151
|
Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat Cell Biol 2019; 21:1518-1531. [PMID: 31792383 DOI: 10.1038/s41556-019-0423-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 10/24/2019] [Indexed: 12/20/2022]
Abstract
The first lineage specification of pluripotent mouse epiblast segregates neuroectoderm (NE) from mesoderm and definitive endoderm (ME) by mechanisms that are not well understood. Here we demonstrate that the induction of ME gene programs critically relies on the T-box transcription factors Eomesodermin (also known as Eomes) and Brachyury, which concomitantly repress pluripotency and NE gene programs. Cells deficient in these T-box transcription factors retain pluripotency and differentiate to NE lineages despite the presence of ME-inducing signals transforming growth factor β (TGF-β)/Nodal and Wnt. Pluripotency and NE gene networks are additionally repressed by ME factors downstream of T-box factor induction, demonstrating a redundancy in program regulation to safeguard mutually exclusive lineage specification. Analyses of chromatin revealed that accessibility of ME enhancers depends on T-box factor binding, whereas NE enhancers are accessible and already activation primed at pluripotency. This asymmetry of the chromatin landscape thus explains the default differentiation of pluripotent cells to NE in the absence of ME induction that depends on activating and repressive functions of Eomes and Brachyury.
Collapse
|
152
|
Payankaulam S, Raicu AM, Arnosti DN. Transcriptional Regulation of INSR, the Insulin Receptor Gene. Genes (Basel) 2019; 10:genes10120984. [PMID: 31795422 PMCID: PMC6947883 DOI: 10.3390/genes10120984] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/23/2019] [Indexed: 01/19/2023] Open
Abstract
The insulin receptor gene encodes an evolutionarily conserved signaling protein with a wide spectrum of functions in metazoan development. The insulin signaling pathway plays key roles in processes such as metabolic regulation, growth control, and neuronal function. Misregulation of the pathway features in diabetes, cancer, and neurodegenerative diseases, making it an important target for clinical interventions. While much attention has been focused on differential pathway activation through ligand availability, sensitization of overall signaling may also be mediated by differential expression of the insulin receptor itself. Although first characterized as a “housekeeping” gene with stable expression, comparative studies have shown that expression levels of the human INSR mRNA differ by tissue and in response to environmental signals. Our recent analysis of the transcriptional controls affecting expression of the Drosophila insulin receptor gene indicates that a remarkable amount of DNA is dedicated to encoding sophisticated feedback and feed forward signals. The human INSR gene is likely to contain a similar level of transcriptional complexity; here, we summarize over three decades of molecular biology and genetic research that points to a still incompletely understood regulatory control system. Further elucidation of transcriptional controls of INSR will provide the basis for understanding human genetic variation that underlies population-level physiological differences and disease.
Collapse
Affiliation(s)
- Sandhya Payankaulam
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd. 413 Biochemistry, East Lansing, MI 48824, USA;
| | - Ana-Maria Raicu
- Cell and Molecular Biology Program, Michigan State University, 603 Wilson Rd. 413 Biochemistry, East Lansing, MI 48824, USA;
| | - David N. Arnosti
- Department of Biochemistry and Molecular Biology, Michigan State University, 603 Wilson Rd. 413 Biochemistry, East Lansing, MI 48824, USA;
- Cell and Molecular Biology Program, Michigan State University, 603 Wilson Rd. 413 Biochemistry, East Lansing, MI 48824, USA;
- Correspondence: ; Tel.: +1-(517)-432-5504
| |
Collapse
|
153
|
Fowler JL, Ang LT, Loh KM. A critical look: Challenges in differentiating human pluripotent stem cells into desired cell types and organoids. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e368. [PMID: 31746148 DOI: 10.1002/wdev.368] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022]
Abstract
Too many choices can be problematic. This is certainly the case for human pluripotent stem cells (hPSCs): they harbor the potential to differentiate into hundreds of cell types; yet it is highly challenging to exclusively differentiate hPSCs into a single desired cell type. This review focuses on unresolved and fundamental questions regarding hPSC differentiation and critiquing the identity and purity of the resultant cell populations. These are timely issues in view of the fact that hPSC-derived cell populations have or are being transplanted into patients in over 30 ongoing clinical trials. While many in vitro differentiation protocols purport to "mimic development," the exact number and identity of intermediate steps that a pluripotent cell takes to differentiate into a given cell type in vivo remains largely unknown. Consequently, most differentiation efforts inevitably generate a heterogeneous cellular population, as revealed by single-cell RNA-sequencing and other analyses. The presence of unwanted cell types in differentiated hPSC populations does not portend well for transplantation therapies. This provides an impetus to precisely control differentiation to desired ends-for instance, by logically blocking the formation of unwanted cell types or by overexpressing lineage-specifying transcription factors-or by harnessing technologies to selectively purify desired cell types. Conversely, approaches to differentiate three-dimensional "organoids" from hPSCs intentionally generate heterogeneous cell populations. While this is intended to mimic the rich cellular diversity of developing tissues, whether all such organoids are spatially organized in a manner akin to native organs (and thus, whether they fully qualify as organoids) remains to be fully resolved. This article is categorized under: Adult Stem Cells > Tissue Renewal > Regeneration: Stem Cell Differentiation and Reversion Gene Expression > Transcriptional Hierarchies: Cellular Differentiation Early Embryonic Development: Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Jonas L Fowler
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California.,Department of Developmental Biology, Bio-X, Cancer Institute, Cardiovascular Institute, ChEM-H, Diabetes Research Center, Maternal & Child Health Research Institute, Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| | - Lay Teng Ang
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California
| | - Kyle M Loh
- Stanford Institute for Stem Cell Biology & Regenerative Medicine, Stanford-UC Berkeley Siebel Stem Cell Institute, Stanford University School of Medicine, Stanford, California.,Department of Developmental Biology, Bio-X, Cancer Institute, Cardiovascular Institute, ChEM-H, Diabetes Research Center, Maternal & Child Health Research Institute, Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
154
|
Okawa S, Del Sol A. A general computational approach to predicting synergistic transcriptional cores that determine cell subpopulation identities. Nucleic Acids Res 2019; 47:3333-3343. [PMID: 30820550 PMCID: PMC6468312 DOI: 10.1093/nar/gkz147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Advances in single-cell RNA-sequencing techniques reveal the existence of distinct cell subpopulations. Identification of transcription factors (TFs) that define the identity of these subpopulations poses a challenge. Here, we postulate that identity depends on background subpopulations, and is determined by a synergistic core combination of TFs mainly uniquely expressed in each subpopulation, but also TFs more broadly expressed across background subpopulations. Building on this view, we develop a new computational method for determining such synergistic identity cores of subpopulations within a given cell population. Our method utilizes an information-theoretic measure for quantifying transcriptional synergy, and implements a novel algorithm for searching for optimal synergistic cores. It requires only single-cell RNA-seq data as input, and does not rely on any prior knowledge of candidate genes or gene regulatory networks. Hence, it can be directly applied to any cellular systems, including those containing novel subpopulations. The method is capable of recapitulating known experimentally validated identity TFs in eight published single-cell RNA-seq datasets. Furthermore, some of these identity TFs are known to trigger cell conversions between subpopulations. Thus, this methodology can help design strategies for cell conversion within a cell population, guiding experimentalists in the field of stem cell research and regenerative medicine.
Collapse
Affiliation(s)
- Satoshi Okawa
- Integrated BioBank of Luxembourg, Dudelange L-3555, Luxembourg.,Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg
| | - Antonio Del Sol
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6, avenue du Swing, L-4367 Belvaux, Luxembourg.,CIC bioGUNE, Bizkaia Technology Park, 801 building, Derio 48160, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao 48013, Spain.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
155
|
Sweta S, Dudnakova T, Sudheer S, Baker AH, Bhushan R. Importance of Long Non-coding RNAs in the Development and Disease of Skeletal Muscle and Cardiovascular Lineages. Front Cell Dev Biol 2019; 7:228. [PMID: 31681761 PMCID: PMC6813187 DOI: 10.3389/fcell.2019.00228] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022] Open
Abstract
The early mammalian embryo is characterized by the presence of three germ layers-the outer ectoderm, middle mesoderm and inner endoderm. The mesoderm is organized into paraxial, intermediate and lateral plate mesoderm. The musculature, vasculature and heart of the adult body are the major derivatives of mesoderm. Tracing back the developmental process to generate these specialized tissues has sparked much interest in the field of regenerative medicine focusing on generating specialized tissues to treat patients with degenerative diseases. Several Long Non-Coding RNAs (lncRNAs) have been identified as regulators of development, proliferation and differentiation of various tissues of mesodermal origin. A better understanding of lncRNAs that can regulate the development of these tissues will open potential avenues for their therapeutic utility and enhance our knowledge about disease progression and development. In this review, we aim to summarize the functions and mechanisms of lncRNAs regulating the early mesoderm differentiation, development and homeostasis of skeletal muscle and cardiovascular system with an emphasis on their therapeutic potential.
Collapse
Affiliation(s)
- Sweta Sweta
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| | - Tatiana Dudnakova
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Smita Sudheer
- Department of Genomic Science, Central University of Kerala, Kasaragod, India
| | - Andrew H Baker
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Raghu Bhushan
- Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, India
| |
Collapse
|
156
|
Tran KA, Dillingham CM, Sridharan R. Coordinated removal of repressive epigenetic modifications during induced reversal of cell identity. EMBO J 2019; 38:e101681. [PMID: 31583744 DOI: 10.15252/embj.2019101681] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/03/2019] [Accepted: 09/12/2019] [Indexed: 01/20/2023] Open
Abstract
Epigenetic modifications operate in concert to maintain cell identity, yet how these interconnected networks suppress alternative cell fates remains unknown. Here, we uncover a link between the removal of repressive histone H3K9 methylation and DNA methylation during the reprogramming of somatic cells to pluripotency. The H3K9me2 demethylase, Kdm3b, transcriptionally controls DNA hydroxymethylase Tet1 expression. Unexpectedly, in the absence of Kdm3b, loci that must be DNA demethylated are trapped in an intermediate hydroxymethylated (5hmC) state and do not resolve to unmethylated cytosine. Ectopic 5hmC trapping precludes the chromatin association of master pluripotency factor, POU5F1, and pluripotent gene activation. Increased Tet1 expression is important for the later intermediates of the reprogramming process. Taken together, coordinated removal of distinct chromatin modifications appears to be an important mechanism for altering cell identity.
Collapse
Affiliation(s)
- Khoa A Tran
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Caleb M Dillingham
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
| | - Rupa Sridharan
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.,Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
157
|
Aragón E, Wang Q, Zou Y, Morgani SM, Ruiz L, Kaczmarska Z, Su J, Torner C, Tian L, Hu J, Shu W, Agrawal S, Gomes T, Márquez JA, Hadjantonakis AK, Macias MJ, Massagué J. Structural basis for distinct roles of SMAD2 and SMAD3 in FOXH1 pioneer-directed TGF-β signaling. Genes Dev 2019; 33:1506-1524. [PMID: 31582430 PMCID: PMC6824466 DOI: 10.1101/gad.330837.119] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023]
Abstract
TGF-β receptors phosphorylate SMAD2 and SMAD3 transcription factors, which then form heterotrimeric complexes with SMAD4 and cooperate with context-specific transcription factors to activate target genes. Here we provide biochemical and structural evidence showing that binding of SMAD2 to DNA depends on the conformation of the E3 insert, a structural element unique to SMAD2 and previously thought to render SMAD2 unable to bind DNA. Based on this finding, we further delineate TGF-β signal transduction by defining distinct roles for SMAD2 and SMAD3 with the forkhead pioneer factor FOXH1 as a partner in the regulation of differentiation genes in mouse mesendoderm precursors. FOXH1 is prebound to target sites in these loci and recruits SMAD3 independently of TGF-β signals, whereas SMAD2 remains predominantly cytoplasmic in the basal state and set to bind SMAD4 and join SMAD3:FOXH1 at target promoters in response to Nodal TGF-β signals. The results support a model in which signal-independent binding of SMAD3 and FOXH1 prime mesendoderm differentiation gene promoters for activation, and signal-driven SMAD2:SMAD4 binds to promoters that are preloaded with SMAD3:FOXH1 to activate transcription.
Collapse
Affiliation(s)
- Eric Aragón
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Qiong Wang
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yilong Zou
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Sophie M Morgani
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lidia Ruiz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | | | - Jie Su
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Carles Torner
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | - Lin Tian
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jing Hu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Weiping Shu
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Saloni Agrawal
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tiago Gomes
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain
| | | | | | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.,ICREA, 08010 Barcelona, Spain
| | - Joan Massagué
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
158
|
Gentsch GE, Spruce T, Owens NDL, Smith JC. Maternal pluripotency factors initiate extensive chromatin remodelling to predefine first response to inductive signals. Nat Commun 2019; 10:4269. [PMID: 31537794 PMCID: PMC6753111 DOI: 10.1038/s41467-019-12263-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 08/30/2019] [Indexed: 12/14/2022] Open
Abstract
Embryonic development yields many different cell types in response to just a few families of inductive signals. The property of signal-receiving cells that determines how they respond to inductive signals is known as competence, and it differs in different cell types. Here, we explore the ways in which maternal factors modify chromatin to specify initial competence in the frog Xenopus tropicalis. We identify early-engaged regulatory DNA sequences, and infer from them critical activators of the zygotic genome. Of these, we show that the pioneering activity of the maternal pluripotency factors Pou5f3 and Sox3 determines competence for germ layer formation by extensively remodelling compacted chromatin before the onset of inductive signalling. This remodelling includes the opening and marking of thousands of regulatory elements, extensive chromatin looping, and the co-recruitment of signal-mediating transcription factors. Our work identifies significant developmental principles that inform our understanding of how pluripotent stem cells interpret inductive signals.
Collapse
Affiliation(s)
- George E Gentsch
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| | - Thomas Spruce
- Centre for Genomic Regulation, Barcelona Institute for Science and Technology, 08003, Barcelona, Spain
| | - Nick D L Owens
- Department of Stem Cell and Developmental Biology, Pasteur Institute, 75015, Paris, France
| | - James C Smith
- Developmental Biology Laboratory, The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
159
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
160
|
Abstract
Cellular reprogramming experiments from somatic cell types have demonstrated the plasticity of terminally differentiated cell states. Recent efforts in understanding the mechanisms of cellular reprogramming have begun to elucidate the differentiation trajectories along the reprogramming processes. In this review, we focus mainly on direct reprogramming strategies by transcription factors and highlight the variables that contribute to cell fate conversion outcomes. We review key studies that shed light on the cellular and molecular mechanisms by investigating differentiation trajectories and alternative cell states as well as transcription factor regulatory activities during cell fate reprogramming. Finally, we highlight a few concepts that we believe require attention, particularly when measuring the success of cell reprogramming experiments.
Collapse
Affiliation(s)
- Begüm Aydin
- Department of Biology, New York University, New York, NY 10003, USA; .,Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| | - Esteban O Mazzoni
- Department of Biology, New York University, New York, NY 10003, USA; .,Neuroscience Institute, Department of Neuroscience and Physiology, NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
161
|
Flint Brodsly N, Bitman-Lotan E, Boico O, Shafat A, Monastirioti M, Gessler M, Delidakis C, Rincon-Arano H, Orian A. The transcription factor Hey and nuclear lamins specify and maintain cell identity. eLife 2019; 8:44745. [PMID: 31310235 PMCID: PMC6634966 DOI: 10.7554/elife.44745] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The inability of differentiated cells to maintain their identity is a hallmark of age-related diseases. We found that the transcription factor Hey supervises the identity of differentiated enterocytes (ECs) in the adult Drosophila midgut. Lineage tracing established that Hey-deficient ECs are unable to maintain their unique nuclear organization and identity. To supervise cell identity, Hey determines the expression of nuclear lamins, switching from a stem-cell lamin configuration to a differentiated lamin configuration. Moreover, continued Hey expression is required to conserve large-scale nuclear organization. During aging, Hey levels decline, and EC identity and gut homeostasis are impaired, including pathological reprograming and compromised gut integrity. These phenotypes are highly similar to those observed upon acute targeting of Hey or perturbation of lamin expression in ECs in young adults. Indeed, aging phenotypes were suppressed by continued expression of Hey in ECs, suggesting that a Hey-lamin network safeguards nuclear organization and differentiated cell identity.
Collapse
Affiliation(s)
- Naama Flint Brodsly
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eliya Bitman-Lotan
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Olga Boico
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Adi Shafat
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Maria Monastirioti
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Manfred Gessler
- Biocenter of Developmental Biochemistry, University of Würzburg, Würzburg, Germany
| | - Christos Delidakis
- Institute of Molecular Biology and Biotechnology (IMBB), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Hector Rincon-Arano
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Amir Orian
- Rappaport Research Institute and Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
162
|
van Mierlo G, Wester RA, Marks H. A Mass Spectrometry Survey of Chromatin-Associated Proteins in Pluripotency and Early Lineage Commitment. Proteomics 2019; 19:e1900047. [PMID: 31219242 DOI: 10.1002/pmic.201900047] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/07/2019] [Indexed: 12/12/2022]
Abstract
Pluripotency can be captured in vitro in the form of Embryonic Stem Cells (ESCs). These ESCs can be either maintained in the unrestricted "naïve" state of pluripotency, adapted to developmentally more constrained "primed" pluripotency or differentiated towards each of the three germ layers. Epigenetic protein complexes and transcription factors have been shown to specify and instruct transitions from ESCs to distinct cell states. In this study, proteomic profiling of the chromatin landscape by chromatin enrichment for proteomics (ChEP) is used in mouse naive pluripotent ESCs, primed pluripotent Epiblast stem cells (EpiSCs), and cells in early stages of differentiation. A comprehensive overview of epigenetic protein complexes associated with the chromatin is provided and proteins associated with the maintenance and loss of pluripotency are identified. The data reveal major compositional alterations of epigenetic complexes during priming and differentiation of naïve pluripotent ESCs. These results contribute to the understanding of ESC differentiation and provide a framework for future studies of lineage commitment of ESCs.
Collapse
Affiliation(s)
- Guido van Mierlo
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, 6525GA, The Netherlands.,Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Oncode Institute, Radboud University, Nijmegen, 6525GA, The Netherlands
| | - Roelof Alexander Wester
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, 6525GA, The Netherlands
| | - Hendrik Marks
- Department of Molecular Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University, Nijmegen, 6525GA, The Netherlands
| |
Collapse
|
163
|
Dvoriantchikova G, Seemungal RJ, Ivanov D. Development and epigenetic plasticity of murine Müller glia. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:1584-1594. [PMID: 31276697 DOI: 10.1016/j.bbamcr.2019.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 12/14/2022]
Abstract
The ability to regenerate the entire retina and restore lost sight after injury is found in some species and relies mostly on the epigenetic plasticity of Müller glia. To understand the role of mammalian Müller glia as a source of progenitors for retinal regeneration, we investigated changes in gene expression during differentiation of retinal progenitor cells (RPCs) into Müller glia and analyzed the global epigenetic profile of adult Müller glia. We observed significant changes in gene expression during differentiation of RPCs into Müller glia in only a small group of genes and found a high similarity between RPCs and Müller glia on the transcriptomic and epigenomic levels. Our findings also indicate that Müller glia are epigenetically very close to late-born retinal neurons, but not early-born retinal neurons. Importantly, we found that key genes required for phototransduction were highly methylated. Thus, our data suggest that Müller glia are epigenetically very similar to late RPCs; however, obstacles for regeneration of the entire mammalian retina from Müller glia may consist of repressive chromatin and highly methylated DNA in the promoter regions of many genes required for the development of early-born retinal neurons. In addition, DNA demethylation may be required for proper reprogramming and differentiation of Müller glia into rod photoreceptors.
Collapse
Affiliation(s)
- Galina Dvoriantchikova
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Rajeev J Seemungal
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Dmitry Ivanov
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| |
Collapse
|
164
|
Lai X, Stigliani A, Vachon G, Carles C, Smaczniak C, Zubieta C, Kaufmann K, Parcy F. Building Transcription Factor Binding Site Models to Understand Gene Regulation in Plants. MOLECULAR PLANT 2019; 12:743-763. [PMID: 30447332 DOI: 10.1016/j.molp.2018.10.010] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/20/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Transcription factors (TFs) are key cellular components that control gene expression. They recognize specific DNA sequences, the TF binding sites (TFBSs), and thus are targeted to specific regions of the genome where they can recruit transcriptional co-factors and/or chromatin regulators to fine-tune spatiotemporal gene regulation. Therefore, the identification of TFBSs in genomic sequences and their subsequent quantitative modeling is of crucial importance for understanding and predicting gene expression. Here, we review how TFBSs can be determined experimentally, how the TFBS models can be constructed in silico, and how they can be optimized by taking into account features such as position interdependence within TFBSs, DNA shape, and/or by introducing state-of-the-art computational algorithms such as deep learning methods. In addition, we discuss the integration of context variables into the TFBS modeling, including nucleosome positioning, chromatin states, methylation patterns, 3D genome architectures, and TF cooperative binding, in order to better predict TF binding under cellular contexts. Finally, we explore the possibilities of combining the optimized TFBS model with technological advances, such as targeted TFBS perturbation by CRISPR, to better understand gene regulation, evolution, and plant diversity.
Collapse
Affiliation(s)
- Xuelei Lai
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France.
| | - Arnaud Stigliani
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Gilles Vachon
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Cristel Carles
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Cezary Smaczniak
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Chloe Zubieta
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France
| | - Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - François Parcy
- CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG-LPCV, 38000 Grenoble, France.
| |
Collapse
|
165
|
Bejjani F, Evanno E, Zibara K, Piechaczyk M, Jariel-Encontre I. The AP-1 transcriptional complex: Local switch or remote command? Biochim Biophys Acta Rev Cancer 2019; 1872:11-23. [PMID: 31034924 DOI: 10.1016/j.bbcan.2019.04.003] [Citation(s) in RCA: 196] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/19/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022]
Abstract
The ubiquitous family of AP-1 dimeric transcription complexes is involved in virtually all cellular and physiological functions. It is paramount for cells to reprogram gene expression in response to cues of many sorts and is involved in many tumorigenic processes. How AP-1 controls gene transcription has largely remained elusive till recently. The advent of the "omics" technologies permitting genome-wide studies of transcription factors has however changed and improved our view of AP-1 mechanistical actions. If these studies confirm that AP-1 can sometimes act as a local transcriptional switch operating in the vicinity of transcription start sites (TSS), they strikingly indicate that AP-1 principally operates as a remote command binding to distal enhancers, placing chromatin architecture dynamics at the heart of its transcriptional actions. They also unveil novel constraints operating on AP-1, as well as novel mechanisms used to regulate gene expression via transcription-pioneering-, chromatin-remodeling- and chromatin accessibility maintenance effects.
Collapse
Affiliation(s)
- Fabienne Bejjani
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France; PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Emilie Evanno
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences - I, Lebanese University, Beirut, Lebanon
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| | - Isabelle Jariel-Encontre
- Equipe Labellisée Ligue Nationale contre le Cancer, Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
166
|
Chen L, Toke NH, Luo S, Vasoya RP, Fullem RL, Parthasarathy A, Perekatt AO, Verzi MP. A reinforcing HNF4-SMAD4 feed-forward module stabilizes enterocyte identity. Nat Genet 2019; 51:777-785. [PMID: 30988513 PMCID: PMC6650150 DOI: 10.1038/s41588-019-0384-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 02/28/2019] [Indexed: 12/30/2022]
Abstract
BMP/SMAD signaling is a crucial regulator of intestinal differentiation1–4. However, the molecular underpinnings of the BMP pathway in this context are unknown. Here, we characterize the mechanism by which BMP/SMAD signaling drives enterocyte differentiation. We establish that the transcription factor HNF4A acts redundantly with an intestine-restricted HNF4 paralog, HNF4G, to activate enhancer chromatin and upregulate the majority of transcripts enriched in the differentiated epithelium; cells fail to differentiate upon double knockout of both HNF4 paralogs. Furthermore, we show that SMAD4 and HNF4 function via a reinforcing feed-forward loop, activating each other’s expression and co-binding to regulatory elements of differentiation genes. This feed-forward regulatory module promotes and stabilizes enterocyte cell identity; disruption of the HNF4-SMAD4 module results in loss of enterocyte fate in favor of progenitor and secretory cell lineages. This intersection of signaling and transcriptional control provides a framework to understand regenerative tissue homeostasis, particularly in tissues with inherent cellular plasticity5.
Collapse
Affiliation(s)
- Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Natalie H Toke
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Shirley Luo
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Roshan P Vasoya
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Robert L Fullem
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Aditya Parthasarathy
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA
| | - Ansu O Perekatt
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
167
|
Liu T, Chen L, Zhao Z, Zhang S. Toward a Reconceptualization of Stem Cells from Cellular Plasticity. Int J Stem Cells 2019; 12:1-7. [PMID: 30836732 PMCID: PMC6457699 DOI: 10.15283/ijsc18096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
The slow progress in clinical applications of stem cells and the bewildering mechanisms involved have puzzled many researchers. Recently, the increasing evidences have indicated that cells have superior plasticity in vivo or in vitro, spontaneously or under extrinsic specific inducers. The concept of stem cells may be challenged, or even replaced by the concept of cell plasticity when cell reprogramming technology is progressing rapidly. The characteristics of stem cells are manifestations of cellular plasticity. Incorrect understanding of the concept of stem cells hinders the clinical application of so-called stem cells. Understanding cellular plasticity is important for understanding and treating disease. The above issues will be discussed in detail to prove the reconceptualization of stem cells from cellular plasticity.
Collapse
Affiliation(s)
- Tao Liu
- Department of Infectious Diseases, Navy No.971 Hospital (formerly known as No.401 Hospital) of Chinese PLA, Qingdao, China
| | - Li Chen
- Department of Obstetrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhongjian Zhao
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shichang Zhang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
168
|
Shimada M, Chen WY, Nakadai T, Onikubo T, Guermah M, Rhodes D, Roeder RG. Gene-Specific H1 Eviction through a Transcriptional Activator→p300→NAP1→H1 Pathway. Mol Cell 2019; 74:268-283.e5. [PMID: 30902546 DOI: 10.1016/j.molcel.2019.02.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/07/2019] [Accepted: 02/12/2019] [Indexed: 02/03/2023]
Abstract
Linker histone H1 has been correlated with transcriptional inhibition, but the mechanistic basis of the inhibition and its reversal during gene activation has remained enigmatic. We report that H1-compacted chromatin, reconstituted in vitro, blocks transcription by abrogating core histone modifications by p300 but not activator and p300 binding. Transcription from H1-bound chromatin is elicited by the H1 chaperone NAP1, which is recruited in a gene-specific manner through direct interactions with activator-bound p300 that facilitate core histone acetylation (by p300) and concomitant eviction of H1 and H2A-H2B. An analysis in B cells confirms the strong dependency on NAP1-mediated H1 eviction for induction of the silent CD40 gene and further demonstrates that H1 eviction, seeded by activator-p300-NAP1-H1 interactions, is propagated over a CCCTC-binding factor (CTCF)-demarcated region through a distinct mechanism that also involves NAP1. Our results confirm direct transcriptional inhibition by H1 and establish a gene-specific H1 eviction mechanism through an activator→p300→NAP1→H1 pathway.
Collapse
Affiliation(s)
- Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wei-Yi Chen
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA; Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 112, Taiwan; Cancer Progression Research Center, National Yang-Ming University, Taipei 112, Taiwan
| | - Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Takashi Onikubo
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Mohamed Guermah
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Daniela Rhodes
- NTU Institute of Structural Biology and School of Biological Sciences, Nanyang Technological University, Singapore 636921, Singapore
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
169
|
Kumar N, Tsai YH, Chen L, Zhou A, Banerjee KK, Saxena M, Huang S, Toke NH, Xing J, Shivdasani RA, Spence JR, Verzi MP. The lineage-specific transcription factor CDX2 navigates dynamic chromatin to control distinct stages of intestine development. Development 2019; 146:dev172189. [PMID: 30745430 PMCID: PMC6432663 DOI: 10.1242/dev.172189] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/30/2019] [Indexed: 12/11/2022]
Abstract
Lineage-restricted transcription factors, such as the intestine-specifying factor CDX2, often have dual requirements across developmental time. Embryonic loss of CDX2 triggers homeotic transformation of intestinal fate, whereas adult-onset loss compromises crucial physiological functions but preserves intestinal identity. It is unclear how such diverse requirements are executed across the developmental continuum. Using primary and engineered human tissues, mouse genetics, and a multi-omics approach, we demonstrate that divergent CDX2 loss-of-function phenotypes in embryonic versus adult intestines correspond to divergent CDX2 chromatin-binding profiles in embryonic versus adult stages. CDX2 binds and activates distinct target genes in developing versus adult mouse and human intestinal cells. We find that temporal shifts in chromatin accessibility correspond to these context-specific CDX2 activities. Thus, CDX2 is not sufficient to activate a mature intestinal program; rather, CDX2 responds to its environment, targeting stage-specific genes to contribute to either intestinal patterning or mature intestinal function. This study provides insights into the mechanisms through which lineage-specific regulatory factors achieve divergent functions over developmental time.
Collapse
Affiliation(s)
- Namit Kumar
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Yu-Hwai Tsai
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lei Chen
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Anbo Zhou
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Kushal K Banerjee
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Madhurima Saxena
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Sha Huang
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natalie H Toke
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| | - Ramesh A Shivdasani
- Department of Medical Oncology and Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02215, USA
- Harvard Stem Cell Institute, Cambridge, MA 02139, USA
| | - Jason R Spence
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Organogenesis, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI 48109, USA
| | - Michael P Verzi
- Rutgers, the State University of New Jersey, Department of Genetics, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, and Human Genetics Institute of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
170
|
Abstract
SOX transcription factors participate in the specification, differentiation and activities of many cell types in development and beyond. The 20 mammalian family members are distributed into eight groups based on sequence identity, and while co-expressed same-group proteins often have redundant functions, different-group proteins typically have distinct functions. More than a handful of SOX proteins have pivotal roles in skeletogenesis. Heterozygous mutations in their genes cause human diseases, in which skeletal dysmorphism is a major feature, such as campomelic dysplasia (SOX9), or a minor feature, such as LAMSHF syndrome (SOX5) and Coffin-Siris-like syndromes (SOX4 and SOX11). Loss- and gain-of-function experiments in animal models have revealed that SOX4 and SOX11 (SOXC group) promote skeletal progenitor survival and control skeleton patterning and growth; SOX8 (SOXE group) delays the differentiation of osteoblast progenitors; SOX9 (SOXE group) is essential for chondrocyte fate maintenance and differentiation, and works in cooperation with SOX5 and SOX6 (SOXD group) and other types of transcription factors. These and other SOX proteins have also been proposed, mainly through in vitro experiments, to have key roles in other aspects of skeletogenesis, such as SOX2 in osteoblast stem cell self-renewal. We here review current knowledge of well-established and proposed skeletogenic roles of SOX proteins, their transcriptional and non-transcriptional actions, and their modes of regulation at the gene, RNA and protein levels. We also discuss gaps in knowledge and directions for future research to further decipher mechanisms underlying skeletogenesis in health and diseases and identify treatment options for skeletal malformation and degeneration diseases.
Collapse
Affiliation(s)
- Véronique Lefebvre
- The Children's Hospital of Philadelphia, Philadelphia, PA, United States.
| |
Collapse
|
171
|
McDaniel SL, Gibson TJ, Schulz KN, Fernandez Garcia M, Nevil M, Jain SU, Lewis PW, Zaret KS, Harrison MM. Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation. Mol Cell 2019; 74:185-195.e4. [PMID: 30797686 DOI: 10.1016/j.molcel.2019.01.014] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/10/2018] [Accepted: 01/08/2019] [Indexed: 02/08/2023]
Abstract
Reprogramming cell fate during the first stages of embryogenesis requires that transcriptional activators gain access to the genome and remodel the zygotic transcriptome. Nonetheless, it is not clear whether the continued activity of these pioneering factors is required throughout zygotic genome activation or whether they are only required early to establish cis-regulatory regions. To address this question, we developed an optogenetic strategy to rapidly and reversibly inactivate the master regulator of genome activation in Drosophila, Zelda. Using this strategy, we demonstrate that continued Zelda activity is required throughout genome activation. We show that Zelda binds DNA in the context of nucleosomes and suggest that this allows Zelda to occupy the genome despite the rapid division cycles in the early embryo. These data identify a powerful strategy to inactivate transcription factor function during development and suggest that reprogramming in the embryo may require specific, continuous pioneering functions to activate the genome.
Collapse
Affiliation(s)
- Stephen L McDaniel
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706, USA
| | - Tyler J Gibson
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706, USA
| | - Katharine N Schulz
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706, USA
| | - Meilin Fernandez Garcia
- Institute for Regenerative Medicine and Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Markus Nevil
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706, USA
| | - Siddhant U Jain
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706, USA
| | - Peter W Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison WI 53706, USA.
| |
Collapse
|
172
|
Biddle JW, Nguyen M, Gunawardena J. Negative reciprocity, not ordered assembly, underlies the interaction of Sox2 and Oct4 on DNA. eLife 2019; 8:41017. [PMID: 30762521 PMCID: PMC6375704 DOI: 10.7554/elife.41017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/13/2019] [Indexed: 01/30/2023] Open
Abstract
The mode of interaction of transcription factors (TFs) on eukaryotic genomes remains a matter of debate. Single-molecule data in living cells for the TFs Sox2 and Oct4 were previously interpreted as evidence of ordered assembly on DNA. However, the quantity that was calculated does not determine binding order but, rather, energy expenditure away from thermodynamic equilibrium. Here, we undertake a rigorous biophysical analysis which leads to the concept of reciprocity. The single-molecule data imply that Sox2 and Oct4 exhibit negative reciprocity, with expression of Sox2 increasing Oct4’s genomic binding but expression of Oct4 decreasing Sox2’s binding. Models show that negative reciprocity can arise either from energy expenditure or from a mixture of positive and negative cooperativity at distinct genomic loci. Both possibilities imply unexpected complexity in how TFs interact on DNA, for which single-molecule methods provide novel detection capabilities. The bodies of humans and other animals contain many types of cells that perform different roles in the body. Most cells in the body carry the same DNA, which is arranged into sections known as genes. The marked differences between cell types arise because different sets of genes are switched on or ‘expressed’. Proteins called transcription factors control which genes are expressed by binding to DNA and recruiting groups of accessory proteins. However, it is not clear how they interact with each other and with the accessory proteins to decide whether to express a gene. For instance, it is thought that some accessory proteins may provide energy for this process, but it is unknown whether the energy is used continuously or only for a short time. Insights from physics suggest that the former could have more powerful effects. In 2014, a team of researchers reported using a microscopy approach, known as single-molecule imaging, to follow two transcription factors called Sox2 and Oct4 in cells from mice. After analyzing the data, the researchers concluded that Sox2 and Oct4 had a specific order of binding to DNA, with Sox2 often binding first and then assisting Oct4 to bind. Now Biddle et al. report that the claim made in the 2014 study is unsupported because of errors in the way the data were analyzed. In particular, Biddle et al. argue that what the earlier study actually calculated is not an order of binding but a measure of whether energy is being continuously used when Sox2 and Oct4 bind to DNA. Biddle et al. reanalyzed the data from the 2014 work and concluded that Sox2 increases the extent of Oct4 binding to DNA, while Oct4 decreases the amount of Sox2 binding to DNA. Mathematical models suggest this may be due to the continuous use of energy as the two proteins bind to DNA. Alternatively, it could also happen if Sox2 and Oct4 helped each other to bind at some sites on DNA and hindered each other from binding in other places, even if energy is only used for a short time. These findings reveal that there is unexpected complexity in how transcription factors bind to DNA. The next step following on from this work is to carry out experiments that test the two possible explanations for how Sox2 and Oct4 interact on DNA. Including physics in the analysis may help describe more accurately the biology of how transcription factors determine gene expression. Understanding this process will shed new light on many important biological questions and may aid the development of gene therapy and other new medical techniques.
Collapse
Affiliation(s)
- John W Biddle
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Maximilian Nguyen
- Department of Systems Biology, Harvard Medical School, Boston, United States
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
173
|
Veil M, Yampolsky LY, Grüning B, Onichtchouk D. Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation. Genome Res 2019; 29:383-395. [PMID: 30674556 PMCID: PMC6396415 DOI: 10.1101/gr.240572.118] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 01/16/2019] [Indexed: 12/16/2022]
Abstract
The zebrafish embryo is transcriptionally mostly quiescent during the first 10 cell cycles, until the main wave of zygotic genome activation (ZGA) occurs, accompanied by fast chromatin remodeling. At ZGA, homologs of the mammalian stem cell transcription factors (TFs) Pou5f3, Nanog, and Sox19b bind to thousands of developmental enhancers to initiate transcription. So far, how these TFs influence chromatin dynamics at ZGA has remained unresolved. To address this question, we analyzed nucleosome positions in wild-type and maternal-zygotic (MZ) mutants for pou5f3 and nanog by MNase-seq. We show that Nanog, Sox19b, and Pou5f3 bind to the high nucleosome affinity regions (HNARs). HNARs are spanning over 600 bp, featuring high in vivo and predicted in vitro nucleosome occupancy and high predicted propeller twist DNA shape value. We suggest a two-step nucleosome destabilization-depletion model, in which the same intrinsic DNA properties of HNAR promote both high nucleosome occupancy and differential binding of TFs. In the first step, already before ZGA, Pou5f3 and Nanog destabilize nucleosomes at HNAR centers genome-wide. In the second step, post-ZGA, Nanog, Pou5f3, and SoxB1 maintain open chromatin state on the subset of HNARs, acting synergistically. Nanog binds to the HNAR center, whereas the Pou5f3 stabilizes the flanks. The HNAR model will provide a useful tool for genome regulatory studies in a variety of biological systems.
Collapse
Affiliation(s)
- Marina Veil
- Department of Developmental Biology, Institute of Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104, Freiburg, Germany
| | - Lev Y Yampolsky
- Department of Biological Sciences, East Tennessee State University, Johnson City, Tennessee 37614-1710, USA.,Zoological Institute, Basel University, Basel, CH-4051 Switzerland
| | - Björn Grüning
- Department of Computer Science, Albert Ludwigs University of Freiburg, 79110, Freiburg, Germany.,Center for Biological Systems Analysis (ZBSA), University of Freiburg, 79104, Freiburg, Germany
| | - Daria Onichtchouk
- Department of Developmental Biology, Institute of Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104, Freiburg, Germany.,Signalling Research centers BIOSS and CIBSS, 79104, Freiburg, Germany.,Institute of Developmental Biology RAS, 119991 Moscow, Russia
| |
Collapse
|
174
|
DNA methylation in mice is influenced by genetics as well as sex and life experience. Nat Commun 2019; 10:305. [PMID: 30659182 PMCID: PMC6338756 DOI: 10.1038/s41467-018-08067-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 11/15/2018] [Indexed: 12/31/2022] Open
Abstract
DNA methylation is an essential epigenetic process in mammals, intimately involved in gene regulation. Here we address the extent to which genetics, sex, and pregnancy influence genomic DNA methylation by intercrossing 2 inbred mouse strains, C57BL/6N and C3H/HeN, and analyzing DNA methylation in parents and offspring using whole-genome bisulfite sequencing. Differential methylation across genotype is detected at thousands of loci and is preserved on parental alleles in offspring. In comparison of autosomal DNA methylation patterns across sex, hundreds of differentially methylated regions are detected. Comparison of animals with different histories of pregnancy within our study reveals a CpG methylation pattern that is restricted to female animals that had borne offspring. Collectively, our results demonstrate the stability of CpG methylation across generations, clarify the interplay of epigenetics with genetics and sex, and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology. DNA methylation is an epigenetic mark involved in gene regulation. Here the authors investigate the extent to which genetics, sex and pregnancy influence genomic DNA methylation in mice, providing evidence of the stability of CpG methylation across generation and suggest that CpG methylation may serve as an epigenetic record of life events in somatic tissues at loci whose expression is linked to the relevant biology.
Collapse
|
175
|
Young M, Selleri L, Capellini TD. Genetics of scapula and pelvis development: An evolutionary perspective. Curr Top Dev Biol 2019; 132:311-349. [PMID: 30797513 PMCID: PMC6430119 DOI: 10.1016/bs.ctdb.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In tetrapods, the scapular and pelvic girdles perform the important function of anchoring the limbs to the trunk of the body and facilitating the movement of each appendage. This shared function, however, is one of relatively few similarities between the scapula and pelvis, which have significantly different morphologies, evolutionary histories, embryonic origins, and underlying genetic pathways. The scapula evolved in jawless fish prior to the pelvis, and its embryonic development is unique among bones in that it is derived from multiple progenitor cell populations, including the dermomyotome, somatopleure, and neural crest. Conversely, the pelvis evolved several million years later in jawed fish, and it develops from an embryonic somatopleuric cell population. The genetic networks controlling the formation of the pelvis and scapula also share similarities and differences, with a number of genes shaping only one or the other, while other gene products such as PBX transcription factors act as hierarchical developmental regulators of both girdle structures. Here, we provide a detailed review of the cellular processes and genetic networks underlying pelvis and scapula formation in tetrapods, while also highlighting unanswered questions about girdle evolution and development.
Collapse
Affiliation(s)
- Mariel Young
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States; Program in Craniofacial Biology, Department of Anatomy, Eli and Edythe Broad Center of Regeneration Medicine & Stem Cell Research, University of California, Institute of Human Genetics, San Francisco, CA, United States.
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States; Broad Institute of Harvard and MIT, Cambridge, MA, United States.
| |
Collapse
|
176
|
Abstract
The essential liver exocrine and endocrine functions require a precise spatial arrangement of the hepatic lobule consisting of the central vein, portal vein, hepatic artery, intrahepatic bile duct system, and hepatocyte zonation. This allows blood to be carried through the liver parenchyma sampled by all hepatocytes and bile produced by the hepatocytes to be carried out of the liver through the intrahepatic bile duct system composed of cholangiocytes. The molecular orchestration of multiple signaling pathways and epigenetic factors is required to set up lineage restriction of the bipotential hepatoblast progenitor into the hepatocyte and cholangiocyte cell lineages, and to further refine cell fate heterogeneity within each cell lineage reflected in the functional heterogeneity of hepatocytes and cholangiocytes. In addition to the complex molecular regulation, there is a complicated morphogenetic choreography observed in building the refined hepatic epithelial architecture. Given the multifaceted molecular and cellular regulation, it is not surprising that impairment of any of these processes can result in acute and chronic hepatobiliary diseases. To enlighten the development of potential molecular and cellular targets for therapeutic options, an understanding of how the intricate hepatic molecular and cellular interactions are regulated is imperative. Here, we review the signaling pathways and epigenetic factors regulating hepatic cell lineages, fates, and epithelial architecture.
Collapse
Affiliation(s)
- Stacey S Huppert
- Division of Gastroenterology, Hepatology & Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
| | - Makiko Iwafuchi-Doi
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
177
|
Quintana-Urzainqui I, Kozić Z, Mitra S, Tian T, Manuel M, Mason JO, Price DJ. Tissue-Specific Actions of Pax6 on Proliferation and Differentiation Balance in Developing Forebrain Are Foxg1 Dependent. iScience 2018; 10:171-191. [PMID: 30529950 PMCID: PMC6287089 DOI: 10.1016/j.isci.2018.11.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/02/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Differences in the growth and maturation of diverse forebrain tissues depend on region-specific transcriptional regulation. Individual transcription factors act simultaneously in multiple regions that develop very differently, raising questions about the extent to which their actions vary regionally. We found that the transcription factor Pax6 affects the transcriptomes and the balance between proliferation and differentiation in opposite directions in the diencephalon versus cerebral cortex. We tested several possible mechanisms to explain Pax6's tissue-specific actions and found that the presence of the transcription factor Foxg1 in the cortex but not in the diencephalon was most influential. We found that Foxg1 is responsible for many of the differences in cell cycle gene expression between the diencephalon and cortex and, in cortex lacking Foxg1, Pax6's action on the balance of proliferation versus differentiation becomes diencephalon like. Our findings reveal a mechanism for generating regional forebrain diversity in which one transcription factor completely reverses the actions of another.
Collapse
Affiliation(s)
- Idoia Quintana-Urzainqui
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.
| | - Zrinko Kozić
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Soham Mitra
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Tian Tian
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Martine Manuel
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - John O Mason
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - David J Price
- Simons Initiative for the Developing Brain, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| |
Collapse
|
178
|
Direct Single-Molecule Observation of Sequential DNA Bending Transitions by the Sox2 HMG Box. Int J Mol Sci 2018; 19:ijms19123865. [PMID: 30518054 PMCID: PMC6321608 DOI: 10.3390/ijms19123865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/07/2018] [Accepted: 11/30/2018] [Indexed: 12/12/2022] Open
Abstract
Sox2 is a pioneer transcription factor that initiates cell fate reprogramming through locus-specific differential regulation. Mechanistically, it was assumed that Sox2 achieves its regulatory diversity via heterodimerization with partner transcription factors. Here, utilizing single-molecule fluorescence spectroscopy, we show that Sox2 alone can modulate DNA structural landscape in a dosage-dependent manner. We propose that such stoichiometric tuning of regulatory DNAs is crucial to the diverse biological functions of Sox2, and represents a generic mechanism of conferring functional plasticity and multiplicity to transcription factors.
Collapse
|
179
|
Vierbuchen T, Ling E, Cowley CJ, Couch CH, Wang X, Harmin DA, Roberts CWM, Greenberg ME. AP-1 Transcription Factors and the BAF Complex Mediate Signal-Dependent Enhancer Selection. Mol Cell 2018; 68:1067-1082.e12. [PMID: 29272704 DOI: 10.1016/j.molcel.2017.11.026] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 09/16/2017] [Accepted: 11/17/2017] [Indexed: 02/08/2023]
Abstract
Enhancer elements are genomic regulatory sequences that direct the selective expression of genes so that genetically identical cells can differentiate and acquire the highly specialized forms and functions required to build a functioning animal. To differentiate, cells must select from among the ∼106 enhancers encoded in the genome the thousands of enhancers that drive the gene programs that impart their distinct features. We used a genetic approach to identify transcription factors (TFs) required for enhancer selection in fibroblasts. This revealed that the broadly expressed, growth-factor-inducible TFs FOS/JUN (AP-1) play a central role in enhancer selection. FOS/JUN selects enhancers together with cell-type-specific TFs by collaboratively binding to nucleosomal enhancers and recruiting the SWI/SNF (BAF) chromatin remodeling complex to establish accessible chromatin. These experiments demonstrate how environmental signals acting via FOS/JUN and BAF coordinate with cell-type-specific TFs to select enhancer repertoires that enable differentiation during development.
Collapse
Affiliation(s)
- Thomas Vierbuchen
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| | - Emi Ling
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher J Cowley
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Cameron H Couch
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaofeng Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David A Harmin
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Charles W M Roberts
- Comprehensive Cancer Center and Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
180
|
Lancho O, Herranz D. The MYC Enhancer-ome: Long-Range Transcriptional Regulation of MYC in Cancer. Trends Cancer 2018; 4:810-822. [PMID: 30470303 DOI: 10.1016/j.trecan.2018.10.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
MYC is one of the most important oncogenes in cancer. Indeed, MYC is upregulated in 50-60% of all tumors. MYC overexpression can be achieved through a variety of mechanisms, including gene duplications, chromosomal translocations, or somatic mutations leading to increased MYC stability. However, recent studies have identified numerous tissue-specific noncoding enhancers of MYC that play major roles in cancer, highlighting long-range transcriptional regulation of MYC as a critical novel mechanism leading to MYC hyperactivation and as a potential target for new therapeutic strategies in the near future. Here we summarize the regions and mechanisms involved in the long-range transcriptional regulation of MYC, underscoring the relevance of MYC enhancers both in normal physiological development and in MYC-driven cancer initiation and progression.
Collapse
Affiliation(s)
- Olga Lancho
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Daniel Herranz
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
181
|
Mishra LN, Hayes JJ. A nucleosome-free region locally abrogates histone H1-dependent restriction of linker DNA accessibility in chromatin. J Biol Chem 2018; 293:19191-19200. [PMID: 30373774 DOI: 10.1074/jbc.ra118.005721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/16/2018] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic genomes are packaged into linker-oligonucleosome assemblies, providing compaction of genomic DNA and contributing to gene regulation and genome integrity. To define minimal requirements for initial steps in the transition of compact, closed chromatin to a transcriptionally active, open state, we developed a model in vitro system containing a single, unique, "target" nucleosome in the center of a 25-nucleosome array and evaluated the accessibility of the linker DNA adjacent to this target nucleosome. We found that condensation of H1-lacking chromatin results in ∼60-fold reduction in linker DNA accessibility and that mimics of acetylation within all four core histone tail domains of the target nucleosome synergize to increase accessibility ∼3-fold. Notably, stoichiometric binding of histone H1 caused >2 orders of magnitude reduction in accessibility that was marginally diminished by histone acetylation mimics. Remarkably, a nucleosome-free region (NFR) in place of the target nucleosome completely abrogated H1-dependent restriction of linker accessibility in the immediate vicinity of the NFR. Our results suggest that linker DNA is as inaccessible as DNA within the nucleosome core in fully condensed, H1-containing chromatin. They further imply that an unrecognized function of NFRs in gene promoter regions is to locally abrogate the severe restriction of linker DNA accessibility imposed by H1s.
Collapse
Affiliation(s)
- Laxmi Narayan Mishra
- From the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Jeffrey J Hayes
- From the Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
182
|
Bellec M, Radulescu O, Lagha M. Remembering the past: Mitotic bookmarking in a developing embryo. ACTA ACUST UNITED AC 2018; 11:41-49. [PMID: 30417158 PMCID: PMC6218673 DOI: 10.1016/j.coisb.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
During development, transcriptional properties of progenitor cells are stably propagated across multiple cellular divisions. Yet, at each division, chromatin faces structural constraints imposed by the important nuclear re-organization operating during mitosis. It is now clear that not all transcriptional regulators are ejected during mitosis, but rather that a subset of transcription factors, chromatin regulators and epigenetic histone marks are able to ‘bookmark’ specific loci, thereby providing a mitotic memory. Here we review mechanisms of mitotic bookmarking and discuss their impact on transcriptional dynamics in the context of multicellular developing embryos. We document recent discoveries and technological advances, and present current mathematical models of short-term transcriptional memory. Mitotically retained factors are able to ‘bookmark’ specific loci during embryogenesis. Mitotic bookmarking can elicit rapid post-mitotic transcriptional re-activation. Mathematical models relating transcriptional memory predict that efficient memory requires slow dynamics. Mitotic memory leads to a spectrum of consequences: stability, flexibility or plasticity.
Collapse
Affiliation(s)
- Maelle Bellec
- Institut de Genetique Moleculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Ovidiu Radulescu
- DIMNP, UMR CNRS 5235, University of Montpellier, Montpellier, France
| | - Mounia Lagha
- Institut de Genetique Moleculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Corresponding author: Lagha, Mounia
| |
Collapse
|
183
|
Venkatesh I, Mehra V, Wang Z, Califf B, Blackmore MG. Developmental Chromatin Restriction of Pro-Growth Gene Networks Acts as an Epigenetic Barrier to Axon Regeneration in Cortical Neurons. Dev Neurobiol 2018; 78:960-977. [PMID: 29786967 PMCID: PMC6204296 DOI: 10.1002/dneu.22605] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/21/2022]
Abstract
Axon regeneration in the central nervous system is prevented in part by a developmental decline in the intrinsic regenerative ability of maturing neurons. This loss of axon growth ability likely reflects widespread changes in gene expression, but the mechanisms that drive this shift remain unclear. Chromatin accessibility has emerged as a key regulatory mechanism in other cellular contexts, raising the possibility that chromatin structure may contribute to the age-dependent loss of regenerative potential. Here we establish an integrated bioinformatic pipeline that combines analysis of developmentally dynamic gene networks with transcription factor regulation and genome-wide maps of chromatin accessibility. When applied to the developing cortex, this pipeline detected overall closure of chromatin in sub-networks of genes associated with axon growth. We next analyzed mature CNS neurons that were supplied with various pro-regenerative transcription factors. Unlike prior results with SOX11 and KLF7, here we found that neither JUN nor an activated form of STAT3 promoted substantial corticospinal tract regeneration. Correspondingly, chromatin accessibility in JUN or STAT3 target genes was substantially lower than in predicted targets of SOX11 and KLF7. Finally, we used the pipeline to predict pioneer factors that could potentially relieve chromatin constraints at growth-associated loci. Overall this integrated analysis substantiates the hypothesis that dynamic chromatin accessibility contributes to the developmental decline in axon growth ability and influences the efficacy of pro-regenerative interventions in the adult, while also pointing toward selected pioneer factors as high-priority candidates for future combinatorial experiments. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 00: 000-000, 2018.
Collapse
Affiliation(s)
| | - Vatsal Mehra
- Department of Biomedical Sciences, Marquette University, 53201
| | - Zimei Wang
- Department of Biomedical Sciences, Marquette University, 53201
| | | | | |
Collapse
|
184
|
El-Dahr SS, Saifudeen Z. Epigenetic regulation of renal development. Semin Cell Dev Biol 2018; 91:111-118. [PMID: 30172047 DOI: 10.1016/j.semcdb.2018.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/19/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
Developmental changes in cell fate are tightly regulated by cell-type specific transcription factors. Chromatin reorganization during organismal development ensures dynamic access of developmental regulators to their cognate DNA sequences. Thus, understanding the epigenomic states of promoters and enhancers is of key importance. Recent years have witnessed significant advances in our knowledge of the transcriptional mechanisms of kidney development. Emerging evidence suggests that histone deacetylation by class I HDACs and H3 methylation on lysines 4, 27 and 79 play important roles in regulation of early and late gene expression in the developing kidney. Equally exciting is the realization that nephrogenesis genes in mesenchymal nephron progenitors harbor bivalent chromatin domains which resolve upon differentiation implicating chromatin bivalency in developmental control of gene expression. Here, we review current knowledge of the epigenomic states of nephric cells and current techniques used to study the dynamic chromatin states. These technological advances will provide an unprecedented view of the enhancer landscape during cell fate commitment and help in defining the complex transcriptional networks governing kidney development and disease.
Collapse
Affiliation(s)
- Samir S El-Dahr
- Tulane University School of Medicine, 1430 Tulane Avenue, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA, 70112, USA.
| | - Zubaida Saifudeen
- Tulane University School of Medicine, 1430 Tulane Avenue, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA, 70112, USA.
| |
Collapse
|
185
|
Lu YL, Yoo AS. Mechanistic Insights Into MicroRNA-Induced Neuronal Reprogramming of Human Adult Fibroblasts. Front Neurosci 2018; 12:522. [PMID: 30116172 PMCID: PMC6083049 DOI: 10.3389/fnins.2018.00522] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 07/12/2018] [Indexed: 12/16/2022] Open
Abstract
The use of transcriptional factors as cell fate regulators are often the primary focus in the direct reprogramming of somatic cells into neurons. However, in human adult fibroblasts, deriving functionally mature neurons with high efficiency requires additional neurogenic factors such as microRNAs (miRNAs) to evoke a neuronal state permissive to transcription factors to exert their reprogramming activities. As such, increasing evidence suggests brain-enriched miRNAs, miR-9/9∗ and miR-124, as potent neurogenic molecules through simultaneously targeting of anti-neurogenic effectors while allowing additional transcription factors to generate specific subtypes of human neurons. In this review, we will focus on methods that utilize neuronal miRNAs and provide mechanistic insights by which neuronal miRNAs, in synergism with brain-region specific transcription factors, drive the conversion of human fibroblasts into clinically relevant subtypes of neurons. Furthermore, we will provide insights into the age signature of directly converted neurons and how the converted human neurons can be utilized to model late-onset neurodegenerative disorders.
Collapse
Affiliation(s)
- Ya-Lin Lu
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States.,Program in Developmental, Regenerative and Stem Cell Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Andrew S Yoo
- Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
186
|
Lai X, Verhage L, Hugouvieux V, Zubieta C. Pioneer Factors in Animals and Plants-Colonizing Chromatin for Gene Regulation. Molecules 2018; 23:E1914. [PMID: 30065231 PMCID: PMC6222629 DOI: 10.3390/molecules23081914] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 01/08/2023] Open
Abstract
Unlike most transcription factors (TF), pioneer TFs have a specialized role in binding closed regions of chromatin and initiating the subsequent opening of these regions. Thus, pioneer TFs are key factors in gene regulation with critical roles in developmental transitions, including organ biogenesis, tissue development, and cellular differentiation. These developmental events involve some major reprogramming of gene expression patterns, specifically the opening and closing of distinct chromatin regions. Here, we discuss how pioneer TFs are identified using biochemical and genome-wide techniques. What is known about pioneer TFs from animals and plants is reviewed, with a focus on the strategies used by pioneer factors in different organisms. Finally, the different molecular mechanisms pioneer factors used are discussed, highlighting the roles that tertiary and quaternary structures play in nucleosome-compatible DNA-binding.
Collapse
Affiliation(s)
- Xuelei Lai
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Leonie Verhage
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Veronique Hugouvieux
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, CNRS, Univ. Grenoble Alpes, CEA, INRA, BIG, 38000 Grenoble, France.
| |
Collapse
|
187
|
Liu CF, Angelozzi M, Haseeb A, Lefebvre V. SOX9 is dispensable for the initiation of epigenetic remodeling and the activation of marker genes at the onset of chondrogenesis. Development 2018; 145:dev164459. [PMID: 30021842 PMCID: PMC6078338 DOI: 10.1242/dev.164459] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
Abstract
SOX9 controls cell lineage fate and differentiation in major biological processes. It is known as a potent transcriptional activator of differentiation-specific genes, but its earliest targets and its contribution to priming chromatin for gene activation remain unknown. Here, we address this knowledge gap using chondrogenesis as a model system. By profiling the whole transcriptome and the whole epigenome of wild-type and Sox9-deficient mouse embryo limb buds, we uncover multiple structural and regulatory genes, including Fam101a, Myh14, Sema3c and Sema3d, as specific markers of precartilaginous condensation, and we provide evidence of their direct transactivation by SOX9. Intriguingly, we find that SOX9 helps remove epigenetic signatures of transcriptional repression and establish active-promoter and active-enhancer marks at precartilage- and cartilage-specific loci, but is not absolutely required to initiate these changes and activate transcription. Altogether, these findings widen our current knowledge of SOX9 targets in early chondrogenesis and call for new studies to identify the pioneer and transactivating factors that act upstream of or along with SOX9 to prompt chromatin remodeling and specific gene activation at the onset of chondrogenesis and other processes.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Marco Angelozzi
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Abdul Haseeb
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| | - Véronique Lefebvre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA
| |
Collapse
|
188
|
Fagnocchi L, Poli V, Zippo A. Enhancer reprogramming in tumor progression: a new route towards cancer cell plasticity. Cell Mol Life Sci 2018; 75:2537-2555. [PMID: 29691590 PMCID: PMC11105402 DOI: 10.1007/s00018-018-2820-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 04/11/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Cancer heterogeneity arises during tumor progression as a consequence of genetic insults, environmental cues, and reversible changes in the epigenetic state, favoring tumor cell plasticity. The role of enhancer reprogramming is emerging as a relevant field in cancer biology as it supports adaptation of cancer cells to those environmental changes encountered during tumor progression and metastasis seeding. In this review, we describe the cancer-related alterations that drive oncogenic enhancer activity, leading to dysregulated transcriptional programs. We discuss the molecular mechanisms of both cis- and trans-factors in overriding the regulatory circuits that maintain cell-type specificity and imposing an alternative, de-regulated enhancer activity in cancer cells. We further comment on the increasing evidence which implicates stress response and aging-signaling pathways in the enhancer landscape reprogramming during tumorigenesis. Finally, we focus on the potential therapeutic implications of these enhancer-mediated subverted transcriptional programs, putting particular emphasis on the lack of information regarding tumor progression and the metastatic outgrowth, which still remain the major cause of mortality related to cancer.
Collapse
Affiliation(s)
- Luca Fagnocchi
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
| | - Vittoria Poli
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Alessio Zippo
- Laboratory of Chromatin Biology and Epigenetics, Center for Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy.
- Department of Epigenetics, Fondazione Istituto Nazionale di Genetica Molecolare "Romeo ed Enrica Invernizzi", Via F. Sforza 35, 20122, Milan, Italy.
- Division of Pathology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
189
|
Asf1a resolves bivalent chromatin domains for the induction of lineage-specific genes during mouse embryonic stem cell differentiation. Proc Natl Acad Sci U S A 2018; 115:E6162-E6171. [PMID: 29915027 DOI: 10.1073/pnas.1801909115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bivalent chromatin domains containing repressive H3K27me3 and active H3K4me3 modifications are barriers for the expression of lineage-specific genes in ES cells and must be resolved for the transcription induction of these genes during differentiation, a process that remains largely unknown. Here, we show that Asf1a, a histone chaperone involved in nucleosome assembly and disassembly, regulates the resolution of bivalent domains and activation of lineage-specific genes during mouse ES cell differentiation. Deletion of Asf1a does not affect the silencing of pluripotent genes, but compromises the expression of lineage-specific genes during ES cell differentiation. Mechanistically, the Asf1a-histone interaction, but not the role of Asf1a in nucleosome assembly, is required for gene transcription. Asf1a is recruited to several bivalent promoters, partially through association with transcription factors, and mediates nucleosome disassembly during differentiation. We suggest that Asf1a-mediated nucleosome disassembly provides a means for resolution of bivalent domain barriers for induction of lineage-specific genes during differentiation.
Collapse
|
190
|
Ladam F, Stanney W, Donaldson IJ, Yildiz O, Bobola N, Sagerström CG. TALE factors use two distinct functional modes to control an essential zebrafish gene expression program. eLife 2018; 7:36144. [PMID: 29911973 PMCID: PMC6023610 DOI: 10.7554/elife.36144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022] Open
Abstract
TALE factors are broadly expressed embryonically and known to function in complexes with transcription factors (TFs) like Hox proteins at gastrula/segmentation stages, but it is unclear if such generally expressed factors act by the same mechanism throughout embryogenesis. We identify a TALE-dependent gene regulatory network (GRN) required for anterior development and detect TALE occupancy associated with this GRN throughout embryogenesis. At blastula stages, we uncover a novel functional mode for TALE factors, where they occupy genomic DECA motifs with nearby NF-Y sites. We demonstrate that TALE and NF-Y form complexes and regulate chromatin state at genes of this GRN. At segmentation stages, GRN-associated TALE occupancy expands to include HEXA motifs near PBX:HOX sites. Hence, TALE factors control a key GRN, but utilize distinct DNA motifs and protein partners at different stages – a strategy that may also explain their oncogenic potential and may be employed by other broadly expressed TFs.
Collapse
Affiliation(s)
- Franck Ladam
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - William Stanney
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Ian J Donaldson
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Ozge Yildiz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Nicoletta Bobola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Charles G Sagerström
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| |
Collapse
|
191
|
Guerrero-Ramirez GI, Valdez-Cordoba CM, Islas-Cisneros JF, Trevino V. Computational approaches for predicting key transcription factors in targeted cell reprogramming (Review). Mol Med Rep 2018; 18:1225-1237. [PMID: 29845286 PMCID: PMC6072137 DOI: 10.3892/mmr.2018.9092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/27/2018] [Indexed: 12/27/2022] Open
Abstract
There is a need for specific cell types in regenerative medicine and biological research. Frequently, specific cell types may not be easily obtained or the quantity obtained is insufficient for study. Therefore, reprogramming by the direct conversion (transdifferentiation) or re‑induction of induced pluripotent stem cells has been used to obtain cells expressing similar profiles to those of the desired types. Therefore, a specific cocktail of transcription factors (TFs) is required for induction. Nevertheless, identifying the correct combination of TFs is difficult. Although certain computational approaches have been proposed for this task, their methods are complex, and corresponding implementations are difficult to use and generalize for specific source or target cell types. In the present review four computational approaches that have been proposed to obtain likely TFs were compared and discussed. A simplified view of the computational complexity of these methods is provided that consists of three basic ideas: i) The definition of target and non‑target cell types; ii) the estimation of candidate TFs; and iii) filtering candidates. This simplified view was validated by analyzing a well‑documented cardiomyocyte differentiation. Subsequently, these reviewed methods were compared when applied to an unknown differentiation of corneal endothelial cells. The generated results may provide important insights for laboratory assays. Data and computer scripts that may assist with direct conversions in other cell types are also provided.
Collapse
Affiliation(s)
| | | | | | - Victor Trevino
- Tecnológico de Monterrey, Escuela de Medicina, Monterrey, Nuevo León 64710, México
| |
Collapse
|
192
|
Fontaine FR, Goodall S, Prokop JW, Howard CB, Moustaqil M, Kumble S, Rasicci DT, Osborne GW, Gambin Y, Sierecki E, Jones ML, Zuegg J, Mahler S, Francois M. Functional domain analysis of SOX18 transcription factor using a single-chain variable fragment-based approach. MAbs 2018; 10:596-606. [PMID: 29648920 PMCID: PMC5972640 DOI: 10.1080/19420862.2018.1451288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Antibodies are routinely used to study the activity of transcription factors, using various in vitro and in vivo approaches such as electrophoretic mobility shift assay, enzyme-linked immunosorbent assay, genome-wide method analysis coupled with next generation sequencing, or mass spectrometry. More recently, a new application for antibodies has emerged as crystallisation scaffolds for difficult to crystallise proteins, such as transcription factors. Only in a few rare cases, antibodies have been used to modulate the activity of transcription factors, and there is a real gap in our knowledge on how to efficiently design antibodies to interfere with transcription. The molecular function of transcription factors is underpinned by complex networks of protein-protein interaction and in theory, setting aside intra-cellular delivery challenges, developing antibody-based approaches to modulate transcription factor activity appears a viable option. Here, we demonstrate that antibodies or an antibody single-chain variable region fragments are powerful molecular tools to unravel complex protein-DNA and protein-protein binding mechanisms. In this study, we focus on the molecular mode of action of the transcription factor SOX18, a key modulator of endothelial cell fate during development, as well as an attractive target in certain pathophysiological conditions such as solid cancer metastasis. The engineered antibody we designed inhibits SOX18 transcriptional activity, by interfering specifically with an 8-amino-acid motif in the C-terminal region directly adjacent to α-Helix 3 of SOX18 HMG domain, thereby disrupting protein-protein interaction. This new approach establishes a framework to guide the study of transcription factors interactomes using antibodies as molecular handles.
Collapse
Affiliation(s)
- Frank R Fontaine
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Stephen Goodall
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia
| | - Jeremy W Prokop
- c HudsonAlpha Institute for Biotechnology , Huntsville AL , USA.,d Department of Pediatrics and Human Development , Michigan State University , East Lansing , MI , USA
| | - Christopher B Howard
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Mehdi Moustaqil
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Sumukh Kumble
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | | | - Geoffrey W Osborne
- e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Yann Gambin
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Emma Sierecki
- f Single Molecule Science, Lowy Cancer Research Centre, The University of New South Wales , Sydney , NSW , Australia
| | - Martina L Jones
- e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Johannes Zuegg
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| | - Stephen Mahler
- b Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , QLD , Australia.,e ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland , St Lucia , QLD , Australia
| | - Mathias Francois
- a Institute for Molecular Bioscience, The University of Queensland , Brisbane , Australia
| |
Collapse
|
193
|
Bergiers I, Andrews T, Vargel Bölükbaşı Ö, Buness A, Janosz E, Lopez-Anguita N, Ganter K, Kosim K, Celen C, Itır Perçin G, Collier P, Baying B, Benes V, Hemberg M, Lancrin C. Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. eLife 2018; 7:29312. [PMID: 29555020 PMCID: PMC5860872 DOI: 10.7554/elife.29312] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 02/15/2018] [Indexed: 11/22/2022] Open
Abstract
Recent advances in single-cell transcriptomics techniques have opened the door to the study of gene regulatory networks (GRNs) at the single-cell level. Here, we studied the GRNs controlling the emergence of hematopoietic stem and progenitor cells from mouse embryonic endothelium using a combination of single-cell transcriptome assays. We found that a heptad of transcription factors (Runx1, Gata2, Tal1, Fli1, Lyl1, Erg and Lmo2) is specifically co-expressed in an intermediate population expressing both endothelial and hematopoietic markers. Within the heptad, we identified two sets of factors of opposing functions: one (Erg/Fli1) promoting the endothelial cell fate, the other (Runx1/Gata2) promoting the hematopoietic fate. Surprisingly, our data suggest that even though Fli1 initially supports the endothelial cell fate, it acquires a pro-hematopoietic role when co-expressed with Runx1. This work demonstrates the power of single-cell RNA-sequencing for characterizing complex transcription factor dynamics.
Collapse
Affiliation(s)
- Isabelle Bergiers
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | | | | | - Andreas Buness
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Ewa Janosz
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | | | - Kerstin Ganter
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Kinga Kosim
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Cemre Celen
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Gülce Itır Perçin
- European Molecular Biology Laboratory, EMBL Rome, Monterotondo, Italy
| | - Paul Collier
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martin Hemberg
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | |
Collapse
|
194
|
Lefebvre FA, Lécuyer É. Flying the RNA Nest: Drosophila Reveals Novel Insights into the Transcriptome Dynamics of Early Development. J Dev Biol 2018; 6:jdb6010005. [PMID: 29615554 PMCID: PMC5875563 DOI: 10.3390/jdb6010005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/01/2018] [Accepted: 03/05/2018] [Indexed: 01/02/2023] Open
Abstract
Early development is punctuated by a series of pervasive and fast paced transitions. These events reshape a differentiated oocyte into a totipotent embryo and allow it to gradually mount a genetic program of its own, thereby framing a new organism. Specifically, developmental transitions that ensure the maternal to embryonic control of developmental events entail a deep remodeling of transcriptional and transcriptomic landscapes. Drosophila provides an elegant and genetically tractable system to investigate these conserved changes at a dazzling developmental pace. Here, we review recent studies applying emerging technologies such as ribosome profiling, in situ Hi-C chromatin probing and live embryo RNA imaging to investigate the transcriptional dynamics at play during Drosophila embryogenesis. In light of this new literature, we revisit the main models of zygotic genome activation (ZGA). We also review the contributions played by zygotic transcription in shaping embryogenesis and explore emerging concepts of processes such as transcriptional bursting and transcriptional memory.
Collapse
Affiliation(s)
- Fabio Alexis Lefebvre
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada.
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada.
| | - Éric Lécuyer
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, QC H2W 1R7, Canada.
- Département de Biochimie, Université de Montréal, Montréal, QC H3T 1J4, Canada.
- Division of Experimental Medicine, McGill University, Montréal, QC H3A 0G4, Canada.
- IRCM, RNA Biology Laboratory, 110 Avenue des Pins, Ouest, Montréal, QC H2W 1R7, Canada.
| |
Collapse
|
195
|
Johnson JL, Vahedi G. Do Memory CD4 T Cells Keep Their Cell-Type Programming: Plasticity versus Fate Commitment? Epigenome: A Dynamic Vehicle for Transmitting and Recording Cytokine Signaling. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a028779. [PMID: 28432132 DOI: 10.1101/cshperspect.a028779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
CD4+ T cells are critical for the elimination of an immense array of microbial pathogens. Although there are aspects of helper T-cell differentiation that can be modeled as a classic cell-fate commitment, CD4+ T cells also maintain considerable flexibility in their transcriptional program. Here, we present an overview of chromatin biology during cellular reprogramming and, within this context, envision how the scope of cellular reprogramming may be expanded to further our understanding of the controversy surrounding CD4+ T lymphocyte plasticity or determinism.
Collapse
Affiliation(s)
- John L Johnson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
196
|
Li R, Cauchy P, Ramamoorthy S, Boller S, Chavez L, Grosschedl R. Dynamic EBF1 occupancy directs sequential epigenetic and transcriptional events in B-cell programming. Genes Dev 2018; 32:96-111. [PMID: 29440261 PMCID: PMC5830932 DOI: 10.1101/gad.309583.117] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/20/2017] [Indexed: 01/07/2023]
Abstract
B-cell fate determination requires the action of transcription factors that operate in a regulatory network to activate B-lineage genes and repress lineage-inappropriate genes. However, the dynamics and hierarchy of events in B-cell programming remain obscure. To uncouple the dynamics of transcription factor expression from functional consequences, we generated induction systems in developmentally arrested Ebf1-/- pre-pro-B cells to allow precise experimental control of EBF1 expression in the genomic context of progenitor cells. Consistent with the described role of EBF1 as a pioneer transcription factor, we show in a time-resolved analysis that EBF1 occupancy coincides with EBF1 expression and precedes the formation of chromatin accessibility. We observed dynamic patterns of EBF1 target gene expression and sequential up-regulation of transcription factors that expand the regulatory network at the pro-B-cell stage. A continuous EBF1 function was found to be required for Cd79a promoter activity and for the maintenance of an accessible chromatin domain that is permissive for binding of other transcription factors. Notably, transient EBF1 occupancy was detected at lineage-inappropriate genes prior to their silencing in pro-B cells. Thus, persistent and transient functions of EBF1 allow for an ordered sequence of epigenetic and transcriptional events in B-cell programming.
Collapse
Affiliation(s)
- Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- International Max Planck Research School for Molecular and Cellular Biology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoorthy
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Lukas Chavez
- Division of Pediatric Neurooncology, German Cancer Research Center, 69120 Heidelberg, Germany
- Department of Medicine, Division of Medial Genetics, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
197
|
Boller S, Li R, Grosschedl R. Defining B Cell Chromatin: Lessons from EBF1. Trends Genet 2018; 34:257-269. [PMID: 29336845 DOI: 10.1016/j.tig.2017.12.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/14/2017] [Accepted: 12/19/2017] [Indexed: 12/11/2022]
Abstract
Hematopoiesis is regulated by signals from the microenvironment, transcription factor networks, and changes of the epigenetic landscape. Transcription factors interact with and shape chromatin to allow for lineage- and cell type-specific changes in gene expression. During B lymphopoiesis, epigenetic regulation is observed in multilineage progenitors in which a specific chromatin context is established, at the onset of the B cell differentiation when early B cell factor 1 (EBF1) induces lineage-specific changes in chromatin, during V(D)J recombination and after antigen-driven activation of B cells and terminal differentiation. In this review, we discuss the epigenetic changes underlying B cell differentiation, focusing on the role of transcription factor EBF1 in B cell lineage priming.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rui Li
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|
198
|
Yadav RK, Chauhan AS, Zhuang L, Gan B. FoxO transcription factors in cancer metabolism. Semin Cancer Biol 2018; 50:65-76. [PMID: 29309929 DOI: 10.1016/j.semcancer.2018.01.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 12/28/2017] [Accepted: 01/04/2018] [Indexed: 12/21/2022]
Abstract
FoxO transcription factors serve as the central regulator of cellular homeostasis and are tumor suppressors in human cancers. Recent studies have revealed that, besides their classic functions in promoting cell death and inducing cell cycle arrest, FoxOs also regulate cancer metabolism, an emerging hallmark of cancer. In this review, we summarize the regulatory mechanisms employed to control FoxO activities in the context of cancer biology, and discuss FoxO function in metabolism reprogramming in cancer and interaction with other key cancer metabolism pathways. A deeper understanding of FoxOs in cancer metabolism may reveal novel therapeutic opportunities in cancer treatment.
Collapse
Affiliation(s)
- Raj Kumar Yadav
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Anoop Singh Chauhan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| | - Li Zhuang
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; Department of Molecular and Cellular Oncology, the University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences, 1515 Holcombe Blvd, Houston, TX 77030, USA.
| |
Collapse
|
199
|
Essebier A, Lamprecht M, Piper M, Bodén M. Bioinformatics approaches to predict target genes from transcription factor binding data. Methods 2017; 131:111-119. [DOI: 10.1016/j.ymeth.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/29/2017] [Accepted: 09/03/2017] [Indexed: 12/28/2022] Open
|
200
|
Jägle S, Busch H, Freihen V, Beyes S, Schrempp M, Boerries M, Hecht A. SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genet 2017; 13:e1007109. [PMID: 29155818 PMCID: PMC5714381 DOI: 10.1371/journal.pgen.1007109] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 12/04/2017] [Accepted: 11/08/2017] [Indexed: 01/04/2023] Open
Abstract
Phenotypic conversion of tumor cells through epithelial-mesenchymal transition (EMT) requires massive gene expression changes. How these are brought about is not clear. Here we examined the impact of the EMT master regulator SNAIL1 on the FOXA family of transcription factors which are distinguished by their particular competence to induce chromatin reorganization for the activation of transcriptional enhancer elements. We show that the expression of SNAIL1 and FOXA genes is anticorrelated in transcriptomes of colorectal tumors and cell lines. In cellular EMT models, ectopically expressed Snail1 directly represses FOXA1 and triggers downregulation of all FOXA family members, suggesting that loss of FOXA expression promotes EMT. Indeed, cells with CRISPR/Cas9-induced FOXA-deficiency acquire mesenchymal characteristics. Furthermore, ChIP-seq data analysis of FOXA chromosomal distribution in relation to chromatin structural features which characterize distinct states of transcriptional activity, revealed preferential localization of FOXA factors to transcriptional enhancers at signature genes that distinguish epithelial from mesenchymal colon tumors. To validate the significance of this association, we investigated the impact of FOXA factors on structure and function of enhancers at the CDH1, CDX2 and EPHB3 genes. FOXA-deficiency and expression of dominant negative FOXA2 led to chromatin condensation at these enhancer elements. Site-directed mutagenesis of FOXA binding sites in reporter gene constructs and by genome-editing in situ impaired enhancer activity and completely abolished the active chromatin state of the EPHB3 enhancer. Conversely, expression of FOXA factors in cells with inactive CDX2 and EPHB3 enhancers led to chromatin opening and de novo deposition of the H3K4me1 and H3K27ac marks. These findings establish the pioneer function of FOXA factors at enhancer regions of epithelial genes and demonstrate their essential role in maintaining enhancer structure and function. Thus, by repressing FOXA family members, SNAIL1 targets transcription factors at strategically important positions in gene-regulatory hierarchies, which may facilitate transcriptional reprogramming during EMT. Cancer patient mortality is overwhelmingly due to distant organ metastases. Epithelial-mesenchymal transition is a process thought to facilitate local invasion and dissemination of cancer cells, thereby promoting metastasis. The conversion of epithelial cells into mesenchymal, fibroblast-like cells requires profound gene expression changes. A few transcription factors like SNAIL1 can initiate these changes, but are unlikely to be solely responsible for all of them. In our study we asked, whether destabilization of epithelial gene expression programs could involve FOXA transcription factors. FOXA factors represent a special subgroup of regulatory proteins, so-called pioneer factors, with unique roles in the activation of transcriptional enhancers which are key regulatory DNA elements that orchestrate spatio-temporal gene expression. In a model of colorectal cancer we found that SNAIL1 represses FOXA factors, and demonstrate that FOXA factors are associated with enhancer elements at epithelial signature genes. Indeed, FOXA factors are sufficient to initiate enhancer activation and necessary to maintain their activity. Our findings indicate that SNAIL1 induces pervasive repression of epithelial genes through a hierarchical scheme of alterations in transcription factor expression which may be applicable to other instances of cell fate changes and transcriptional reprogramming.
Collapse
Affiliation(s)
- Sabine Jägle
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Vivien Freihen
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Sven Beyes
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Monika Schrempp
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Hecht
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- * E-mail:
| |
Collapse
|