151
|
Joseph C, Green AC, Kwang D, Purton LE. Extrinsic Regulation of Hematopoietic Stem Cells and Lymphocytes by Vitamin A. CURRENT STEM CELL REPORTS 2018. [DOI: 10.1007/s40778-018-0142-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
152
|
Azzoni E, Frontera V, McGrath KE, Harman J, Carrelha J, Nerlov C, Palis J, Jacobsen SEW, de Bruijn MF. Kit ligand has a critical role in mouse yolk sac and aorta-gonad-mesonephros hematopoiesis. EMBO Rep 2018; 19:e45477. [PMID: 30166337 PMCID: PMC6172468 DOI: 10.15252/embr.201745477] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 11/10/2022] Open
Abstract
Few studies report on the in vivo requirement for hematopoietic niche factors in the mammalian embryo. Here, we comprehensively analyze the requirement for Kit ligand (Kitl) in the yolk sac and aorta-gonad-mesonephros (AGM) niche. In-depth analysis of loss-of-function and transgenic reporter mouse models show that Kitl-deficient embryos harbor decreased numbers of yolk sac erythro-myeloid progenitor (EMP) cells, resulting from a proliferation defect following their initial emergence. This EMP defect causes a dramatic decrease in fetal liver erythroid cells prior to the onset of hematopoietic stem cell (HSC)-derived erythropoiesis, and a reduction in tissue-resident macrophages. Pre-HSCs in the AGM require Kitl for survival and maturation, but not proliferation. Although Kitl is expressed widely in all embryonic hematopoietic niches, conditional deletion in endothelial cells recapitulates germline loss-of-function phenotypes in AGM and yolk sac, with phenotypic HSCs but not EMPs remaining dependent on endothelial Kitl upon migration to the fetal liver. In conclusion, our data establish Kitl as a critical regulator in the in vivoAGM and yolk sac endothelial niche.
Collapse
Affiliation(s)
- Emanuele Azzoni
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Vincent Frontera
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kathleen E McGrath
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe Harman
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Joana Carrelha
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - James Palis
- Department of Pediatrics, Center for Pediatric Biomedical Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Sten Eirik W Jacobsen
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Department of Cell and Molecular Biology, Wallenberg Institute for Regenerative Medicine and Department of Medicine, Center for Hematology and Regenerative Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Marella Ftr de Bruijn
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
153
|
Cell cycle-dependent phosphorylation and regulation of cellular differentiation. Biochem Soc Trans 2018; 46:1083-1091. [PMID: 30242121 DOI: 10.1042/bst20180276] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Embryogenesis requires an exquisite regulation of cell proliferation, cell cycle withdrawal and differentiation into a massively diverse range of cells at the correct time and place. Stem cells also remain to varying extents in different adult tissues, acting in tissue homeostasis and repair. Therefore, regulated proliferation and subsequent differentiation of stem and progenitor cells remains pivotal throughout life. Recent advances have characterised the cell cycle dynamics, epigenetics, transcriptome and proteome accompanying the transition from proliferation to differentiation, revealing multiple bidirectional interactions between the cell cycle machinery and factors driving differentiation. Here, we focus on a direct mechanistic link involving phosphorylation of differentiation-associated transcription factors by cell cycle-associated Cyclin-dependent kinases. We discuss examples from the three embryonic germ layers to illustrate this regulatory mechanism that co-ordinates the balance between cell proliferation and differentiation.
Collapse
|
154
|
Kim H, Lee S, Lee SW. TRAF6 Distinctly Regulates Hematopoietic Stem and Progenitors at Different Periods of Development in Mice. Mol Cells 2018; 41:753-761. [PMID: 30037215 PMCID: PMC6125416 DOI: 10.14348/molcells.2018.0191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/14/2018] [Accepted: 06/19/2018] [Indexed: 12/27/2022] Open
Abstract
Tumor necrosis factor receptor-associated factor 6 (TRAF6) is identified as a signaling adaptor protein that regulates bone metabolism, immunity, and the development of several tissues. Therefore, its functions are closely associated with multiple diseases. TRAF6 is also involved in the regulation of hematopoiesis under steady-state conditions, but the role of TRAF6 in modulating hematopoietic stem and progenitor cells (HSPCs) during the developmental stages remains unknown. Here, we report that the deletion of TRAF6 in hematopoietic lineage cells resulted in the upregulation of HSPCs in the fetal liver at the prenatal period. However, in the early postnatal period, deletion of TRAF6 drastically diminished HSPCs in the bone marrow (BM), with severe defects in BM development and extramedullary hematopoiesis in the spleen being identified. In the analysis of adult HSPCs in a BM reconstitution setting, TRAF6 played no significant role in HSPC homeostasis, albeit it affected the development of T cells. Taken together, our results suggest that the role of TRAF6 in regulating HSPCs is altered in a spatial and temporal manner during the developmental course of mice.
Collapse
Affiliation(s)
- Hyekang Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Seungwon Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang 37673,
Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673,
Korea
| |
Collapse
|
155
|
Chemotherapy-induced niche perturbs hematopoietic reconstitution in B-cell acute lymphoblastic leukemia. J Exp Clin Cancer Res 2018; 37:204. [PMID: 30157922 PMCID: PMC6114852 DOI: 10.1186/s13046-018-0859-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/25/2018] [Indexed: 11/13/2022] Open
Abstract
Background Considerable efforts have been devoted toward the uncovering of the molecular mechanisms underlying the maintenance of hematopoietic stem cells (HSCs) by the normal bone marrow (BM) niche. Previously, we demonstrated that a chemotherapy-induced niche, which is mainly composed of mesenchymal stem cells (MSCs), protects the residual B-cell acute lymphoblastic leukemia (B-ALL) cells from the insult of chemotherapeutic drugs. However, the roles of chemotherapy-induced niche on HSCs functions in B-ALL remain unclear. Methods We established an oncogenic N-MYC-driven B-ALL mouse model, which were subsequently treated with common chemotherapy drug cytarabine (Ara-C) and daunorubicin (DNR). After treatment, the structures of the BM niche were imaged by immunofluorescence staining. Then, the self-renewal and differentiation capability of the MSCs in the BM after Ara-C and DNR treatment were studied by ex vivo culture and gene expression analysis with RNA-seq and qRT-PCR. The effects of chemotherapy-induced niche on the hematopoietic reconstitution of HSCs were determined with series transplantation assay. Furthermore, the cell cycle, ROS level, mitochondrial membrane potential and cell apoptosis of HSCs were detected by flow cytometry. Results The MSCs, which is the main component of chemotherapy-induced BM niche, have decreased self-renewal capability and are prone to differentiate into adipocytes and chondrocytes. The results of gene expression analysis with RNA-seq showed that the MSCs have reduced levels of cytokines, including SCF, CXCL12, ANGPT1, VCAM1, and IL7. Furthermore, the chemotherapy-induced niche perturbed the hematopoietic reconstitution of HSCs in our N-MYC-driven B-ALL mouse model by promoting HSCs to enter cell cycle and increasing intracellular ROS levels and mitochondrial membrane potential of HSCs, which lead to the cell apoptosis of HSCs. Conclusions Chemotherapy-induced BM niche perturbs the hematopoietic reconstitution of HSCs by increasing intracellular ROS level and inducing cell apoptosis. Electronic supplementary material The online version of this article (10.1186/s13046-018-0859-3) contains supplementary material, which is available to authorized users.
Collapse
|
156
|
Heitman N, Saxena N, Rendl M. Advancing insights into stem cell niche complexities with next-generation technologies. Curr Opin Cell Biol 2018; 55:87-95. [PMID: 30031324 DOI: 10.1016/j.ceb.2018.06.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 12/17/2022]
Abstract
Adult tissue-specific stem cells are essential for homeostatic tissue maintenance and key to regeneration during injury repair or disease. Many critical stem cell functions rely on the presence of well-timed cues from the microenvironment or niche, which includes a diverse range of components, including neuronal, circulating and extracellular matrix inputs as well as an array of neighboring niche cells directly interacting with the stem cells. However, studies of stem cells and their niche have been challenging due to the complexity of adult stem cell functions, their intrinsic controls and the multiple regulatory niche components. Here, we review recent major advances in our understanding of the complex interplay between stem cells and their niche that were enabled by the tremendous technological leaps in single-cell transcriptome analyses, 3D in vitro cultures and 4D in vivo microscopy of stem cell niches.
Collapse
Affiliation(s)
- Nicholas Heitman
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nivedita Saxena
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Michael Rendl
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, Atran Building AB7-10C, Box 1020, 1428 Madison Ave, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, Box 1047, One Gustave L. Levy Place, New York, NY 10029, USA,; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, Box 1022, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
157
|
Grace CS, Mikkola HKA, Dou DR, Calvanese V, Ronn RE, Purton LE. Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Exp Hematol 2018; 65:1-16. [PMID: 29981365 DOI: 10.1016/j.exphem.2018.06.287] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/24/2018] [Accepted: 06/26/2018] [Indexed: 10/28/2022]
Abstract
Hematopoietic stem cells (HSCs) are multipotent cells responsible for the maintenance of the hematopoietic system throughout life. Dysregulation of the balance in HSC self-renewal, death, and differentiation can have serious consequences such as myelodysplastic syndromes or leukemia. All-trans retinoic acid (ATRA), the biologically active metabolite of vitamin A/RA, has been shown to have pleiotropic effects on hematopoietic cells, enhancing HSC self-renewal while also increasing differentiation of more mature progenitors. Furthermore, ATRA has been shown to have key roles in regulating the specification and formation of hematopoietic cells from pluripotent stem cells including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Here, we summarize the known roles of vitamin A and RA receptors in the regulation of hematopoiesis from HSCs, ES, and iPSCs.
Collapse
Affiliation(s)
- Clea S Grace
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Hanna K A Mikkola
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Diana R Dou
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Vincenzo Calvanese
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA, USA
| | - Roger E Ronn
- Medical Research Council Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Louise E Purton
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; The University of Melbourne, Department of Medicine at St. Vincent's Hospital, Fitzroy, Victoria, Australia.
| |
Collapse
|
158
|
Stem cell factor is selectively secreted by arterial endothelial cells in bone marrow. Nat Commun 2018; 9:2449. [PMID: 29934585 PMCID: PMC6015052 DOI: 10.1038/s41467-018-04726-3] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 05/12/2018] [Indexed: 12/14/2022] Open
Abstract
Endothelial cells (ECs) contribute to haematopoietic stem cell (HSC) maintenance in bone marrow, but the differential contributions of EC subtypes remain unknown, owing to the lack of methods to separate with high purity arterial endothelial cells (AECs) from sinusoidal endothelial cells (SECs). Here we show that the combination of podoplanin (PDPN) and Sca-1 expression distinguishes AECs (CD45− Ter119− Sca-1bright PDPN−) from SECs (CD45− Ter119− Sca-1dim PDPN+). PDPN can be substituted for antibodies against the adhesion molecules ICAM1 or E-selectin. Unexpectedly, prospective isolation reveals that AECs secrete nearly all detectable EC-derived stem cell factors (SCF). Genetic deletion of Scf in AECs, but not SECs, significantly reduced functional HSCs. Lineage-tracing analyses suggest that AECs and SECs self-regenerate independently after severe genotoxic insults, indicating the persistence of, and recovery from, radio-resistant pre-specified EC precursors. AEC-derived SCF also promotes HSC recovery after myeloablation. These results thus uncover heterogeneity in the contribution of ECs in stem cell niches. Endothelial cells (EC) are known to contribute to haematopoietic stem cell (HSC) maintenance in the bone marrow (BM). Here the authors demonstrate that arterial ECs can be distinguished from sinusoidal ECs by podoplanin and Sca-1 expression, and that specifically arterial, but not sinusoidal ECs maintain HSCs by secreting SCF.
Collapse
|
159
|
Gao S, Liu F. Fetal liver: an ideal niche for hematopoietic stem cell expansion. SCIENCE CHINA-LIFE SCIENCES 2018; 61:885-892. [PMID: 29934917 DOI: 10.1007/s11427-018-9313-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/09/2018] [Indexed: 01/01/2023]
Abstract
Fetal liver (FL) is an intricate and highly vascularized hematopoietic organ, which can support the extensive expansion of hematopoietic stem cells (HSCs) without loss of stemness, as well as of the downstream lineages of HSCs. This powerful function of FL largely benefits from the niche (or microenvironment), which provides a residence for HSC expansion. Numerous studies have demonstrated that the FL niche consists of heterogeneous cell populations that associate with HSCs spatially and regulate HSCs functionally. At the molecular level, a complex of cell extrinsic and intrinsic signaling network within the FL niche cells maintains HSC expansion. Here, we summarize recent studies on the analysis of the FL HSCs and their niche, and specifically on the molecular regulatory network for HSC expansion. Based on these studies, we hypothesize a strategy to obtain a large number of functional HSCs via 3D reconstruction of FL organoid ex vivo for clinical treatment in the future.
Collapse
Affiliation(s)
- Suwei Gao
- College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
160
|
Armentano I, Puglia D, Luzi F, Arciola CR, Morena F, Martino S, Torre L. Nanocomposites Based on Biodegradable Polymers. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E795. [PMID: 29762482 PMCID: PMC5978172 DOI: 10.3390/ma11050795] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 04/27/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023]
Abstract
In the present review paper, our main results on nanocomposites based on biodegradable polymers (on a time scale from 2010 to 2018) are reported. We mainly focused our attention on commercial biodegradable polymers, which we mixed with different nanofillers and/or additives with the final aim of developing new materials with tunable specific properties. A wide list of nanofillers have been considered according to their shape, properties, and functionalization routes, and the results have been discussed looking at their roles on the basis of different adopted processing routes (solvent-based or melt-mixing processes). Two main application fields of nanocomposite based on biodegradable polymers have been considered: the specific interaction with stem cells in the regenerative medicine applications or as antimicrobial materials and the active role of selected nanofillers in food packaging applications have been critically revised, with the main aim of providing an overview of the authors' contribution to the state of the art in the field of biodegradable polymeric nanocomposites.
Collapse
Affiliation(s)
- Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University, 01100 Viterbo, Italy.
| | - Debora Puglia
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Francesca Luzi
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| | - Carla Renata Arciola
- Research Unit on Implant Infections, Rizzoli Orthopaedic Institute, 40136 Bologna, Italy.
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06100 Perugia, Italy.
| | - Luigi Torre
- Civil and Environmental Engineering Department, Materials Engineering Center, University of Perugia, UdR INSTM, 05100 Terni, Italy.
| |
Collapse
|
161
|
Paz H, Joo EJ, Chou CH, Fei F, Mayo KH, Abdel-Azim H, Ghazarian H, Groffen J, Heisterkamp N. Treatment of B-cell precursor acute lymphoblastic leukemia with the Galectin-1 inhibitor PTX008. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:67. [PMID: 29580262 PMCID: PMC5870532 DOI: 10.1186/s13046-018-0721-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 02/25/2018] [Indexed: 02/06/2023]
Abstract
Background Drug resistance of B-cell precursor acute lymphoblastic leukemia (BP-ALL) cells is conferred by both intrinsic and extrinsic factors, which could be targeted to promote chemo-sensitization. Our previous studies showed that Galectin-3, a lectin that clusters galactose-modified glycoproteins and that has both an intracellular and extracellular location, protects different subtypes of BP-ALL cells against chemotherapy. Galectin-1 is related to Galectin-3 and its expression was previously reported to be restricted to the MLL subtype of BP-ALL. Methods and results Here, we report that Galectin-1 is expressed at different levels in and on different subclasses of BP-ALLs. Bone marrow plasma also contains high levels of Galectin-1. PTX008 is an allosteric inhibitor which inhibits Galectin-1 but not Galectin-3-mediated agglutination. The compound reduces migration of BP-ALL cells to CXCL12 and OP9 stromal cells and inhibits fibronectin-mediated adhesion. It also affects cell cycle progression of BCP-ALL cells. PTX008 is cytostatic for BP-ALL cells even when these are co-cultured with protective stroma, and can sensitize ALL cells to vincristine chemotherapy in vitro and in mice. Conclusions PTX008 inhibits multiple functions that contribute to BP-ALL survival. The effects of Galectin-1 inhibition on both BP-ALL cell proliferation and migration suggest both the leukemia cells as well as the microenvironment that protects these cells may be targeted. Electronic supplementary material The online version of this article (10.1186/s13046-018-0721-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helicia Paz
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Department of Surgical Oncology, UCLA, Los Angeles, CA, 90095, USA
| | - Eun Ji Joo
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - Chih-Hsing Chou
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Fei Fei
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA.,Pathology Department, University of Alabama, Birmingham, AL, USA
| | - Kevin H Mayo
- Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Health Sciences Center, 6-155 Jackson Hall, 321 Church Street, Minneapolis, MN, 55455, USA
| | - Hisham Abdel-Azim
- Division of Hematology/Oncology and Bone Marrow Transplantation, Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Haike Ghazarian
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA
| | - John Groffen
- Section of Molecular Carcinogenesis, Division of Hematology/Oncology and Bone Marrow Transplantation, The Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA, 90027, USA
| | - Nora Heisterkamp
- Department of Systems Biology, Beckman Research Institute City of Hope, Monrovia, CA, USA.
| |
Collapse
|