151
|
McKee C, Brown C, Chaudhry GR. Self-Assembling Scaffolds Supported Long-Term Growth of Human Primed Embryonic Stem Cells and Upregulated Core and Naïve Pluripotent Markers. Cells 2019; 8:cells8121650. [PMID: 31888235 PMCID: PMC6952907 DOI: 10.3390/cells8121650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 12/14/2022] Open
Abstract
The maintenance and expansion of human embryonic stem cells (ESCs) in two-dimensional (2-D) culture is technically challenging, requiring routine manipulation and passaging. We developed three-dimensional (3-D) scaffolds to mimic the in vivo microenvironment for stem cell proliferation. The scaffolds were made of two 8-arm polyethylene glycol (PEG) polymers functionalized with thiol (PEG-8-SH) and acrylate (PEG-8-Acr) end groups, which self-assembled via a Michael addition reaction. When primed ESCs (H9 cells) were mixed with PEG polymers, they were encapsulated and grew for an extended period, while maintaining their viability, self-renewal, and differentiation potential both in vitro and in vivo. Three-dimensional (3-D) self-assembling scaffold-grown cells displayed an upregulation of core pluripotency genes, OCT4, NANOG, and SOX2. In addition, the expression of primed markers decreased, while the expression of naïve markers substantially increased. Interestingly, the expression of mechanosensitive genes, YAP and TAZ, was also upregulated. YAP inhibition by Verteporfin abrogated the increased expression of YAP/TAZ as well as core and naïve pluripotent markers. Evidently, the 3-D culture conditions induced the upregulation of makers associated with a naïve state of pluripotency in the primed cells. Overall, our 3-D culture system supported the expansion of a homogenous population of ESCs and should be helpful in advancing their use for cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Christina McKee
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - Christina Brown
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
| | - G. Rasul Chaudhry
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA; (C.M.); (C.B.)
- OU-WB Institute for Stem Cell and Regenerative Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3350
| |
Collapse
|
152
|
Melica ME, La Regina G, Parri M, Peired AJ, Romagnani P, Lasagni L. Substrate Stiffness Modulates Renal Progenitor Cell Properties via a ROCK-Mediated Mechanotransduction Mechanism. Cells 2019; 8:cells8121561. [PMID: 31816967 PMCID: PMC6953094 DOI: 10.3390/cells8121561] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 01/11/2023] Open
Abstract
Stem cell (SC)-based tissue engineering and regenerative medicine (RM) approaches may provide alternative therapeutic strategies for the rising number of patients suffering from chronic kidney disease. Embryonic SCs and inducible pluripotent SCs are the most frequently used cell types, but autologous patient-derived renal SCs, such as human CD133+CD24+ renal progenitor cells (RPCs), represent a preferable option. RPCs are of interest also for the RM approaches based on the pharmacological encouragement of in situ regeneration by endogenous SCs. An understanding of the biochemical and biophysical factors that influence RPC behavior is essential for improving their applicability. We investigated how the mechanical properties of the substrate modulate RPC behavior in vitro. We employed collagen I-coated hydrogels with variable stiffness to modulate the mechanical environment of RPCs and found that their morphology, proliferation, migration, and differentiation toward the podocyte lineage were highly dependent on mechanical stiffness. Indeed, a stiff matrix induced cell spreading and focal adhesion assembly trough a Rho kinase (ROCK)-mediated mechanism. Similarly, the proliferative and migratory capacity of RPCs increased as stiffness increased and ROCK inhibition, by either Y27632 or antisense LNA-GapmeRs, abolished these effects. The acquisition of podocyte markers was also modulated, in a narrow range, by the elastic modulus and involved ROCK activity. Our findings may aid in 1) the optimization of RPC culture conditions to favor cell expansion or to induce efficient differentiation with important implication for RPC bioprocessing, and in 2) understanding how alterations of the physical properties of the renal tissue associated with diseases could influenced the regenerative response of RPCs.
Collapse
Affiliation(s)
- Maria Elena Melica
- Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Viale Morgagni 50, 50136 Florence, Italy; (M.E.M.); (A.J.P.); (P.R.)
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (G.L.R.); (M.P.)
| | - Gilda La Regina
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (G.L.R.); (M.P.)
| | - Matteo Parri
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (G.L.R.); (M.P.)
| | - Anna Julie Peired
- Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Viale Morgagni 50, 50136 Florence, Italy; (M.E.M.); (A.J.P.); (P.R.)
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (G.L.R.); (M.P.)
| | - Paola Romagnani
- Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Viale Morgagni 50, 50136 Florence, Italy; (M.E.M.); (A.J.P.); (P.R.)
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (G.L.R.); (M.P.)
- Nephrology Unit and Meyer Children’s University Hospital, Viale Pieraccini 24, 50139 Florence, Italy
| | - Laura Lasagni
- Centre for Research, Transfer and High Education for the development of DE NOVO Therapies (DENOTHE), Viale Morgagni 50, 50136 Florence, Italy; (M.E.M.); (A.J.P.); (P.R.)
- Department of Clinical and Experimental Biomedical Sciences “Mario Serio”, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (G.L.R.); (M.P.)
- Correspondence: ; Tel.: +39-055-2758165
| |
Collapse
|
153
|
Alkmin S, Brodziski R, Simon H, Hinton D, Goldsmith RH, Patankar M, Campagnola P. Migration dynamics of ovarian epithelial cells on micro-fabricated image-based models of normal and malignant stroma. Acta Biomater 2019; 100:92-104. [PMID: 31568876 DOI: 10.1016/j.actbio.2019.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/25/2019] [Accepted: 09/26/2019] [Indexed: 12/12/2022]
Abstract
A profound remodeling of the collagen in the extracellular matrix (ECM) occurs in human ovarian cancer but it is unknown how this affects migration dynamics and ultimately tumor growth. Here, we investigate the influence of collagen morphology on ovarian cell migration through the use of second harmonic generation (SHG) image-based models of ovarian tumors. The scaffolds are fabricated by multiphoton excited (MPE) polymerization, where the process is akin to 3D printing except it achieves much greater resolution (∼0.5 µm) and utilizes collagen and collagen analogs. We used this technique to create scaffolds with complex 3D submicron features representing the collagen fiber morphology in normal stroma, high risk stroma, benign tumors, and high grade ovarian tumors. We found the highly aligned malignant stromal structure promoted enhanced motility and also increased cell and f-Actin alignment relative to the other tissues. However, using models based on fiber crimping characteristics, we found cells seeded on linear fibers based on normal stromal models yielded the highest degree of alignment but least motility. These results show that both the fiber properties themselves and as well as their overall alignment govern the resulting migration dynamics. These models cannot be synthesized by other conventional fabrication methods and we suggest the MPE image-based fabrication method will enable a variety of studies in cancer biology. STATEMENT OF SIGNIFICANCE: The extracellular matrix collagen in ovarian cancer is highly remodeled but the consequences on cell function remain unknown. It is important to understand the operative cell matrix interactions, as this could lead to better prognostics and better prediction of therapeutic efficacy. We probe migration dynamics using high resolution (∼0.5 µm) multiphoton excited fabrication to synthesize scaffolds whose designs are derived directly from Second Harmonic Generation microscope images of the collagen in normal ovarian tissues as well as benign and malignant tumors. Collectively our results show the importance of the matrix morphology (fiber shape and alignment) on driving cell motility, cell shape and f-Actin alignment. These collagen-based models have complex fiber morphology and cannot be created by conventional fabrication technologies.
Collapse
|
154
|
Inthanon K, Janvikul W, Ongchai S, Chomdej S. Intrinsic Cellular Responses of Human Wharton's Jelly Mesenchymal Stem Cells Influenced by O 2-Plasma-Modified and Unmodified Surface of Alkaline-Hydrolyzed 2D and 3D PCL Scaffolds. J Funct Biomater 2019; 10:E52. [PMID: 31752199 PMCID: PMC6963654 DOI: 10.3390/jfb10040052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/31/2019] [Accepted: 11/17/2019] [Indexed: 01/09/2023] Open
Abstract
Polycaprolactone (PCL), a hydrophobic-degradable polyester, has been widely investigated and extensively developed, to increase the biocompatibility for tissue engineering. This research was the first trial to evaluate the intrinsic biological responses of human Wharton's Jelly Mesenchymal Stem Cells (hWJMSCs) cultured on alkaline hydrolysis and low-pressure oxygen plasma modified 2D and 3D PCL scaffolds, without adding any differentiation inducers; this has not been reported before. Four types of the substrate were newly established: 2D plasma-treated PCL (2D-TP), 2D non-plasma-treated PCL (2D-NP), 3D plasma-treated PCL (3D-TP), and 3D non-plasma-treated PCL (3D-NP). Physicochemical characterization revealed that only plasma-treated PCL scaffolds significantly increased the hydrophilicity and % oxygen/carbon ratio on the surfaces. The RMS roughness of 3D was higher than 2D conformation, whilst the plasma-treated surfaces were rougher than the non-plasma treated ones. The cytocompatibility test demonstrated that the 2D PCLs enhanced the initial cell attachment in comparison to the 3Ds, indicated by a higher expression of focal adhesion kinase. Meanwhile, the 3Ds promoted cell proliferation and migration as evidence of higher cyclin-A expression and filopodial protrusion, respectively. The 3Ds potentially protected the cell from apoptosis/necrosis but also altered the pluripotency/differentiation-related gene expression. In summary, the different configuration and surface properties of PCL scaffolds displayed the significant potential and effectiveness for facilitating stem cell growth and differentiation in vitro. The cell-substrate interactions on modified surface PCL may provide some information which could be further applied in substrate architecture for stem cell accommodation in cell delivery system for tissue repair.
Collapse
Affiliation(s)
- Kewalin Inthanon
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Lampang 52190, Thailand
| | - Wanida Janvikul
- National Metal and Materials Technology Center, Pathumthani 12120, Thailand;
| | - Siriwan Ongchai
- Thailand Excellence Centre for Tissue Engineering and Stem Cells, Department of Biochemistry and the Center of Excellence for Innovation in Chemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Siriwadee Chomdej
- Center of Excellence in Bioresources for Agriculture, Industry and Medicine Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
155
|
Nakao N, Maki K, Mofrad MRK, Adachi T. Talin is required to increase stiffness of focal molecular complex in its early formation process. Biochem Biophys Res Commun 2019; 518:579-583. [PMID: 31451222 DOI: 10.1016/j.bbrc.2019.08.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 11/24/2022]
Abstract
For cellular adaptation in mechanical environments, it is important to consider transmission of forces from the outside to the inside of cells via a focal molecular complex. The focal molecular complex, which consists of integrin, talin, vinculin and actin, is known to form in response to a force applied via the extra-cellular matrix (ECM). In the early formation process of the complex, the complex-actin connection is reinforced. These structural changes of the nascent complex result in an increase in its mechanical integrity and overall stiffness, possibly leading to the maturation of the nascent complex by enhancing force transmission. In this study, we hypothesized that the complex component talin is a crucial factor in increasing the stiffness of the nascent complex. To test the hypothesis, we used atomic force microscopy (AFM) to measure the stiffness of the nascent complex using a probe coated with fibronectin. Stiffness measurements were conducted for intact and talin knocked-down cells. Our results demonstrated that talin was required to increase the stiffness of the nascent complex, which could be caused by the reinforced connection between the complex and actin filaments mediated by talin.
Collapse
Affiliation(s)
- Nobuhiko Nakao
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Institute for Frontier Life and Mechanical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan
| | - Koichiro Maki
- Helsinki Institute of Life Science, University of Helsinki, Haartmaninkatu 8, Helsinki, FI00290, Finland; Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - Mohammad R K Mofrad
- Department of Bioengineering, University of California, Berkeley, CA94720, USA; Department of Mechanical Engineering, University of California, Berkeley, CA94720-1762, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Lab, CA94720, Berkeley, USA
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Institute for Frontier Life and Mechanical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan; Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo, Kyoto, 606-8507, Japan.
| |
Collapse
|
156
|
Vázquez-Victorio G, Peto-Gutiérrez C, Díaz-Bello B, Cano-Jorge M, Pérez-Calixto D, Jiménez-Escobar A, Espinosa-Matías S, Lara Martínez R, Courson R, Malaquin L, Zamarrón-Hernández D, Hautefeuille M. Building a microfluidic cell culture platform with stiffness control using Loctite 3525 glue. LAB ON A CHIP 2019; 19:3512-3525. [PMID: 31544189 DOI: 10.1039/c9lc00649d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The study of mechanotransduction signals and cell response to mechanical properties requires designing culture substrates that possess some, or ideally all, of the following characteristics: (1) biological compatibility and adhesive properties, (2) stiffness control or tunability in a dynamic mode, (3) patternability on the microscale and (4) integrability in microfluidic chips. The most common materials used to address cell mechanotransduction are hydrogels, due to their softness. However, they may be impractical when complex scaffolds are sought and they lack viscous dissipative properties that are very important in mechanobiology. In this work, we show that an off-the-shelf, biocompatible photosensitive glue, Loctite 3525, may be used readily in mechanobiology assays without any special treatment prior to fabrication of cell culture platforms. Despite a high (MPa) stiffness easily tunable by UV exposure time at a fixed dose, 3T3 fibroblasts showed a response to the mechanics of the material similar to that obtained on much softer (kPa) hydrogels. Loctite's viscous dissipation properties indeed seemed to be responsible for such cell mechanical response, as suggested by recent works where more complex two-phase hydrogels were employed. More interestingly, it was possible to stiffen soft Loctite substrates by post-exposing them during cell culture, to observe changes in cell spreading caused by a dynamic stiffness modification. Thanks to Loctite 3525's patternability, micropillars were also fabricated to demonstrate the compatibility with traction force microscopy studies. Finally, the glue was used as an excellent adhesion layer for hydrogels on glass or PDMS, without the need for additional treatment, enabling the easy fabrication of microfluidic chips integrating hydrogels.
Collapse
Affiliation(s)
- Genaro Vázquez-Victorio
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria CP, 04510, Ciudad de México, Mexico.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Sukumar UK, Packirisamy G. Fabrication of Nanofibrous Scaffold Grafted with Gelatin Functionalized Polystyrene Microspheres for Manifesting Nanomechanical Cues of Stretch Stimulated Fibroblast. ACS APPLIED BIO MATERIALS 2019; 2:5323-5339. [DOI: 10.1021/acsabm.9b00580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
158
|
Optically Transparent Anionic Nanofibrillar Cellulose Is Cytocompatible with Human Adipose Tissue-Derived Stem Cells and Allows Simple Imaging in 3D. Stem Cells Int 2019; 2019:3106929. [PMID: 31687032 PMCID: PMC6800951 DOI: 10.1155/2019/3106929] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
The anti-inflammatory and immunomodulatory properties of human mesenchymal stromal cells (MSCs) are a focus within regenerative medicine. However, 2D cultivation of MSCs for extended periods results in abnormal cell polarity, chromosomal changes, reduction in viability, and altered differentiation potential. As an alternative, various 3D hydrogels have been developed which mimic the endogenous niche of MSCs. Nevertheless, imaging cells embedded within 3D hydrogels often suffers from low signal-to-noise ratios which can be at least partly attributed to the high light absorbance and light scattering of the hydrogels in the visible light spectrum. In this study, human adipose tissue-derived MSCs (ADSCs) are cultivated within an anionic nanofibrillar cellulose (aNFC) hydrogel. It is demonstrated that aNFC forms nanofibres arranged as a porous network with low light absorbance in the visible spectrum. Moreover, it is shown that aNFC is cytocompatible, allowing for MSC proliferation, maintaining cell viability and multilineage differentiation potential. Finally, aNFC is compatible with scanning electron microscopy (SEM) and light microscopy including the application of conventional dyes, fluorescent probes, indirect immunocytochemistry, and calcium imaging. Overall, the results indicate that aNFC represents a promising 3D material for the expansion of MSCs whilst allowing detailed examination of cell morphology and cellular behaviour.
Collapse
|
159
|
Banda OA, Slater JH. Fabrication and Implementation of a Reference-Free Traction Force Microscopy Platform. J Vis Exp 2019. [PMID: 31633698 DOI: 10.3791/60383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Quantifying cell-induced material deformation provides useful information concerning how cells sense and respond to the physical properties of their microenvironment. While many approaches exist for measuring cell-induced material strain, here we provide a methodology for monitoring strain with sub-micron resolution in a reference-free manner. Using a two-photon activated photolithographic patterning process, we demonstrate how to generate mechanically and bio-actively tunable synthetic substrates containing embedded arrays of fluorescent fiducial markers to easily measure three-dimensional (3D) material deformation profiles in response to surface tractions. Using these substrates, cell tension profiles can be mapped using a single 3D image stack of a cell of interest. Our goal with this methodology is to make traction force microscopy a more accessible and easier to implement tool for researchers studying cellular mechanotransduction processes, especially newcomers to the field.
Collapse
Affiliation(s)
- Omar A Banda
- Department of Biomedical Engineering, University of Delaware
| | - John H Slater
- Department of Biomedical Engineering, University of Delaware; Department of Materials Science & Engineering, University of Delaware; Delaware Biotechnology Institute;
| |
Collapse
|
160
|
Rajshankar D, Wang B, Worndl E, Menezes S, Wang Y, McCulloch CA. Focal adhesion kinase regulates tractional collagen remodeling, matrix metalloproteinase expression, and collagen structure, which in turn affects matrix‐induced signaling. J Cell Physiol 2019; 235:3096-3111. [DOI: 10.1002/jcp.29215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/03/2019] [Indexed: 11/08/2022]
Affiliation(s)
| | - Baiyu Wang
- Faculty of Dentistry University of Toronto Toronto Ontario
| | | | - Sara Menezes
- Faculty of Dentistry University of Toronto Toronto Ontario
| | - Yongqiang Wang
- Faculty of Dentistry University of Toronto Toronto Ontario
| | | |
Collapse
|
161
|
Wang HC, Lin YL, Hsu CC, Chao YJ, Hou YC, Chiu TJ, Huang PH, Tang MJ, Chen LT, Shan YS. Pancreatic stellate cells activated by mutant KRAS-mediated PAI-1 upregulation foster pancreatic cancer progression via IL-8. Theranostics 2019; 9:7168-7183. [PMID: 31695760 PMCID: PMC6831292 DOI: 10.7150/thno.36830] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 09/02/2019] [Indexed: 12/15/2022] Open
Abstract
Background: The dense fibrotic stroma enveloping pancreatic tumors is a major cause of drug resistance. Pancreatic stellate cells (PSCs) in the stroma can be activated to induce intra-tumor fibrosis and worsen patient survival; however, the molecular basics for the regulation of PSC activation remains unclear. Methods: The in vitro coculture system was used to study cancer cell-PSC interactions. Atomic force microscopy was used to measure the stiffness of tumor tissues and coculture gels. Cytokine arrays, qPCR, and Western blotting were performed to identify the potential factors involved in PSC activation and to elucidate underlying pathways. Results: PSC activation characterized by α-SMA expression was associated with increased pancreatic tumor stiffness and poor prognosis. Coculture with cancer cells induced PSC activation, which increased organotypic coculture gel stiffness and cancer cell invasion. Cancer cells-derived PAI-1 identified from coculture medium could activate PSCs, consistent with pancreatic cancer tissue microarray analysis showing a strong positive correlation between PAI-1 and α-SMA expression. Suppression by knocking down PAI-1 in cancer cells demonstrated the requirement of PAI-1 for coculture-induced PSC activation and gel stiffness. PAI-1 could be upregulated by KRAS in pancreatic cancer cells through ERK. In PSCs, inhibition of LRP-1, ERK, and c-JUN neutralized the effect of PAI-1, suggesting the contribution of LRP-1/ERK/c-JUN signaling. Furthermore, activated PSCs might exacerbate malignant behavior of cancer cells via IL-8 because suppression of IL-8 signaling reduced pancreatic tumor growth and fibrosis in vivo. Conclusions: KRAS-mutant pancreatic cancer cells can activate PSCs through PAI-1/LRP-1 signaling to promote fibrosis and cancer progression.
Collapse
|
162
|
Liu J, Shang J, Chen Y, Tian Y, Yang Q, Chen M, Xiong B, Zhang XB. A surface-engineered NIR light-responsive actuator for controllable modulation of collective cell migration. J Mater Chem B 2019; 7:5528-5534. [PMID: 31451832 DOI: 10.1039/c9tb01038f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mechanical signal transduction is fundamental for maintaining and regulating cellular processes and functions. Here, we proposed a novel near-infrared (NIR) light-responsive optomechanical actuator for the directional regulation of collective cell adhesion and migration. This optomechanical actuator that is made up of a thermal-responsive copolymer hydrogel and gold nanorods (AuNRs), enables non-invasive activation by NIR light stimulation. The activation of the optomechanical actuator leads to hydrogel contraction and an increase in Young's modulus, which could be used for applying contraction force to cells cultured on the surface of the hydrogel actuator. By grafting cell adhesive peptide ligands, the cells could attach onto the surface of the actuator and displayed a NIR light illumination intensity dependent migration rate along a random orientation. To achieve the controllable modulation of cell behaviors, we employed a microcontact printing strategy for patterned presentation of adhesive ligands on this actuator and achieved directional cell alignment and cell migration through optomechanical actuation. These demonstrations suggest that this robust optomechanical actuator is promising for the optical modulation of cellular events and cell functions in various bioapplications.
Collapse
Affiliation(s)
- Jiayu Liu
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Wang Z, Yin ZT, Zhang F, Li XQ, Chen SR, Yang N, Porter TE, Hou Z. Dynamics of transcriptome changes during subcutaneous preadipocyte differentiation in ducks. BMC Genomics 2019; 20:688. [PMID: 31477016 PMCID: PMC6720933 DOI: 10.1186/s12864-019-6055-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/22/2019] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Pekin duck is an important animal model for its ability for fat synthesis and deposition. However, transcriptional dynamic regulation of adipose differentiation driven by complex signal cascades remains largely unexplored in this model. This study aimed to explore adipogenic transcriptional dynamics before (proliferation) and after (differentiation) initial preadipocyte differentiation in ducks. RESULTS Exogenous oleic acid alone successfully induced duck subcutaneous preadipocyte differentiation. We explored 36 mRNA-seq libraries in order to study transcriptome dynamics during proliferation and differentiation processes at 6 time points. Using robust statistical analysis, we identified 845, 652, 359, 2401 and 1933 genes differentially expressed between -48 h and 0 h, 0 h and 12 h, 12 h and 24 h, 24 h and 48 h, 48 h and 72 h, respectively (FDR < 0.05, FC > 1.5). At the proliferation stage, proliferation related pathways and basic cellular and metabolic processes were inhibited, while regulatory factors that initiate differentiation enter the ready-to-activate state, which provides a precondition for initiating adipose differentiation. According to weighted gene co-expression network analysis, pathways positively related to adipogenic differentiation are significantly activated at the differentiation stage, while WNT, FOXO and other pathways that inhibit preadipocyte differentiation are negatively regulated. Moreover, we identified and classified more than 100 transcription factors that showed significant changes during differentiation, and found novel transcription factors that were not reported to be related to preadipoctye differentiation. Finally, we manually assembled a proposed regulation network model of subcutaneous preadipocyte differentiation base on the expression data, and suggested that E2F1 may serve as an important link between the processes of duck subcutaneous preadipocyte proliferation and differentiation. CONCLUSIONS For the first time we comprehensively analyzed the transcriptome dynamics of duck subcutaneous preadipocyte proliferation and differentiation. The current study provides a solid basis for understanding the synthesis and deposition of subcutaneous fat in ducks. Furthermore, the information generated will allow future investigations of specific genes involved in particular stages of duck adipogenesis.
Collapse
Affiliation(s)
- Zheng Wang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Zhong-Tao Yin
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Fan Zhang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Xiao-Qin Li
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Si-Rui Chen
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Ning Yang
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China
| | - Tom E Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Zhuocheng Hou
- National Engineering Laboratory for Animal Breeding and Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA; Department of Animal Genetics and Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
164
|
Tossas-Milligan K, Shalabi S, Jones V, Keely PJ, Conklin MW, Elicerie KW, Winn R, Sistrunk C, Geradts J, Miranda-Carboni G, Dietze EC, Yee LD, Seewaldt VL. Mammographic density: intersection of advocacy, science, and clinical practice. CURRENT BREAST CANCER REPORTS 2019; 11:100-110. [PMID: 33312342 PMCID: PMC7728377 DOI: 10.1007/s12609-019-00316-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Purpose Here we aim to review the association between mammographic density, collagen structure and breast cancer risk. Findings While mammographic density is a strong predictor of breast cancer risk in populations, studies by Boyd show that mammographic density does not predict breast cancer risk in individuals. Mammographic density is affected by age, parity, menopausal status, race/ethnicity, and body mass index (BMI).New studies normalize mammographic density to BMI may provide a more accurate way to compare mammographic density in women of diverse race and ethnicity. Preclinical and tissue-based studies have investigated the role collagen composition and structure in predicting breast cancer risk. There is emerging evidence that collagen structure may activate signaling pathways associated with aggressive breast cancer biology. Summary Measurement of film mammographic density does not adequately capture the complex signaling that occurs in women with at-risk collagen. New ways to measure at-risk collagen potentially can provide a more accurate view of risk.
Collapse
Affiliation(s)
| | - Sundus Shalabi
- City of Hope Comprehensive Cancer Center, Duarte, CA
- Al Quds University, Jerusalem, West Bank
| | | | | | | | | | - Robert Winn
- University of Illinois, Chicago Cancer Center, Chicago, IL
| | | | | | | | | | - Lisa D. Yee
- City of Hope Comprehensive Cancer Center, Duarte, CA
| | | |
Collapse
|
165
|
Sosnowska M, Kutwin M, Jaworski S, Strojny B, Wierzbicki M, Szczepaniak J, Łojkowski M, Święszkowski W, Bałaban J, Chwalibog A, Sawosz E. Mechano-signalling, induced by fullerene C 60 nanofilms, arrests the cell cycle in the G2/M phase and decreases proliferation of liver cancer cells. Int J Nanomedicine 2019; 14:6197-6215. [PMID: 31496681 PMCID: PMC6689765 DOI: 10.2147/ijn.s206934] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION AND OBJECTIVE Degradation of the extracellular matrix (ECM) changes the physicochemical properties and dysregulates ECM-cell interactions, leading to several pathological conditions, such as invasive cancer. Carbon nanofilm, as a biocompatible and easy to functionalize material, could be used to mimic ECM structures, changing cancer cell behavior to perform like normal cells. METHODS Experiments were performed in vitro with HS-5 cells (as a control) and HepG2 and C3A cancer cells. An aqueous solution of fullerene C60 was used to form a nanofilm. The morphological properties of cells cultivated on C60 nanofilms were evaluated with light, confocal, electron and atomic force microscopy. The cell viability and proliferation were measured by XTT and BrdU assays. Immunoblotting and flow cytometry were used to evaluate the expression level of proliferating cell nuclear antigen and determine the number of cells in the G2/M phase. RESULTS All cell lines were spread on C60 nanofilms, showing a high affinity to the nanofilm surface. We found that C60 nanofilm mimicked the niche/ECM of cells, was biocompatible and non-toxic, but the mechanical signal from C60 nanofilm created an environment that affected the cell cycle and reduced cell proliferation. CONCLUSION The results indicate that C60 nanofilms might be a suitable, substitute component for the niche of cancer cells. The incorporation of fullerene C60 in the ECM/niche may be an alternative treatment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Malwina Sosnowska
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Marta Kutwin
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Sławomir Jaworski
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Barbara Strojny
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Mateusz Wierzbicki
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Jarosław Szczepaniak
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - Maciej Łojkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw00-661, Poland
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw00-661, Poland
| | - Jaśmina Bałaban
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| | - André Chwalibog
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg1870, Denmark
| | - Ewa Sawosz
- Department of Animal Nutrition and Biotechnology, Warsaw University of Life Sciences, Warsaw02-786, Poland
| |
Collapse
|
166
|
Abstract
YAP and TAZ are transcriptional activators pervasively induced in several human solid tumours and their functions in cancer cells are the focus of intense investigation. These studies established that YAP and TAZ are essential to trigger numerous cell-autonomous responses, such as sustained proliferation, cell plasticity, therapy resistance and metastasis. Yet tumours are complex entities, wherein cancer cells are just one of the components of a composite "tumour tissue". The other component, the tumour stroma, is composed of an extracellular matrix with aberrant mechanical properties and other cell types, including cancer-associated fibroblasts and immune cells. The stroma entertains multiple and bidirectional interactions with tumour cells, establishing dependencies essential to unleash tumorigenesis. The molecular players of such interplay remain partially understood. Here, we review the emerging role of YAP and TAZ in choreographing tumour-stromal interactions. YAP and TAZ act within tumour cells to orchestrate responses in stromal cells. Vice versa, YAP and TAZ in stromal cells trigger effects that positively feed back on the growth of tumour cells. Recognizing YAP and TAZ as a hub of the network of signals exchanged within the tumour microenvironment provides a fresh perspective on the molecular principles of tumour self-organization, promising to unveil numerous new vulnerabilities.
Collapse
Affiliation(s)
| | | | - Stefano Piccolo
- Department of Molecular Medicine, University of Padova, Padua, Italy.
- IFOM, The FIRC Institute of Molecular Oncology, Padua, Italy.
| |
Collapse
|
167
|
Abstract
Cells need to be anchored to extracellular matrix (ECM) to survive, yet the role of ECM in guiding developmental processes, tissue homeostasis, and aging has long been underestimated. How ECM orchestrates the deterioration of healthy to pathological tissues, including fibrosis and cancer, also remains poorly understood. Inquiring how alterations in ECM fiber tension might drive these processes is timely, as mechanobiology is a rapidly growing field, and many novel mechanisms behind the mechanical forces that can regulate protein, cell, and tissue functions have recently been deciphered. The goal of this article is to review how forces can switch protein functions, and thus cell signaling, and thereby inspire new approaches to exploit the mechanobiology of ECM in regenerative medicine as well as for diagnostic and therapeutic applications. Some of the mechanochemical switching concepts described here for ECM proteins are more general and apply to intracellular proteins as well.
Collapse
Affiliation(s)
- Viola Vogel
- Laboratory of Applied Mechanobiology, Institute of Translational Medicine, Department for Health Sciences and Technology, ETH Zürich, CH-8093 Zürich, Switzerland;
| |
Collapse
|
168
|
Portone A, Sciancalepore AG, Melle G, Netti GS, Greco G, Persano L, Gesualdo L, Pisignano D. Quasi-3D morphology and modulation of focal adhesions of human adult stem cells through combinatorial concave elastomeric surfaces with varied stiffness. SOFT MATTER 2019; 15:5154-5162. [PMID: 31192342 DOI: 10.1039/c9sm00481e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In vivo cell niches are complex architectures that provide a wide range of biochemical and mechanical stimuli to control cell behavior and fate. With the aim to provide in vitro microenvironments mimicking physiological niches, microstructured substrates have been exploited to support cell adhesion and to control cell shape as well as three dimensional morphology. At variance with previous methods, we propose a simple and rapid protein subtractive soft lithographic method to obtain microstructured polydimethylsiloxane substrates for studying stem cell adhesion and growth. The shape of adult renal stem cells and nuclei is found to depend predominantly on micropatterning of elastomeric surfaces and only weakly on the substrate mechanical properties. Differently, focal adhesions in their shape and density but not in their alignment mainly depend on the elastomer stiffness almost regardless of microscale topography. Local surface topography with concave microgeometry enhancing adhesion drives stem cells in a quasi-three dimensional configuration where stiffness might significantly steer mechanosensing as highlighted by focal adhesion properties.
Collapse
Affiliation(s)
- A Portone
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza S. Silvestro 12, I-56127 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
Feng J, Levine H, Mao X, Sander LM. Cell motility, contact guidance, and durotaxis. SOFT MATTER 2019; 15:4856-4864. [PMID: 31161163 DOI: 10.1039/c8sm02564a] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mechanical properties of the substrate play a vital role in cell motility. In particular, cells have been shown to migrate along aligned fibers in the substrate (contact guidance) and up stiffness gradients (durotaxis). Here we present a simple mechanical model for cell migration coupled to substrate properties, by placing a simulated cell on a lattice mimicking biopolymer gels or hydrogels. In our model cells attach to the substrate via focal adhesions (FAs). As the cells contract, forces are generated at the FAs, determining their maturation and detachment. At the same time, the cell was also allowed to move and rotate to maintain force and torque balance. Our model, in which the cells only have access to information regarding forces acting at the FAs, without a prior knowledge of the substrate stiffness or geometry, is able to reproduce both contact guidance and durotaxis.
Collapse
Affiliation(s)
- Jingchen Feng
- Center for Theoretical Biological Physics, Rice University, 6100 Main Street, Houston, TX 77005-1892, USA.
| | | | | | | |
Collapse
|
170
|
Gonzalez-Molina J, Mendonça da Silva J, Fuller B, Selden C. The extracellular fluid macromolecular composition differentially affects cell-substrate adhesion and cell morphology. Sci Rep 2019; 9:8505. [PMID: 31186501 PMCID: PMC6560040 DOI: 10.1038/s41598-019-44960-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 05/28/2019] [Indexed: 12/22/2022] Open
Abstract
Soluble macromolecules present in the tumour microenvironment (TME) alter the physical characteristics of the extracellular fluid and can affect cancer cell behaviour. A fundamental step in cancer progression is the formation of a new vascular network which may originate from both pre-existing normal endothelium and cancer-derived cells. To study the role of extracellular macromolecules in the TME affecting endothelial cells we exposed normal and cancer-derived endothelial cells to inert polymer solutions with different physicochemical characteristics. The cancer cell line SK-HEP-1, but not normal human umbilical vein endothelial cells, responded to high-macromolecular-content solutions by elongating and aligning with other cells, an effect that was molecular weight-dependent. Moreover, we found that neither bulk viscosity, osmotic pressure, nor the fractional volume occupancy of polymers alone account for the induction of these effects. Furthermore, these morphological changes were accompanied by an increased extracellular matrix deposition. Conversely, cell-substrate adhesion was enhanced by polymers increasing the bulk viscosity of the culture medium independently of polymer molecular weight. These results show that the complex macromolecular composition of the extracellular fluid strongly influences cancer-derived endothelial cell behaviour, which may be crucial to understanding the role of the TME in cancer progression.
Collapse
Affiliation(s)
- Jordi Gonzalez-Molina
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, UCL Medical School, University College London, NW3 2PF, London, UK. .,Microbiology, Tumor and Cell Biology Department, Karolinska Institutet, 171 65, Solna, Sweden. .,Oncology-Pathology Department, Karolinska Instituet, 171 76, Stockholm, Sweden.
| | - Joana Mendonça da Silva
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, UCL Medical School, University College London, NW3 2PF, London, UK
| | - Barry Fuller
- Department of Surgical Biotechnology, Royal Free Hospital, UCL Medical School, University College London, NW3 2QG, London, UK
| | - Clare Selden
- UCL Institute for Liver and Digestive Health, Royal Free Hospital Campus, UCL Medical School, University College London, NW3 2PF, London, UK
| |
Collapse
|
171
|
Banda OA, Sabanayagam CR, Slater JH. Reference-Free Traction Force Microscopy Platform Fabricated via Two-Photon Laser Scanning Lithography Enables Facile Measurement of Cell-Generated Forces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18233-18241. [PMID: 31045355 PMCID: PMC8725169 DOI: 10.1021/acsami.9b04362] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Cells sense and respond to the physical nature of their microenvironment by mechanically probing their surroundings via cytoskeletal contractions. The material response to these stresses can be measured via traction force microscopy (TFM). Traditional TFM platforms present several limitations including variable spatial resolution, difficulty in attaining the full three-dimensional (3D) deformation/stress profile, and the requirement to remove or relax the cells being measured to determine the zero-stress state. To overcome these limitations, we developed a two-photon, photochemical coupling approach to fabricate a new TFM platform that provides high-resolution control over the 3D placement of fluorescent fiducial markers for facile measurement of cell-generated shear and normal components of traction forces. The highly controlled placement of the 3D marker array provides a built-in, zero stress state eliminating the need to perturb the cells being measured while also providing increased throughput. Using this platform, we discovered that the magnitude of cell-generated shear and normal force components are linked both spatially and temporally. The facile nature and increased throughput of measuring cell-generated forces afforded by this new platform will be useful to the mechanotransduction community and others.
Collapse
Affiliation(s)
- Omar A Banda
- Department of Biomedical Engineering , University of Delaware , 5 Innovation Way , Newark , Delaware 19711 , United States
| | - Chandran R Sabanayagam
- Delaware Biotechnology Institute , University of Delaware , 15 Innovation Way , Newark , Delaware 19711 , United States
| | - John H Slater
- Department of Biomedical Engineering , University of Delaware , 5 Innovation Way , Newark , Delaware 19711 , United States
| |
Collapse
|
172
|
Stretching cells – An approach for early cancer diagnosis. Exp Cell Res 2019; 378:191-197. [DOI: 10.1016/j.yexcr.2019.01.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/14/2019] [Accepted: 01/17/2019] [Indexed: 12/20/2022]
|
173
|
Baday M, Ercal O, Sahan AZ, Sahan A, Ercal B, Inan H, Demirci U. Density Based Characterization of Mechanical Cues on Cancer Cells Using Magnetic Levitation. Adv Healthc Mater 2019; 8:e1801517. [PMID: 30946539 DOI: 10.1002/adhm.201801517] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/28/2019] [Indexed: 12/14/2022]
Abstract
Extracellular matrix (ECM) stiffness is correlated to malignancy and invasiveness of cancer cells. Although the mechanism of change is unclear, mechanical signals from the ECM may affect physical properties of cells such as their density profile. The current methods, such as Percoll density-gradient centrifugation, are unable to detect minute density differences. A magnetic levitation device is developed (i.e., MagDense platform) where cells are levitated in a magnetic gradient allowing them to equilibrate to a levitation height that corresponds to their unique cellular density. In application of this system, MDA-MB-231 breast and A549 lung cancer cells are cultured and overall differences in cell density are observed in response to increasing collagen fiber density. Overall, density values are significantly more spread out for MDA-MB-231 cells extracted from the 1.44 mg mL-1 collagen gels compared to those from 0.72 mg mL-1 collagen, whereas no significant difference with A549 cell lines is observed. The MagDense platform can determine differences in cellular densities under various microenvironmental conditions. The imaging of cancer cells in a magnetic levitation device serves as a unique tool to observe changes in phenotypic properties of cancer cells as they relate to micromechanical cues encoded by the ECM.
Collapse
Affiliation(s)
- Murat Baday
- Radiology Department Canary Center for Early Cancer Detection Stanford University School of Medicine Stanford University 3155 Porter Driver Palo Alto 94304 CA USA
| | - Ozlem Ercal
- Radiology Department Canary Center for Early Cancer Detection Stanford University School of Medicine Stanford University 3155 Porter Driver Palo Alto 94304 CA USA
| | - Ayse Zisan Sahan
- Radiology Department Canary Center for Early Cancer Detection Stanford University School of Medicine Stanford University 3155 Porter Driver Palo Alto 94304 CA USA
| | - Asude Sahan
- Radiology Department Canary Center for Early Cancer Detection Stanford University School of Medicine Stanford University 3155 Porter Driver Palo Alto 94304 CA USA
| | - Baris Ercal
- Radiology Department Canary Center for Early Cancer Detection Stanford University School of Medicine Stanford University 3155 Porter Driver Palo Alto 94304 CA USA
| | - Hakan Inan
- Radiology Department Canary Center for Early Cancer Detection Stanford University School of Medicine Stanford University 3155 Porter Driver Palo Alto 94304 CA USA
| | - Utkan Demirci
- Radiology Department Canary Center for Early Cancer Detection Stanford University School of Medicine Stanford University 3155 Porter Driver Palo Alto 94304 CA USA
| |
Collapse
|
174
|
Molinie N, Rubtsova SN, Fokin A, Visweshwaran SP, Rocques N, Polesskaya A, Schnitzler A, Vacher S, Denisov EV, Tashireva LA, Perelmuter VM, Cherdyntseva NV, Bièche I, Gautreau AM. Cortical branched actin determines cell cycle progression. Cell Res 2019; 29:432-445. [PMID: 30971746 PMCID: PMC6796858 DOI: 10.1038/s41422-019-0160-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 03/06/2019] [Indexed: 12/30/2022] Open
Abstract
The actin cytoskeleton generates and senses forces. Here we report that branched actin networks from the cell cortex depend on ARPC1B-containing Arp2/3 complexes and that they are specifically monitored by type I coronins to control cell cycle progression in mammary epithelial cells. Cortical ARPC1B-dependent branched actin networks are regulated by the RAC1/WAVE/ARPIN pathway and drive lamellipodial protrusions. Accordingly, we uncover that the duration of the G1 phase scales with migration persistence in single migrating cells. Moreover, cortical branched actin more generally determines S-phase entry by integrating soluble stimuli such as growth factors and mechanotransduction signals, ensuing from substratum rigidity or stretching of epithelial monolayers. Many tumour cells lose this dependence for cortical branched actin. But the RAC1-transformed tumour cells stop cycling upon Arp2/3 inhibition. Among all genes encoding Arp2/3 subunits, ARPC1B overexpression in tumours is associated with the poorest metastasis-free survival in breast cancer patients. Arp2/3 specificity may thus provide diagnostic and therapeutic opportunities in cancer.
Collapse
Affiliation(s)
- Nicolas Molinie
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France
| | - Svetlana N Rubtsova
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France.,N.N. Blokhin National Medical Research Center of Oncology, Moscow, Russia
| | - Artem Fokin
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France
| | | | | | - Anna Polesskaya
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France
| | | | - Sophie Vacher
- Department of Genetics, Institut Curie, Paris, France
| | - Evgeny V Denisov
- Tomsk National Research Medical Center, Tomsk, Russia.,Tomsk State University, Tomsk, Russia
| | | | | | - Nadezhda V Cherdyntseva
- Tomsk National Research Medical Center, Tomsk, Russia.,Tomsk State University, Tomsk, Russia
| | - Ivan Bièche
- Department of Genetics, Institut Curie, Paris, France
| | - Alexis M Gautreau
- BIOC, Ecole polytechnique, CNRS, IP Paris, Palaiseau, France. .,School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia.
| |
Collapse
|
175
|
The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int J Mol Sci 2019. [PMID: 30959975 DOI: 10.3390/ijms20071723.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and lacks effective therapeutic approaches. Most HCC develops in the setting of chronic liver injury, hepatic inflammation, and fibrosis. Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) are key players in liver fibrogenesis and hepatocarcinogenesis, respectively. CAFs, which probably derive from HSCs, activate into extracellular matrix (ECM)-producing myofibroblasts and crosstalk with cancer cells to affect tumor growth and invasion. In this review, we describe the different components which form the HCC premalignant microenvironment (PME) and the tumor microenvironment (TME), focusing on the liver fibrosis process and the biology of CAFs. We will describe the CAF-dependent mechanisms which have been suggested to promote hepatocarcinogenesis, such as the alteration of ECM, CAF-dependent production of cytokines and angiogenic factors, CAF-dependent reduction of immuno-surveillance, and CAF-dependent promotion of epithelial-mesenchymal transition (EMT). New knowledge of the fibrosis process and the role of CAFs in HCC may pave the way for new therapeutic strategies for liver cancer.
Collapse
|
176
|
Baglieri J, Brenner DA, Kisseleva T. The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma. Int J Mol Sci 2019; 20:ijms20071723. [PMID: 30959975 PMCID: PMC6479943 DOI: 10.3390/ijms20071723] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/29/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most aggressive types of cancer and lacks effective therapeutic approaches. Most HCC develops in the setting of chronic liver injury, hepatic inflammation, and fibrosis. Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) are key players in liver fibrogenesis and hepatocarcinogenesis, respectively. CAFs, which probably derive from HSCs, activate into extracellular matrix (ECM)-producing myofibroblasts and crosstalk with cancer cells to affect tumor growth and invasion. In this review, we describe the different components which form the HCC premalignant microenvironment (PME) and the tumor microenvironment (TME), focusing on the liver fibrosis process and the biology of CAFs. We will describe the CAF-dependent mechanisms which have been suggested to promote hepatocarcinogenesis, such as the alteration of ECM, CAF-dependent production of cytokines and angiogenic factors, CAF-dependent reduction of immuno-surveillance, and CAF-dependent promotion of epithelial-mesenchymal transition (EMT). New knowledge of the fibrosis process and the role of CAFs in HCC may pave the way for new therapeutic strategies for liver cancer.
Collapse
Affiliation(s)
- Jacopo Baglieri
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| | - David A Brenner
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
177
|
Lasocka I, Jastrzębska E, Szulc-Dąbrowska L, Skibniewski M, Pasternak I, Kalbacova MH, Skibniewska EM. The effects of graphene and mesenchymal stem cells in cutaneous wound healing and their putative action mechanism. Int J Nanomedicine 2019; 14:2281-2299. [PMID: 31015759 PMCID: PMC6448540 DOI: 10.2147/ijn.s190928] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study provides a review of the therapeutic potential of graphene dressing scaffolds and mesenchymal stem cells (MSCs) and their synergistic effects with respect to cutaneous wound healing. This study also considers their putative action mechanism based on the antibacterial, immunomodulating, angiogenic, matrix remodeling effects of materials belonging to the graphene family and MSCs during the wound healing process. In addition, this study discusses the cytocompatibility of graphene, its uses as a platform for skin substitutes, the properties it possesses with respect to providing protection against microbial invasion as well as strategies aimed at minimizing the chance of the occurrence of sepsis. MSCs are capable of secreting several factors that exert a therapeutic impact on reparative processes and tissue regeneration. In light of experiments conducted to date, graphene combined with MSCs appears to have the potential to enhance both the wound healing process and infection control at the injury site.
Collapse
Affiliation(s)
- Iwona Lasocka
- Department of Animal Environment Biology, Faculty of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| | - Elżbieta Jastrzębska
- Department of Medical Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Lidia Szulc-Dąbrowska
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Michał Skibniewski
- Department of Morphological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland,
| | - Iwona Pasternak
- Faculty of Physics, Warsaw University of Technology, Warsaw, Poland
| | - Marie Hubalek Kalbacova
- Institute of Pathological Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic,
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic,
| | - Ewa M Skibniewska
- Department of Animal Environment Biology, Faculty of Animal Science, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
178
|
Kim J, Li B, Scheideler OJ, Kim Y, Sohn LL. Visco-Node-Pore Sensing: A Microfluidic Rheology Platform to Characterize Viscoelastic Properties of Epithelial Cells. iScience 2019; 13:214-228. [PMID: 30870780 PMCID: PMC6416673 DOI: 10.1016/j.isci.2019.02.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/26/2019] [Accepted: 02/21/2019] [Indexed: 12/14/2022] Open
Abstract
Viscoelastic properties of cells provide valuable information regarding biological or clinically relevant cellular characteristics. Here, we introduce a new, electronic-based, microfluidic platform-visco-node-pore sensing (visco-NPS)-which quantifies cellular viscoelastic properties under periodic deformation. We measure the storage (G') and loss (G″) moduli (i.e., elasticity and viscosity, respectively) of cells. By applying a wide range of deformation frequencies, our platform quantifies the frequency dependence of viscoelastic properties. G' and G″ measurements show that the viscoelastic properties of malignant breast epithelial cells (MCF-7) are distinctly different from those of non-malignant breast epithelial cells (MCF-10A). With its sensitivity, visco-NPS can dissect the individual contributions of different cytoskeletal components to whole-cell mechanical properties. Moreover, visco-NPS can quantify the mechanical transitions of cells as they traverse the cell cycle or are initiated into an epithelial-mesenchymal transition. Visco-NPS identifies viscoelastic characteristics of cell populations, providing a biophysical understanding of cellular behavior and a potential for clinical applications.
Collapse
Affiliation(s)
- Junghyun Kim
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA
| | - Brian Li
- Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA
| | - Olivia J Scheideler
- Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA
| | - Youngbin Kim
- Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA
| | - Lydia L Sohn
- Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, University of California, San Francisco, Berkeley, CA, USA.
| |
Collapse
|
179
|
Mechanotransduction and Cytoskeleton Remodeling Shaping YAP1 in Gastric Tumorigenesis. Int J Mol Sci 2019; 20:ijms20071576. [PMID: 30934860 PMCID: PMC6480114 DOI: 10.3390/ijms20071576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
The essential role of Hippo signaling pathway in cancer development has been elucidated by recent studies. In the gastrointestinal tissues, deregulation of the Hippo pathway is one of the most important driving events for tumorigenesis. It is widely known that Yes-associated protein 1 (YAP1) and WW domain that contain transcription regulator 1 (TAZ), two transcriptional co-activators with a PDZ-binding motif, function as critical effectors negatively regulated by the Hippo pathway. Previous studies indicate the involvement of YAP1/TAZ in mechanotransduction by crosstalking with the extracellular matrix (ECM) and the F-actin cytoskeleton associated signaling network. In gastric cancer (GC), YAP1/TAZ functions as an oncogene and transcriptionally promotes tumor formation by cooperating with TEAD transcription factors. Apart from the classic role of Hippo-YAP1 cascade, in this review, we summarize the current investigations to highlight the prominent role of YAP1/TAZ as a mechanical sensor and responder under mechanical stress and address its potential prognostic and therapeutic value in GC.
Collapse
|
180
|
Danilucci TM, Santos PK, Pachane BC, Pisani GFD, Lino RLB, Casali BC, Altei WF, Selistre-de-Araujo HS. Recombinant RGD-disintegrin DisBa-01 blocks integrin α vβ 3 and impairs VEGF signaling in endothelial cells. Cell Commun Signal 2019; 17:27. [PMID: 30894182 PMCID: PMC6425665 DOI: 10.1186/s12964-019-0339-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/12/2019] [Indexed: 12/18/2022] Open
Abstract
Background Integrins mediate cell adhesion, migration, and survival by connecting the intracellular machinery with the surrounding extracellular matrix. Previous studies demonstrated the interaction between αvβ3 integrin and VEGF type 2 receptor (VEGFR2) in VEGF-induced angiogenesis. DisBa-01, a recombinant His-tag fusion, RGD-disintegrin from Bothrops alternatus snake venom, binds to αvβ3 integrin with nanomolar affinity blocking cell adhesion to the extracellular matrix. Here we present in vitro evidence of a direct interference of DisBa-01 with αvβ3/VEGFR2 cross-talk and its downstream pathways. Methods Human umbilical vein (HUVECs) were cultured in plates coated with fibronectin (FN) or vitronectin (VN) and tested for migration, invasion and proliferation assays in the presence of VEGF, DisBa-01 (1000 nM) or VEGF and DisBa-01 simultaneously. Phosphorylation of αvβ3/VEGFR2 receptors and the activation of intracellular signaling pathways were analyzed by western blotting. Morphological alterations were observed and quantified by fluorescence confocal microscopy. Results DisBa-01 treatment of endothelial cells inhibited critical steps of VEGF-mediated angiogenesis such as migration, invasion and tubulogenesis. The blockage of αvβ3/VEGFR2 cross-talk by this disintegrin decreases protein expression and phosphorylation of VEGFR2 and β3 integrin subunit, regulates FAK/SrC/Paxillin downstream signals, and inhibits ERK1/2 and PI3K pathways. These events result in actin re-organization and inhibition of HUVEC migration and adhesion. Labelled-DisBa-01 colocalizes with αvβ3 integrin and VEGFR2 in treated cells. Conclusions Disintegrin inhibition of αvβ3 integrin blocks VEGFR2 signalling, even in the presence of VEGF, which impairs the angiogenic mechanism. These results improve our understanding concerning the mechanisms of pharmacological inhibition of angiogenesis. Electronic supplementary material The online version of this article (10.1186/s12964-019-0339-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Taís M Danilucci
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Patty K Santos
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Bianca C Pachane
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Graziéle F D Pisani
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Rafael L B Lino
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Bruna C Casali
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Wanessa F Altei
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil
| | - Heloisa S Selistre-de-Araujo
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, Rod. Washington Luis, km 235 - SP-310 - São Carlos, São Paulo, CEP 13565-905, Brazil.
| |
Collapse
|
181
|
Wong SHD, Yin B, Yang B, Lin S, Li R, Feng Q, Yang H, Zhang L, Yang Z, Li G, Choi CHJ, Bian L. Anisotropic Nanoscale Presentation of Cell Adhesion Ligand Enhances the Recruitment of Diverse Integrins in Adhesion Structures and Mechanosensing‐Dependent Differentiation of Stem Cells. ADVANCED FUNCTIONAL MATERIALS 2019; 29. [DOI: 10.1002/adfm.201806822] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Indexed: 10/04/2024]
Abstract
AbstractThe nanoscale anisotropic patterns of bioactive ligands in the extracellular matrix regulate cell adhesion behaviors. However, the mechanisms of such regulation remain unclear. Here, RGD‐bearing gold nanorods (AuNRs) are conjugated with different aspect ratios (ARs, from 1 to 7) on cell culture substrates to decouple the effect of nanoscale anisotropic presentation of cell adhesive RGD peptides on cell adhesion. Compared with AuNRs with small ARs, AuNRs with large ARs significantly promote cell spreading, the alignment of the basal cytoskeletal structure, and nanopodia attachment. Furthermore, both ‐β3 and ‐β1 class integrins are recruited to AuNRs with large ARs, thereby promoting the development of focal adhesion toward fibrillar adhesion, whereas the recruitment of diverse integrins and the development of cell adhesion structures are hindered by small ARs AuNRs. The anisotropic presentation of ligands by large AR AuNRs better activates mechanotransduction signaling molecules. These findings are confirmed both in vitro and in vivo. Hence the enhanced mechanotransduction promotes osteogenic differentiation in stem cells. These findings demonstrate the potential use of well‐controlled synthetic nanoplatforms to unravel the fundamental mechanisms of cell adhesion and associated signaling at the molecular level and to provide valuable guidance for the rational design of biomaterials with tailored bioactive functions.
Collapse
Affiliation(s)
- Siu Hong Dexter Wong
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Bohan Yin
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Boguang Yang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Sien Lin
- Department of Orthopaedic and Traumatology The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong 999077 China
| | - Rui Li
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Qian Feng
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Hongrong Yang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Lei Zhang
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Zhengmeng Yang
- Department of Orthopaedic and Traumatology The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong 999077 China
| | - Gang Li
- Department of Orthopaedic and Traumatology The Chinese University of Hong Kong Prince of Wales Hospital Shatin Hong Kong 999077 China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
| | - Liming Bian
- Department of Biomedical Engineering The Chinese University of Hong Kong Shatin Hong Kong 999077 China
- Translational Research Centre of Regenerative Medicine and 3D Printing Technologies of Guangzhou Medical University The Third Affiliated Hospital of Guangzhou Medical University Guangzhou 510000 China
- Shenzhen Research Institute The Chinese University of Hong Kong Shenzhen 518172 China
- China Orthopedic Regenerative Medicine Group (CORMed) Hangzhou Zhejiang 310058 China
| |
Collapse
|
182
|
Mechanobiology of mice cervix: expression profile of mechano-related molecules during pregnancy. Cell Tissue Res 2019; 376:443-456. [PMID: 30671632 DOI: 10.1007/s00441-018-02983-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 12/11/2018] [Indexed: 01/10/2023]
Abstract
There is a known reciprocation between the chronic exertion of force on tissue and both increased tissue density (e.g., bone) and hypertrophy (e.g., heart). This can also be seen in cervical tissue where the excessive gravitational forces associated with multiple fetal pregnancies promote preterm births. While there is a well-known regulation of cervical remodeling (CR) by sex steroid hormones and growth factors, the role of mechanical force is less appreciated. Using proteome-wide technology, we previously provided evidence for the presence of and alteration in mechano-related signaling molecules in the mouse cervix during pregnancy. Here, we profile the expression of select cytoskeletal factors (filamin-A, gelsolin, vimentin, actinin-1, caveolin-1, transgelin, keratin-8, profilin-1) and their associated signaling molecules [focal adhesion kinase (FAK) and the Rho GTPases CDC42, RHOA, and RHOB] in cervices of pregnant mice by real-time PCR and confocal immunofluorescence microscopy. Messenger RNA and protein levels increased for each of these 12 factors, except for 3 (keratin-8, profilin-1, RHOA) that decreased during the course of pregnancy and this corresponded with an increase in gravitational force exerted by the fetus on the cervix. We therefore conclude that size or weight of the growing fetus likely plays a key role in CR through mechanotransduction processes.
Collapse
|
183
|
Hyodo K, Arisaka Y, Yamaguchi S, Yoda T, Yui N. Stimulation of Microvascular Networks on Sulfonated Polyrotaxane Surfaces with Immobilized Vascular Endothelial Growth Factor. Macromol Biosci 2019; 19:e1800346. [DOI: 10.1002/mabi.201800346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/17/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Katsuya Hyodo
- Department of Maxillofacial Surgery Graduate School of Medical and Dental SciencesTokyo Medical and Dental University 1‐5‐45 Yushima Bunkyo Tokyo 113–8549 Japan
| | - Yoshinori Arisaka
- Department of Organic Biomaterials, Institute of Biomaterials and BioengineeringTokyo Medical and Dental University 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| | - Satoshi Yamaguchi
- Department of Maxillofacial Surgery Graduate School of Medical and Dental SciencesTokyo Medical and Dental University 1‐5‐45 Yushima Bunkyo Tokyo 113–8549 Japan
| | - Tetsuya Yoda
- Department of Maxillofacial Surgery Graduate School of Medical and Dental SciencesTokyo Medical and Dental University 1‐5‐45 Yushima Bunkyo Tokyo 113–8549 Japan
| | - Nobuhiko Yui
- Department of Organic Biomaterials, Institute of Biomaterials and BioengineeringTokyo Medical and Dental University 2‐3‐10 Kanda‐Surugadai Chiyoda Tokyo 101‐0062 Japan
| |
Collapse
|
184
|
Hong S, Sunwoo JH, Kim JS, Tchah H, Hwang C. Conjugation of carboxymethyl cellulose and dopamine for cell sheet harvesting. Biomater Sci 2019; 7:139-148. [DOI: 10.1039/c8bm00971f] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
This manuscript focuses on the cell sheet preparation methodology with the conjugation of carboxymethylcellulose (CMC) and dopamine (DA).
Collapse
Affiliation(s)
- Soyoung Hong
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Jeong Hey Sunwoo
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Ji Seon Kim
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Hungwon Tchah
- Department of Convergence Medicine
- University of Ulsan College of Medicine & Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| | - Changmo Hwang
- Biomedical Engineering Research Center
- Asan Institute for Life Sciences
- Asan Medical Center
- Seoul 05505
- Republic of Korea
| |
Collapse
|
185
|
Chagnon-Lessard S, Godin M, Pelling AE. Time dependence of cellular responses to dynamic and complex strain fields. Integr Biol (Camb) 2019; 11:4-15. [PMID: 30778578 DOI: 10.1093/intbio/zyy002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/08/2018] [Indexed: 11/13/2022]
Abstract
Exposing cells to an unconventional sequence of physical cues can reveal subtleties of cellular sensing and response mechanisms. We investigated the mechanoresponse of cyclically stretched fibroblasts under a spatially non-uniform strain field which was subjected to repeated changes in stretching directions over 55 h. A polydimethylsiloxane microfluidic stretcher array optimized for complex staining procedures and imaging was developed to generate biologically relevant strain and strain gradient amplitudes. We demonstrated that cells can successfully reorient themselves repeatedly, as the main cyclical stretching direction is consecutively switched between two perpendicular directions every 11 h. Importantly, from one reorientation to the next, the extent to which cells reorient themselves perpendicularly to the local strain direction progressively decreases, while their tendency to align perpendicularly to the strain gradient direction increases. We demonstrate that these results are consistent with our finding that cellular responses to strains and strain gradients occur on two distinct time scales, the latter being slower. Overall, our results reveal the absence of major irreversible cellular changes that compromise the ability to sense and reorient to changing strain directions under the conditions of this experiment. On the other hand, we show how the history of strain field dynamics can influence the cellular realignment behavior, due to the interplay of complex time-dependent responses.
Collapse
Affiliation(s)
| | - Michel Godin
- Department of Physics, STEM Building 150 Louis Pasteur, Ottawa, Canada.,Department of Mechanical Engineering, Site Building, 800 King Edward Avenue, University of Ottawa, ON, Canada.,Ottawa-Carleton Institute for Biomedical Engineering, Ottawa, ON, Canada
| | - Andrew E Pelling
- Department of Physics, STEM Building 150 Louis Pasteur, Ottawa, Canada.,Department of Biology, Gendron Hall, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada.,Institute for Science Society and Policy, Simard Hall, 60 University, University of Ottawa, Ottawa, ON, Canada.,SymbioticA, School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
186
|
Rho–ROCK signaling regulates tumor-microenvironment interactions. Biochem Soc Trans 2018; 47:101-108. [DOI: 10.1042/bst20180334] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/27/2018] [Accepted: 11/06/2018] [Indexed: 12/19/2022]
Abstract
Abstract
Reciprocal biochemical and biophysical interactions between tumor cells, stromal cells and the extracellular matrix (ECM) result in a unique tumor microenvironment that determines disease outcome. The cellular component of the tumor microenvironment contributes to tumor growth by providing nutrients, assisting in the infiltration of immune cells and regulating the production and remodeling of the ECM. The ECM is a noncellular component of the tumor microenvironment and provides both physical and biochemical support to the tumor cells. Rho–ROCK signaling is a key regulator of actomyosin contractility and regulates cell shape, cytoskeletal arrangement and thereby cellular functions such as cell proliferation, differentiation, motility and adhesion. Rho–ROCK signaling has been shown to promote cancer cell growth, migration and invasion. However, it is becoming clear that this pathway also regulates key tumor-promoting properties of the cellular and noncellular components of the tumor microenvironment. There is accumulating evidence that Rho–ROCK signaling enhances ECM stiffness, modifies ECM composition, increases the motility of tumor-associated fibroblasts and lymphocytes and promotes trans-endothelial migration of tumor-associated lymphocytes. In this review, we briefly discuss the current state of knowledge on the role of Rho–ROCK signaling in regulating the tumor microenvironment and the implications of this knowledge for therapy, potentially via the development of selective inhibitors of the components of this pathway to permit the tuning of signaling flux, including one example with demonstrated utility in pre-clinical models.
Collapse
|
187
|
Shao S, Liao X, Xie F, Deng S, Liu X, Ristaniemi T, Liu B. FRET biosensor allows spatio-temporal observation of shear stress-induced polar RhoGDIα activation. Commun Biol 2018; 1:224. [PMID: 30564745 PMCID: PMC6288100 DOI: 10.1038/s42003-018-0232-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022] Open
Abstract
Rho GDP-dissociation inhibitor α (RhoGDIα) is a known negative regulator of the Rho family that shuts off GDP/GTP cycling and cytoplasm/membrane translocation to regulate cell migration. However, to our knowledge, no reports are available that focus on how the RhoGDIα-Rho GTPases complex is activated by laminar flow through exploring the activation of RhoGDIα itself. Here, we constructed a new biosensor using fluorescence resonance energy transfer (FRET) technology to measure the spatio-temporal activation of RhoGDIα in its binding with Rho GTPases in living HeLa cells. Using this biosensor, we find that the dissociation of the RhoGDIα-Rho GTPases complex is increased by shear stress, and its dissociation rate varies with subcellular location. Moreover, this process is mediated by membrane fluidity, cytoskeleton and Src activity, which indicates that the regulation of RhoGDIα activation under shear stress application represents a relatively separate pathway from the shear stress-induced Rho pathway.
Collapse
Affiliation(s)
- Shuai Shao
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Xiaoling Liao
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, 401331 Chongqing, China
| | - Fei Xie
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Sha Deng
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| | - Xue Liu
- Biomaterials and Live Cell Imaging Institute, Chongqing University of Science and Technology, 401331 Chongqing, China
| | - Tapani Ristaniemi
- Faculty of Information Technology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Bo Liu
- School of Biomedical Engineering, Dalian University of Technology, Liaoning IC Technology Key Lab, 116024 Dalian, China
| |
Collapse
|
188
|
Brusatin G, Panciera T, Gandin A, Citron A, Piccolo S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. NATURE MATERIALS 2018; 17:1063-1075. [PMID: 30374202 PMCID: PMC6992423 DOI: 10.1038/s41563-018-0180-8] [Citation(s) in RCA: 191] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/29/2018] [Indexed: 05/11/2023]
Abstract
Mechanical signals are increasingly recognized as overarching regulators of cell behaviour, controlling stemness, organoid biology, tissue development and regeneration. Moreover, aberrant mechanotransduction is a driver of disease, including cancer, fibrosis and cardiovascular defects. A central question remains how cells compute a host of biomechanical signals into meaningful biological behaviours. Biomaterials and microfabrication technologies are essential to address this issue. Here we review a large body of evidence that connects diverse biomaterial-based systems to the functions of YAP/TAZ, two highly related mechanosensitive transcriptional regulators. YAP/TAZ orchestrate the response to a suite of engineered microenviroments, emerging as a universal control system for cells in two and three dimensions, in static or dynamic fashions, over a range of elastic and viscoelastic stimuli, from solid to fluid states. This approach may guide the rational design of technological and material-based platforms with dramatically improved functionalities and inform the generation of new biomaterials for regenerative medicine applications.
Collapse
Affiliation(s)
- Giovanna Brusatin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
| | - Tito Panciera
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Alessandro Gandin
- Department of Industrial Engineering (DII) and INSTM, University of Padua, Padua, Italy
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Anna Citron
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, Padua, Italy.
- IFOM-the FIRC Institute of Molecular Oncology, .
| |
Collapse
|
189
|
Yeldag G, Rice A, Del Río Hernández A. Chemoresistance and the Self-Maintaining Tumor Microenvironment. Cancers (Basel) 2018; 10:E471. [PMID: 30487436 PMCID: PMC6315745 DOI: 10.3390/cancers10120471] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/24/2018] [Accepted: 11/27/2018] [Indexed: 12/15/2022] Open
Abstract
The progression of cancer is associated with alterations in the tumor microenvironment, including changes in extracellular matrix (ECM) composition, matrix rigidity, hypervascularization, hypoxia, and paracrine factors. One key malignant phenotype of cancer cells is their ability to resist chemotherapeutics, and elements of the ECM can promote chemoresistance in cancer cells through a variety of signaling pathways, inducing changes in gene expression and protein activity that allow resistance. Furthermore, the ECM is maintained as an environment that facilitates chemoresistance, since its constitution modulates the phenotype of cancer-associated cells, which themselves affect the microenvironment. In this review, we discuss how the properties of the tumor microenvironment promote chemoresistance in cancer cells, and the interplay between these external stimuli. We focus on both the response of cancer cells to the external environment, as well as the maintenance of the external environment, and how a chemoresistant phenotype emerges from the complex signaling network present.
Collapse
Affiliation(s)
- Gulcen Yeldag
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Alistair Rice
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| | - Armando Del Río Hernández
- Cellular and Molecular Biomechanics Laboratory, Department of Bioengineering, Imperial College London, London, UK.
| |
Collapse
|
190
|
Chemotherapeutic resistance: a nano-mechanical point of view. Biol Chem 2018; 399:1433-1446. [DOI: 10.1515/hsz-2018-0274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022]
Abstract
AbstractChemotherapeutic resistance is one of the main obstacles for cancer remission. To understand how cancer cells acquire chemotherapeutic resistance, biochemical studies focusing on drug target alteration, altered cell proliferation, and reduced susceptibility to apoptosis were performed. Advances in nano-mechanobiology showed that the enhanced mechanical deformability of cancer cells accompanied by cytoskeletal alteration is a decisive factor for cancer development. Furthermore, atomic force microscopy (AFM)–based nano-mechanical studies showed that chemotherapeutic treatments reinforced the mechanical stiffness of drug-sensitive cancer cells. However, drug-resistant cancer cells did not show such mechanical responses following chemotherapeutic treatments. Interestingly, drug-resistant cancer cells are mechanically heterogeneous, with a subpopulation of resistant cells showing higher stiffness than their drug-sensitive counterparts. The signaling pathways involving Rho, vinculin, and myosin II were found to be responsible for these mechanical alterations in drug-resistant cancer cells. In the present review, we highlight the mechanical aspects of chemotherapeutic resistance, and suggest how mechanical studies can contribute to unravelling the multifaceted nature of chemotherapeutic resistance.
Collapse
|
191
|
Wang B, Tu X, Wei J, Wang L, Chen Y. Substrate elasticity dependent colony formation and cardiac differentiation of human induced pluripotent stem cells. Biofabrication 2018; 11:015005. [DOI: 10.1088/1758-5090/aae0a5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
192
|
Wang K, Yang Z, Qing D, Ren F, Liu S, Zheng Q, Liu J, Zhang W, Dai C, Wu M, Chehab EW, Braam J, Li N. Quantitative and functional posttranslational modification proteomics reveals that TREPH1 plays a role in plant touch-delayed bolting. Proc Natl Acad Sci U S A 2018; 115:E10265-E10274. [PMID: 30291188 PMCID: PMC6205429 DOI: 10.1073/pnas.1814006115] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Environmental mechanical forces, such as wind and touch, trigger gene-expression regulation and developmental changes, called "thigmomorphogenesis," in plants, demonstrating the ability of plants to perceive such stimuli. In Arabidopsis, a major thigmomorphogenetic response is delayed bolting, i.e., emergence of the flowering stem. The signaling components responsible for mechanotransduction of the touch response are largely unknown. Here, we performed a high-throughput SILIA (stable isotope labeling in Arabidopsis)-based quantitative phosphoproteomics analysis to profile changes in protein phosphorylation resulting from 40 seconds of force stimulation in Arabidopsis thaliana Of the 24 touch-responsive phosphopeptides identified, many were derived from kinases, phosphatases, cytoskeleton proteins, membrane proteins, and ion transporters. In addition, the previously uncharacterized protein TOUCH-REGULATED PHOSPHOPROTEIN1 (TREPH1) became rapidly phosphorylated in touch-stimulated plants, as confirmed by immunoblots. TREPH1 fractionates as a soluble protein and is shown to be required for the touch-induced delay of bolting and gene-expression changes. Furthermore, a nonphosphorylatable site-specific isoform of TREPH1 (S625A) failed to restore touch-induced flowering delay of treph1-1, indicating the necessity of S625 for TREPH1 function and providing evidence consistent with the possible functional relevance of the touch-regulated TREPH1 phosphorylation. Taken together, these findings identify a phosphoprotein player in Arabidopsis thigmomorphogenesis regulation and provide evidence that TREPH1 and its touch-induced phosphorylation may play a role in touch-induced bolting delay, a major component of thigmomorphogenesis.
Collapse
Affiliation(s)
- Kai Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Zhu Yang
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| | - Dongjin Qing
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Feng Ren
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Shichang Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Qingsong Zheng
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Proteomics Center, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jun Liu
- ASPEC Technologies Limited, 100101 Beijing, China
| | | | - Chen Dai
- Proteomics Center, College of Resources and Environmental Sciences, Nanjing Agricultural University, 210095 Nanjing, China
| | - Madeline Wu
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - E Wassim Chehab
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Janet Braam
- Department of BioSciences, Rice University, Houston, TX 77005
| | - Ning Li
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China;
- Energy Institute, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Institute for the Environment, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- HKUST Shenzhen Research Institute, 518057 Shenzhen, China
| |
Collapse
|
193
|
Antifibrotics in liver disease: are we getting closer to clinical use? Hepatol Int 2018; 13:25-39. [PMID: 30302735 DOI: 10.1007/s12072-018-9897-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/14/2018] [Indexed: 12/14/2022]
Abstract
The process of wound healing in response to chronic liver injury leads to the development of liver fibrosis. Regardless of etiology, the profound impact of the degree of liver fibrosis on the prognosis of chronic liver diseases has been well demonstrated. While disease-specific therapy, such as treatments for viral hepatitis, has been shown to reverse liver fibrosis and cirrhosis in both clinical trials and real-life practice, subsets of patients do not demonstrate fibrosis regression. Moreover, where disease-specific therapies are not available, the need for antifibrotics exists. Increased understanding into the pathogenesis of liver fibrosis sets the stage to focus on antifibrotic therapies attempting to: (1) Minimize liver injury and inflammation; (2) Inhibit liver fibrogenesis by enhancing or inhibiting target receptor-ligand interactions or intracellular signaling pathways; and (3) Promote fibrosis resolution. While no antifibrotic therapies are currently available, a number are now being evaluated in clinical trials, and their use is becoming closer to reality for select subsets of patients.
Collapse
|
194
|
Chitragari G, Shalaby SY, Sumpio BJ, Kurita J, Sumpio BE. Regulation of Yes-Associated Protein by Laminar Flow. Ann Vasc Surg 2018; 52:183-191. [DOI: 10.1016/j.avsg.2018.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 01/17/2018] [Accepted: 03/15/2018] [Indexed: 01/29/2023]
|
195
|
Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A, Orbegoso C, Punta M, Sottoriva A, Lise S, Banerjee S, Yuan Y. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018. [PMID: 30254278 DOI: 10.1038/s41467-018-06130-3] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
Affiliation(s)
- Andreas Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adnan Mujahid Khan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Nava Rodrigues
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.,Centre for Molecular Pathology, Royal Marsden Hospital, London, SM2 5NG, UK
| | - Cecilia Orbegoso
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK.,Division of Clinical Studies, the Institute of Cancer Research, London, UK, SM2 5NG
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK. .,Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
196
|
Heindl A, Khan AM, Rodrigues DN, Eason K, Sadanandam A, Orbegoso C, Punta M, Sottoriva A, Lise S, Banerjee S, Yuan Y. Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018; 9:3917. [PMID: 30254278 PMCID: PMC6156340 DOI: 10.1038/s41467-018-06130-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 08/15/2018] [Indexed: 12/22/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
Affiliation(s)
- Andreas Heindl
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Adnan Mujahid Khan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Daniel Nava Rodrigues
- Division of Cancer Therapeutics, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Katherine Eason
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK
- Centre for Molecular Pathology, Royal Marsden Hospital, London, SM2 5NG, UK
| | - Cecilia Orbegoso
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
| | - Marco Punta
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Andrea Sottoriva
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Stefano Lise
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK
| | - Susana Banerjee
- Gynaecology Unit, The Royal Marsden NHS Foundation Trust, London, SW3 6JJ, UK
- Division of Clinical Studies, the Institute of Cancer Research, London, UK, SM2 5NG
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, SM2 5NG, UK.
- Division of Molecular Pathology, The Institute of Cancer Research, London, SM2 5NG, UK.
| |
Collapse
|
197
|
Microenvironmental niche divergence shapes BRCA1-dysregulated ovarian cancer morphological plasticity. Nat Commun 2018. [PMID: 30254278 DOI: 10.1038/s41467-018-06130-3]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
How tumor microenvironmental forces shape plasticity of cancer cell morphology is poorly understood. Here, we conduct automated histology image and spatial statistical analyses in 514 high grade serous ovarian samples to define cancer morphological diversification within the spatial context of the microenvironment. Tumor spatial zones, where cancer cell nuclei diversify in shape, are mapped in each tumor. Integration of this spatially explicit analysis with omics and clinical data reveals a relationship between morphological diversification and the dysregulation of DNA repair, loss of nuclear integrity, and increased disease mortality. Within the Immunoreactive subtype, spatial analysis further reveals significantly lower lymphocytic infiltration within diversified zones compared with other tumor zones, suggesting that even immune-hot tumors contain cells capable of immune escape. Our findings support a model whereby a subpopulation of morphologically plastic cancer cells with dysregulated DNA repair promotes ovarian cancer progression through positive selection by immune evasion.
Collapse
|
198
|
Zhao S, Wang Y, Zhang X, Zheng L, Zhu B, Yao S, Yang L, Du J. Melatonin Protects Against Hypoxia/Reoxygenation-Induced Dysfunction of Human Umbilical Vein Endothelial Cells Through Inhibiting Reactive Oxygen Species Generation. ACTA CARDIOLOGICA SINICA 2018; 34:424-431. [PMID: 30271093 PMCID: PMC6160513 DOI: 10.6515/acs.201809_34(5).20180708a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypoxia/reoxygenation (H/R) in human umbilical vein endothelial cells (HUVECs) induces oxidative stress and eventually leads to vascular injury. OBJECTIVE The aim of this study was to examine the effect of melatonin on HUVECs injured by H/R and explore the underlying mechanisms. MATERIALS AND METHODS A model of HUVECs under hypoxia/reoxygenation was established. Cell migration and adhesive ability was measured by wound healing and adhesion assays. Cell proliferation was measured by EdU assay. Production of reactive oxygen species (ROS) was evaluated by CM-H2DCFDA staining. Actin cytoskeleton rearrangement was examined by immunofluorescence. Western blotting analysis were used to analyze P38 and HSP27 phosphorylation levels. RESULTS H/R inhibited HUVEC proliferation, cell migratory and adhesive capacities, whereas melatonin (1~100 μM) inhibited these effects in a dose-dependent manner. Melatonin alone did not affect HUVEC viability, however, it inhibited the increase in ROS production and cytoskeleton disruption elicited by H/R, and it dose-dependently prevented H/R-induced upregulation of P38 and HSP27 phosphorylation. In addition, the ROS scavenger N-acetyl-L-cysteine markedly inhibited increased phosphorylation levels of P38 and HSP27 under H/R. CONCLUSIONS Melatonin may have a potential clinical effect in trials of H/R-induced vascular injury through its antioxidant property.
Collapse
Affiliation(s)
- Shuo Zhao
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| | - Yueyuan Wang
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| | | | | | | | | | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, 213003, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, 211166
| |
Collapse
|
199
|
Kulkarni AH, Chatterjee A, Kondaiah P, Gundiah N. TGF-β induces changes in breast cancer cell deformability. Phys Biol 2018; 15:065005. [DOI: 10.1088/1478-3975/aac3ba] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
200
|
Mohan A, Schlue KT, Kniffin AF, Mayer CR, Duke AA, Narayanan V, Arsenovic PT, Bathula K, Danielsson BE, Dumbali SP, Maruthamuthu V, Conway DE. Spatial Proliferation of Epithelial Cells Is Regulated by E-Cadherin Force. Biophys J 2018; 115:853-864. [PMID: 30131170 DOI: 10.1016/j.bpj.2018.07.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 06/24/2018] [Accepted: 07/23/2018] [Indexed: 10/28/2022] Open
Abstract
Cell proliferation and contact inhibition play a major role in maintaining epithelial cell homeostasis. Prior experiments have shown that externally applied forces, such as stretch, result in increased proliferation in an E-cadherin force-dependent manner. In this study, the spatial regulation of cell proliferation in large epithelial colonies was examined. Surprisingly, cells at the center of the colony still had increased proliferation as compared to cells in confluent monolayers. E-cadherin forces were found to be elevated for both cells at the edge and center of these larger colonies when compared to confluent monolayers. To determine if high levels of E-cadherin force were necessary to induce proliferation at the center of the colony, a lower-force mutant of E-cadherin was developed. Cells with lower E-cadherin force had significantly reduced proliferation for cells at the center of the colony but minimal differences for cells at the edges of the colony. Similarly, increasing substrate stiffness was found to increase E-cadherin force and increase the proliferation rate across the colony. Taken together, these results show that forces through cell-cell junctions regulate proliferation across large groups of epithelial cells. In addition, an important finding of this study is that junction forces are dynamic and modulate cellular function even in the absence of externally applied loads.
Collapse
Affiliation(s)
- Abhinav Mohan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kyle T Schlue
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Alex F Kniffin
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Carl R Mayer
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Ashley A Duke
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Vani Narayanan
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Paul T Arsenovic
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Kranthidhar Bathula
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Brooke E Danielsson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia
| | - Sandeep P Dumbali
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Venkat Maruthamuthu
- Department of Mechanical & Aerospace Engineering, Old Dominion University, Norfolk, Virginia
| | - Daniel E Conway
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia.
| |
Collapse
|