and Prunus yedoensis, were isolated. Three of these homologs were further characterized by functional analyses involving site-directed mutagenesis. The results showed that these FT/TFL1 homologs might have diverse functions despite sharing a high similarity of sequences or crystal structures. Functional analyses were conducted for the key FT amino acids, Tyr-85 and Gln-140. It revealed that TFL1 homologs cannot promote flowering simply by substitution with key FT amino acid residues. Mutations of the IYN triplet motif within segment C of exon 4 can prevent the FT homolog from promoting the flowering. Furthermore, physical interaction of FT homologous or mutated proteins with the transcription factor FD, together with their lipid-binding properties analysis, showed that it was not sufficient to trigger flowering. Thus, our findings revealed that the divergence of flowering time modulating by FT/TFL1 homologs is independent to interaction and binding activities.
Collapse
Affiliation(s)
- Zhen Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Ruiguang Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | | | - Julin N. Maloof
- Department of Plant Biology, University of California, Davis, DavisCA, USA
| | - Yang Zuo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Jingjing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Yuxiao Shen
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Jian Zhao
- National Key Laboratory of Crop Genetics and Improvement, College of Plant Science and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
| | - Guogui Ning
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural UniversityWuhan, China
- *Correspondence: Guogui Ning,
| |
Collapse
|
163
|
Variation in the flowering gene SELF PRUNING 5G promotes day-neutrality and early yield in tomato. Nat Genet 2016; 49:162-168. [PMID: 27918538 DOI: 10.1038/ng.3733] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/31/2016] [Indexed: 12/17/2022]
Abstract
Plants evolved so that their flowering is triggered by seasonal changes in day length. However, day-length sensitivity in crops limits their geographical range of cultivation, and thus modification of the photoperiod response was critical for their domestication. Here we show that loss of day-length-sensitive flowering in tomato was driven by the florigen paralog and flowering repressor SELF-PRUNING 5G (SP5G). SP5G expression is induced to high levels during long days in wild species, but not in cultivated tomato because of cis-regulatory variation. CRISPR/Cas9-engineered mutations in SP5G cause rapid flowering and enhance the compact determinate growth habit of field tomatoes, resulting in a quick burst of flower production that translates to an early yield. Our findings suggest that pre-existing variation in SP5G facilitated the expansion of cultivated tomato beyond its origin near the equator in South America, and they provide a compelling demonstration of the power of gene editing to rapidly improve yield traits in crop breeding.
Collapse
|
164
|
Weng L, Bai X, Zhao F, Li R, Xiao H. Manipulation of flowering time and branching by overexpression of the tomato transcription factor SlZFP2. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:2310-2321. [PMID: 27214796 PMCID: PMC5103233 DOI: 10.1111/pbi.12584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/12/2016] [Accepted: 05/19/2016] [Indexed: 05/02/2023]
Abstract
Flowering of higher plants is orchestrated by complex regulatory networks through integration of various environmental signals such as photoperiod, temperature, light quality and developmental cues. In Arabidopsis, transcription of the flowering integrator gene FLOWERING LOCUS T (FT) that several flowering pathways converge to is directly regulated by more than ten transcription factors. However, very little is known about the transcriptional regulation of the FT homolog SINGLE FLOWER TRUESS (SFT) in the day-neutral plant tomato (Solanum lycopersicum). Previously, we showed that the zinc finger transcription factor SlZFP2 plays important roles in regulation of seed germination and fruit ripening in tomato and also found that overexpression of SlZFP2 impacted flowering and branching. Here, we characterized in detail the early flowering and high branching phenotypes by overexpression of this transcription factor. Our data showed that overexpression of SlZFP2 accelerated flowering in an SFT-dependent manner as demonstrated by elevated SFT expression in the leaves and the transcription factor's binding ability to SFT promoter in vitro and in vivo. Furthermore, overexpression of the SlZFP2 gene in the sft plants failed to rescue the mutant's late flowering. Through analysis of grafting phenotype, growth response of branches to auxin application and transcriptome profiling by RNA sequencing, we also showed that overexpression of SlZFP2 affected shoot apical dominance through multiple regulatory pathways. Our results suggest that the transcription factor SlZFP2 has potential applications in genetic modification of plant architecture and flowering time for tomato production and other crops as well.
Collapse
Affiliation(s)
- Lin Weng
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Xiaodong Bai
- Center for RNA Molecular BiologyCase Western Reserve UniversitySchool of MedicineClevelandOHUSA
| | - Fangfang Zhao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Rong Li
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Han Xiao
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
165
|
Fulop D, Ranjan A, Ofner I, Covington MF, Chitwood DH, West D, Ichihashi Y, Headland L, Zamir D, Maloof JN, Sinha NR. A New Advanced Backcross Tomato Population Enables High Resolution Leaf QTL Mapping and Gene Identification. G3 (BETHESDA, MD.) 2016; 6:3169-3184. [PMID: 27510891 PMCID: PMC5068939 DOI: 10.1534/g3.116.030536] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/01/2016] [Indexed: 12/23/2022]
Abstract
Quantitative Trait Loci (QTL) mapping is a powerful technique for dissecting the genetic basis of traits and species differences. Established tomato mapping populations between domesticated tomato (Solanum lycopersicum) and its more distant interfertile relatives typically follow a near isogenic line (NIL) design, such as the S. pennellii Introgression Line (IL) population, with a single wild introgression per line in an otherwise domesticated genetic background. Here, we report on a new advanced backcross QTL mapping resource for tomato, derived from a cross between the M82 tomato cultivar and S. pennellii This so-called Backcrossed Inbred Line (BIL) population is comprised of a mix of BC2 and BC3 lines, with domesticated tomato as the recurrent parent. The BIL population is complementary to the existing S. pennellii IL population, with which it shares parents. Using the BILs, we mapped traits for leaf complexity, leaflet shape, and flowering time. We demonstrate the utility of the BILs for fine-mapping QTL, particularly QTL initially mapped in the ILs, by fine-mapping several QTL to single or few candidate genes. Moreover, we confirm the value of a backcrossed population with multiple introgressions per line, such as the BILs, for epistatic QTL mapping. Our work was further enabled by the development of our own statistical inference and visualization tools, namely a heterogeneous hidden Markov model for genotyping the lines, and by using state-of-the-art sparse regression techniques for QTL mapping.
Collapse
Affiliation(s)
- Daniel Fulop
- Department of Plant Biology, University of California at Davis, California 95616
| | - Aashish Ranjan
- Department of Plant Biology, University of California at Davis, California 95616
| | - Itai Ofner
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Michael F Covington
- Department of Plant Biology, University of California at Davis, California 95616
| | - Daniel H Chitwood
- Department of Plant Biology, University of California at Davis, California 95616
| | - Donelly West
- Department of Plant Biology, University of California at Davis, California 95616
| | - Yasunori Ichihashi
- Department of Plant Biology, University of California at Davis, California 95616
| | - Lauren Headland
- Department of Plant Biology, University of California at Davis, California 95616
| | - Daniel Zamir
- Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Julin N Maloof
- Department of Plant Biology, University of California at Davis, California 95616
| | - Neelima R Sinha
- Department of Plant Biology, University of California at Davis, California 95616
| |
Collapse
|
166
|
McGarry RC, Prewitt SF, Culpepper S, Eshed Y, Lifschitz E, Ayre BG. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs. THE NEW PHYTOLOGIST 2016; 212:244-58. [PMID: 27292411 DOI: 10.1111/nph.14037] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/26/2016] [Indexed: 05/08/2023]
Abstract
Domestication of upland cotton (Gossypium hirsutum) converted it from a lanky photoperiodic perennial to a day-neutral annual row-crop. Residual perennial traits, however, complicate irrigation and crop management, and more determinate architectures are desired. Cotton simultaneously maintains robust monopodial indeterminate shoots and sympodial determinate shoots. We questioned if and how the FLOWERING LOCUS T/SINGLE FLOWER TRUSS (SFT)-like and TERMINAL FLOWER1/SELF-PRUNING (SP)-like genes control the balance of monopodial and sympodial growth in a woody perennial with complex growth habit. Virus-based manipulation of GhSP and GhSFT expression enabled unprecedented functional analysis of cotton development. GhSP maintains growth in all apices; in its absence, both monopodial and sympodial branch systems terminate precociously. GhSFT encodes a florigenic signal stimulating rapid onset of sympodial branching and flowering in side shoots of wild photoperiodic and modern day-neutral accessions. High florigen concentrations did not alter monopodial apices, implying that once a cotton apex is SP-determined, it cannot be reset by florigen. GhSP is also essential to establish and maintain cambial activity. Dynamic changes in GhSFT and GhSP levels navigate meristems between monopodial and sympodial programs in a single plant. SFT and SP influenced cotton domestication and are ideal targets for further agricultural optimization.
Collapse
Affiliation(s)
- Roisin C McGarry
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Sarah F Prewitt
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Samantha Culpepper
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| | - Yuval Eshed
- Plant Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel
| | - Eliezer Lifschitz
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Brian G Ayre
- Department of Biological Sciences, University of North Texas, 1155 Union Circle 305220, Denton, TX, 76203-5017, USA
| |
Collapse
|
167
|
Liu X, Zhang J, Abuahmad A, Franks RG, Xie DY, Xiang QY. Analysis of two TFL1 homologs of dogwood species (Cornus L.) indicates functional conservation in control of transition to flowering. PLANTA 2016; 243:1129-41. [PMID: 26825444 DOI: 10.1007/s00425-016-2466-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 01/04/2016] [Indexed: 05/27/2023]
Abstract
Two TFL1 -like genes, CorfloTFL1 and CorcanTFL1 cloned from Cornus florida and C. canadensis, function in regulating the transition to reproductive development in Arabidopsis. TERMINAL FLOWER 1 (TFL1) is known to regulate inflorescence development in Arabidopsis thaliana and to inhibit the transition from a vegetative to reproductive phase within the shoot apical meristem. Despite the importance, TFL1 homologs have been functionally characterized in only a handful eudicots. Here we report the role of TFL1 homologs of Cornus L. in asterid clade of eudicots. Two TFL1-like genes, CorfloTFL1 and CorcanTFL1, were cloned from Cornus florida (a tree) and C. canadensis (a subshrub), respectively. Both are deduced to encode proteins of 175 amino acids. The amino acid sequences of these two Cornus TFL1 homologs share a high similarity to Arabidopsis TFL1 and phylogenetically more close to TFL1 paralogous copy ATC (Arabidopsis thaliana CENTRORADIALIS homologue). Two genes are overexpressed in wild-type and tfl1 mutant plants of A. thaliana. The over-expression of each gene in wild-type Arabidopsis plants results in delaying flowering time, increase of plant height and cauline and rosette leaf numbers, excessive shoot buds, and secondary inflorescence branches. The over-expression of each gene in the tfl1 mutant rescued developmental defects, such as the early determinate inflorescence development, early flowering time, and other vegetative growth defects, to normal phenotypes of wild-type plants. These transgenic phenotypes are inherited in progenies. All data indicate that CorfloTFL1 and CorcanTFL1 have conserved the ancestral function of TFL1 and CEN regulating flowering time and inflorescence determinacy.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Jian Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ahmad Abuahmad
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| | - Qiu-Yun Xiang
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695-7612, USA.
| |
Collapse
|
168
|
Hiwasa-Tanase K, Ezura H. Molecular Breeding to Create Optimized Crops: From Genetic Manipulation to Potential Applications in Plant Factories. FRONTIERS IN PLANT SCIENCE 2016; 7:539. [PMID: 27200016 PMCID: PMC4842755 DOI: 10.3389/fpls.2016.00539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Crop cultivation in controlled environment plant factories offers great potential to stabilize the yield and quality of agricultural products. However, many crops are currently unsuited to these environments, particularly closed cultivation systems, due to space limitations, low light intensity, high implementation costs, and high energy requirements. A major barrier to closed system cultivation is the high running cost, which necessitates the use of high-margin crops for economic viability. High-value crops include those with enhanced nutritional value or containing additional functional components for pharmaceutical production or with the aim of providing health benefits. In addition, it is important to develop cultivars equipped with growth parameters that are suitable for closed cultivation. Small plant size is of particular importance due to the limited cultivation space. Other advantageous traits are short production cycle, the ability to grow under low light, and high nutriculture availability. Cost-effectiveness is improved from the use of cultivars that are specifically optimized for closed system cultivation. This review describes the features of closed cultivation systems and the potential application of molecular breeding to create crops that are optimized for cost-effectiveness and productivity in closed cultivation systems.
Collapse
|
169
|
Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y. Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 2016; 6:21625. [PMID: 26880301 PMCID: PMC4754947 DOI: 10.1038/srep21625] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/27/2016] [Indexed: 01/01/2023] Open
Abstract
An optimized plant architecture (PA) is fundamental for high-yield breeding but the genetic control of the important trait is largely unknown in rapeseed. Here plant architecture factors (PAFs) were proposed to consist of main inflorescence length proportion (MILP), branch height proportion (BHP), and branch segment proportion (BSP). Comparison of different genotypes in a DH population grown in diverse environments showed that an optimized PAF performance with MILP and BHP between 0.3–0.4 was important for high yield potential. In total, 163 unique quantitative trait loci (QTLs) for PA- and plant yield (PY)-related traits were mapped onto a high-density genetic map. Furthermore, 190 PA-related candidate genes for 91 unique PA QTLs and 2350 PY epistatic interaction loci-pairs were identified, which explain 2.8–51.8% and 5.2–23.6% of phenotypic variation, respectively. Three gene categories, transcription factor, auxin/IAA, and gibberellin, comprise the largest proportions of candidate genes for PA-related QTLs. The effectiveness of QTL candidate genes prediction was demonstrated by cloning of three candidate genes, Bna.A02.CLV2, Bna.A09.SLY2, and Bna.C07.AHK4. The study thus outlines a gene network for control of PA-related traits and provides novel information for understanding the establishment of ideal PA and for developing effective breeding strategies for yield improvement in rapeseed and other crops.
Collapse
Affiliation(s)
- Guangqin Cai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyong Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Yang
- Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyu Zhang
- Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan 430070, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.,Key Laboratory of Rapeseed Genetics and Breeding of Agriculture Ministry of China, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
170
|
Guo X, Hu Z, Yin W, Yu X, Zhu Z, Zhang J, Chen G. The tomato floral homeotic protein FBP1-like gene, SlGLO1, plays key roles in petal and stamen development. Sci Rep 2016; 6:20454. [PMID: 26842499 PMCID: PMC4740859 DOI: 10.1038/srep20454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/04/2016] [Indexed: 11/10/2022] Open
Abstract
MADS-box transcription factors play important role in plant growth and development, especially floral organ identities. In our study, a MADS-box gene SlGLO1- tomato floral homeotic protein FBP1-like gene was isolated. Its tissue-specific expression profile analysis showed that SlGLO1 was highly expressed in petals and stamens. RNAi (RNA interference) repression of SlGLO1 resulted in floral organ abnormal phenotypes, including green petals with shorter size, and aberrant carpelloid stamens. SlGLO1-silenced lines are male sterile. Total chlorophyll content was increased and chlorophyll biosynthetic genes were significantly up-regulated in SlGLO1-silenced petals and stamens. Furthermore, B-class genes expression analysis indicated that the repressed function of SlGLO1 led to the enhanced expression of TAP3 and the down-regulation of TPI in the petals and stamens, while the expression of TM6 was reduced in petals and increased in stamens and carpels of SlGLO1-RNAi plants. Additionally, pollen grains of transgenic lines were aberrant and failed to germinate and tomato pollen-specific genes were down-regulated by more than 90% in SlGLO1-silenced lines. These results suggest that SlGLO1 plays important role in regulating plant floral organ and pollen development in tomato.
Collapse
Affiliation(s)
- Xuhu Guo
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zongli Hu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Wencheng Yin
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaohui Yu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Zhiguo Zhu
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jianling Zhang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
171
|
Okabe Y, Ariizumi T. Mutant Resources and TILLING Platforms in Tomato Research. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2016. [DOI: 10.1007/978-3-662-48535-4_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
172
|
González AM, Yuste-Lisbona FJ, Saburido S, Bretones S, De Ron AM, Lozano R, Santalla M. Major Contribution of Flowering Time and Vegetative Growth to Plant Production in Common Bean As Deduced from a Comparative Genetic Mapping. FRONTIERS IN PLANT SCIENCE 2016; 7:1940. [PMID: 28082996 PMCID: PMC5183638 DOI: 10.3389/fpls.2016.01940] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/07/2016] [Indexed: 05/02/2023]
Abstract
Determinacy growth habit and accelerated flowering traits were selected during or after domestication in common bean. Both processes affect several presumed adaptive traits such as the rate of plant production. There is a close association between flowering initiation and vegetative growth; however, interactions among these two crucial developmental processes and their genetic bases remain unexplored. In this study, with the aim to establish the genetic relationships between these complex processes, a multi-environment quantitative trait locus (QTL) mapping approach was performed in two recombinant inbred line populations derived from inter-gene pool crosses between determinate and indeterminate genotypes. Additive and epistatic QTLs were found to regulate flowering time, vegetative growth, and rate of plant production. Moreover, the pleiotropic patterns of the identified QTLs evidenced that regions controlling time to flowering traits, directly or indirectly, are also involved in the regulation of plant production traits. Further QTL analysis highlighted one QTL, on the lower arm of the linkage group Pv01, harboring the Phvul.001G189200 gene, homologous to the Arabidopsis thaliana TERMINAL FLOWER1 (TFL1) gene, which explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative growth, and 19% for rate of plant production. This finding was consistent with previous results, which have also suggested Phvul.001G189200 (PvTFL1y) as a candidate gene for determinacy locus. The information here reported can also be applied in breeding programs seeking to optimize key agronomic traits, such as time to flowering, plant height and an improved reproductive biomass, pods, and seed size, as well as yield.
Collapse
Affiliation(s)
- Ana M. González
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-Consejo Superior de Investigaciones CientificasPontevedra, Spain
| | - Fernando J. Yuste-Lisbona
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | | | - Sandra Bretones
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Antonio M. De Ron
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-Consejo Superior de Investigaciones CientificasPontevedra, Spain
| | - Rafael Lozano
- Departamento de Biología y Geología (Genética), Centro de Investigación en Biotecnología Agroalimentaria, Universidad de AlmeríaAlmería, Spain
| | - Marta Santalla
- Grupo de Biología de Agrosistemas, Misión Biológica de Galicia-Consejo Superior de Investigaciones CientificasPontevedra, Spain
- *Correspondence: Marta Santalla
| |
Collapse
|
173
|
Liu Y, Zhang D, Ping J, Li S, Chen Z, Ma J. Innovation of a Regulatory Mechanism Modulating Semi-determinate Stem Growth through Artificial Selection in Soybean. PLoS Genet 2016; 12:e1005818. [PMID: 26807727 PMCID: PMC4726468 DOI: 10.1371/journal.pgen.1005818] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/28/2015] [Indexed: 11/27/2022] Open
Abstract
It has been demonstrated that Terminal Flowering 1 (TFL1) in Arabidopsis and its functional orthologs in other plants specify indeterminate stem growth through their specific expression that represses floral identity genes in shoot apical meristems (SAMs), and that the loss-of-function mutations at these functional counterparts result in the transition of SAMs from the vegetative to reproductive state that is essential for initiation of terminal flowering and thus formation of determinate stems. However, little is known regarding how semi-determinate stems, which produce terminal racemes similar to those observed in determinate plants, are specified in any flowering plants. Here we show that semi-determinacy in soybean is modulated by transcriptional repression of Dt1, the functional ortholog of TFL1, in SAMs. Such repression is fulfilled by recently enabled spatiotemporal expression of Dt2, an ancestral form of the APETALA1/FRUITFULL orthologs, which encodes a MADS-box factor directly binding to the regulatory sequence of Dt1. In addition, Dt2 triggers co-expression of the putative SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (GmSOC1) in SAMs, where GmSOC1 interacts with Dt2, and also directly binds to the Dt1 regulatory sequence. Heterologous expression of Dt2 and Dt1 in determinate (tfl1) Arabidopsis mutants enables creation of semi-determinacy, but the same forms of the two genes in the tfl1 and soc1 background produce indeterminate stems, suggesting that Dt2 and SOC1 both are essential for transcriptional repression of Dt1. Nevertheless, the expression of Dt2 is unable to repress TFL1 in Arabidopsis, further demonstrating the evolutionary novelty of the regulatory mechanism underlying stem growth in soybean.
Collapse
Affiliation(s)
- Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Dajian Zhang
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qiangdao, Shandong, China
| | - Zhixiang Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, United States of America
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
174
|
|
175
|
Rinne PLH, Paul LK, Vahala J, Ruonala R, Kangasjärvi J, van der Schoot C. Long and short photoperiod buds in hybrid aspen share structural development and expression patterns of marker genes. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6745-60. [PMID: 26248666 PMCID: PMC4623686 DOI: 10.1093/jxb/erv380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tree architecture develops over time through the collective activity of apical and axillary meristems. Although the capacity of both meristems to form buds is crucial for perennial life, a comparative analysis is lacking. As shown here for hybrid aspen, axillary meristems engage in an elaborate process of axillary bud (AXB) formation, while apical dominance prevents outgrowth of branches. Development ceased when AXBs had formed an embryonic shoot (ES) with a predictable number of embryonic leaves at the bud maturation point (BMP). Under short days, terminal buds (TBs) formed an ES similar to that of AXBs, and both the TB and young AXBs above the BMP established dormancy. Quantitative PCR and in situ hybridizations showed that this shared ability and structural similarity was reflected at the molecular level. TBs and AXBs similarly regulated expression of meristem-specific and bud/branching-related genes, including CENTRORADIALIS-LIKE1 (CENL1), BRANCHED1 (BRC1), BRC2, and the strigolactone biosynthesis gene MORE AXILLARY BRANCHES1 (MAX1). Below the BMP, AXBs maintained high CENL1 expression at the rib meristem, suggesting that it serves to maintain poise for growth. In support of this, decapitation initiated outgrowth of CENL1-expressing AXBs, but not of dormant AXBs that had switched CENL1 off. This singles out CENL1 as a rib meristem marker for para-dormancy. BRC1 and MAX1 genes, which may counterbalance CENL1, were down-regulated in decapitation-activated AXBs. The results showed that removal of apical dominance shifted AXB gene expression toward that of apices, while developing TBs adopted the expression pattern of para-dormant AXBs. Bud development thus follows a shared developmental pattern at terminal and axillary positions, despite being triggered by short days and apical dominance, respectively.
Collapse
Affiliation(s)
- Päivi L H Rinne
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Laju K Paul
- Department of Plant Sciences, Norwegian University of Life Sciences, N-1432 Ås, Norway
| | - Jorma Vahala
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Raili Ruonala
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland
| | - Jaakko Kangasjärvi
- Division of Plant Biology, Department of Biosciences, University of Helsinki, FI-00014 Helsinki, Finland College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
176
|
Capel C, Fernández del Carmen A, Alba JM, Lima-Silva V, Hernández-Gras F, Salinas M, Boronat A, Angosto T, Botella MA, Fernández-Muñoz R, Granell A, Capel J, Lozano R. Wide-genome QTL mapping of fruit quality traits in a tomato RIL population derived from the wild-relative species Solanum pimpinellifolium L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2019-35. [PMID: 26163766 DOI: 10.1007/s00122-015-2563-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 06/13/2015] [Indexed: 05/05/2023]
Abstract
QTL and candidate genes associated to fruit quality traits have been identified in a tomato genetic map derived from Solanum pimpinellifolium L., providing molecular tools for marker-assisted breeding. The study of genetic, physiological, and molecular pathways involved in fruit development and ripening has considered tomato as the model fleshy-fruited species par excellence. Fruit quality traits regarding organoleptic and nutritional properties are major goals for tomato breeding programs since they largely decide the acceptance of tomato in both fresh and processing markets. Here we report the genetic mapping of single-locus and epistatic quantitative trait loci (QTL) associated to the fruit size and content of sugars, acids, vitamins, and carotenoids from the characterization of a RIL population derived from the wild-relative Solanum pimpinellifolium TO-937. A genetic map composed of 353 molecular markers including 13 genes regulating fruit and developmental traits was generated, which spanned 1007 cM with an average distance between markers of 2.8 cM. Genetic analyses indicated that fruit quality traits analyzed in this work exhibited transgressive segregation and that additive and epistatic effects are the major genetic basis of fruit quality traits. Moreover, most mapped QTL showed environment interaction effects. FrW7.1 fruit size QTL co-localized with QTL involved in soluble solid, vitamin C, and glucose contents, dry weight/fresh weight, and most importantly with the Sucrose Phosphate Synthase gene, suggesting that polymorphisms in this gene could influence genetic variation in several fruit quality traits. In addition, 1-deoxy-D-xylulose 5-phosphate synthase and Tocopherol cyclase genes were identified as candidate genes underlying QTL variation in beta-carotene and vitamin C. Together, our results provide useful genetic and molecular information regarding fruit quality and new chances for tomato breeding by implementing marker-assisted selection.
Collapse
Affiliation(s)
- Carmen Capel
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Asunción Fernández del Carmen
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Juan Manuel Alba
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Viviana Lima-Silva
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Francesc Hernández-Gras
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Barcelona, 08028, Barcelona, Spain
| | - María Salinas
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Albert Boronat
- Departamento de Bioquímica y Biología Molecular, Facultad de Biología, Universidad de Barcelona, 08028, Barcelona, Spain
| | - Trinidad Angosto
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Miguel A Botella
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora, Universidad de Málaga-Consejo Superior de Investigaciones Científicas, 29750, Algarrobo-Costa, Málaga, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Juan Capel
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain
| | - Rafael Lozano
- Departamento de Biología y Geología (Genética), Edificio CITE II-B, Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Carretera de Sacramento s/n, 04120, Almería, Spain.
| |
Collapse
|
177
|
Kusters E, Della Pina S, Castel R, Souer E, Koes R. Changes in cis-regulatory elements of a key floral regulator are associated with divergence of inflorescence architectures. Development 2015. [PMID: 26220938 DOI: 10.1242/dev.121905] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Higher plant species diverged extensively with regard to the moment (flowering time) and position (inflorescence architecture) at which flowers are formed. This seems largely caused by variation in the expression patterns of conserved genes that specify floral meristem identity (FMI), rather than changes in the encoded proteins. Here, we report a functional comparison of the promoters of homologous FMI genes from Arabidopsis, petunia, tomato and Antirrhinum. Analysis of promoter-reporter constructs in petunia and Arabidopsis, as well as complementation experiments, showed that the divergent expression of leafy (LFY) and the petunia homolog aberrant leaf and flower (ALF) results from alterations in the upstream regulatory network rather than cis-regulatory changes. The divergent expression of unusual floral organs (UFO) from Arabidopsis, and the petunia homolog double top (DOT), however, is caused by the loss or gain of cis-regulatory promoter elements, which respond to trans-acting factors that are expressed in similar patterns in both species. Introduction of pUFO:UFO causes no obvious defects in Arabidopsis, but in petunia it causes the precocious and ectopic formation of flowers. This provides an example of how a change in a cis-regulatory region can account for a change in the plant body plan.
Collapse
Affiliation(s)
- Elske Kusters
- Department of Molecular Cell Biology, VU-University, de Boelelaan 1087, Amsterdam 1081HV, The Netherlands
| | - Serena Della Pina
- Department of Molecular Cell Biology, VU-University, de Boelelaan 1087, Amsterdam 1081HV, The Netherlands
| | - Rob Castel
- Department of Molecular Cell Biology, VU-University, de Boelelaan 1087, Amsterdam 1081HV, The Netherlands
| | - Erik Souer
- Department of Molecular Cell Biology, VU-University, de Boelelaan 1087, Amsterdam 1081HV, The Netherlands
| | - Ronald Koes
- Department of Molecular Cell Biology, VU-University, de Boelelaan 1087, Amsterdam 1081HV, The Netherlands Department of Plant Development and (Epi)Genetics, Swammerdam Institute of Life Sciences, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
178
|
Wickland DP, Hanzawa Y. The FLOWERING LOCUS T/TERMINAL FLOWER 1 Gene Family: Functional Evolution and Molecular Mechanisms. MOLECULAR PLANT 2015; 8:983-97. [PMID: 25598141 DOI: 10.1016/j.molp.2015.01.007] [Citation(s) in RCA: 238] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/19/2014] [Accepted: 01/09/2015] [Indexed: 05/18/2023]
Abstract
In plant development, the flowering transition and inflorescence architecture are modulated by two homologous proteins, FLOWERING LOCUS T (FT) and TERMINAL FLOWER 1 (TFL1). The florigen FT promotes the transition to reproductive development and flowering, while TFL1 represses this transition. Despite their importance to plant adaptation and crop improvement and their extensive study by the plant community, the molecular mechanisms controlling the opposing actions of FT and TFL1 have remained mysterious. Recent studies in multiple species have unveiled diverse roles of the FT/TFL1 gene family in developmental processes other than flowering regulation. In addition, the striking evolution of FT homologs into flowering repressors has occurred independently in several species during the evolution of flowering plants. These reports indicate that the FT/TFL1 gene family is a major target of evolution in nature. Here, we comprehensively survey the conserved and diverse functions of the FT/TFL1 gene family throughout the plant kingdom, summarize new findings regarding the unique evolution of FT in multiple species, and highlight recent work elucidating the molecular mechanisms of these proteins.
Collapse
Affiliation(s)
- Daniel P Wickland
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yoshie Hanzawa
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
179
|
Payyavula RS, Shakya R, Sengoda VG, Munyaneza JE, Swamy P, Navarre DA. Synthesis and regulation of chlorogenic acid in potato: Rerouting phenylpropanoid flux in HQT-silenced lines. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:551-64. [PMID: 25421386 DOI: 10.1111/pbi.12280] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 09/16/2014] [Accepted: 09/21/2014] [Indexed: 05/22/2023]
Abstract
Chlorogenic acid (CGA) is the major phenolic sink in potato tubers and can constitute over 90% of total phenylpropanoids. The regulation of CGA biosynthesis in potato and the role of the CGA biosynthetic gene hydroxycinnamoyl CoA:quinate hydroxycinnamoyl transferase (HQT) was characterized. A sucrose induced accumulation of CGA correlated with the increased expression of phenylalanine ammonia-lyase (PAL) rather than HQT. Transient expression of the potato MYB transcription factor StAN1 (anthocyanin 1) in tobacco increased CGA. RNAi suppression of HQT resulted in over a 90% reduction in CGA and resulted in early flowering. The reduction in total phenolics and antioxidant capacity was less than the reduction in CGA, suggesting flux was rerouted into other phenylpropanoids. Network analysis showed distinct patterns in different organs, with anthocyanins and phenolic acids showing negative correlations in leaves and flowers and positive in tubers. Some flavonols increased in flowers, but not in leaves or tubers. Anthocyanins increased in flowers and showed a trend to increase in leaves, but not tubers. HQT suppression increased biosynthesis of caffeoyl polyamines, some of which are not previously reported in potato. Decreased PAL expression and enzyme activity was observed in HQT suppressed lines, suggesting the existence of a regulatory loop between CGA and PAL. Electrophysiology detected no effect of CGA suppression on potato psyllid feeding. Collectively, this research showed that CGA in potatoes is synthesized through HQT and HQT suppression altered phenotype and redirected phenylpropanoid flux.
Collapse
Affiliation(s)
- Raja S Payyavula
- Irrigated Agricultural Research and Extension Center, Washington State University, Prosser, WA, USA
| | | | | | | | | | | |
Collapse
|
180
|
Vicente MH, Zsögön A, de Sá AFL, Ribeiro RV, Peres LEP. Semi-determinate growth habit adjusts the vegetative-to-reproductive balance and increases productivity and water-use efficiency in tomato (Solanum lycopersicum). JOURNAL OF PLANT PHYSIOLOGY 2015; 177:11-19. [PMID: 25659332 DOI: 10.1016/j.jplph.2015.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/04/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
Tomato (Solanum lycopersicum) shows three growth habits: determinate, indeterminate and semi-determinate. These are controlled mainly by allelic variation in the self-pruning (SP) gene family, which also includes the "florigen" gene single flower TRUSS (SFT). Determinate cultivars have synchronized flower and fruit production, which allows mechanical harvesting in the tomato processing industry, whereas indeterminate ones have more vegetative growth with continuous flower and fruit formation, being thus preferred for fresh market tomato production. The semi-determinate growth habit is poorly understood, although there are indications that it combines advantages of determinate and indeterminate growth. Here, we used near-isogenic lines (NILs) in the cultivar Micro-Tom (MT) with different growth habit to characterize semi-determinate growth and to determine its impact on developmental and productivity traits. We show that semi-determinate genotypes are equivalent to determinate ones with extended vegetative growth, which in turn impacts shoot height, number of leaves and either stem diameter or internode length. Semi-determinate plants also tend to increase the highly relevant agronomic parameter Brix × ripe yield (BRY). Water-use efficiency (WUE), evaluated either directly as dry mass produced per amount of water transpired or indirectly through C isotope discrimination, was higher in semi-determinate genotypes. We also provide evidence that the increases in BRY in semi-determinate genotypes are a consequence of an improved balance between vegetative and reproductive growth, a mechanism analogous to the conversion of the overly vegetative tall cereal varieties into well-balanced semi-dwarf ones used in the Green Revolution.
Collapse
Affiliation(s)
- Mateus Henrique Vicente
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Agustin Zsögön
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Ariadne Felicio Lopo de Sá
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil
| | - Rafael V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), R. Monteiro Lobato, 255, 13083-862, Campinas, SP, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Department of Biological Sciences, Escola Superior de Agricultura 'Luiz de Queiroz' (ESALQ), University of São Paulo (USP), Av. Pádua Dias, 11, CP 09, 13418-900 Piracicaba, SP, Brazil.
| |
Collapse
|
181
|
Gur A, Zamir D. Mendelizing all Components of a Pyramid of Three Yield QTL in Tomato. FRONTIERS IN PLANT SCIENCE 2015; 6:1096. [PMID: 26697048 PMCID: PMC4678209 DOI: 10.3389/fpls.2015.01096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/22/2015] [Indexed: 05/03/2023]
Abstract
Molecular markers allowed breeders to mendelize quantitative trait loci (QTL) providing another demonstration that quantitative traits are governed by the same principles as single qualitative genes. This research extends the QTL analysis to two and three QTL and tests our ability to mendelize an oligogenic trait. In tomato, agricultural yield is determined by the weight of the fruits harvested per unit area and the total soluble solids (% Brix)-sugars and acids. The current study explores the segregation of multiple independent yield-related QTL that were identified and mapped using introgression lines (IL) of Solanum pennellii in cultivated processing tomato (S. lycopersicum). We screened 45 different double and triple IL-QTL combinations for agricultural yield, to identify QTL pyramids that behaved in an additive manner and were suitable substrate for mendelizing an oligogenic trait. A pyramid of three independent QTL that significantly improved Brix(∗)Yield (BXY - the soluble solids output per unit area) compared to M82 was selected. In the progenies of the tri-hybrid we bred using markers a nearly isogenic 'immortalized F2.' While the common mode of QTL-QTL interactions across the 45 IL-QTLs combinations was less than additive, the three QTLs in the selected triple-stack performed in an additive manner which made it an exceptional material for breeding. This study demonstrates that using the phenotypic effect of all 27 possible QTL-alleles combinations it is possible to make reliable predictions about the genotypes that will maximize the yield.
Collapse
|
182
|
Wilde HD, Gandhi KJK, Colson G. State of the science and challenges of breeding landscape plants with ecological function. HORTICULTURE RESEARCH 2015; 2:14069. [PMID: 26504560 PMCID: PMC4596282 DOI: 10.1038/hortres.2014.69] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 05/15/2023]
Abstract
Exotic plants dominate esthetically-managed landscapes, which cover 30-40 million hectares in the United States alone. Recent ecological studies have found that landscaping with exotic plant species can reduce biodiversity on multiple trophic levels. To support biodiversity in urbanized areas, the increased use of native landscaping plants has been advocated by conservation groups and US federal and state agencies. A major challenge to scaling up the use of native species in landscaping is providing ornamental plants that are both ecologically functional and economically viable. Depending on ecological and economic constraints, accelerated breeding approaches could be applied to ornamental trait development in native plants. This review examines the impact of landscaping choices on biodiversity, the current status of breeding and selection of native ornamental plants, and the interdisciplinary research needed to scale up landscaping plants that can support native biodiversity.
Collapse
Affiliation(s)
- H Dayton Wilde
- Horticulture Department, University of Georgia, Athens, GA 30602, USA
| | - Kamal J K Gandhi
- Daniel B Warnell School of Forestry & Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Gregory Colson
- Department of Agricultural and Applied Economics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
183
|
Cao K, Cui L, Zhou X, Ye L, Zou Z, Deng S. Four Tomato FLOWERING LOCUS T-Like Proteins Act Antagonistically to Regulate Floral Initiation. FRONTIERS IN PLANT SCIENCE 2015; 6:1213. [PMID: 26793202 PMCID: PMC4707262 DOI: 10.3389/fpls.2015.01213] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 12/17/2015] [Indexed: 05/20/2023]
Abstract
The transition from vegetative growth to floral meristems in higher plants is regulated through the integration of internal cues and environmental signals. We were interested to examine the molecular mechanism of flowering in the day-neutral plant tomato (Solanum lycopersicum L.) and the effect of environmental conditions on tomato flowering. Analysis of the tomato genome uncovered 13 PEBP (phosphatidylethanolamine-binding protein) genes, and found six of them were FT-like genes which named as SlSP3D, SlSP6A, SlSP5G, SlSP5G1, SlSP5G2, and SlSP5G3. Six FT-like genes were analyzed to clarify their functional roles in flowering using transgenic and expression analyses. We found that SlSP5G, SlSP5G2, and SlSP5G3 proteins were floral inhibitors whereas only SlSP3D/SFT (SINGLE FLOWER TRUSS) was a floral inducer. SlSP5G was expressed at higher levels in long day (LD) conditions compared to short day (SD) conditions while SlSP5G2 and SlSP5G3 showed the opposite expression patterns. The silencing of SlSP5G by VIGS (Virus induced gene silencing) resulted in tomato plants that flowered early under LD conditions and the silencing of SlSP5G2 and SlSP5G3 led to early flowering under SD conditions. The higher expression levels of SlSP5G under LD conditions were not seen in phyB1 mutants, and the expression levels of SlSP5G2 and SlSP5G3 were increased in phyB1 mutants under both SD and LD conditions compared to wild type plants. These data suggest that SlSP5G, SlSP5G2, and SlSP5G3 are controlled by photoperiod, and the different expression patterns of FT-like genes under different photoperiod may contribute to tomato being a day neutral plant. In addition, PHYB1 mediate the expression of SlSP5G, SlSP5G2, and SlSP5G3 to regulate flowering in tomato.
Collapse
Affiliation(s)
- Kai Cao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Horticulture College, Northwest A&F UniversityYangling, China
- Laboratory of Plant Molecular Biology, Rockefeller UniversityNew York, NY, USA
| | - Lirong Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Horticulture College, Northwest A&F UniversityYangling, China
| | - Xiaoting Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Horticulture College, Northwest A&F UniversityYangling, China
| | - Lin Ye
- State Key Laboratory of Crop Stress Biology for Arid Areas, Horticulture College, Northwest A&F UniversityYangling, China
| | - Zhirong Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Horticulture College, Northwest A&F UniversityYangling, China
- *Correspondence: Zhirong Zou
| | - Shulin Deng
- Laboratory of Plant Molecular Biology, Rockefeller UniversityNew York, NY, USA
- Shulin Deng
| |
Collapse
|
184
|
Hansen ZR, Small IM, Mutschler M, Fry WE, Smart CD. Differential Susceptibility of 39 Tomato Varieties to Phytophthora infestans Clonal Lineage US-23. PLANT DISEASE 2014; 98:1666-1670. [PMID: 30703875 DOI: 10.1094/pdis-03-14-0263-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
During the summers of 2012 and 2013, 39 tomato (Solanum lycopersicum) lines or varieties were evaluated for resistance to late blight in three separate field trials. In each trial, late blight was caused by field isolates of Phytophthora infestans clonal lineage US-23. Varieties with the late blight resistance genes Ph-1, Ph-2, Ph-3, and Ph-2 + Ph-3 were included, along with several heirloom varieties with grower-reported resistance and varieties with no known resistance. All six varieties with Ph-2 + Ph-3, along with NC25P, which is homozygous for Ph-3 only, showed a high level of resistance. Plum Regal F1, which is heterozygous for Ph-3 only, showed moderate resistance. Legend, the only variety with Ph-2 alone, also showed moderate resistance. Three heirloom varieties, Matt's Wild Cherry, Lemon Drop, and Mr. Stripey, showed a high level of resistance comparable with that of varieties with Ph-2 + Ph-3. New Yorker, possessing Ph-1 only, showed no resistance. Indeterminate varieties had significantly less disease than determinate varieties in two of the three trials. Overall, this study suggests that tomato varieties with both Ph-2 and Ph-3 can be used to effectively manage late blight caused by P. infestans clonal lineage US-23. Varieties possessing only Ph-2, or heterozygous for Ph-3, were better protected than those without any late blight resistance but might still require supplemental fungicide applications, while the variety that was homozygous for Ph-3 was highly resistant. Several heirloom varieties were also highly resistant, and the unknown mechanism of their resistance warrants further research. Finally, the plasticity observed in United States P. infestans populations over the past several decades necessitates continued monitoring for genetic changes within P. infestans that could lead to the breakdown of resistance reported here.
Collapse
Affiliation(s)
- Z R Hansen
- Department of Plant Pathology and Plant-Microbe Biology
| | - I M Small
- Department of Plant Pathology and Plant-Microbe Biology
| | | | - W E Fry
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853
| | - C D Smart
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
185
|
Park SJ, Jiang K, Tal L, Yichie Y, Gar O, Zamir D, Eshed Y, Lippman ZB. Optimization of crop productivity in tomato using induced mutations in the florigen pathway. Nat Genet 2014; 46:1337-42. [PMID: 25362485 DOI: 10.1038/ng.3131] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 10/07/2014] [Indexed: 12/16/2022]
Abstract
Naturally occurring genetic variation in the universal florigen flowering pathway has produced major advancements in crop domestication. However, variants that can maximize crop yields may not exist in natural populations. Here we show that tomato productivity can be fine-tuned and optimized by exploiting combinations of selected mutations in multiple florigen pathway components. By screening for chemically induced mutations that suppress the bushy, determinate growth habit of field tomatoes, we isolated a new weak allele of the florigen gene SINGLE FLOWER TRUSS (SFT) and two mutations affecting a bZIP transcription factor component of the 'florigen activation complex' (ref. 11). By combining heterozygous mutations, we pinpointed an optimal balance of flowering signals, resulting in a new partially determinate architecture that translated to maximum yields. We propose that harnessing mutations in the florigen pathway to customize plant architecture and flower production offers a broad toolkit to boost crop productivity.
Collapse
Affiliation(s)
- Soon Ju Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Ke Jiang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Lior Tal
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yoav Yichie
- Institute of Plant Sciences, Hebrew University of Jerusalem Faculty of Agriculture, Rehovot, Israel
| | - Oron Gar
- Institute of Plant Sciences, Hebrew University of Jerusalem Faculty of Agriculture, Rehovot, Israel
| | - Dani Zamir
- Institute of Plant Sciences, Hebrew University of Jerusalem Faculty of Agriculture, Rehovot, Israel
| | - Yuval Eshed
- Department of Plant Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
186
|
Bauchet G, Munos S, Sauvage C, Bonnet J, Grivet L, Causse M. Genes involved in floral meristem in tomato exhibit drastically reduced genetic diversity and signature of selection. BMC PLANT BIOLOGY 2014; 14:279. [PMID: 25325924 PMCID: PMC4210547 DOI: 10.1186/s12870-014-0279-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/06/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Domestication and selection of crops have notably reshaped fruit morphology. With its large phenotypic diversity, tomato (Solanum lycopersicum) illustrates this evolutive trend. Genes involved in flower meristem development are known to regulate also fruit morphology. To decipher the genetic variation underlying tomato fruit morphology, we assessed the nucleotide diversity and selection footprints of candidate genes involved in flower and fruit development and performed genome-wide association studies. RESULTS Thirty candidate genes were selected according to their similarity with genes involved in meristem development or their known causal function in Arabidopsis thaliana. In tomato, these genes and flanking regions were sequenced in a core collection of 96 accessions (including cultivated, cherry-type and wild relative accessions) maximizing the molecular diversity, using the Roche 454 technology. A total amount of 17 Mb was sequenced allowing the discovery of 6,106 single nucleotide polymorphisms (SNPs). The annotation of the 30 gene regions identified 231 exons carrying 517 SNPs. Subsequently, the nucleotide diversity (π) and the neutral evolution of each region were compared against genome-wide values within the collection, using a SNP array carrying 7,667 SNPs mainly distributed in coding sequences.About half of the genes revealed footprints of selection and polymorphisms putatively involved in fruit size variation by showing negative Tajima's D and nucleotide diversity reduction in cultivated tomato compared to its wild relative. Among the candidates, FW2.2 and BAM1 sequences revealed selection footprints within their promoter regions suggesting their potential involvement in their regulation. Two associations co-localized with previously identified loci: LC (locule number) and Ovate (fruit shape). CONCLUSION Compared to whole genome genotypic data, a drastic reduction of nucleotide diversity was shown for several candidate genes. Strong selection patterns were identified in 15 candidates highlighting the critical role of meristem maintenance genes as well as the impact of domestication on candidates. The study highlighted a set of polymorphisms putatively important in the evolution of these genes.
Collapse
Affiliation(s)
- Guillaume Bauchet
- />INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), 67 Allée des Chênes Domaine Saint Maurice – CS60094, 84143 Montfavet Cedex, France
- />Syngenta Seeds, 12 chemin de l’Hobit, 31790 Saint Sauveur, France
| | - Stéphane Munos
- />INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), 67 Allée des Chênes Domaine Saint Maurice – CS60094, 84143 Montfavet Cedex, France
- />Present address: INRA, UMR CNRS-INRA 441-2594, 24 Chemin de Borde Rouge – Auzeville - CS 52627, 31326 Castanet Tolosan Cedex, France
| | - Christopher Sauvage
- />INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), 67 Allée des Chênes Domaine Saint Maurice – CS60094, 84143 Montfavet Cedex, France
| | - Julien Bonnet
- />Syngenta Seeds, 12 chemin de l’Hobit, 31790 Saint Sauveur, France
| | - Laurent Grivet
- />Syngenta Seeds, 12 chemin de l’Hobit, 31790 Saint Sauveur, France
| | - Mathilde Causse
- />INRA, UR1052, Génétique et Amélioration des Fruits et Légumes (GAFL), 67 Allée des Chênes Domaine Saint Maurice – CS60094, 84143 Montfavet Cedex, France
| |
Collapse
|
187
|
Lin T, Zhu G, Zhang J, Xu X, Yu Q, Zheng Z, Zhang Z, Lun Y, Li S, Wang X, Huang Z, Li J, Zhang C, Wang T, Zhang Y, Wang A, Zhang Y, Lin K, Li C, Xiong G, Xue Y, Mazzucato A, Causse M, Fei Z, Giovannoni JJ, Chetelat RT, Zamir D, Städler T, Li J, Ye Z, Du Y, Huang S. Genomic analyses provide insights into the history of tomato breeding. Nat Genet 2014; 46:1220-6. [PMID: 25305757 DOI: 10.1038/ng.3117] [Citation(s) in RCA: 550] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/22/2014] [Indexed: 12/17/2022]
Abstract
The histories of crop domestication and breeding are recorded in genomes. Although tomato is a model species for plant biology and breeding, the nature of human selection that altered its genome remains largely unknown. Here we report a comprehensive analysis of tomato evolution based on the genome sequences of 360 accessions. We provide evidence that domestication and improvement focused on two independent sets of quantitative trait loci (QTLs), resulting in modern tomato fruit ∼100 times larger than its ancestor. Furthermore, we discovered a major genomic signature for modern processing tomatoes, identified the causative variants that confer pink fruit color and precisely visualized the linkage drag associated with wild introgressions. This study outlines the accomplishments as well as the costs of historical selection and provides molecular insights toward further improvement.
Collapse
Affiliation(s)
- Tao Lin
- 1] Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China. [2] Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Guangtao Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Xiangyang Xu
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Qinghui Yu
- Institute of Horticulture, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Zheng Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhonghua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yaoyao Lun
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shuai Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoxuan Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zejun Huang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junming Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chunzhi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Aoxue Wang
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Yancong Zhang
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Kui Lin
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Plant Gene Research Centre, Beijing, China
| | - Guosheng Xiong
- 1] Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China. [2] State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Plant Gene Research Centre, Beijing, China
| | - Yongbiao Xue
- 1] State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences and National Plant Gene Research Centre, Beijing, China. [2] Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Andrea Mazzucato
- Department of Agriculture, Forests, Nature and Energy (DAFNE), University of Tuscia, Viterbo, Italy
| | - Mathilde Causse
- Institut National de la Recherche Agronomique (INRA), Unité de Génétique et Amélioration des Fruits et Légumes, Domaine Saint-Maurice, Montfavet, France
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, US Department of Agriculture (USDA) Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, USA
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, US Department of Agriculture (USDA) Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, New York, USA
| | - Roger T Chetelat
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences, University of California, Davis, Davis, California, USA
| | - Dani Zamir
- Robert H. Smith Institute of Plant Sciences and Genetics, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel
| | - Thomas Städler
- Plant Ecological Genetics, Institute of Integrative Biology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Jingfu Li
- College of Horticulture, Northeast Agricultural University, Harbin, China
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, China
| | - Yongchen Du
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sanwen Huang
- 1] Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China. [2] Agricultural Genome Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
188
|
A novel mutation in TFL1 homolog affecting determinacy in cowpea (Vigna unguiculata). Mol Genet Genomics 2014; 290:55-65. [PMID: 25146839 DOI: 10.1007/s00438-014-0899-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 08/12/2014] [Indexed: 12/28/2022]
Abstract
Mutations in the widely conserved Arabidopsis Terminal Flower 1 (TFL1) gene and its homologs have been demonstrated to result in determinacy across genera, the knowledge of which is lacking in cowpea. Understanding the molecular events leading to determinacy of apical meristems could hasten development of cowpea varieties with suitable ideotypes. Isolation and characterization of a novel mutation in cowpea TFL1 homolog (VuTFL1) affecting determinacy is reported here for the first time. Cowpea TFL1 homolog was amplified using primers designed based on conserved sequences in related genera and sequence variation was analysed in three gamma ray-induced determinate mutants, their indeterminate parent "EC394763" and two indeterminate varieties. The analyses of sequence variation exposed a novel SNP distinguishing the determinate mutants from the indeterminate types. The non-synonymous point mutation in exon 4 at position 1,176 resulted from transversion of cytosine (C) to adenine (A) leading to an amino acid change (Pro-136 to His) in determinate mutants. The effect of the mutation on protein function and stability was predicted to be detrimental using different bioinformatics/computational tools. The functionally significant novel substitution mutation is hypothesized to affect determinacy in the cowpea mutants. Development of suitable regeneration protocols in this hitherto recalcitrant crop and subsequent complementation assay in mutants or over-expressing assay in parents could decisively conclude the role of the SNP in regulating determinacy in these cowpea mutants.
Collapse
|
189
|
Ping J, Liu Y, Sun L, Zhao M, Li Y, She M, Sui Y, Lin F, Liu X, Tang Z, Nguyen H, Tian Z, Qiu L, Nelson RL, Clemente TE, Specht JE, Ma J. Dt2 is a gain-of-function MADS-domain factor gene that specifies semideterminacy in soybean. THE PLANT CELL 2014; 26:2831-42. [PMID: 25005919 PMCID: PMC4145117 DOI: 10.1105/tpc.114.126938] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/03/2012] [Accepted: 06/18/2014] [Indexed: 05/20/2023]
Abstract
Similar to Arabidopsis thaliana, the wild soybeans (Glycine soja) and many cultivars exhibit indeterminate stem growth specified by the shoot identity gene Dt1, the functional counterpart of Arabidopsis TERMINAL FLOWER1 (TFL1). Mutations in TFL1 and Dt1 both result in the shoot apical meristem (SAM) switching from vegetative to reproductive state to initiate terminal flowering and thus produce determinate stems. A second soybean gene (Dt2) regulating stem growth was identified, which, in the presence of Dt1, produces semideterminate plants with terminal racemes similar to those observed in determinate plants. Here, we report positional cloning and characterization of Dt2, a dominant MADS domain factor gene classified into the APETALA1/SQUAMOSA (AP1/SQUA) subfamily that includes floral meristem (FM) identity genes AP1, FUL, and CAL in Arabidopsis. Unlike AP1, whose expression is limited to FMs in which the expression of TFL1 is repressed, Dt2 appears to repress the expression of Dt1 in the SAMs to promote early conversion of the SAMs into reproductive inflorescences. Given that Dt2 is not the gene most closely related to AP1 and that semideterminacy is rarely seen in wild soybeans, Dt2 appears to be a recent gain-of-function mutation, which has modified the genetic pathways determining the stem growth habit in soybean.
Collapse
Affiliation(s)
- Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Yinghui Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Maoyun She
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Yi Sui
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Feng Lin
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Xiaodong Liu
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Zongxiang Tang
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Hanh Nguyen
- Department of Agronomy and Horticulture/Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68583
| | - Zhixi Tian
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Randall L Nelson
- Soybean/Maize Germplasm, Pathology, and Genetics Research Unit, U.S. Department of Agriculture-Agricultural Research Service, Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801
| | - Thomas E Clemente
- Department of Agronomy and Horticulture/Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68583
| | - James E Specht
- Department of Agronomy and Horticulture/Center for Plant Science Innovation, University of Nebraska, Lincoln, Nebraska 68583
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
190
|
Ichihashi Y, Sinha NR. From genome to phenome and back in tomato. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:9-15. [PMID: 24440917 DOI: 10.1016/j.pbi.2013.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/03/2013] [Accepted: 12/20/2013] [Indexed: 05/05/2023]
Abstract
The tomato is an ideal plant species for genomic and evolutionary studies. Thanks to recent technical advances, a plethora of information relating to tomato genomics has been generated. In addition, various phenotypes related to morphology, physiology and yield have been investigated in tomato and its wild relatives. In this review, we summarize recent key findings in tomato genomics that used both developmental and evolutionary approaches to link the genome to phenome. Combined, these perspectives allow us to look at the trends in tomato evolution in addition to providing insight into the future direction of research that can utilize this unique model species.
Collapse
Affiliation(s)
- Yasunori Ichihashi
- Department of Plant Biology, University of California Davis, Davis, CA 95616, USA; Center for Sustainable Resource Science, RIKEN, Yokohama, Kanagawa 230-0045, Japan
| | - Neelima R Sinha
- Department of Plant Biology, University of California Davis, Davis, CA 95616, USA.
| |
Collapse
|
191
|
Randoux M, Davière JM, Jeauffre J, Thouroude T, Pierre S, Toualbia Y, Perrotte J, Reynoird JP, Jammes MJ, Hibrand-Saint Oyant L, Foucher F. RoKSN, a floral repressor, forms protein complexes with RoFD and RoFT to regulate vegetative and reproductive development in rose. THE NEW PHYTOLOGIST 2014; 202:161-173. [PMID: 24308826 DOI: 10.1111/nph.12625] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 11/03/2013] [Indexed: 05/18/2023]
Abstract
FT/TFL1 family members have been known to be involved in the development and flowering in plants. In rose, RoKSN, a TFL1 homologue, is a key regulator of flowering, whose absence causes continuous flowering. Our objectives are to functionally validate RoKSN and to explore its mode of action in rose. We complemented Arabidopsis tfl1 mutants and ectopically expressed RoKSN in a continuous-flowering (CF) rose. Using different protein interaction techniques, we studied RoKSN interactions with RoFD and RoFT and possible competition. In Arabidopsis, RoKSN complemented the tfl1 mutant by rescuing late flowering and indeterminate growth. In CF roses, the ectopic expression of RoKSN led to the absence of flowering. Different branching patterns were observed and some transgenic plants had an increased number of leaflets per leaf. In these transgenic roses, floral activator transcripts decreased. Furthermore, RoKSN was able to interact both with RoFD and the floral activator, RoFT. Protein interaction experiments revealed that RoKSN and RoFT could compete with RoFD for repression and activation of blooming, respectively. We conclude that RoKSN is a floral repressor and is also involved in the vegetative development of rose. RoKSN forms a complex with RoFD and could compete with RoFT for repression of flowering.
Collapse
Affiliation(s)
- Marie Randoux
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
- Agrocampus Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-OUEST, Université d'Angers), SFR 4207 QUASAV, 2 rue Le Nôtre, 49045, Angers, France
- Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), Université d'Angers, SFR 4207 QUASAV, PRES LUNAM, BP 60057, 49071, Beaucouzé Cedex, France
| | - Jean-Michel Davière
- Unité Propre de Recherche 2357, CNRS, Institut de Biologie Moléculaire des Plantes, Conventionné avec l'Université de Strasbourg, 12 rue du Général Zimmer, 67084, Strasbourg Cedex, France
| | - Julien Jeauffre
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Tatiana Thouroude
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Sandrine Pierre
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Youness Toualbia
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Justine Perrotte
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Jean-Paul Reynoird
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
- DNM Plant Breeding, Institut Polytechnique - LaSalle Beauvais, 19 rue Pierre Waguet, BP 30313, 60026, Beauvais, France
| | - Marie-José Jammes
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Laurence Hibrand-Saint Oyant
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| | - Fabrice Foucher
- INRA, Institut de Recherche en Horticulture et Semences (INRA, AGROCAMPUS-OUEST, Université d'Angers), SFR 4207 QUASAV, BP 60057, 49071, Beaucouzé Cedex, France
| |
Collapse
|
192
|
Gepts P. The contribution of genetic and genomic approaches to plant domestication studies. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:51-9. [PMID: 24631844 DOI: 10.1016/j.pbi.2014.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 02/04/2014] [Accepted: 02/09/2014] [Indexed: 05/25/2023]
Abstract
The application of genomic approaches to the phenomenon of plant domestication promises a better understanding of the origins of agriculture, but also of the way plant genomes in general are organized and expressed. Building on earlier genetic research, more detailed information has become available on the organization of genetic diversity at the genome level and the effects of gene flow on diversity in different regions of the genome. In addition, putative domestication genes have been identified through population genomics approaches (selective sweeps or divergence scanning). Further information has been obtained on the origin of domestication syndrome mutations and the dispersal and adaptation of crops after domestication. For the future, increasingly multidisciplinary approaches using combinations of genomics and other approaches will prevail.
Collapse
Affiliation(s)
- Paul Gepts
- University of California, Department of Plant Sciences/MS 1, Section of Crop and Ecosystem Sciences, 1 Shields Avenue, Davis, CA 95616, United States of America.
| |
Collapse
|
193
|
Périlleux C, Lobet G, Tocquin P. Inflorescence development in tomato: gene functions within a zigzag model. FRONTIERS IN PLANT SCIENCE 2014; 5:121. [PMID: 24744766 PMCID: PMC3978268 DOI: 10.3389/fpls.2014.00121] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 03/12/2014] [Indexed: 05/21/2023]
Abstract
Tomato is a major crop plant and several mutants have been selected for breeding but also for isolating important genes that regulate flowering and sympodial growth. Besides, current research in developmental biology aims at revealing mechanisms that account for diversity in inflorescence architectures. We therefore found timely to review the current knowledge of the genetic control of flowering in tomato and to integrate the emerging network into modeling attempts. We developed a kinetic model of the tomato inflorescence development where each meristem was represented by its "vegetativeness" (V), reflecting its maturation state toward flower initiation. The model followed simple rules: maturation proceeded continuously at the same rate in every meristem (dV); floral transition and floral commitment occurred at threshold levels of V; lateral meristems were initiated with a gain of V (ΔV) relative to the V level of the meristem from which they derived. This last rule created a link between successive meristems and gave to the model its zigzag shape. We next exploited the model to explore the diversity of morphotypes that could be generated by varying dV and ΔV and matched them with existing mutant phenotypes. This approach, focused on the development of the primary inflorescence, allowed us to elaborate on the genetic regulation of the kinetic model of inflorescence development. We propose that the lateral inflorescence meristem fate in tomato is more similar to an immature flower meristem than to the inflorescence meristem of Arabidopsis. In the last part of our paper, we extend our thought to spatial regulators that should be integrated in a next step for unraveling the relationships between the different meristems that participate to sympodial growth.
Collapse
Affiliation(s)
- Claire Périlleux
- *Correspondence: Claire Périlleux, Laboratory of Plant Physiology, PhytoSYSTEMS, Department of Life Sciences, University of Liège, Boulevard du Rectorat 27, 4000 Liège, Belgium e-mail:
| | | | | |
Collapse
|
194
|
Corrales AR, Nebauer SG, Carrillo L, Fernández-Nohales P, Marqués J, Renau-Morata B, Granell A, Pollmann S, Vicente-Carbajosa J, Molina RV, Medina J. Characterization of tomato Cycling Dof Factors reveals conserved and new functions in the control of flowering time and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:995-1012. [PMID: 24399177 DOI: 10.1093/jxb/ert451] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
DNA binding with One Finger (DOF) transcription factors are involved in multiple aspects of plant growth and development but their precise roles in abiotic stress tolerance are largely unknown. Here we report a group of five tomato DOF genes, homologous to Arabidopsis Cycling DOF Factors (CDFs), that function as transcriptional regulators involved in responses to drought and salt stress and flowering-time control in a gene-specific manner. SlCDF1-5 are nuclear proteins that display specific binding with different affinities to canonical DNA target sequences and present diverse transcriptional activation capacities in vivo. SlCDF1-5 genes exhibited distinct diurnal expression patterns and were differentially induced in response to osmotic, salt, heat, and low-temperature stresses. Arabidopsis plants overexpressing SlCDF1 or SlCDF3 showed increased drought and salt tolerance. In addition, the expression of various stress-responsive genes, such as COR15, RD29A, and RD10, were differentially activated in the overexpressing lines. Interestingly, overexpression in Arabidopsis of SlCDF3 but not SlCDF1 promotes late flowering through modulation of the expression of flowering control genes such as CO and FT. Overall, our data connect SlCDFs to undescribed functions related to abiotic stress tolerance and flowering time through the regulation of specific target genes and an increase in particular metabolites.
Collapse
Affiliation(s)
- Alba-Rocío Corrales
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus Montegancedo, Autopista M40 (km 38), 28223 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Teo ZWN, Song S, Wang YQ, Liu J, Yu H. New insights into the regulation of inflorescence architecture. TRENDS IN PLANT SCIENCE 2014; 19:158-65. [PMID: 24315403 DOI: 10.1016/j.tplants.2013.11.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/27/2013] [Accepted: 11/03/2013] [Indexed: 05/05/2023]
Abstract
The architecture of inflorescences displays the spatiotemporal arrangement of flowers and determines plant reproductive success through affecting fruit set and plant interaction with biotic or abiotic factors. Flowering plants have evolved a remarkable diversity of inflorescence branching patterns, which is largely governed by developmental decisions in inflorescence meristems and their derived meristems between maintenance of indeterminacy and commitment to the floral fate. Recent findings suggest that regulation of inflorescence architecture is mediated by flowering time genes, Arabidopsis LSH1 and Oryza G1 (ALOG) family genes, and the interaction between the auxin pathway and floral meristem regulators. In this review, we discuss how the relevant new players and mechanisms account for the development of appropriate inflorescence structures in flowering plants in response to environmental and developmental signals.
Collapse
Affiliation(s)
- Zhi Wei Norman Teo
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | - Shiyong Song
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | - Yong-Qiang Wang
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | - Jie Liu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore
| | - Hao Yu
- Department of Biological Sciences and Temasek Life Sciences Laboratory, National University of Singapore, 117543 Singapore.
| |
Collapse
|
196
|
Kobayashi M, Nagasaki H, Garcia V, Just D, Bres C, Mauxion JP, Le Paslier MC, Brunel D, Suda K, Minakuchi Y, Toyoda A, Fujiyama A, Toyoshima H, Suzuki T, Igarashi K, Rothan C, Kaminuma E, Nakamura Y, Yano K, Aoki K. Genome-wide analysis of intraspecific DNA polymorphism in 'Micro-Tom', a model cultivar of tomato (Solanum lycopersicum). PLANT & CELL PHYSIOLOGY 2014; 55:445-54. [PMID: 24319074 DOI: 10.1093/pcp/pct181] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tomato (Solanum lycopersicum) is regarded as a model plant of the Solanaceae family. The genome sequencing of the tomato cultivar 'Heinz 1706' was recently completed. To accelerate the progress of tomato genomics studies, systematic bioresources, such as mutagenized lines and full-length cDNA libraries, have been established for the cultivar 'Micro-Tom'. However, these resources cannot be utilized to their full potential without the completion of the genome sequencing of 'Micro-Tom'. We undertook the genome sequencing of 'Micro-Tom' and here report the identification of single nucleotide polymorphisms (SNPs) and insertion/deletions (indels) between 'Micro-Tom' and 'Heinz 1706'. The analysis demonstrated the presence of 1.23 million SNPs and 0.19 million indels between the two cultivars. The density of SNPs and indels was high in chromosomes 2, 5 and 11, but was low in chromosomes 6, 8 and 10. Three known mutations of 'Micro-Tom' were localized on chromosomal regions where the density of SNPs and indels was low, which was consistent with the fact that these mutations were relatively new and introgressed into 'Micro-Tom' during the breeding of this cultivar. We also report SNP analysis for two 'Micro-Tom' varieties that have been maintained independently in Japan and France, both of which have served as standard lines for 'Micro-Tom' mutant collections. Approximately 28,000 SNPs were identified between these two 'Micro-Tom' lines. These results provide high-resolution DNA polymorphic information on 'Micro-Tom' and represent a valuable contribution to the 'Micro-Tom'-based genomics resources.
Collapse
Affiliation(s)
- Masaaki Kobayashi
- Faculty of Agriculture, Meiji University, 1-1-1 Higashi Mita, Tama-ku, Kawasaki, 214-8571 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Park SJ, Eshed Y, Lippman ZB. Meristem maturation and inflorescence architecture--lessons from the Solanaceae. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:70-7. [PMID: 24507497 DOI: 10.1016/j.pbi.2013.11.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 05/22/2023]
Abstract
Plant apical meristems (AMs) grow continuously by delicately balancing cells leaving at the periphery to form lateral organs with slowly dividing central domain cells that replenish reservoirs of pluripotent cells. This balance can be modified by signals originating from within and outside the meristem, and their integration results in a gradual maturation process that often culminates with the meristem differentiating into a flower. Accompanying this 'meristem maturation' are changes in spacing and size of lateral organs and in rates at which lateral meristems are released from apical dominance. Modulation of distinct meristem maturation parameters through environmental and genetic changes underlies the remarkable diversity of shoot architectures. Here, we discuss recent studies relating the dynamics of meristem maturation with organization of floral branching systems--inflorescences--in the nightshades. From this context, we suggest general principles on how factors coordinating meristem maturation impact shoot organization more broadly.
Collapse
Affiliation(s)
- Soon Ju Park
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Yuval Eshed
- Weizmann Institute of Science, Department of Plant Sciences, Rehovot, Israel.
| | | |
Collapse
|
198
|
Todorovska E, Ivanova A, Ganeva D, Pevicharova G, Molle E, Bojinov B, Radkova M, Danailov Z. Assessment of genetic variation in Bulgarian tomato ( Solanum lycopersicum L.) genotypes, using fluorescent SSR genotyping platform. BIOTECHNOL BIOTEC EQ 2014; 28:68-76. [PMID: 26019490 PMCID: PMC4433931 DOI: 10.1080/13102818.2014.901683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Genetic variability in modern crops is limited due to domestication and selection processes. Genetic variation in eight Bulgarian tomato varieties and breeding lines (variety Plovdivska karotina, variety IZK Alya, L21β, L53β, L1140, L1116, L975, L984) differing in their morphological and biochemical composition was assessed using a highly efficient and low-cost fluorescent simple sequence repeat (SSR) genotyping platform. Genotyping was conducted with 165 publicly available microsatellite markers developed from different research groups under a number of projects in tomato (SOL Genomics SSRs, Kazusa TGS and TES, SLM, TMS and LEMDDNa) among which only five (3.03%) failed to amplify the expected PCR fragments. Of the remaining markers, 81 (50.62%) were polymorphic in the whole collection of eight genotypes. Among the marker groups used, SLM markers were most polymorphic, followed by TMS and SOL Genomics SSR markers. The total number of amplified alleles was 299, with a mean of 1.869; and the average polymorphic information content (PIC) was 0.196. The genetic diversity within the collection was relatively low (0.2222). Nei's genetic distance varied from 0.0953 to 0.3992. Cluster analysis using the un-weighted pair group method with arithmetic mean (UPGMA) method indicated that the studied tomato genotypes are grouped in four main clusters, which is to some extent consistent with the morpho- and hemo-types of the studied tomatoes. Variety IZK Alya (cherry type) and two of the breeding lines (L1140, L1116) formed three separate and more distant clusters. The fourth cluster includes the other five genotypes. The observed grouping of these genotypes in two sub-clusters reflects their similar morphological and biochemical composition. The genetic distance information from this study might be useful for further implementation of breeding strategies and crosses among these inbred lines.
Collapse
Affiliation(s)
| | - Albena Ivanova
- Agricultural Academy, AgroBioInstitute , Sofia , Bulgaria
| | - Daniela Ganeva
- Agricultural Academy, Maritsa Vegetable Crops Research Institute , Plovdiv , Bulgaria
| | - Galina Pevicharova
- Agricultural Academy, Maritsa Vegetable Crops Research Institute , Plovdiv , Bulgaria
| | - Emil Molle
- Faculty of Ecology and Landscape Architecture, University of Forestry, Sofia , Bulgaria
| | - Bojin Bojinov
- Faculty of Agronomy, Agricultural University, Plovdiv , Bulgaria
| | | | - Zhivko Danailov
- Bulgarian Academy of Sciences, Institute of Plant Physiology and Genetics , Sofia , Bulgaria
| |
Collapse
|
199
|
Bartlett ME, Thompson B. Meristem identity and phyllotaxis in inflorescence development. FRONTIERS IN PLANT SCIENCE 2014; 5:508. [PMID: 25352850 PMCID: PMC4196479 DOI: 10.3389/fpls.2014.00508] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 09/10/2014] [Indexed: 05/21/2023]
Abstract
Inflorescence morphology is incredibly diverse. This diversity of form has been a fruitful source of inquiry for plant morphologists for more than a century. Work in the grasses (Poaceae), the tomato family (Solanaceae), and Arabidopsis thaliana (Brassicaceae) has led to a richer understanding of the molecular genetics underlying this diversity. The character of individual meristems, a combination of the number (determinacy) and nature (identity) of the products a meristem produces, is key in the development of plant form. A framework that describes inflorescence development in terms of shifting meristem identities has emerged and garnered empirical support in a number of model systems. We discuss this framework and highlight one important aspect of meristem identity that is often considered in isolation, phyllotaxis. Phyllotaxis refers to the arrangement of lateral organs around a central axis. The development and evolution of phyllotaxis in the inflorescence remains underexplored, but recent work analyzing early inflorescence development in the grasses identified an evolutionary shift in primary branch phyllotaxis in the Pooideae. We discuss the evidence for an intimate connection between meristem identity and phyllotaxis in both the inflorescence and vegetative shoot, and touch on what is known about the establishment of phyllotactic patterns in the meristem. Localized auxin maxima are instrumental in determining the position of lateral primordia. Upstream factors that regulate the position of these maxima remain unclear, and how phyllotactic patterns change over the course of a plant's lifetime and evolutionary time, is largely unknown. A more complete understanding of the molecular underpinnings of phyllotaxis and architectural diversity in inflorescences will require capitalizing on the extensive resources available in existing genetic systems, and developing new model systems that more fully represent the diversity of plant morphology.
Collapse
Affiliation(s)
- Madelaine E. Bartlett
- Biology Department, University of Massachusetts AmherstAmherst, MA, USA
- *Correspondence:
| | - Beth Thompson
- Biology Department, East Carolina UniversityGreenville, NC, USA
| |
Collapse
|
200
|
Jiang K, Liberatore KL, Park SJ, Alvarez JP, Lippman ZB. Tomato yield heterosis is triggered by a dosage sensitivity of the florigen pathway that fine-tunes shoot architecture. PLoS Genet 2013; 9:e1004043. [PMID: 24385931 PMCID: PMC3873276 DOI: 10.1371/journal.pgen.1004043] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/06/2013] [Indexed: 12/22/2022] Open
Abstract
The superiority of hybrids has long been exploited in agriculture, and although many models explaining "heterosis" have been put forth, direct empirical support is limited. Particularly elusive have been cases of heterozygosity for single gene mutations causing heterosis under a genetic model known as overdominance. In tomato (Solanum lycopersicum), plants carrying mutations in SINGLE FLOWER TRUSS (SFT) encoding the flowering hormone florigen are severely delayed in flowering, become extremely large, and produce few flowers and fruits, but when heterozygous, yields are dramatically increased. Curiously, this overdominance is evident only in the background of "determinate" plants, in which the continuous production of side shoots and inflorescences gradually halts due to a defect in the flowering repressor SELF PRUNING (SP). How sp facilitates sft overdominance is unclear, but is thought to relate to the opposing functions these genes have on flowering time and shoot architecture. We show that sft mutant heterozygosity (sft/+) causes weak semi-dominant delays in flowering of both primary and side shoots. Using transcriptome sequencing of shoot meristems, we demonstrate that this delay begins before seedling meristems become reproductive, followed by delays in subsequent side shoot meristems that, in turn, postpone the arrest of shoot and inflorescence production. Reducing SFT levels in sp plants by artificial microRNAs recapitulates the dose-dependent modification of shoot and inflorescence production of sft/+ heterozygotes, confirming that fine-tuning levels of functional SFT transcripts provides a foundation for higher yields. Finally, we show that although flowering delays by florigen mutant heterozygosity are conserved in Arabidopsis, increased yield is not, likely because cyclical flowering is absent. We suggest sft heterozygosity triggers a yield improvement by optimizing plant architecture via its dosage response in the florigen pathway. Exploiting dosage sensitivity of florigen and its family members therefore provides a path to enhance productivity in other crops, but species-specific tuning will be required.
Collapse
Affiliation(s)
- Ke Jiang
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Katie L. Liberatore
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Soon Ju Park
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - John P. Alvarez
- Monash University, School of Biological Sciences, Clayton Campus, Melbourne, Victoria, Australia
| | - Zachary B. Lippman
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| |
Collapse
|