151
|
Lau A, He QY, Chiu JF. A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem J 2004; 382:641-50. [PMID: 15175009 PMCID: PMC1133821 DOI: 10.1042/bj20040224] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2004] [Revised: 05/10/2004] [Accepted: 06/03/2004] [Indexed: 01/16/2023]
Abstract
Arsenite is well documented as a chemotherapeutic agent capable of inducing cell death. However, the cellular response at the molecular level has not been studied extensively. In the present study, we provide for the first time a proteomic analysis of rat LECs (lung epithelial cells) treated with arsenite, with the aim of identifying defence proteins, probably expressed to protect the cells during the course of arsenic-induced apoptosis. Comparative proteome analysis was conducted on LECs and LECs treated with 40 microM arsenite to identify global changes in their protein expression profiles. Over 1000 protein spots were separated by two-dimensional electrophoresis and visualized by silver staining. Seven proteins changed expression levels significantly and were identified by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry and database searching. The proteins up-regulated were mostly HSPs (heat-shock proteins) and antioxidative stress proteins, including HSP70, aldose reductase, haem oxygenase-1, HSP27, ferritin light chain and alphaB-crystallin. The glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase was down-regulated. Pretreatment with the thiol antioxidants glutathione or N-acetylcysteine before arsenite insult effectively abrogated the induction of these defence proteins and sustained cell viability, whereas antioxidants were protective only at earlier time points if they were added to cells after arsenite. Taken together, our results demonstrate that high levels of arsenite cause oxidative stress-induced apoptosis.
Collapse
Key Words
- apoptosis
- arsenite
- heat shock protein (hsp)
- matrixassisted laser-desorption ionization–time-of-flight mass spectrometry (maldi–tof-ms)
- oxidative stress
- reactive oxygen species (ros)
- αb-c, αb-crystallin
- ar, aldose reductase
- dapi, 4,6-diamidino-2-phenylindole
- 2-de, two-dimensional electrophoresis
- flc, ferritin light chain
- gapdh, glyceraldehyde-3-phosphate dehydrogenase
- ho-1, haem oxygenase-1
- hsp, heat-shock protein
- shsp, small heat shock or stress protein
- ief, isoelectric focusing
- jnk, c-jun n-terminal kinase
- lec, lung epithelial cell
- maldi–tof-ms, matrix-assisted laser-desorption ionization–time-of-flight mass spectrometry
- nac, n-acetylcysteine
- ros, reactive oxygen species
Collapse
Affiliation(s)
- Andy T. Y. Lau
- *Institute of Molecular Biology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
- †Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Qing-Yu He
- †Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
- ‡Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Jen-Fu Chiu
- *Institute of Molecular Biology, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
- †Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| |
Collapse
|
152
|
Cahuana GM, Tejedo JR, Jiménez J, Ramírez R, Sobrino F, Bedoya FJ. Nitric oxide-induced carbonylation of Bcl-2, GAPDH and ANT precedes apoptotic events in insulin-secreting RINm5F cells. Exp Cell Res 2004; 293:22-30. [PMID: 14729054 DOI: 10.1016/j.yexcr.2003.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Generation of high levels of nitric oxide (NO) following induction of NOS2 by interleukin-1 beta (IL-1beta) triggers beta cell apoptosis in insulin-secreting RINm5F cells. Mitochondrial and nuclear events such as downregulation of the antiapoptotic protein Bcl-2, activation of the pore responsible for the permeability transition (PT) and DNA fragmentation are involved in the process. We report in the present paper that exposure of insulin-producing RINm5F cells to NO donors and to IL-1beta leads to oxidative carbonylation of both Bcl-2 and the adenine nucleotide translocator (ANT) component of the mitochondrial PT pore. When the effect of endogenous generation of high concentrations of NO following exposure of cells to IL-1beta was studied, carbonylation of Bcl-2 preceded downregulation of the protein. Overexpression of Mn-SOD decreases substantially the extent of Bcl-2 carbonylation in SIN-1-exposed cells. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) inhibition, carbonylation and translocation from cytoplasm to nucleus and DNA fragmentation were also induced by DETA/NO exposure. DETA/NO-induced carbonylation of Bcl-2 and ANT proteins takes place 6 h before apoptotic release of histone-associated DNA to cytoplasm. Time course studies also reveal a close parallel between GAPDH translocation to nucleus and carbonylation. Inhibitors of lipooxidation end products formation such as piridoxamine (PM) and aminoguanidine (AG) block NO-triggered carbonylation of Bcl-2, ANT and GAPDH, prevent NO-induced GAPDH enzyme inhibition and nuclear translocation and DNA fragmentation. Our results support the notion that the oxidative carbonylation of proteins plays a role in the control of NO-induced apoptosis.
Collapse
Affiliation(s)
- Gladys M Cahuana
- Laboratory of Biochemistry of the Immune System, Department of Medical Biochemistry and Molecular Biology, University of Sevilla, 41009 Seville, Spain
| | | | | | | | | | | |
Collapse
|
153
|
Brown VM, Krynetski EY, Krynetskaia NF, Grieger D, Mukatira ST, Murti KG, Slaughter CA, Park HW, Evans WE. A novel CRM1-mediated nuclear export signal governs nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase following genotoxic stress. J Biol Chem 2004; 279:5984-92. [PMID: 14617633 DOI: 10.1074/jbc.m307071200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein with glycolytic and non-glycolytic functions, including pro-apoptotic activity. GAPDH accumulates in the nucleus after cells are treated with genotoxic drugs, and it is present in a protein complex that binds DNA modified by thioguanine incorporation. We identified a novel CRM1-dependent nuclear export signal (NES) comprising 13 amino acids (KKVVKQASEGPLK) in the C-terminal domain of GAPDH, truncation or mutation of which abrogated CRM1 binding and caused nuclear accumulation of GAPDH. Alanine scanning of the sequence encompassing the putative NES demonstrated at least two regions important for nuclear export. Site mutagenesis of Lys259 did not affect oligomerization but impaired nuclear efflux of GAPDH, indicating that this amino acid residue is essential for proper functioning of this NES. This novel NES does not contain multiple leucine residues unlike other CRM1-interacting NES, is conserved in GAPDH from multiple species, and has sequence similarities to the export signal found in feline immunodeficiency virus Rev protein. Similar sequences (KKVV*7-13PLK) were found in two other human proteins, U5 small nuclear ribonucleoprotein, and transcription factor BT3.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Alanine/chemistry
- Amino Acid Sequence
- Amino Acids/chemistry
- Antibodies, Monoclonal
- Apoptosis
- Cell Line, Tumor
- Cell Nucleus/metabolism
- Chromatography
- Cytosol/metabolism
- DNA/metabolism
- Epitopes/chemistry
- Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism
- Green Fluorescent Proteins
- Humans
- Karyopherins/metabolism
- Luminescent Proteins/metabolism
- Lysine/chemistry
- Microscopy, Confocal
- Microscopy, Fluorescence
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Mutation
- Nuclear Localization Signals
- Peptides/chemistry
- Precipitin Tests
- Protein Binding
- Protein Structure, Tertiary
- Receptors, Cytoplasmic and Nuclear
- Recombinant Fusion Proteins/metabolism
- Ribonucleoprotein, U5 Small Nuclear/chemistry
- Trans-Activators/chemistry
- Transfection
- Exportin 1 Protein
Collapse
Affiliation(s)
- Victor M Brown
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
154
|
Kontou M, Will RD, Adelfalk C, Wittig R, Poustka A, Hirsch-Kauffmann M, Schweiger M. Thioredoxin, a regulator of gene expression. Oncogene 2004; 23:2146-52. [PMID: 14730345 DOI: 10.1038/sj.onc.1207334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cancer cells have high levels of thioredoxin (Trx) and of glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Cells from patients with the cancer-prone disease Fanconi anemia (FA) exhibit reduced Trx levels. We found the activity of GAPDH to correlate directly with the endogenous Trx content and mRNA transcripts for GAPDH and TRx reduced in FA cells. The treatment of cells with reduced human Trx stimulated the synthesis of GAPDH mRNA. Similarly, the transfection of cells with an expression plasmid for Trx increased GAPDH mRNA synthesis. Trx treatment of cells and subsequent analysis of the differential gene expression by human cDNA arrays containing about 50 000 different PCR products resulted in more than 300 up- or downregulated genes. Two representative genes, GAPDH and IkappaBalpha/MAD-3, were further investigated to confirm their stimulation by Trx. Trx besides being the major carrier of redox potential of cells is also a regulator of gene expression on the transcriptional level. By regulation via Trx, cells are able to adapt to the prevailing redox conditions. These findings also enlighten the pathophysiology of FA in the respect that the characteristic diminution of Trx that results in the dysregulation of gene expression is a basis for the major symptoms of this disease.
Collapse
Affiliation(s)
- Maria Kontou
- Institut für Biochemie, Freie Universität Berlin, Thielallee 63, Berlin D-14195, Germany
| | | | | | | | | | | | | |
Collapse
|
155
|
Hu W, Zhang Q, Su WC, Feng Z, Rom W, Chen LC, Tang M, Huang X. Gene expression of primary human bronchial epithelial cells in response to coal dusts with different prevalence of coal workers' pneumoconiosis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2003; 66:1249-1265. [PMID: 12851122 DOI: 10.1080/15287390306411] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Striking regional differences in the prevalence of coal workers' pneumoconiosis (CWP) have been observed but not fully understood. This study investigated the early biological responses of primary lung cells to treatment with coal dusts from various seams. High-density oligoarray technology (GeneChip, Affymetrix, Santa Clara, CA) was used to compile gene expression profiles of primary human bronchial epithelial cells to low concentrations (2 microg/cm(2)) of coals for 6 h or 24 h of treatment. Data showed that a total of 1050 out of 12,000 genes on the chip were altered by 2 coal dusts. The coal from the Pennsylvania (PA) coal-mine region with a high prevalence of CWP altered 908 genes, many more than the coal from Utah (UT) with a low prevalence of CWP, which affected 356 genes. Many genes decreased their expression levels in response to the PA coal at 6 h and/or 24 h of treatment. For example, transferrin receptor, a gene known to control cellular iron uptake, was downregulated in the cells treated with the iron-containing PA coal in order to protect cells from iron overload. The UT coal without bioavailable iron had no such effect. The downregulation patterns of genes were confirmed by reverse-transcription polymerase chain reaction (RT-PCR). This study is one of the first in profiling gene expressions of primary bronchial epithelial cells treated with coals from various seams, which may set stages for future studies on specific genes.
Collapse
Affiliation(s)
- Wenwei Hu
- Department of Environmental Medicine, New York University School of Medicine, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Tatton WG, Chalmers-Redman R, Brown D, Tatton N. Apoptosis in Parkinson's disease: signals for neuronal degradation. Ann Neurol 2003; 53 Suppl 3:S61-70; discussion S70-2. [PMID: 12666099 DOI: 10.1002/ana.10489] [Citation(s) in RCA: 260] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Controversy has surrounded a role for apoptosis in the loss of neurons in Parkinson's disease (PD). Although a variety of evidence has supported an apoptotic contribution to PD neuronal loss particularly in the nigra, two factors have weighed against general acceptance: (1) limitations in the use of in situ 3' end labeling techniques to demonstrate nuclear DNA cleavage; and (2) the insistence that a specific set of nuclear morphological features be present before apoptotic death could be declared. We first review the molecular events that underlie apoptotic nuclear degradation and the literature regarding the unreliability of 3' DNA end labeling as a marker of apoptotic nuclear degradation. Recent findings regarding the multiple caspase-dependent or caspase-independent signaling pathways that mediate apoptotic nuclear degradation and determine the morphological features of apoptotic nuclear degradation are presented. The evidence shows that a single nuclear morphology is not sufficient to identify apoptosis and that a cytochrome c, pro-caspase 9, and caspase 3 pathways is operative in PD nigral apoptosis. BAX-dependent increases in mitochondrial membrane permeability are responsible for the release of mitochondrial factors that signal for apoptotic degradation, and increased BAX levels have been found in a subset of PD nigral neurons. Studies using immunocytochemistry in PD postmortem nigra have begun to define the premitochondrial apoptosis signaling pathways in the disease. Two, possibly interdependent, pathways have been uncovered: (1) a p53-glyceraldehyde-3-phosphate dehydrogenase (GAPDH)-BAX pathway; and (2) FAS receptor-FADD-caspase 8-BAX pathway. Based on the above, it seems unlikely that apoptosis does not contribute to PD neuronal loss, and the definition of the premitochondrial signaling pathways may allow for the development and testing of an apoptosis-based PD therapy.
Collapse
Affiliation(s)
- William G Tatton
- Department of Neurology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
157
|
Senatorov VV, Charles V, Reddy PH, Tagle DA, Chuang DM. Overexpression and nuclear accumulation of glyceraldehyde-3-phosphate dehydrogenase in a transgenic mouse model of Huntington's disease. Mol Cell Neurosci 2003; 22:285-97. [PMID: 12691731 DOI: 10.1016/s1044-7431(02)00013-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Huntington's disease is due to an expansion of CAG repeats in the huntingtin gene. Huntingtin interacts with several proteins including glyceraldehyde-3-phosphate dehydrogenase (GAPDH). We performed immunohistochemical analysis of GAPDH expression in the brains of transgenic mice carrying the huntingtin gene with 89 CAG repeats. In all wild-type animals examined, GAPDH was evenly distributed among the different cell types throughout the brain. In contrast, the majority of transgenic mice showed GAPDH overexpression, with the most prominent GAPDH changes observed in the caudate putamen, globus pallidus, neocortex, and hippocampal formation. Double staining for NeuN and GFAP revealed that GAPDH overexpression occurred exclusively in neurons. Nissl staining analysis of the neocortex and caudate putamen indicated 24 and 27% of cell loss in transgenic mice, respectively. Subcellular fluorescence analysis revealed a predominant increase in GAPDH immunostaining in the nucleus. Thus, we conclude that mutation of huntingtin is associated with GAPDH overexpression and nuclear translocation in discrete populations of brain neurons.
Collapse
Affiliation(s)
- Vladimir V Senatorov
- Molecular Neurobiology Section, Mood and Anxiety Disorders Program, National Institute of Mental Health, National Institutes of Health, MD 20892-1363, Bethesda, USA
| | | | | | | | | |
Collapse
|
158
|
Beisswenger PJ, Howell SK, Smith K, Szwergold BS. Glyceraldehyde-3-phosphate dehydrogenase activity as an independent modifier of methylglyoxal levels in diabetes. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1637:98-106. [PMID: 12527413 DOI: 10.1016/s09254439(02)00219-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methylglyoxal (MG) may be an important cause of diabetic complications. Its primary source is dihydroxyacetone phosphate (DHAP) whose levels are partially controlled by glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Using a human red blood cell (RBC) culture, we examined the effect of modifying GAPDH activity on MG production. With the inhibitor koningic acid (KA), we showed a linear, concentration-dependent GAPDH inhibition, with 5 microM KA leading to a 79% reduction of GAPDH activity and a sixfold increase in MG. Changes in redox state produced by elevated pH also resulted in a 2.4-fold increase in MG production at pH 7.5 and a 13.4-fold increase at pH 7.8. We found substantial inter-individual variation in DHAP and MG levels and an inverse relationship between GAPDH activity and MG production (R=0.57, P=0.005) in type 2 diabetes. A similar relationship between GAPDH activity and MG was observed in vivo in type 1 diabetes (R=0.29, P=0.0018). Widely varying rates of progression of diabetic complications are seen among individuals. We postulate that modification of GAPDH by environmental factors or genetic dysregulation and the resultant differences in MG production could at least partially account for this observation.
Collapse
Affiliation(s)
- Paul J Beisswenger
- Department of Medicine, Endocrine-Metabolism Division, Dartmouth Medical School, Hanover, NH 03755, USA.
| | | | | | | |
Collapse
|
159
|
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme of the glycolytic pathway. Recent studies have demonstrated an additional role in apoptosis: GAPDH is targeted to the nucleus during apoptotic signalling. This nuclear transport has also been observed in serum-depleted cells, but it is reversible in fibroblasts, in contrast to apoptotic-induced transport (Eur J Cell Biol 80 (2001) 419). Here, we analyse the serum depletion-induced transport processes of GAPDH in NIH 3T3 cells. Prolonged serum depletion did not cause cell death, nuclear fragmentation (hoechst staining) or a significant increase in DNA strand-breaks (comet assay). Using cells expressing green fluorescent protein (GFP)-tagged GAPDH allowed us to monitor its intracellular localisation by confocal laser scanning microscopy (CLSM). Treatment of cells with the exportin1 inhibitor leptomycin B (LMB) did not influence cytoplasmic localisation of GFP-GAPDH, indicating that nuclear targeting of GAPDH is not constitutive and may be altered via a serum-dependent regulatory export process. Suprisingly, the export of nuclear GFP-GAPDH after re-addition of serum to starved cells was not prevented by LMB. Thus, nuclear export of GAPDH upon serum depletion is not mediated by exportin1.
Collapse
Affiliation(s)
- Hans-Dirk Schmitz
- Kinematic Cell Research Group, Biocentre, Goethe University of Frankfurt/Main, Marie-Curie-Str. 9, D-60439 Frankfurt, Germany
| | | | | |
Collapse
|
160
|
Sweetlove LJ, Heazlewood JL, Herald V, Holtzapffel R, Day DA, Leaver CJ, Millar AH. The impact of oxidative stress on Arabidopsis mitochondria. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:891-904. [PMID: 12492832 DOI: 10.1046/j.1365-313x.2002.01474.x] [Citation(s) in RCA: 343] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Treatment of Arabidopsis cell culture for 16 h with H2O2, menadione or antimycin A induced an oxidative stress decreasing growth rate and increasing DCF fluorescence and lipid peroxidation products. Treated cells remained viable and maintained significant respiratory rates. Mitochondrial integrity was maintained, but accumulation of alternative oxidase and decreased abundance of lipoic acid-containing components during several of the treatments indicated oxidative stress. Analysis of the treatments was undertaken by IEF/SDS-PAGE, comparison of protein spot abundances and tandem mass spectrometry. A set of 25 protein spots increased >3-fold in H2O2/menadione treatments, a subset of these increased in antimycin A-treated samples. A set of 10 protein spots decreased significantly during stress treatments. A specific set of mitochondrial proteins were degraded by stress treatments. These damaged components included subunits of ATP synthase, complex I, succinyl CoA ligase, aconitase, and pyruvate and 2-oxoglutarate dehydrogenase complexes. Nine increased proteins represented products of different genes not found in control mitochondria. One is directly involved in antioxidant defense, a mitochondrial thioredoxin-dependent peroxidase, while another, a thioredoxin reductase-dependent protein disulphide isomerase, is required for protein disulfide redox homeostasis. Several others are generally considered to be extramitochondrial but are clearly present in a highly purified mitochondrial fraction used in this study and are known to play roles in stress response. Using H2O2 as a model stress, further work revealed that this treatment induced a protease activity in isolated mitochondria, putatively responsible for the degradation of oxidatively damaged mitochondrial proteins and that O2 consumption by mitochondria was significantly decreased by H2O2 treatment.
Collapse
Affiliation(s)
- L J Sweetlove
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | | | | | | | | | | | | |
Collapse
|