151
|
Huangqi-Danshen Decoction Ameliorates Adenine-Induced Chronic Kidney Disease by Modulating Mitochondrial Dynamics. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:9574045. [PMID: 30713579 PMCID: PMC6332985 DOI: 10.1155/2019/9574045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022]
Abstract
Chronic kidney disease (CKD) is a leading public health problem with high morbidity and mortality. However, the therapies remain limited. Traditional Chinese medicine (TCM) has been used for treating kidney disease for thousands of years and is an effective alternative treatment for CKD patients in China and other Asian countries. In the present study, we aimed to investigate the effect and mechanism of Huangqi-Danshen decoction (HDD), a TCM herbal decoction, on treating CKD. CKD rat model was induced by adding 0.75% adenine to the diet for 4 weeks. HDD extract was administrated orally to CKD rats at the dose of 4.7 g/kg/d for consecutive 4 weeks in adenine-induced CKD rats. Kidney function was evaluated by the levels of serum creatinine (Scr) and blood urea nitrogen (BUN). The pathological changes of kidney tissues were observed by periodic acid-Schiff (PAS) and Masson's trichrome staining. The proteins expression of renal fibrosis and mitochondrial dynamics were determined and quantified by Western blot analysis. CKD rats showed obvious decline in renal function as evidenced by increased levels of Scr and BUN, which were blunted by HDD treatment. HDD could also improve tubular atrophy and interstitial fibrosis of CKD rats. Moreover, HDD downregulated fibronectin, type IV collagen, and α-smooth muscle actin expression in CKD rats. Furthermore, mitochondrial dynamics was disturbed in CKD rats, which manifested as increased mitochondrial fission and decreased mitochondrial fusion. HDD treatment restored mitochondrial dynamics in CKD rats by repressing dynamin-related protein 1 and Mid 49/51 expression, promoting mitofusin 2 expression, and suppressing optic atrophy 1 proteolysis. In conclusion, HDD could significantly retard CKD progression through modulating mitochondrial dynamics.
Collapse
|
152
|
Szeto HH, Liu S. Cardiolipin-targeted peptides rejuvenate mitochondrial function, remodel mitochondria, and promote tissue regeneration during aging. Arch Biochem Biophys 2018; 660:137-148. [DOI: 10.1016/j.abb.2018.10.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 10/13/2018] [Accepted: 10/18/2018] [Indexed: 12/21/2022]
|
153
|
Han B, Lin CCJ, Hu G, Wang MC. 'Inside Out'- a dialogue between mitochondria and bacteria. FEBS J 2018; 286:630-641. [PMID: 30390412 DOI: 10.1111/febs.14692] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 12/28/2022]
Abstract
Mitochondria play crucial roles in regulating metabolism and longevity. A body of recent evidences reveals that the gut microbiome can also exert significant effects on these activities in the host. Here, by summarizing the currently known mechanisms underlying these regulations, and by comparing mitochondrial fission-fusion dynamics with bacterial interactions such as quorum sensing, we hypothesize that the microbiome impacts the host by communicating with their intracellular relatives, mitochondria. We highlight recent discoveries supporting this model, and these new findings reveal that metabolite molecules derived from bacteria can fine-tune mitochondrial dynamics in intestinal cells and hence influence host metabolic fitness and longevity. This perspective mode of chemical communication between bacteria and mitochondria may help us understand complex and dynamic environment-microbiome-host interactions regarding their vital impacts on health and diseases.
Collapse
Affiliation(s)
- Bing Han
- Children's Hospital, Fudan University, Minhang, Shanghai, China.,Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Chun Janet Lin
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Guo Hu
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Huffington Center on Aging, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Howard Hughes Medical Institute, Houston, TX, USA
| |
Collapse
|
154
|
Wang J, Wang K, Huang C, Lin D, Zhou Y, Wu Y, Tian N, Fan P, Pan X, Xu D, Hu J, Zhou Y, Wang X, Zhang X. SIRT3 Activation by Dihydromyricetin Suppresses Chondrocytes Degeneration via Maintaining Mitochondrial Homeostasis. Int J Biol Sci 2018; 14:1873-1882. [PMID: 30443190 PMCID: PMC6231225 DOI: 10.7150/ijbs.27746] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/30/2018] [Indexed: 01/27/2023] Open
Abstract
Mitochondrial dysfunction is an important contributor to the development of osteoarthritis (OA). Sirtuin 3 (SIRT3) regulates diverse mitochondrial proteins to maintain mitochondrial homeostasis, and dihydromyricetin (DHM) is reported as a potential SIRT3 activator. This study aims to explore the relevance of SIRT3 and OA, as well as the therapeutic effects of DHM on mitochondrial homeostasis in TNF-α-treated chondrocytes. The relationship between SIRT3 and OA was confirmed by detecting SIRT3 level in vitro and in vivo. Mitochondrial dysfunction was evaluated in chondrocytes with or without SIRT3 knockdown. Furthermore, the effects of DHM on mitochondrial homeostasis were performed in TNF-α-treated rat chondrocytes in vitro. In this study, our results showed that the SIRT3 level was decreased in mouse OA cartilage, corresponding to the reduced SIRT3 level in TNF-α-treated chondrocytes in vitro. SIRT3 knockdown induced mitochondrial dysfunction in chondrocytes. Moreover, our study demonstrated that DHM might activate SIRT3 to protect rat chondrocytes from TNF-α-induced degeneration and protective effects of DHM on mitochondrial homeostasis in chondrocytes attributed to enhanced SIRT3. Collectively, SIRT3 deficiency is implicated in OA development and DHM exerts anti-degeneration effect by maintaining mitochondrial homeostasis via a SIRT3-dependent manner in chondrocytes.
Collapse
Affiliation(s)
- Jianle Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China
| | - Ke Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China
| | - Chongan Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China
| | - Dongdong Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Department of Neurosurgery Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Pei Fan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Xiangxiang Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China
| | - Daoliang Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China
| | - Jianing Hu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, Zhejiang, China.,Chinese Orthopaedic Regenerative Medicine Society.,The Second School of Medicine, Wenzhou Medical University, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
155
|
Hara T, Kin A, Aoki S, Nakamura S, Shirasuna K, Kuwayama T, Iwata H. Resveratrol enhances the clearance of mitochondrial damage by vitrification and improves the development of vitrified-warmed bovine embryos. PLoS One 2018; 13:e0204571. [PMID: 30335749 PMCID: PMC6193637 DOI: 10.1371/journal.pone.0204571] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 09/11/2018] [Indexed: 12/02/2022] Open
Abstract
The present study investigated the vitrification-induced deterioration of mitochondrial functions that may reduce the developmental ability of post-warming bovine embryos. In addition, the effect of supplementation of the culture medium with resveratrol on the mitochondrial functions and post-warming embryonic development was examined. Two days after in vitro fertilization, embryos with 8–12 cells (referred to hereafter as 8-cell embryos) were vitrified and warmed, followed by in vitro incubation for 5 days in a culture medium containing either the vehicle or 0.5 μM resveratrol. Vitrification reduced embryonic development until the blastocyst stage, reduced the ATP content of embryos, and impaired the mitochondrial genome integrity, as determined by real-time polymerase chain reaction. Although the total cell number and mitochondrial DNA copy number (Mt-number) of blastocysts were low in the vitrified embryos, the Mt-number per blastomere was similar among the blastocysts derived from fresh (non-vitrified) and vitrified-warmed embryos. Supplementation of the culture medium with resveratrol enhanced the post-warming embryonic development and reduced the Mt-number and reactive oxygen species level in blastocysts and blastomeres without affecting the ATP content. An increase in the content of cell-free mitochondrial DNA in the spent culture medium was observed following cultivation of embryos with resveratrol. These results suggested that vitrification induces mitochondrial damages and that resveratrol may enhance the development of post-warming embryos and activates the degeneration of damaged mitochondria, as indicated by the increase in the cell-free mitochondrial DNA content in the spent culture medium and the decrease in the Mt-number of blastocysts and blastomeres.
Collapse
Affiliation(s)
- Tomotaka Hara
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Airi Kin
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Sogo Aoki
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Shinsuke Nakamura
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
156
|
Abstract
Mitochondria undergo continuous challenges in the course of their life, from their generation to their degradation. These challenges include the management of reactive oxygen species, the proper assembly of mitochondrial respiratory complexes and the need to balance potential mutations in the mitochondrial DNA. The detection of damage and the ability to keep it under control is critical to fine-tune mitochondrial function to the organismal energy needs. In this review, we will analyze the multiple mechanisms that safeguard mitochondrial function in light of in crescendo damage. This sequence of events will include initial defense against excessive reactive oxygen species production, compensation mechanisms by the unfolded protein response (UPRmt), mitochondrial dynamics and elimination by mitophagy.
Collapse
Affiliation(s)
- Miriam Valera-Alberni
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| | - Carles Canto
- Nestlé Institute of Health Sciences (NIHS), EPFL Innovation Park, 1015 Lausanne.,School of Life Sciences, EPFL, 1015 Lausanne
| |
Collapse
|
157
|
Role of oxidative stress in the process of vascular remodeling following coronary revascularization. Int J Cardiol 2018; 268:27-33. [DOI: 10.1016/j.ijcard.2018.05.046] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 04/17/2018] [Accepted: 05/14/2018] [Indexed: 12/26/2022]
|
158
|
Wone BWM, Pathak J, Davidowitz G. Flight duration and flight muscle ultrastructure of unfed hawk moths. ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:457-464. [PMID: 29782921 DOI: 10.1016/j.asd.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/17/2018] [Accepted: 05/17/2018] [Indexed: 06/08/2023]
Abstract
Flight muscle breakdown has been reported for many orders of insects, but the basis of this breakdown in insects with lifelong dependence on flight is less clear. Lepidopterans show such muscle changes across their lifespans, yet how this change affects the ability of these insects to complete their life cycles is not well documented. We investigated the changes in muscle function and ultrastructure of unfed aging adult hawk moths (Manduca sexta). Flight duration was examined in young, middle-aged, and advanced-aged unfed moths. After measurement of flight duration, the main flight muscle (dorsolongitudinal muscle) was collected and histologically prepared for transmission electron microscopy to compare several measurements of muscle ultrastructure among moths of different ages. Muscle function assays revealed significant positive correlations between muscle ultrastructure and flight distance that were greatest in middle-aged moths and least in young moths. In addition, changes in flight muscle ultrastructure were detected across treatment groups. The number of mitochondria in muscle cells peaked in middle-aged moths. Many wild M. sexta do not feed as adults; thus, understanding the changes in flight capacity and muscle ultrastructure in unfed moths provides a more complete understanding of the ecophysiology and resource allocation strategies of this species.
Collapse
Affiliation(s)
- Bernard W M Wone
- Department of Entomology, University of Arizona, Tucson, AZ, USA; Department of Biology, University of South Dakota, Vermillion, SD, USA.
| | - Jaika Pathak
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Goggy Davidowitz
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
159
|
Yoo SZ, No MH, Heo JW, Park DH, Kang JH, Kim SH, Kwak HB. Role of exercise in age-related sarcopenia. J Exerc Rehabil 2018; 14:551-558. [PMID: 30276173 PMCID: PMC6165967 DOI: 10.12965/jer.1836268.134] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 06/14/2018] [Indexed: 11/22/2022] Open
Abstract
Sarcopenia is an age-associated decline of skeletal muscle mass and function and is known to lead to frailty, cachexia, osteoporosis, metabolic syndromes, and death. Notwithstanding the increasing incidence of sarcopenia, the molecular and cellular mechanisms driving age-related sarcopenia are not completely understood. This article reviews current definitions of sarcopenia, its potential mechanisms, and effects of exercise on sarcopenia. The pathogenesis of age-related sarcopenia is multifactorial and includes myostatin, inflammatory cytokines, and mitochondria-derived problems. Especially, age-induced mitochondrial dysfunction triggers the production of reactive oxygen species (ROS) by mitochondria, impedes mitochondrial dynamics, interrupts mitophagy, and leads to mitochondria-mediated apoptosis. Aerobic exercise provides at least a partial solution to sarcopenia as it ameliorates mitochondria-derived problems, and resistance exercise strengthens muscle mass and function. Furthermore, combinations of these exercise types provide the benefits of both. Collectively, this review summarizes potential mechanisms of age-related sarcopenia and emphasizes the use of exercise as a therapeutic strategy, suggesting that combined exercise provides the most beneficial means of combating age-related sarcopenia.
Collapse
Affiliation(s)
- Su-Zi Yoo
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon, Korea
| | - So Hun Kim
- Department of Internal Medicine, Inha University School of Medicine, Incheon, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Korea
| |
Collapse
|
160
|
Yang K, Huang R, Fujihira H, Suzuki T, Yan N. N-glycanase NGLY1 regulates mitochondrial homeostasis and inflammation through NRF1. J Exp Med 2018; 215:2600-2616. [PMID: 30135079 PMCID: PMC6170171 DOI: 10.1084/jem.20180783] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/05/2018] [Accepted: 08/06/2018] [Indexed: 12/17/2022] Open
Abstract
Yang et al. show that NGLY1, a deglycosylation enzyme, regulates mitochondrial homeostasis and mitophagy through transcription factor NRF1. In the absence of NGLY1, cellular clearance of damaged mitochondria by mitophagy is impaired, resulting in chronic activation of innate immune nucleic acid–sensing pathways. Mutations in the NGLY1 (N-glycanase 1) gene, encoding an evolutionarily conserved deglycosylation enzyme, are associated with a rare congenital disorder leading to global developmental delay and neurological abnormalities. The molecular mechanism of the NGLY1 disease and its function in tissue and immune homeostasis remain unknown. Here, we find that NGLY1-deficient human and mouse cells chronically activate cytosolic nucleic acid–sensing pathways, leading to elevated interferon gene signature. We also find that cellular clearance of damaged mitochondria by mitophagy is impaired in the absence of NGLY1, resulting in severely fragmented mitochondria and activation of cGAS–STING as well as MDA5–MAVS pathways. Furthermore, we show that NGLY1 regulates mitochondrial homeostasis through transcriptional factor NRF1. Remarkably, pharmacological activation of a homologous but nonglycosylated transcriptional factor NRF2 restores mitochondrial homeostasis and suppresses immune gene activation in NGLY1-deficient cells. Together, our findings reveal novel functions of the NGLY1–NRF1 pathway in mitochondrial homeostasis and inflammation and uncover an unexpected therapeutic strategy using pharmacological activators of NRF2 for treating mitochondrial and immune dysregulation.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ryan Huang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX.,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Haruhiko Fujihira
- Glycometabolic Biochemistry Laboratory, Institute of Physical and Chemical Research (RIKEN) Cluster for Pioneering Research, Saitama, Japan.,Division of Glycobiologics, Intractable Disease Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tadashi Suzuki
- Glycometabolic Biochemistry Laboratory, Institute of Physical and Chemical Research (RIKEN) Cluster for Pioneering Research, Saitama, Japan
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX .,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
161
|
Eckert SH, Gaca J, Kolesova N, Friedland K, Eckert GP, Muller WE. Mitochondrial Pharmacology of Dimebon (Latrepirdine) Calls for a New Look at its Possible Therapeutic Potential in Alzheimer's Disease. Aging Dis 2018; 9:729-744. [PMID: 30090660 PMCID: PMC6065284 DOI: 10.14336/ad.2017.1014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022] Open
Abstract
Dimebon (latrepirdine), an old antihistaminic drug, showed divergent results in two large clinical trials in Alzheimer disease (AD), which according to our review might be related to the specific pharmacological properties of the drug and the different patient populations included in both studies. Out of the many pharmacological effects of Dimebon, improvement of impaired mitochondrial function seeems to be most relevant for the substantial effects on cognition and behaviour reported in one of the studies, as these effects are already present at the low concentrations of dimebon measured in plasma and tissues of patients and experimental animals. Since impaired mitochondrial function seems to be the major driving force for the progression of the clinical symptoms and since most of the clinical benefits of dimebon originate from an effect on the symptomatic deterioration, mitochondrial improvement can also explain the lack of efficacy of this drug in another clinical trial where symptoms of the patiets remained stable for the time of the study. Accordingly, it seems worthwhile to reevaluate the clinical data to proof that clinical response is correlated with high levels of Neuropsychiatric Symptoms as these show a good relationship to the individual speed of symptomatic decline in AD patients related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Schamim H Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Janett Gaca
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Nathalie Kolesova
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| | - Kristina Friedland
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Deparment of Molecular and Clinical Pharmacy, University of Erlangen, D-91058 Erlangen, Germany
| | - Gunter P Eckert
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
- Department of Nutricional Sciences, University of Giessen, D-35392 Giessen, Germany
| | - Walter E Muller
- Department of Pharmacology, University of Frankfurt/M, Biocenter, D-60438 Frankfurt, Germany
| |
Collapse
|
162
|
Deregulation of the G1/S-phase transition is the proximal cause of mortality in old yeast mother cells. Genes Dev 2018; 32:1075-1084. [PMID: 30042134 PMCID: PMC6075151 DOI: 10.1101/gad.312140.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/14/2018] [Indexed: 01/02/2023]
Abstract
In this study, Neurohr et al. investigated why old yeast cells stop dividing and die. They show that age-induced accumulation of the G1/S-phase inhibitor Whi5 and defects in G1/S cyclin transcription cause cell cycle delays and genomic instability that result in cell death, thus identifying deregulation of the G1/S-phase transition as the proximal cause of age-induced proliferation decline and cell death in budding yeast. Budding yeast cells produce a finite number of daughter cells before they die. Why old yeast cells stop dividing and die is unclear. We found that age-induced accumulation of the G1/S-phase inhibitor Whi5 and defects in G1/S cyclin transcription cause cell cycle delays and genomic instability that result in cell death. We further identified extrachromosomal rDNA (ribosomal DNA) circles (ERCs) to cause the G1/S cyclin expression defect in old cells. Spontaneous segregation of Whi5 and ERCs into daughter cells rejuvenates old mothers, but daughters that inherit these aging factors die rapidly. Our results identify deregulation of the G1/S-phase transition as the proximal cause of age-induced proliferation decline and cell death in budding yeast.
Collapse
|
163
|
Falconer J, Murphy AN, Young S, Clark AR, Tiziani S, Guma M, Buckley CD. Review: Synovial Cell Metabolism and Chronic Inflammation in Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:984-999. [PMID: 29579371 PMCID: PMC6019623 DOI: 10.1002/art.40504] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 03/15/2018] [Indexed: 12/17/2022]
Abstract
Metabolomic studies of body fluids show that immune-mediated inflammatory diseases such as rheumatoid arthritis (RA) are associated with metabolic disruption. This is likely to reflect the increased bioenergetic and biosynthetic demands of sustained inflammation and changes in nutrient and oxygen availability in damaged tissue. The synovial membrane lining layer is the principal site of inflammation in RA. Here, the resident cells are fibroblast-like synoviocytes (FLS) and synovial tissue macrophages, which are transformed toward overproduction of enzymes that degrade cartilage and bone and cytokines that promote immune cell infiltration. Recent studies have shown metabolic changes in both FLS and macrophages from RA patients, and these may be therapeutically targetable. However, because the origins and subset-specific functions of synoviocytes are poorly understood, and the signaling modules that control metabolic deviation in RA synovial cells are yet to be explored, significant additional research is needed to translate these findings to clinical application. Furthermore, in many inflamed tissues, different cell types can forge metabolic collaborations through solute carriers in their membranes to meet a high demand for energy or biomolecules. Such relationships are likely to exist in the synovium and have not been studied. Finally, it is not yet known whether metabolic change is a consequence of disease or whether primary changes to cellular metabolism might underlie or contribute to the pathogenesis of early-stage disease. In this review article, we collate what is known about metabolism in synovial tissue cells and highlight future directions of research in this area.
Collapse
Affiliation(s)
- Jane Falconer
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Anne N Murphy
- Pharmacology, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093
| | - Stephen Young
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Andrew R Clark
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
| | - Stefano Tiziani
- Department of Nutritional Sciences & Dell Pediatric Research Institute, University of Texas at Austin, 1400 Barbara Jordan Blvd., Austin, TX
| | - Monica Guma
- Medicine, School of Medicine, University of California, San Diego, 9500 Gilman Drive, San Diego, CA 92093
| | - Christopher D Buckley
- Rheumatology Research Group, Institute of inflammation and Ageing, College of Medical and dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham, UK
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford. UK
| |
Collapse
|
164
|
Kamenisch Y, Ivanova I, Drexler K, Berneburg M. UVA, metabolism and melanoma: UVA makes melanoma hungry for metastasis. Exp Dermatol 2018; 27:941-949. [PMID: 29658146 DOI: 10.1111/exd.13561] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
Abstract
Ultraviolet (UV) radiation has a plethora of effects on human tissues. In the UV spectrum, wavelengths above 320 nm fall into the UVA range, and for these, it has been shown that they induce reactive oxygen species (ROS), DNA mutations and are capable to induce melanoma in mice. In addition to this, it was recently shown that UVA irradiation and UVA-induced ROS also increase glucose metabolism of melanoma cells. UVA irradiation causes a persistent increase in glucose consumption, accompanied by increased glycolysis, increased lactic acid production and activation of the pentose phosphate pathway. Furthermore, it was shown that the enhanced secretion of lactic acid is important for invasion of melanoma in vitro. The current knowledge of this link between UVA, metabolism and melanoma, possible mechanisms of UVA-induced glucose metabolism and their starting points are discussed in this review with focus on ROS- and UVA-induced cellular stress signalling, DNA damage signalling and DNA repair systems. When looking at the benefits of UVA-induced glucose metabolism, it becomes apparent that there are more advantages of these metabolic changes than one would expect. Besides the role of lactic acid as initiator of protease expression and invasion, its role for immune escape of melanoma cells and the pentose phosphate pathway-derived nicotinamide adenine dinucleotide phosphate (NADPH) as part of a ROS detoxification strategy are discussed.
Collapse
Affiliation(s)
- York Kamenisch
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Irina Ivanova
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Konstantin Drexler
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| | - Mark Berneburg
- Department of Dermatology, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
165
|
Markaki M, Palikaras K, Tavernarakis N. Novel Insights Into the Anti-aging Role of Mitophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 340:169-208. [PMID: 30072091 DOI: 10.1016/bs.ircmb.2018.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is a complex biological process affecting almost all living organisms. Although its detrimental effects on animals' physiology have been extensively documented, several aspects of the biology of aging are insufficiently understood. Mitochondria, the central energy producers of the cell, play vital roles in a wide range of cellular processes, including regulation of bioenergetics, calcium signaling, metabolic responses, and cell death, among others. Thus, proper mitochondrial function is a prerequisite for the maintenance of cellular and organismal homeostasis. Several mitochondrial quality control mechanisms have evolved to allow adaptation to different metabolic conditions, thereby preserving cellular homeostasis and survival. A tight coordination between mitochondrial biogenesis and mitochondrial selective autophagy, known as mitophagy, is a common characteristic of healthy biological systems. The balanced interplay between these two opposing cellular processes dictates stress resistance, healthspan, and lifespan extension. Mitochondrial biogenesis and mitophagy efficiency decline with age, leading to progressive accumulation of damaged and/or unwanted mitochondria, deterioration of cellular function, and ultimately death. Several regulatory factors that contribute to energy homeostasis have been implicated in the development and progression of many pathological conditions, such as neurodegenerative, metabolic, and cardiovascular disorders, among others. Therefore, mitophagy modulation may serve as a novel potential therapeutic approach to tackle age-associated pathologies. Here, we review the molecular signaling pathways that regulate and coordinate mitophagy with mitochondrial biogenesis, highlighting critical factors that hold promise for the development of pharmacological interventions toward enhancing human health and quality of life throughout aging.
Collapse
Affiliation(s)
- Maria Markaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas
| | - Konstantinos Palikaras
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas; Department of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
166
|
Moulder DE, Hatoum D, Tay E, Lin Y, McGowan EM. The Roles of p53 in Mitochondrial Dynamics and Cancer Metabolism: The Pendulum between Survival and Death in Breast Cancer? Cancers (Basel) 2018; 10:cancers10060189. [PMID: 29890631 PMCID: PMC6024909 DOI: 10.3390/cancers10060189] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 12/29/2022] Open
Abstract
Cancer research has been heavily geared towards genomic events in the development and progression of cancer. In contrast, metabolic regulation, such as aberrant metabolism in cancer, is poorly understood. Alteration in cellular metabolism was once regarded simply as a consequence of cancer rather than as playing a primary role in cancer promotion and maintenance. Resurgence of cancer metabolism research has identified critical metabolic reprogramming events within biosynthetic and bioenergetic pathways needed to fulfill the requirements of cancer cell growth and maintenance. The tumor suppressor protein p53 is emerging as a key regulator of metabolic processes and metabolic reprogramming in cancer cells—balancing the pendulum between cell death and survival. This review provides an overview of the classical and emerging non-classical tumor suppressor roles of p53 in regulating mitochondrial dynamics: mitochondrial engagement in cell death processes in the prevention of cancer. On the other hand, we discuss p53 as a key metabolic switch in cellular function and survival. The focus is then on the conceivable roles of p53 in breast cancer metabolism. Understanding the metabolic functions of p53 within breast cancer metabolism will, in due course, reveal critical metabolic hotspots that cancers advantageously re-engineer for sustenance. Illustration of these events will pave the way for finding novel therapeutics that target cancer metabolism and serve to overcome the breast cancer burden.
Collapse
Affiliation(s)
- David E Moulder
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Diana Hatoum
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Enoch Tay
- Viral Hepatitis Pathogenesis Group, The Westmead Institute for Medical Research, University of Sydney, 176 Hawkesbury Road, Westmead NSW 2145, Australia.
| | - Yiguang Lin
- School of Life Sciences, University of Technology Sydney, 15 Broadway, Ultimo NSW 2007, Australia.
| | - Eileen M McGowan
- Central Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| |
Collapse
|
167
|
Park JT, Kang HT, Park CH, Lee YS, Cho KA, Park SC. A crucial role of ROCK for alleviation of senescence-associated phenotype. Exp Gerontol 2018; 106:8-15. [DOI: 10.1016/j.exger.2018.02.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/09/2018] [Accepted: 02/10/2018] [Indexed: 01/24/2023]
|
168
|
Kim H, Perentis RJ, Caldwell GA, Caldwell KA. Gene-by-environment interactions that disrupt mitochondrial homeostasis cause neurodegeneration in C. elegans Parkinson's models. Cell Death Dis 2018; 9:555. [PMID: 29748634 PMCID: PMC5945629 DOI: 10.1038/s41419-018-0619-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/23/2018] [Indexed: 11/09/2022]
Abstract
Parkinson's disease (PD) is a complex multifactorial disorder where environmental factors interact with genetic susceptibility. Accumulating evidence suggests that mitochondria have a central role in the progression of neurodegeneration in sporadic and/or genetic forms of PD. We previously reported that exposure to a secondary metabolite from the soil bacterium, Streptomyces venezuelae, results in age- and dose-dependent dopaminergic (DA) neurodegeneration in Caenorhabditis elegans and human SH-SY5Y neurons. Initial characterization of this environmental factor indicated that neurodegeneration occurs through a combination of oxidative stress, mitochondrial complex I impairment, and proteostatic disruption. Here we present extended evidence to elucidate the interaction between this bacterial metabolite and mitochondrial dysfunction in the development of DA neurodegeneration. We demonstrate that it causes a time-dependent increase in mitochondrial fragmentation through concomitant changes in the gene expression of mitochondrial fission and fusion components. In particular, the outer mitochondrial membrane fission and fusion genes, drp-1 (a dynamin-related GTPase) and fzo-1 (a mitofusin homolog), are up- and down-regulated, respectively. Additionally, eat-3, an inner mitochondrial membrane fusion component, an OPA1 homolog, is also down regulated. These changes are associated with a metabolite-induced decline in mitochondrial membrane potential and enhanced DA neurodegeneration that is dependent on PINK-1 function. Genetic analysis also indicates an association between the cell death pathway and drp-1 following S. ven exposure. Metabolite-induced neurotoxicity can be suppressed by DA-neuron-specific RNAi knockdown of eat-3. AMPK activation by 5-amino-4-imidazole carboxamide riboside (AICAR) ameliorated metabolite- or PINK-1-induced neurotoxicity; however, it enhanced neurotoxicity under normal conditions. These studies underscore the critical role of mitochondrial dynamics in DA neurodegeneration. Moreover, given the largely undefined environmental components of PD etiology, these results highlight a response to an environmental factor that defines distinct mechanisms underlying a potential contributor to the progressive DA neurodegeneration observed in PD.
Collapse
Affiliation(s)
- Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Rylee J Perentis
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, 35487, USA.
- Departments of Neurobiology, Neurology and Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
169
|
Rossman MJ, Santos-Parker JR, Steward CAC, Bispham NZ, Cuevas LM, Rosenberg HL, Woodward KA, Chonchol M, Gioscia-Ryan RA, Murphy MP, Seals DR. Chronic Supplementation With a Mitochondrial Antioxidant (MitoQ) Improves Vascular Function in Healthy Older Adults. Hypertension 2018; 71:1056-1063. [PMID: 29661838 DOI: 10.1161/hypertensionaha.117.10787] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/08/2018] [Accepted: 02/28/2018] [Indexed: 01/10/2023]
Abstract
Excess reactive oxygen species production by mitochondria is a key mechanism of age-related vascular dysfunction. Our laboratory has shown that supplementation with the mitochondrial-targeted antioxidant MitoQ improves vascular endothelial function by reducing mitochondrial reactive oxygen species and ameliorates arterial stiffening in old mice, but the effects in humans are unknown. Here, we sought to translate our preclinical findings to humans and determine the safety and efficacy of MitoQ. Twenty healthy older adults (60-79 years) with impaired endothelial function (brachial artery flow-mediated dilation <6%) underwent 6 weeks of oral supplementation with MitoQ (20 mg/d) or placebo in a randomized, placebo-controlled, double-blind, crossover design study. MitoQ was well tolerated, and plasma MitoQ was higher after the treatment versus placebo period (P<0.05). Brachial artery flow-mediated dilation was 42% higher after MitoQ versus placebo (P<0.05); the improvement was associated with amelioration of mitochondrial reactive oxygen species-related suppression of endothelial function (assessed as the increase in flow-mediated dilation with acute, supratherapeutic MitoQ [160 mg] administration; n=9; P<0.05). Aortic stiffness (carotid-femoral pulse wave velocity) was lower after MitoQ versus placebo (P<0.05) in participants with elevated baseline levels (carotid-femoral pulse wave velocity >7.60 m/s; n=11). Plasma oxidized LDL (low-density lipoprotein), a marker of oxidative stress, also was lower after MitoQ versus placebo (P<0.05). Participant characteristics, endothelium-independent dilation (sublingual nitroglycerin), and circulating markers of inflammation were not different (all P>0.1). These findings in humans extend earlier preclinical observations and suggest that MitoQ and other therapeutic strategies targeting mitochondrial reactive oxygen species may hold promise for treating age-related vascular dysfunction. CLINICAL TRIAL REGISTRATION URL: http://www.clinicaltrials.gov. Unique identifier: NCT02597023.
Collapse
Affiliation(s)
- Matthew J Rossman
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.)
| | - Jessica R Santos-Parker
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.)
| | - Chelsea A C Steward
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.)
| | - Nina Z Bispham
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.)
| | - Lauren M Cuevas
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.)
| | - Hannah L Rosenberg
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.)
| | - Kayla A Woodward
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.)
| | - Michel Chonchol
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora (M.C., D.R.S.)
| | - Rachel A Gioscia-Ryan
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.)
| | - Michael P Murphy
- and MRC Mitochondrial Biology Unit, Cambridge, United Kingdom (M.P.M.)
| | - Douglas R Seals
- From the Department of Integrative Physiology, University of Colorado Boulder (M.J.R., J.R.S.-P., C.A.C.S., N.Z.B., L.M.C., H.L.R., K.A.W., R.A.G.-R., D.R.S.).,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora (M.C., D.R.S.)
| |
Collapse
|
170
|
S-nitrosylation drives cell senescence and aging in mammals by controlling mitochondrial dynamics and mitophagy. Proc Natl Acad Sci U S A 2018; 115:E3388-E3397. [PMID: 29581312 DOI: 10.1073/pnas.1722452115] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
S-nitrosylation, a prototypic redox-based posttranslational modification, is frequently dysregulated in disease. S-nitrosoglutathione reductase (GSNOR) regulates protein S-nitrosylation by functioning as a protein denitrosylase. Deficiency of GSNOR results in tumorigenesis and disrupts cellular homeostasis broadly, including metabolic, cardiovascular, and immune function. Here, we demonstrate that GSNOR expression decreases in primary cells undergoing senescence, as well as in mice and humans during their life span. In stark contrast, exceptionally long-lived individuals maintain GSNOR levels. We also show that GSNOR deficiency promotes mitochondrial nitrosative stress, including excessive S-nitrosylation of Drp1 and Parkin, thereby impairing mitochondrial dynamics and mitophagy. Our findings implicate GSNOR in mammalian longevity, suggest a molecular link between protein S-nitrosylation and mitochondria quality control in aging, and provide a redox-based perspective on aging with direct therapeutic implications.
Collapse
|
171
|
Pérez H, Finocchietto PV, Alippe Y, Rebagliati I, Elguero ME, Villalba N, Poderoso JJ, Carreras MC. p66 Shc Inactivation Modifies RNS Production, Regulates Sirt3 Activity, and Improves Mitochondrial Homeostasis, Delaying the Aging Process in Mouse Brain. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8561892. [PMID: 29721150 PMCID: PMC5867558 DOI: 10.1155/2018/8561892] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 01/17/2018] [Indexed: 01/17/2023]
Abstract
Programmed and damage aging theories have traditionally been conceived as stand-alone schools of thought. However, the p66Shc adaptor protein has demonstrated that aging-regulating genes and reactive oxygen species (ROS) are closely interconnected, since its absence modifies metabolic homeostasis by providing oxidative stress resistance and promoting longevity. p66Shc(-/-) mice are a unique opportunity to further comprehend the bidirectional relationship between redox homeostasis and the imbalance of mitochondrial biogenesis and dynamics during aging. This study shows that brain mitochondria of p66Shc(-/-) aged mice exhibit a reduced alteration of redox balance with a decrease in both ROS generation and its detoxification activity. We also demonstrate a strong link between reactive nitrogen species (RNS) and mitochondrial function, morphology, and biogenesis, where low levels of ONOO- formation present in aged p66Shc(-/-) mouse brain prevent protein nitration, delaying the loss of biological functions characteristic of the aging process. Sirt3 modulates age-associated mitochondrial biology and function via lysine deacetylation of target proteins, and we show that its regulation depends on its nitration status and is benefited by the improved NAD+/NADH ratio in aged p66Shc(-/-) brain mitochondria. Low levels of protein nitration and acetylation could cause the metabolic homeostasis maintenance observed during aging in this group, thus increasing its lifespan.
Collapse
Affiliation(s)
- Hernán Pérez
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Paola Vanesa Finocchietto
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
- Departamento de Medicina, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yael Alippe
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Inés Rebagliati
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | | | - Nerina Villalba
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - Juan José Poderoso
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
| | - María Cecilia Carreras
- Laboratory of Oxygen Metabolism, INIGEM-UBA-CONICET, Buenos Aires, Argentina
- Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
172
|
Mukherjee A, Patra U, Bhowmick R, Chawla-Sarkar M. Rotaviral nonstructural protein 4 triggers dynamin-related protein 1-dependent mitochondrial fragmentation during infection. Cell Microbiol 2018; 20:e12831. [PMID: 29444369 DOI: 10.1111/cmi.12831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/06/2018] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
Dynamic equilibrium between mitochondrial fission and mitochondrial fusion serves as an important quality control system within cells ensuring cellular vitality and homeostasis. Viruses often target mitochondrial dynamics as a part of their obligatory cellular reprogramming. The present study was undertaken to assess the status and regulation of mitochondrial dynamics during rotavirus infection. Distinct fragmentation of mitochondrial syncytia was observed during late hours of RV (SA11, Wa, A5-13) infection. RV nonstructural protein 4 (NSP4) was identified as the viral trigger for disrupted mitochondrial morphology. Severance of mitochondrial interconnections was found to be a dynamin-related protein 1 (Drp1)-dependent process resulting synergistically from augmented mitochondrial fission and attenuated mitochondrial fusion. Cyclin-dependent kinase 1 was subsequently identified as the cellular kinase responsible for fission-active Ser616 phosphorylation of Drp1. In addition to its positive role in mitochondrial fission, Drp1 also resulted in mitochondrial translocation of E3-ubiquitin ligase Parkin leading to degradation of mitochondrial fusion protein Mitofusin 1. Interestingly, RV-NSP4 was found to interact with and be involved in recruiting fission-active pool of Serine 616 phosphoDrp1 (Ser616 pDrp1) to mitochondria independent of accessory adaptors Mitochondrial fission factor and Fission protein 1 (Fis1). Inhibition of either Drp1 or Ser616 pDrp1 resulted in significant decrease in RV-NSP4-induced intrinsic apoptotic pathway. Overall, this study underscores an efficient strategy utilised by RV to couple apoptosis to mitochondrial fission facilitating dissemination of viral progeny.
Collapse
Affiliation(s)
- Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
173
|
Camuzard O, Santucci-Darmanin S, Breuil V, Cros C, Gritsaenko T, Pagnotta S, Cailleteau L, Battaglia S, Panaïa-Ferrari P, Heymann D, Carle GF, Pierrefite-Carle V. Sex-specific autophagy modulation in osteoblastic lineage: a critical function to counteract bone loss in female. Oncotarget 2018; 7:66416-66428. [PMID: 27634908 PMCID: PMC5341810 DOI: 10.18632/oncotarget.12013] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
Age-related bone loss is associated with an increased oxidative stress which is worsened by estrogen fall during menauposis. This observation has drawn attention to autophagy, a major cellular catabolic process, able to alleviate oxidative stress in osteoblasts (OB) and osteocytes (OST), two key bone cell types. Moreover, an autophagy decline can be associated with aging, suggesting that an age-related autophagy deficiency in OB and/or OST could contribute to skeletal aging and osteoporosis onset. In the present work, autophagy activity was analyzed in OST and OB in male and female mice according to their age and hormonal status. In OST, autophagy decreases with aging in both sexes. In OB, although a 95% decrease in autophagy is observed in OB derived from old females, this activity remains unchanged in males. In addition, while ovariectomy has no effect on OB autophagy levels, orchidectomy appears to stimulate this process. An inverse correlation between autophagy and the oxidative stress level was observed in OB derived from males or females. Finally, using OB-specific autophagy-deficient mice, we showed that autophagy deficiency aggravates the bone loss associated with aging and estrogen deprivation. Taken together, our data indicate that autophagic modulation in bone cells differs according to sex and cell type. The lowering of autophagy in female OB, which is associated with an increased oxidative stress, could play a role in osteoporosis pathophysiology and suggests that autophagy could be a new therapeutic target for osteoporosis in women.
Collapse
Affiliation(s)
- Olivier Camuzard
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Faculté de Médecine Nice, Nice, France.,Service de Chirurgie Réparatrice et de la Main, CHU de Nice, Nice, France
| | - Sabine Santucci-Darmanin
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Faculté de Médecine Nice, Nice, France
| | - Véronique Breuil
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Faculté de Médecine Nice, Nice, France.,Service de Rhumatologie, CHU de Nice, Nice, France
| | - Chantal Cros
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Faculté de Médecine Nice, Nice, France
| | - Tatiana Gritsaenko
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Faculté de Médecine Nice, Nice, France
| | - Sophie Pagnotta
- Centre Commun de Microscopie Appliquee, Université Nice Sophia Antipolis, Nice, France
| | - Laurence Cailleteau
- Plateforme Imagerie IRCAN, Faculté de Médecine, Université Nice Sophia Antipolis, Nice, France
| | - Séverine Battaglia
- INSERM UMR 957 Université de Nantes, Equipe labellisée Ligue Nationale Contre le Cancer, Nantes, France
| | | | - Dominique Heymann
- INSERM UMR 957 Université de Nantes, Equipe labellisée Ligue Nationale Contre le Cancer, Nantes, France.,Department of Oncology and Metabolism, The Medical School, University of Sheffield, Sheffield, UK
| | - Georges F Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Faculté de Médecine Nice, Nice, France
| | - Valérie Pierrefite-Carle
- UMR E-4320 TIRO-MATOs CEA/DRF/BIAM, Université Nice Sophia Antipolis, Faculté de Médecine Nice, Nice, France
| |
Collapse
|
174
|
Hindi SM, Sato S, Xiong G, Bohnert KR, Gibb AA, Gallot YS, McMillan JD, Hill BG, Uchida S, Kumar A. TAK1 regulates skeletal muscle mass and mitochondrial function. JCI Insight 2018; 3:98441. [PMID: 29415881 DOI: 10.1172/jci.insight.98441] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle mass is regulated by a complex array of signaling pathways. TGF-β-activated kinase 1 (TAK1) is an important signaling protein, which regulates context-dependent activation of multiple intracellular pathways. However, the role of TAK1 in the regulation of skeletal muscle mass remains unknown. Here, we report that inducible inactivation of TAK1 causes severe muscle wasting, leading to kyphosis, in both young and adult mice.. Inactivation of TAK1 inhibits protein synthesis and induces proteolysis, potentially through upregulating the activity of the ubiquitin-proteasome system and autophagy. Phosphorylation and enzymatic activity of AMPK are increased, whereas levels of phosphorylated mTOR and p38 MAPK are diminished upon inducible inactivation of TAK1 in skeletal muscle. In addition, targeted inactivation of TAK1 leads to the accumulation of dysfunctional mitochondria and oxidative stress in skeletal muscle of adult mice. Inhibition of TAK1 does not attenuate denervation-induced muscle wasting in adult mice. Finally, TAK1 activity is highly upregulated during overload-induced skeletal muscle growth, and inactivation of TAK1 prevents myofiber hypertrophy in response to functional overload. Overall, our study demonstrates that TAK1 is a key regulator of skeletal muscle mass and oxidative metabolism.
Collapse
Affiliation(s)
| | - Shuichi Sato
- Department of Anatomical Sciences and Neurobiology
| | | | | | | | | | | | | | - Shizuka Uchida
- Cardiovascular Innovation Institute, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology
| |
Collapse
|
175
|
Sangüesa G, Cascales M, Griñán C, Sánchez RM, Roglans N, Pallàs M, Laguna JC, Alegret M. Impairment of Novel Object Recognition Memory and Brain Insulin Signaling in Fructose- but Not Glucose-Drinking Female Rats. Mol Neurobiol 2018; 55:6984-6999. [DOI: 10.1007/s12035-017-0863-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
|
176
|
Mitochondrial fission and mitophagy depend on cofilin-mediated actin depolymerization activity at the mitochondrial fission site. Oncogene 2018; 37:1485-1502. [PMID: 29321664 DOI: 10.1038/s41388-017-0064-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 01/03/2023]
Abstract
Mitochondria fission and mitophagy are fundamentally crucial to cellular physiology and play important roles in cancer progression. Developing a comprehensive understanding of the molecular mechanism underlying mitochondrial fission and mitophagy will provide novel strategies for cancer prevention and treatment. Actin has been shown to participate in mitochondrial fission and mitophagy regulation. Cofilin is best known as an actin-depolymerizing factor. However, the molecular mechanism by which cofilin regulates mitochondrial fission and mitophagy remains largely unknown. Here we report that knockdown of cofilin attenuates and overexpression of cofilin potentiates mitochondrial fission as well as PINK1/PARK2-dependent mitophagy induced by staurosporine (STS), etoposide (ETO), and carbonyl cyanide 3-chlorophenylhydrazone (CCCP). Cofilin-mediated-PINK1 (PTEN-induced putative kinase 1) accumulation mainly depends on its regulation of mitochondrial proteases, including peptidase mitochondrial processing beta (MPPβ), presenilin-associated rhomboid-like protease (PARL), and ATPase family gene 3-like 2 (AFG3L2), via mitochondrial membrane potential activity. We also found that the interaction and colocalization of G-actin/F-actin with cofilin at mitochondrial fission sites undergo constriction after CCCP treatment. Pretreatment with the actin polymerization inhibitor latrunculin B (LatB) increased and actin-depolymerization inhibitor jasplakinolide (Jas) decreased mitochondrial translocation of actin induced by STS, ETO, and CCCP. Both LatB and Jas abrogated CCCP-mediated mitochondrial fission and mitophagy. Our data suggest that G-actin is the actin form that is translocated to mitochondria, and the actin-depolymerization activity regulated by cofilin at the mitochondrial fission site is crucial for inducing mitochondrial fission and mitophagy.
Collapse
|
177
|
Canstatin inhibits isoproterenol-induced apoptosis through preserving mitochondrial morphology in differentiated H9c2 cardiomyoblasts. Apoptosis 2018; 21:887-95. [PMID: 27315818 DOI: 10.1007/s10495-016-1262-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Canstatin, a non-collagenous fragment, is cleaved from type IV collagen α2 chain, an essential component of basement membrane surrounding cardiomyocytes. Although canstatin is known as an endogenous anti-angiogenic factor, its effects on cardiomyocytes have not been clarified. This study examined the effects of canstatin on isoproterenol-induced apoptosis in differentiated H9c2 cardiomyoblasts. Retinoic acid was used to differentiate H9c2 myoblast to cardiomyocyte-like phenotype. Cell viability was determined by a cell counting assay. Western blotting was performed to detect expression of cleaved casepase-3 and phosphorylation of dynamin related protein (Drp)1 at Ser637 which regulates mitochondrial fission. Mito Sox Red staining was performed to examine a mitochondria-dependent production of reactive oxygen species (ROS). Mitochondrial morphology was detected by Mito Tracker Red staining. Isoproterenol (100 μM, 48 h) significantly decreased cell viability and increased cleaved caspase-3 expression, which were inhibited by canstatin (10-250 ng/ml) in a concentration-dependent manner. Canstatin suppressed the isoproterenol-induced mitochondrial fission but not ROS. Canstatin also inhibited the isoproterenol-induced dephosphorylation of Drp1 at Ser637. In conclusion, canstatin inhibits isoproterenol-induced apoptosis through the inhibition of mitochondrial fission via the suppression of dephosphorylation of Drp1 at Ser637 in differentiated H9c2 cardiomyoblasts.
Collapse
|
178
|
Choi JW, Ohn JH, Jung HS, Park YJ, Jang HC, Chung SS, Park KS. Carnitine induces autophagy and restores high-fat diet-induced mitochondrial dysfunction. Metabolism 2018; 78:43-51. [PMID: 28966077 DOI: 10.1016/j.metabol.2017.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/12/2017] [Accepted: 09/23/2017] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Autophagy is suppressed in skeletal muscle and the liver with insulin resistance induced by a high-fat diet. Autophagy is essential for maintaining mitochondrial function, and dysfunctional mitochondria are associated with insulin resistance. As carnitine treatment is well known to improve insulin resistance by promoting mitochondrial function, we investigated if carnitine affects autophagy in the skeletal muscle of a high-fat diet-induced rodent model of obesity. RESULTS After 6weeks on a high-fat diet (48kcal% fat), mice developed glucose intolerance, and the gastrocnemius muscle showed a decrease in insulin signaling and mitochondrial function, which was reversed after carnitine (100mg/kg/day) treatment by oral gavage for 2weeks. Swollen mitochondria with destroyed cristae were observed in the skeletal muscle of high-fat diet-fed mice but were not there after carnitine treatment. High-fat diet decreased LC3B-II, a marker of autophagosome formation, and increased sequestosome 1 (SQSTM1), expression of which was reversed after carnitine treatment. In C2C12 myotubes, prolonged treatment with palmitate suppressed autophagy, which was relieved by carnitine treatment. However, the induction of autophagy by carnitine in C2C12 myotubes was not observed after knock-down of peroxisome proliferator-activated receptor γ (PPARγ), which is known to regulate autophagy. CONCLUSION We conclude that the removal of dysfunctional mitochondria by induction of autophagy through PPARγ may be a novel mechanism by which carnitine improves insulin resistance and mitochondrial dysfunction in obesity.
Collapse
Affiliation(s)
- Jin Woo Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Hun Ohn
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Hye Seung Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Young Joo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Hak Chul Jang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam 13620, Republic of Korea
| | - Sung Soo Chung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| | - Kyong Soo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
179
|
Hayashi T, Ueda S, Mori M, Baba T, Abe T, Iwata H. Influence of resveratrol pretreatment on thawed bovine embryo quality and mitochondrial DNA copy number. Theriogenology 2018; 106:271-278. [DOI: 10.1016/j.theriogenology.2017.10.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/09/2017] [Accepted: 10/15/2017] [Indexed: 01/23/2023]
|
180
|
Age-related changes in the transcriptome of antibody-secreting cells. Oncotarget 2017; 7:13340-53. [PMID: 26967249 PMCID: PMC4924646 DOI: 10.18632/oncotarget.7958] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 12/18/2022] Open
Abstract
We analyzed age-related defects in B cell populations from young and aged mice. Microarray analysis of bone marrow resident antibody secreting cells (ASCs) showed significant changes upon aging, affecting multiple genes, pathways and functions including those that play a role in immune regulation, humoral immune responses, chromatin structure and assembly, cell metabolism and the endoplasmic reticulum (ER) stress response. Further analysis showed upon aging defects in energy production through glucose catabolism with reduced oxidative phosphorylation. In addition aged B cells had increased levels of reactive oxygen-species (ROS), which was linked to enhanced expression of the co-inhibitor programmed cell death (PD)-1.
Collapse
|
181
|
Papadakis E, Kanakis M, Kataki A, Spandidos DA. The spectrum of myocardial homeostasis mechanisms in the settings of cardiac surgery procedures (Review). Mol Med Rep 2017; 17:2089-2099. [PMID: 29207125 PMCID: PMC5783448 DOI: 10.3892/mmr.2017.8174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Classic cardiac surgery, determined through the function of cardiopulmonary bypass machine and myocardial cardioplegic arrest, represents the most controlled scenario for cardiomyocyte homeostatic disturbances due to systemic inflammatory response and myocardial reperfusion injury. An increasing number of studies have demonstrated that myocardial cell homeostasis in cardiac surgery procedures is a sequence of molecularly interrelated and overlapping mechanisms in the form of apoptosis, autophagy and necrosis, which are activated by a plethora of induced inflammatory mediators and gene-related signaling pathways. In this study, we outline the molecular mechanisms of the cardiomyocyte adaptive homeostatic process and the associated clinical implications, in the settings of classic cardiac surgery procedures.
Collapse
Affiliation(s)
- Emmanuel Papadakis
- Department of Cardiac Surgery, Onassis Cardiac Surgery Center, 17674 Athens, Greece
| | - Meletios Kanakis
- Cardiothoracic Surgery Unit, Great Ormond Street Hospital for Children, WC1N 3JH London, UK
| | - Agapi Kataki
- Propaedeutic Surgery First Department, University of Athens, 11527 Athens, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Crete, Greece
| |
Collapse
|
182
|
Saihara K, Kamikubo R, Ikemoto K, Uchida K, Akagawa M. Pyrroloquinoline Quinone, a Redox-Active o-Quinone, Stimulates Mitochondrial Biogenesis by Activating the SIRT1/PGC-1α Signaling Pathway. Biochemistry 2017; 56:6615-6625. [DOI: 10.1021/acs.biochem.7b01185] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Kazuhiro Saihara
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| | - Ryosuke Kamikubo
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Kazuto Ikemoto
- Niigata
Research Laboratory, Mitsubishi Gas Chemical Company, Inc., Niigata 950-3112, Japan
| | - Koji Uchida
- Department
of Applied Biological Chemistry, Graduate School of Agricultural and
Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | - Mitsugu Akagawa
- Department
of Biological Chemistry, Division of Applied Life Science, Graduate
School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan
| |
Collapse
|
183
|
Cai Y, Wei YH. Stress resistance and lifespan are increased in C. elegans but decreased in S. cerevisiae by mafr-1/maf1 deletion. Oncotarget 2017; 7:10812-26. [PMID: 26934328 PMCID: PMC4905441 DOI: 10.18632/oncotarget.7769] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/18/2016] [Indexed: 01/09/2023] Open
Abstract
Maf1 is a conserved effector of the mechanistic target of rapamycin (mTOR), an aging promoting kinase. However, whether Maf1 is required for lifespan extension caused by mTOR inhibition, such as dietary restriction (DR) or calorie restriction (CR) remains elusive. Here we show that deletion of maf1 in the budding yeast S. cerevisiae but not mafr-1 in C. elegans prevents DR or CR to extend lifespan. Interestingly, mafr-1 deletion increases stress tolerance and extends lifespan. MAFR-1 is phosphorylated in a mTOR-dependent manner and mafr-1 deletion alleviates the inhibition of tRNA synthesis caused by reduced mTOR activity. We find that the opposite effect of mafr-1 deletion on lifespan is due to an enhancement of stress response, including oxidative stress response, mitochondrial unfolded protein response (UPRmt) and autophagy. mafr-1 deletion also attenuates the paralysis of a C. elegans model of Alzheimer's disease. Our study reveals distinct mechanisms of lifespan regulation by Maf1 and MAFR-1.
Collapse
Affiliation(s)
- Ying Cai
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yue-Hua Wei
- Shanghai Ninth People's Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
184
|
Kansaku K, Takeo S, Itami N, Kin A, Shirasuna K, Kuwayama T, Iwata H. Maternal aging affects oocyte resilience to carbonyl cyanide-m-chlorophenylhydrazone -induced mitochondrial dysfunction in cows. PLoS One 2017; 12:e0188099. [PMID: 29182624 PMCID: PMC5705080 DOI: 10.1371/journal.pone.0188099] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 10/31/2017] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial quality control is important for maintaining cellular and oocyte viability. In addition, aging affects mitochondrial quality in many cell types. In the present study, we examined how aging affects oocyte mitochondrial biogenesis and degeneration in response to induced mitochondrial dysfunction. Cumulus oocyte complexes were harvested from the ovaries of young (21‒45 months) and aged (≥120 months) cows and treated for 2 hours with 10 μM carbonyl cyanide-m- chlorophenylhydrazone (CCCP), or a vehicle control, after which cumulus oocyte complexes were subjected to in vitro fertilization and culture. CCCP treatment reduced ATP content and increased reactive oxygen species (ROS) levels in the oocytes of both young and aged cows. When CCCP-treated cumulus oocyte complexes were subsequently cultured for 19 hours and/or subjected to fertilization, high ROS levels in oocytes and a low rate of blastocyst development was observed in oocytes derived from aged cows. In addition, we observed differential responses in mitochondrial biogenesis to CCCP treatment between young and aged cows. CCCP treatment enhanced mitochondrial biogenesis concomitant with upregulation of SIRT1 expression in oocytes of young, but not aged, cows. In conclusion, aging affects mitochondrial quality control and recuperation of oocytes following CCCP-induced mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kazuki Kansaku
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Shun Takeo
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Nobuhiko Itami
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Airi Kin
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Takehito Kuwayama
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
| | - Hisataka Iwata
- Department of Animal Science, Tokyo University of Agriculture, Atsugi City, Kanagawa, Japan
- * E-mail:
| |
Collapse
|
185
|
Cheung LTY, Manthey AL, Lai JSM, Chiu K. Targeted Delivery of Mitochondrial Calcium Channel Regulators: The Future of Glaucoma Treatment? Front Neurosci 2017; 11:648. [PMID: 29213227 PMCID: PMC5702640 DOI: 10.3389/fnins.2017.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leanne T Y Cheung
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Abby L Manthey
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Jimmy S M Lai
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
186
|
Ju L, Tong W, Qiu M, Shen W, Sun J, Zheng S, Chen Y, Liu W, Tian J. Antioxidant MMCC ameliorates catch-up growth related metabolic dysfunction. Oncotarget 2017; 8:99931-99939. [PMID: 29245950 PMCID: PMC5725141 DOI: 10.18632/oncotarget.21965] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/29/2017] [Indexed: 11/25/2022] Open
Abstract
Postnatal catch-up growth may be related to reduce mitochondrial content and oxidation capacity in skeletal muscle. The aim of this study is to explore the effect and mechanism of antioxidant MitoQuinone mesylate beta cyclodextrin complex (MMCC) ameliorates catch-up growth related metabolic disorders. Catch-up growth mice were created by restricting maternal food intake during the last week of gestation and providing high fat diet after weaning. Low birthweight mice and normal birthweight controls were randomly subjected to normal fat diet, high fat diet and high fat diet with MMCC drinking from the 4th week. MMCC treatment for 21 weeks slowed down the catch up growth and ameliorated catch-up growth related obesity, glucose intolerance and insulin resistance. MMCC administration significantly inhibited the peroxidation of the membrane lipid and up-regulated the antioxidant enzymes Catalase and MnSOD. In addition, MMCC treatment effectively enhanced mitochondrial functions in skeletal muscle through the up-regulation of the ATP generation, and the promotion of mitochondrial replication and remodeling. To conclude, this study demonstrates that antioxidant MMCC effectively ameliorates catch-up growth related metabolic dysfunctions by increasing mitochondrial functions in skeletal muscle.
Collapse
Affiliation(s)
- Liping Ju
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenxin Tong
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Miaoyan Qiu
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weili Shen
- Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jichao Sun
- Laboratory of Endocrine and Metabolic Diseases, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Zheng
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wentao Liu
- Key Laboratory of Shanghai Gastric Neoplasms, Department of Surgery, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai Institute of Digestive Surgery, Shanghai, China
| | - Jingyan Tian
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Diabetes Complications and Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
187
|
Aguilar-Lopez JL, Laboy R, Jaimes-Miranda F, Garay E, DeLuna A, Funes S. Slm35 links mitochondrial stress response and longevity through TOR signaling pathway. Aging (Albany NY) 2017; 8:3255-3271. [PMID: 27922823 PMCID: PMC5270667 DOI: 10.18632/aging.101093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
In most eukaryotic cells mitochondria are essential organelles involved in a great variety of cellular functions. One of the physiological processes linked to mitochondria is aging, a gradual process of damage accumulation that eventually promotes cell death. Aging depends on a balance between mitochondrial biogenesis, function and degradation. It has been previously shown that Tor1, Sch9 and Ras2 are activated in response to nutrient availability and regulate cell growth and division. A deficiency in any of these genes promotes lifespan extension and cell protection during oxidative and heat shock stress. In this work we report that in Saccharomyces cerevisiae, the uncharacterized mitochondrial protein Slm35 is functionally linked with the TOR signaling pathway. A Δtor1Δslm35 strain shows a severe decrease in lifespan and is unable to contend with oxidative and heat shock stresses. Specifically, this mutant shows decreased catalase activity indicating a misregulation of ROS scavenging mechanisms. In this study we show that Slm35 is also relevant for mitochondrial network dynamics and mitophagy. The results presented here suggest that Slm35 plays an important role connecting mitochondrial function with cytosolic responses and cell adaptation to stress and aging.
Collapse
Affiliation(s)
- Jose L Aguilar-Lopez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Cd.Mx. 04510, Mexico
| | - Raymond Laboy
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Cd.Mx. 04510, Mexico
| | - Fabiola Jaimes-Miranda
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Cd.Mx. 04510, Mexico
| | - Erika Garay
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36821, Mexico
| | - Alexander DeLuna
- Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Guanajuato 36821, Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Cd.Mx. 04510, Mexico
| |
Collapse
|
188
|
Voluntary aerobic exercise increases arterial resilience and mitochondrial health with aging in mice. Aging (Albany NY) 2017; 8:2897-2914. [PMID: 27875805 PMCID: PMC5191877 DOI: 10.18632/aging.101099] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 11/03/2016] [Indexed: 01/13/2023]
Abstract
Mitochondrial dysregulation and associated excessive reactive oxygen species (mtROS) production is a key source of oxidative stress in aging arteries that reduces baseline function and may influence resilience (ability to withstand stress). We hypothesized that voluntary aerobic exercise would increase arterial resilience in old mice. An acute mitochondrial stressor (rotenone) caused greater (further) impairment in peak carotid EDD in old (~27 mo., OC, n=12; -32.5±-10.5%) versus young (~7 mo., YC n=11; -5.4±- 3.7%) control male mice, whereas arteries from young and old exercising (YVR n=10 and OVR n=11, 10-wk voluntary running; -0.8±-2.1% and -8.0±4.9%, respectively) mice were protected. Ex-vivo simulated Western diet (WD, high glucose and palmitate) caused greater impairment in EDD in OC (-28.5±8.6%) versus YC (-16.9±5.2%) and YVR (-15.3±2.3%), whereas OVR (-8.9±3.9%) were more resilient (not different versus YC). Simultaneous ex-vivo treatment with mitochondria-specific antioxidant MitoQ attenuated WD-induced impairments in YC and OC, but not YVR or OVR, suggesting that exercise improved resilience to mtROS-mediated stress. Exercise normalized age-related alterations in aortic mitochondrial protein markers PGC-1α, SIRT-3 and Fis1 and augmented cellular antioxidant and stress response proteins. Our results indicate that arterial aging is accompanied by reduced resilience and mitochondrial health, which are restored by voluntary aerobic exercise.
Collapse
|
189
|
Meyer JN, Leuthner TC, Luz AL. Mitochondrial fusion, fission, and mitochondrial toxicity. Toxicology 2017; 391:42-53. [PMID: 28789970 PMCID: PMC5681418 DOI: 10.1016/j.tox.2017.07.019] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 07/10/2017] [Accepted: 07/31/2017] [Indexed: 12/17/2022]
Abstract
Mitochondrial dynamics are regulated by two sets of opposed processes: mitochondrial fusion and fission, and mitochondrial biogenesis and degradation (including mitophagy), as well as processes such as intracellular transport. These processes maintain mitochondrial homeostasis, regulate mitochondrial form, volume and function, and are increasingly understood to be critical components of the cellular stress response. Mitochondrial dynamics vary based on developmental stage and age, cell type, environmental factors, and genetic background. Indeed, many mitochondrial homeostasis genes are human disease genes. Emerging evidence indicates that deficiencies in these genes often sensitize to environmental exposures, yet can also be protective under certain circumstances. Inhibition of mitochondrial dynamics also affects elimination of irreparable mitochondrial DNA (mtDNA) damage and transmission of mtDNA mutations. We briefly review the basic biology of mitodynamic processes with a focus on mitochondrial fusion and fission, discuss what is known and unknown regarding how these processes respond to chemical and other stressors, and review the literature on interactions between mitochondrial toxicity and genetic variation in mitochondrial fusion and fission genes. Finally, we suggest areas for future research, including elucidating the full range of mitodynamic responses from low to high-level exposures, and from acute to chronic exposures; detailed examination of the physiological consequences of mitodynamic alterations in different cell types; mechanism-based testing of mitotoxicant interactions with interindividual variability in mitodynamics processes; and incorporating other environmental variables that affect mitochondria, such as diet and exercise.
Collapse
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Tess C Leuthner
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| | - Anthony L Luz
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC 27708-0328, United States.
| |
Collapse
|
190
|
Kitazoe Y, Hasegawa M, Tanaka M, Futami M, Futami J. Mitochondrial determinants of mammalian longevity. Open Biol 2017; 7:rsob.170083. [PMID: 29070610 PMCID: PMC5666079 DOI: 10.1098/rsob.170083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 09/30/2017] [Indexed: 12/18/2022] Open
Abstract
Current ageing theories are far from satisfactory because of the many determinants involved in ageing. The well-known rate-of-living theory assumes that the product (lifetime energy expenditure, LEE) of maximum lifespan (MLS) and mass-specific basal metabolic rate (msBMR) is approximately constant. Although this theory provides a significant inverse correlation between msBMR and MLS as a whole for mammals, it remains problematic for two reasons. First, several interspecies studies within respective orders (typically within rodents) have shown no inverse relationships between msBMR and MLS. Second, LEE values widely vary in mammals and birds. Here, to solve these two problems, we introduced a new quantity designated as mitochondrial (mt) lifetime energy output, mtLEO = MLS × mtMR, in place of LEE, by using the mt metabolic rate (mtMR) per mitochondrion. Thereby, we found that mtLEO values were distributed more narrowly than LEE ones, and strongly correlated with the four amino-acid variables (AAVs) of Ser, Thr and Cys contents and hydrophobicity of mtDNA-encoded membrane proteins (these variables were related to the stability of these proteins). Consequently, only these two mt items, mtMR and the AAVs, solved the above-mentioned problems in the rate-of-living theory, and thus extensively improved the correlation with MLS compared with that given by LEE.
Collapse
Affiliation(s)
- Yasuhiro Kitazoe
- Center of Medical Information Science, Kochi Medical School, Nankoku, Kochi 783-8505, Japan
| | - Masami Hasegawa
- Institute of Statistical Mathematics, Midori-cho 10-3, Tachikawa, Tokyo 190-8562, Japan
| | - Masashi Tanaka
- Department of Genomics for Longevity and Health, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi, Tokyo 173-0015, Japan
| | - Midori Futami
- Department of Biomedical Engineering, Faculty of Engineering, Okayama University of Science, 1-1 Ridaicho, Okayama 700-0005, Japan
| | - Junichiro Futami
- Department of Biotechnology, Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
191
|
Diabetes-Induced Dysfunction of Mitochondria and Stem Cells in Skeletal Muscle and the Nervous System. Int J Mol Sci 2017; 18:ijms18102147. [PMID: 29036909 PMCID: PMC5666829 DOI: 10.3390/ijms18102147] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 10/11/2017] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases spread all over the world, which results in hyperglycemia caused by the breakdown of insulin secretion or insulin action or both. Diabetes has been reported to disrupt the functions and dynamics of mitochondria, which play a fundamental role in regulating metabolic pathways and are crucial to maintain appropriate energy balance. Similar to mitochondria, the functions and the abilities of stem cells are attenuated under diabetic condition in several tissues. In recent years, several studies have suggested that the regulation of mitochondria functions and dynamics is critical for the precise differentiation of stem cells. Importantly, physical exercise is very useful for preventing the diabetic alteration by improving the functions of both mitochondria and stem cells. In the present review, we provide an overview of the diabetic alterations of mitochondria and stem cells and the preventive effects of physical exercise on diabetes, focused on skeletal muscle and the nervous system. We propose physical exercise as a countermeasure for the dysfunction of mitochondria and stem cells in several target tissues under diabetes complication and to improve the physiological function of patients with diabetes, resulting in their quality of life being maintained.
Collapse
|
192
|
Weinrich TW, Coyne A, Salt TE, Hogg C, Jeffery G. Improving mitochondrial function significantly reduces metabolic, visual, motor and cognitive decline in aged Drosophila melanogaster. Neurobiol Aging 2017; 60:34-43. [PMID: 28917665 DOI: 10.1016/j.neurobiolaging.2017.08.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 01/01/2023]
Abstract
Mitochondria play a major role in aging. Over time, mutations accumulate in mitochondrial DNA leading to reduced adenosine triphosphate (ATP) production and increased production of damaging reactive oxygen species. If cells fail to cope, they die. Reduced ATP will result in declining cellular membrane potentials leading to reduced central nervous system function. However, aged mitochondrial function is improved by long wavelength light (670 nm) absorbed by cytochrome c oxidase in mitochondrial respiration. In Drosophila, lifelong 670-nm exposure extends lifespan and improves aged mobility. Here, we ask if improved mitochondrial metabolism can reduce functional senescence in metabolism, sensory, locomotor, and cognitive abilities in old flies exposed to 670 nm daily for 1 week. Exposure significantly increased cytochrome c oxidase activity, whole body energy storage, ATP and mitochondrial DNA content, and reduced reactive oxygen species. Retinal function and memory were also significantly improved to levels found in 2-week-old flies. Mobility improved by 60%. The mode of action is likely related to improved energy homeostasis increasing ATP availability for ionic ATPases critical for maintenance of neuronal membrane potentials. 670-nm light exposure may be a simple route for resolving problems of aging.
Collapse
Affiliation(s)
| | - Ariathney Coyne
- University College London, Institute of Ophthalmology, London, UK
| | - Thomas E Salt
- University College London, Institute of Ophthalmology, London, UK; Neurexpert Ltd., London, UK
| | - Christopher Hogg
- University College London, Institute of Ophthalmology, London, UK
| | - Glen Jeffery
- University College London, Institute of Ophthalmology, London, UK.
| |
Collapse
|
193
|
Nicassio L, Fracasso F, Sirago G, Musicco C, Picca A, Marzetti E, Calvani R, Cantatore P, Gadaleta MN, Pesce V. Dietary supplementation with acetyl-l-carnitine counteracts age-related alterations of mitochondrial biogenesis, dynamics and antioxidant defenses in brain of old rats. Exp Gerontol 2017; 98:99-109. [PMID: 28807823 DOI: 10.1016/j.exger.2017.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/31/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022]
Abstract
We previously reported the ability of dietary supplementation with acetyl-l-carnitine (ALCAR) to prevent age-related decreases of mitochondrial biogenesis in skeletal muscle and liver of old rats. Here, we investigate the effects of ALCAR supplementation in cerebral hemispheres and cerebellum of old rats by analyzing several parameters linked to mitochondrial biogenesis, mitochondrial dynamics and antioxidant defenses. We measured the level of the coactivators PGC-1α and PGC-1β and of the factors regulating mitochondrial biogenesis, finding an age-related decrease of PGC-1β, whereas PGC-1α level was unvaried. Twenty eight-month old rats supplemented with ALCAR for one and two months showed increased levels of both factors. Accordingly, the expression of the two transcription factors NRF-1 and TFAM followed the same trend of PGC-1β. The level of mtDNA, ND1 and the activity of citrate synthase, were decreased with aging and increased following ALCAR treatment. Furthermore, ALCAR counteracted the age-related increase of deleted mtDNA. We also analyzed the content of proteins involved in mitochondrial dynamics (Drp1, Fis1, OPA1 and MNF2) and found an age-dependent increase of MFN2 and of the long form of OPA1. ALCAR treatment restored the content of the two proteins to the level of the young rats. No changes with aging and ALCAR were observed for Drp1 and Fis1. ALCAR reduced total cellular levels of oxidized PRXs and counteracted the age-related decrease of PRX3 and SOD2. Overall, our findings indicate a systemic positive effect of ALCAR dietary treatment and a tissue specific regulation of mitochondrial homeostasis in brain of old rats. Moreover, it appears that ALCAR acts as a nutrient since in most cases its effects were almost completely abolished one month after treatment suspension. Dietary supplementation of old rats with this compound seems a valuable approach to prevent age-related mitochondrial dysfunction and might ultimately represent a strategy to delay age-associated negative consequences in mitochondrial homeostasis.
Collapse
Affiliation(s)
- Luigi Nicassio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Flavio Fracasso
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Giuseppe Sirago
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Clara Musicco
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council of Italy (CNR), Bari, Italy
| | - Anna Picca
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Neuroscience and Orthopedics, Catholic University of the Sacred Heart School of Medicine, Rome, Italy
| | - Palmiro Cantatore
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | - Maria Nicola Gadaleta
- Institute of Biomembranes and Bioenergetics (IBBE), National Research Council of Italy (CNR), Bari, Italy
| | - Vito Pesce
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.
| |
Collapse
|
194
|
Tamura Y, Matsunaga Y, Kitaoka Y, Hatta H. Effects of Heat Stress Treatment on Age-dependent Unfolded Protein Response in Different Types of Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2017; 72:299-308. [PMID: 27071782 DOI: 10.1093/gerona/glw063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/22/2016] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial and endoplasmic reticulum (ER) stress, and subsequently activated responses (mitochondrial/ER unfolded protein responses; UPRmt/UPRER), are involved in the pathogenesis of sarcopenia. To extend both basic and translational knowledge, we examined (i) whether age-induced mitochondrial and ER stress depend on skeletal muscle type in mice and (ii) whether heat stress treatment, a suggested strategy for sarcopenia, improves age-induced mitochondrial and ER stress. Aged (21-month-old) mice showed more severe mitochondrial stress and UPRmt than young (12-week-old) mice, based on increased oxidative stress, mitochondrial proteases, and mitochondrial E3 ubiquitin ligase. The aged mice also showed ER stress and UPRER, based on decreased ER enzymes and increased ER stress-related cell death. These changes were much more evident in soleus muscle than in gastrocnemius and plantaris muscles. After daily heat stress treatment (40 °C chamber for 30 minutes per day) for 4 weeks, mice showed remarkable improvements in age-related changes in soleus muscle. Heat stress had only minor effects in gastrocnemius and plantaris muscles. Based on these findings, age-associated mitochondrial stress, ER stress, and UPRmt/ER vary qualitatively with skeletal muscle type. Our results suggest a molecular basis for the beneficial effects of heat stress on muscle atrophy with age in soleus muscle.
Collapse
Affiliation(s)
- Yuki Tamura
- Department of Sports Sciences, The University of Tokyo, Japan
| | | | - Yu Kitaoka
- Department of Sports Sciences, The University of Tokyo, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, Japan
| |
Collapse
|
195
|
Distefano G, Standley RA, Dubé JJ, Carnero EA, Ritov VB, Stefanovic-Racic M, Toledo FGS, Piva SR, Goodpaster BH, Coen PM. Chronological Age Does not Influence Ex-vivo Mitochondrial Respiration and Quality Control in Skeletal Muscle. J Gerontol A Biol Sci Med Sci 2017; 72:535-542. [PMID: 27325231 DOI: 10.1093/gerona/glw102] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 05/17/2016] [Indexed: 12/20/2022] Open
Abstract
Background Considerable debate continues to surround the concept of mitochondrial dysfunction in aging muscle. We tested the overall hypothesis that age per se does not influence mitochondrial function and markers of mitochondria quality control, that is, expression of fusion, fission, and autophagy proteins. We also investigated the influence of cardiorespiratory fitness (VO2max) and adiposity (body mass index) on these associations. Methods Percutaneous biopsies of the vastus lateralis were obtained from sedentary young (n = 14, 24±3 years), middle-aged (n = 24, 41±9 years) and older adults (n = 20, 78±5 years). A physically active group of young adults (n = 10, 27±5 years) was studied as a control. Mitochondrial respiration was determined in saponin permeabilized fiber bundles. Fusion, fission and autophagy protein expression was determined by Western blot. Cardiorespiratory fitness was determined by a graded exercise test. Results Mitochondrial respiratory capacity and expression of fusion (OPA1 and MFN2) and fission (FIS1) proteins were not different among sedentary groups despite a wide age range (21 to 88 years). Mitochondrial respiratory capacity and fusion and fission proteins were, however, negatively associated with body mass index, and mitochondrial respiratory capacity was positively associated with cardiorespiratory fitness. The young active group had higher respiration, complex I and II respiratory control ratios, and expression of fusion and fission proteins. Finally, the expression of fusion, fission, and autophagy proteins were linked with mitochondrial respiration. Conclusions Mitochondrial respiration and markers of mitochondrial dynamics (fusion and fission) are not associated with chronological age per se, but rather are more strongly associated with body mass index and cardiorespiratory fitness.
Collapse
Affiliation(s)
- Giovanna Distefano
- Division of Endocrinology and Metabolism, Department of Medicine.,Department of Physical Therapy, University of Pittsburgh, Pennsylvania and
| | | | - John J Dubé
- Division of Endocrinology and Metabolism, Department of Medicine
| | - Elvis A Carnero
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando
| | - Vladimir B Ritov
- Division of Endocrinology and Metabolism, Department of Medicine
| | | | | | - Sara R Piva
- Department of Physical Therapy, University of Pittsburgh, Pennsylvania and
| | | | - Paul M Coen
- Division of Endocrinology and Metabolism, Department of Medicine
| |
Collapse
|
196
|
Martin-Rincon M, Morales-Alamo D, Calbet JAL. Exercise-mediated modulation of autophagy in skeletal muscle. Scand J Med Sci Sports 2017; 28:772-781. [PMID: 28685860 DOI: 10.1111/sms.12945] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 12/13/2022]
Abstract
Although exercise exerts multiple beneficial health effects, it may also damage cellular structures. Damaged elements are continuously degraded and its constituents recycled to produce renovated structures through a process called autophagy, which is essential for the adaptation to training. Autophagy is particularly active in skeletal muscle, where it can be evaluated using specific molecular markers of activation (unc-51-like kinase 1 [ULK1] phosphorylation) and specific proteins indicating increased autophagosome content (increased total LC3, LC3-II, LC3-II/LC3-I ratio). Studies in humans are technically limited but have provided evidence suggesting the activation of autophagy in skeletal muscle through AMP-activated protein kinase (AMPK) and its downstream target ULK1. Autophagy activation is more likely when the intensity is elevated and the exercise performed in the fasted state. The autophagy-gene program and autophagosome content are upregulated after ultraendurance running competitions. However, autophagosome content is reduced after endurance exercise at moderate intensities (50% and 70% of VO2 max) for 60-120 minutes. Autophagosome content is decreased within the first few hours after resistance training. The effects of regular endurance and strength training on basal autophagy remain to be established in humans. One study has reported that acute severe hypoxia increases autophagosome content in human skeletal muscle, which is reverted by 20 minutes of low-intensity exercise. Experiments with transgenic mice have shown that autophagy is necessary for skeletal muscle adaptation to training. Little is known on how genetic factors, environment, nutrition, drugs and diseases may interact with exercise to modulate autophagy at rest and during exercise in humans.
Collapse
Affiliation(s)
- M Martin-Rincon
- Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - D Morales-Alamo
- Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - J A L Calbet
- Research Institute of Biomedical and Health Sciences (IUIBS), Las Palmas de Gran Canaria, Canary Islands, Spain.,Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
197
|
Kim DI, Lee KH, Oh JY, Kim JS, Han HJ. Relationship Between β-Amyloid and Mitochondrial Dynamics. Cell Mol Neurobiol 2017; 37:955-968. [PMID: 27766447 PMCID: PMC11482120 DOI: 10.1007/s10571-016-0434-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/13/2016] [Indexed: 01/29/2023]
Abstract
Mitochondria as dynamic organelles undergo morphological changes through the processes of fission and fusion which are major factors regulating their functions. A disruption in the balance of mitochondrial dynamics induces functional disorders in mitochondria such as failed energy production and the generation of reactive oxygen species, which are closely related to pathophysiological changes associated with Alzheimer's disease (AD). Recent studies have demonstrated a relationship between abnormalities in mitochondrial dynamics and impaired mitochondrial function, clarifying the effects of morphofunctional aberrations which promote neuronal cell death in AD. Several possible signaling pathways have been suggested for a better understanding of the mechanism behind the key molecules regulating mitochondrial morphologies. However, the exact machinery involved in mitochondrial dynamics still has yet to be elucidated. This paper reviews the current knowledge on signaling mechanisms involved in mitochondrial dynamics and the significance of mitochondrial dynamics in controlling associated functions in neurodegenerative diseases, particularly in AD.
Collapse
Affiliation(s)
- Dah Ihm Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ki Hoon Lee
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ji Young Oh
- Department of Agricultural Biotechnology, Animal Biotechnology Major, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, South Korea
| | - Jun Sung Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea.
- BK21 PLUS Creative Veterinary Research Center, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
198
|
Chan SSL. Inherited mitochondrial genomic instability and chemical exposures. Toxicology 2017; 391:75-83. [PMID: 28756246 DOI: 10.1016/j.tox.2017.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 07/24/2017] [Indexed: 12/21/2022]
Abstract
There are approximately 1500 proteins that are needed for mitochondrial structure and function, most of which are encoded in the nuclear genome (Calvo et al., 2006). Each mitochondrion has its own genome (mtDNA), which in humans encodes 13 polypeptides, 22 tRNAs and 2 rRNAs required for oxidative phosphorylation. The mitochondrial genome of humans and most vertebrates is approximately 16.5kbp, double-stranded, circular, with few non-coding bases. Thus, maintaining mtDNA stability, that is, the ability of the cell to maintain adequate levels of mtDNA template for oxidative phosphorylation is essential and can be impacted by the level of mtDNA mutation currently within the cell or mitochondrion, but also from errors made during normal mtDNA replication, defects in mitochondrial quality control mechanisms, and exacerbated by exposures to exogenous and/or endogenous genotoxic agents. In this review, we expand on the origins and consequences of mtDNA instability, the current state of research regarding the mechanisms by which mtDNA instability can be overcome by cellular and chemical interventions, and the future of research and treatments for mtDNA instability.
Collapse
Affiliation(s)
- Sherine S L Chan
- Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC 29425, United States; Neuroene Therapeutics, Mt. Pleasant, SC 29464, United States.
| |
Collapse
|
199
|
Jayanthy G, Roshana Devi V, Ilango K, Subramanian SP. Rosmarinic Acid Mediates Mitochondrial Biogenesis in Insulin Resistant Skeletal Muscle Through Activation of AMPK. J Cell Biochem 2017; 118:1839-1848. [PMID: 28059465 DOI: 10.1002/jcb.25869] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Accepted: 01/04/2017] [Indexed: 01/03/2023]
Abstract
Rosmarinic acid (RA), a polyphenol, is known to improve hepatic insulin sensitivity in experimental type 2 diabetes. However, its effect on skeletal muscle insulin resistance is meagerly understood. The present study was aimed to investigate the up- and downstream mediators of the molecular targets of RA in attenuating insulin resistance in the skeletal muscle both in vivo and in vitro. We found that supplementation of RA increased the expression of key genes involved in the mitochondrial biogenesis like PGC-1α, SIRT-1, and TFAM via activation of AMPK in the skeletal muscle of insulin resistant rats as well as in L6 myotubes. Further, RA treatment increased the glucose uptake and decreased the phosphorylation of serine IRS-1 while increasing the translocation of GLUT 4. Together, our findings evidenced that RA treatment significantly inhibit insulin resistance in skeletal muscle cells by enhancing mitochondrial biogenesis. J. Cell. Biochem. 118: 1839-1848, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Govindaraj Jayanthy
- Division of Molecular Biology, Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, Kancheepuram 603203, Tamil Nadu, India
| | - Vellai Roshana Devi
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai 600025, Tamil Nadu, India
| | - Kaliappan Ilango
- Division of Molecular Biology, Interdisciplinary Institute of Indian System of Medicine, SRM University, Kattankulathur, Kancheepuram 603203, Tamil Nadu, India
| | | |
Collapse
|
200
|
Mohib M, Afnan K, Paran TZ, Khan S, Sarker J, Hasan N, Hasan I, Sagor AT. Beneficial Role of Citrus Fruit Polyphenols Against Hepatic Dysfunctions: A Review. J Diet Suppl 2017. [DOI: 10.1080/19390211.2017.1330301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mohabbulla Mohib
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Kazi Afnan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Tasfiq Zaman Paran
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Salma Khan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Juthika Sarker
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Nahid Hasan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Istiaque Hasan
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Abu Taher Sagor
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| |
Collapse
|