151
|
Ho DM, Artavanis-Tsakonas S, Louvi A. The Notch pathway in CNS homeostasis and neurodegeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e358. [PMID: 31502763 DOI: 10.1002/wdev.358] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 12/19/2022]
Abstract
The role of the Notch signaling pathway in neural development has been well established over many years. More recent studies, however, have demonstrated that Notch continues to be expressed and active throughout adulthood in many areas of the central nervous system. Notch signals have been implicated in adult neurogenesis, memory formation, and synaptic plasticity in the adult organism, as well as linked to acute brain trauma and chronic neurodegenerative conditions. NOTCH3 mutations are responsible for the most common form of hereditary stroke, the progressive disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Notch has also been associated with several progressive neurodegenerative diseases, including Alzheimer's disease, multiple sclerosis, and amyotrophic lateral sclerosis. Although numerous studies link Notch activity with CNS homeostasis and neurodegenerative diseases, the data thus far are primarily correlative, rather than functional. Nevertheless, the evidence for Notch pathway activity in specific neural cellular contexts is strong, and certainly intriguing, and points to the possibility that the pathway carries therapeutic promise. This article is categorized under: Nervous System Development > Flies Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: General Principles.
Collapse
Affiliation(s)
- Diana M Ho
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts
| | | | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience and Program on Neurogenetics, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
152
|
Kannan S, Aitken MJL, Herbrich SM, Golfman LS, Hall MG, Mak DH, Burks JK, Song G, Konopleva M, Mullighan CG, Chandra J, Zweidler-McKay PA. Antileukemia Effects of Notch-Mediated Inhibition of Oncogenic PLK1 in B-Cell Acute Lymphoblastic Leukemia. Mol Cancer Ther 2019; 18:1615-1627. [PMID: 31227645 PMCID: PMC6726528 DOI: 10.1158/1535-7163.mct-18-0706] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/08/2018] [Accepted: 06/17/2019] [Indexed: 02/03/2023]
Abstract
In B-cell acute lymphoblastic leukemia (B-ALL), activation of Notch signaling leads to cell-cycle arrest and apoptosis. We aimed to harness knowledge acquired by understanding a mechanism of Notch-induced cell death to elucidate a therapeutically viable target in B-ALL. To this end, we identified that Notch activation suppresses Polo-like kinase 1 (PLK1) in a B-ALL-specific manner. We identified that PLK1 is expressed in all subsets of B-ALL and is highest in Philadelphia-like (Ph-like) ALL, a high-risk subtype of disease. We biochemically delineated a mechanism of Notch-induced PLK1 downregulation that elucidated stark regulation of p53 in this setting. Our findings identified a novel posttranslational cascade initiated by Notch in which CHFR was activated via PARP1-mediated PARylation, resulting in ubiquitination and degradation of PLK1. This led to hypophosphorylation of MDM2Ser260, culminating in p53 stabilization and upregulation of BAX. shRNA knockdown or pharmacologic inhibition of PLK1 using BI2536 or BI6727 (volasertib) in B-ALL cell lines and patient samples led to p53 stabilization and cell death. These effects were seen in primary human B-ALL samples in vitro and in patient-derived xenograft models in vivo These results highlight PLK1 as a viable therapeutic target in B-ALL. Efficacy of clinically relevant PLK1 inhibitors in B-ALL patient-derived xenograft mouse models suggests that use of these agents may be tailored as an additional therapeutic strategy in future clinical studies.
Collapse
Affiliation(s)
| | - Marisa J L Aitken
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Shelley M Herbrich
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, Texas
| | - Leonard S Golfman
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mandy G Hall
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Duncan H Mak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jared K Burks
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guangchun Song
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Charles G Mullighan
- Department of Pathology, St. Jude's Children's Research Hospital, Memphis, Tennessee
| | - Joya Chandra
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
153
|
Ul-Islam M, Subhan F, Islam SU, Khan S, Shah N, Manan S, Ullah MW, Yang G. Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. Int J Biol Macromol 2019; 137:1050-1059. [DOI: 10.1016/j.ijbiomac.2019.07.050] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/05/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
|
154
|
Choi S, Yu J, Park A, Dubon MJ, Do J, Kim Y, Nam D, Noh J, Park KS. BMP-4 enhances epithelial mesenchymal transition and cancer stem cell properties of breast cancer cells via Notch signaling. Sci Rep 2019; 9:11724. [PMID: 31409851 PMCID: PMC6692307 DOI: 10.1038/s41598-019-48190-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 07/26/2019] [Indexed: 01/07/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling and Notch signaling play important roles in tumorigenesis in various organs and tissues, including the breast. BMP-4 enhanced epithelial mesenchymal transition (EMT) and stem cell properties in both mammary epithelial cell line and breast carcinoma cell line. BMP-4 increased the expression of EMT biomarkers, such as fibronectin, laminin, N-cadherin, and Slug. BMP-4 also activated Notch signaling in these cells and increased the sphere forming efficiency of the non-transformed mammary epithelial cell line MCF-10A. In addition, BMP-4 upregulated the sphere forming efficiency, colony formation efficiency, and the expression of cancer stem cell markers, such as Nanog and CD44, in the breast carcinoma cell line MDA-MB-231. Inhibition of Notch signaling downregulated EMT and stem cell properties induced by BMP-4. Down-regulation of Smad4 using siRNA impaired the BMP-4-induced activation of Notch signaling, as well as the BMP-4-mediated EMT. These results suggest that EMT and stem cell properties are increased in mammary epithelial cells and breast cancer cells through the activation of Notch signaling in a Smad4-dependent manner in response to BMP-4.
Collapse
Affiliation(s)
- Sanghyuk Choi
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Jungbeom Do
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Youngjae Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Jinok Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, 02447, Korea. .,East-West Medical Research Institute, Kyung Hee University, Seoul, 02447, Korea. .,College of Medicine, Kyung Hee University, Seoul, 02447, Korea.
| |
Collapse
|
155
|
Zhang C, Martinez-Ledesma E, Gao F, Zhang W, Ding J, Wu S, Li X, Wu J, Yuan Y, Koul D, Alfred Yung WK. Wild-type TP53 defined gamma-secretase inhibitor sensitivity and synergistic activity with doxorubicin in GSCs. Am J Cancer Res 2019; 9:1734-1745. [PMID: 31497354 PMCID: PMC6726980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary intracranial tumor. Aggressive surgical resection plus radiotherapy and temozolomide have prolonged patients' median survival to only 14.6 months. Therefore, there is a critical need to develop novel therapeutic strategies for GBM. In this study, we evaluated the effect of NOTCH signaling intervention by gamma-secretase inhibitors (GSIs) on glioma sphere-forming cells (GSCs). GSI sensitivity exhibited remarkable selectivity among wild-type TP53 (wt-p53) GSCs. GSIs significantly impaired the sphere formation of GSCs harboring wt-p53. We also identified a concurrence between GSI sensitivity, NOTCH1 expression, and wt-p53 activity in GSCs. Through a series of gene editing and drug treatment experiments, we found that wt-p53 did not modulate NOTCH1 pathway, whereas NOTCH1 signaling positively regulated wt-p53 expression and activity in GSCs. Finally, GSIs (targeting NOTCH signaling) synergized with doxorubicin (activating wt-p53) to inhibit proliferation and induce apoptosis in wt-p53 GSCs. Taken together, we identified wt-p53 as a potential marker for GSI sensitivity in GSCs. Combining GSI with doxorubicin synergistically inhibited the proliferation and survival of GSCs harboring wt-p53.
Collapse
Affiliation(s)
- Chen Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Emmanuel Martinez-Ledesma
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la SaludMonterrey, Nuevo Leon, Mexico
| | - Feng Gao
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Wei Zhang
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical UniversityBeijing, China
| | - Jie Ding
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Shaofang Wu
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Xiaolong Li
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Jimin Wu
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Ying Yuan
- Department of Biostatistics, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - Dimpy Koul
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| | - WK Alfred Yung
- Department of Neuro-Oncology, Brain Tumor Center, The University of Texas MD Anderson Cancer CenterHouston, TX, USA
| |
Collapse
|
156
|
Yoshino T, Saito D. Epithelial-to-mesenchymal transition–based morphogenesis of dorsal mesentery and gonad. Semin Cell Dev Biol 2019; 92:105-112. [DOI: 10.1016/j.semcdb.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 12/26/2022]
|
157
|
Liao Y, Ma Z, Zhang Y, Li D, Lv D, Chen Z, Li P, Ai-Dherasi A, Zheng F, Tian J, Zou K, Wang Y, Wang D, Cordova M, Zhou H, Li X, Liu D, Yu R, Zhang Q, Zhang X, Zhang J, Zhang X, Zhang X, Li Y, Shao Y, Song L, Liu R, Wang Y, Sufiyan S, Liu Q, Owen GI, Li Z, Chen J. Targeted deep sequencing from multiple sources demonstrates increased NOTCH1 alterations in lung cancer patient plasma. Cancer Med 2019; 8:5673-5686. [PMID: 31369215 PMCID: PMC6745866 DOI: 10.1002/cam4.2458] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/13/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022] Open
Abstract
Introduction Targeted therapies are based on specific gene alterations. Various specimen types have been used to determine gene alterations, however, no systemic comparisons have yet been made. Herein, we assessed alterations in selected cancer‐associated genes across varying sample sites in lung cancer patients. Materials and Methods Targeted deep sequencing for 48 tumor‐related genes was applied to 153 samples from 55 lung cancer patients obtained from six sources: Formalin‐fixed paraffin‐embedded (FFPE) tumor tissues, pleural effusion supernatant (PES) and pleural effusion cell sediments (PEC), white blood cells (WBCs), oral epithelial cells (OECs), and plasma. Results Mutations were detected in 96% (53/55) of the patients and in 83% (40/48) of the selected genes. Each sample type exhibited a characteristic mutational pattern. As anticipated, TP53 was the most affected sequence (54.5% patients), however this was followed by NOTCH1 (36%, across all sample types). EGFR was altered in patient samples at a frequency of 32.7% and KRAS 10.9%. This high EGFR/ low KRAS frequency is in accordance with other TCGA cohorts of Asian origin but differs from the Caucasian population where KRAS is the more dominant mutation. Additionally, 66% (31/47) of PEC samples had copy number variants (CNVs) in at least one gene. Unlike the concurrent loss and gain in most genes, herein NOTCH1 loss was identified in 21% patients, with no gain observed. Based on the relative prevalence of mutations and CNVs, we divided lung cancer patients into SNV‐dominated, CNV‐dominated, and codominated groups. Conclusions Our results confirm previous reports that EGFR mutations are more prevalent than KRAS in Chinese lung cancer patients. NOTCH1 gene alterations are more common than previously reported and reveals a role of NOTCH1 modifications in tumor metastasis. Furthermore, genetic material from malignant pleural effusion cell sediments may be a noninvasive manner to identify CNV and participate in treatment decisions.
Collapse
Affiliation(s)
- Yuwei Liao
- The Second Hospital of Dalian Medical University, Dalian, China.,Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhaokui Ma
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yu Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Dan Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Dekang Lv
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Zhisheng Chen
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Peiying Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Aisha Ai-Dherasi
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Feng Zheng
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Jichao Tian
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Kun Zou
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yue Wang
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Dongxia Wang
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Miguel Cordova
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Huan Zhou
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Xiuhua Li
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Dan Liu
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Ruofei Yu
- The Second Hospital of Dalian Medical University, Dalian, China
| | - Qingzheng Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xiaolong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jian Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xuehong Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Xia Zhang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yulong Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yanyan Shao
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Luyao Song
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Ruimei Liu
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Yichen Wang
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Sufiyan Sufiyan
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Quentin Liu
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Gareth I Owen
- Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Zhiguang Li
- Center of Genome and Personalized Medicine, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China.,The Second Affiliated Hospital, School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Jun Chen
- The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
158
|
Notch Signaling Activation as a Hallmark for Triple-Negative Breast Cancer Subtype. JOURNAL OF ONCOLOGY 2019; 2019:8707053. [PMID: 31379945 PMCID: PMC6657611 DOI: 10.1155/2019/8707053] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/19/2019] [Indexed: 12/21/2022]
Abstract
Triple-negative breast cancer (TNBC) is a subgroup of 15%-20% of diagnosed breast cancer patients. It is generally considered to be the most difficult breast cancer subtype to deal with, due to the lack of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2), which usually direct targeted therapies. In this scenario, the current treatments of TNBC-affected patients rely on tumor excision and conventional chemotherapy. As a result, the prognosis is overall poor. Thus, the identification and characterization of targets for novel therapies are urgently required. The Notch signaling pathway has emerged to act in the pathogenesis and tumor progression of TNBCs. Firstly, Notch receptors are associated with the regulation of tumor-initiating cells (TICs) behavior, as well as with the aetiology of TNBCs. Secondly, there is a strong evidence that Notch pathway is a relevant player in mammary cancer stem cells maintenance and expansion. Finally, Notch receptors expression and activation strongly correlate with the aggressive clinicopathological and biological phenotypes of breast cancer (e.g., invasiveness and chemoresistance), which are relevant characteristics of TNBC subtype. The purpose of this up-to-date review is to provide a detailed overview of the specific role of all four Notch receptors (Notch1, Notch2, Notch3, and Notch4) in TNBCs, thus identifying the Notch signaling pathway deregulation/activation as a pathognomonic feature of this breast cancer subtype. Furthermore, this review will also discuss recent information associated with different therapeutic options related to the four Notch receptors, which may be useful to evaluate prognostic or predictive indicators as well as to develop new therapies aimed at improving the clinical outcome of TNBC patients.
Collapse
|
159
|
Notch-mediated inhibition of neurogenesis is required for zebrafish spinal cord morphogenesis. Sci Rep 2019; 9:9958. [PMID: 31292468 PMCID: PMC6620349 DOI: 10.1038/s41598-019-46067-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/18/2019] [Indexed: 12/26/2022] Open
Abstract
The morphogenesis of the nervous system requires coordinating the specification and differentiation of neural precursor cells, the establishment of neuroepithelial tissue architecture and the execution of specific cellular movements. How these aspects of neural development are linked is incompletely understood. Here we inactivate a major regulator of embryonic neurogenesis - the Delta/Notch pathway - and analyze the effect on zebrafish central nervous system morphogenesis. While some parts of the nervous system can establish neuroepithelial tissue architecture independently of Notch, Notch signaling is essential for spinal cord morphogenesis. In this tissue, Notch signaling is required to repress neuronal differentiation and allow thereby the emergence of neuroepithelial apico-basal polarity. Notch-mediated suppression of neurogenesis is also essential for the execution of specific morphogenetic movements of zebrafish spinal cord precursor cells. In the wild-type neural tube, cells divide at the organ midline to contribute one daughter cell to each organ half. Notch signaling deficient animals fail to display this behavior and therefore form a misproportioned spinal cord. Taken together, our findings show that Notch-mediated suppression of neurogenesis is required to allow the execution of morphogenetic programs that shape the zebrafish spinal cord.
Collapse
|
160
|
Méndez A, Rojas DA, Ponce CA, Bustamante R, Beltrán CJ, Toledo J, García-Angulo VA, Henriquez M, Vargas SL. Primary infection by Pneumocystis induces Notch-independent Clara cell mucin production in rat distal airways. PLoS One 2019; 14:e0217684. [PMID: 31170201 PMCID: PMC6553854 DOI: 10.1371/journal.pone.0217684] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/17/2019] [Indexed: 11/27/2022] Open
Abstract
Clara cells are the main airway secretory cells able to regenerate epithelium in the distal airways through transdifferentiating into goblet cells, a process under negative regulation of the Notch pathway. Pneumocystis is a highly prevalent fungus in humans occurring between 2 and 5 months of age, a period when airways are still developing and respiratory morbidity typically increases. Pneumocystis induces mucus hyperproduction in immunocompetent host airways and whether it can stimulate Clara cells is unknown. Markers of Clara cell secretion and Notch1 activation were investigated in lungs of immunocompetent rats at 40, 60, and 80 days of age during Pneumocystis primary infection with and without Valproic acid (VPA), a Notch inducer. The proportion of rats expressing mucin increased in Pneumocystis-infected rats respect to controls at 60 and 80 days of age. Frequency of distal airways Clara cells was maintained while mRNA levels for the mucin-encoding genes Muc5B and Muc5ac in lung homogenates increased 1.9 and 3.9 times at 60 days of infection (P. = 0.1609 and P. = 0.0001, respectively) and protein levels of the Clara cell marker CC10 decreased in the Pneumocystis-infected rats at 60 and 80 days of age (P. = 0.0118 & P. = 0.0388). CC10 and Muc5b co-localized in distal airway epithelium of Pneumocystis-infected rats at day 60. Co-localization of Muc5b and Ki67 as marker of mitosis in distal airways was not observed suggesting that Muc5b production by Clara cells was independent of mitosis. Notch levels remained similar and no transnucleation of activated Notch associated to Pneumocystis infection was detected. Unexpectedly, mucus was greatly increased at day 80 in Pneumocystis-infected rats receiving VPA suggesting that a Notch-independent mechanism was triggered. Overall, data suggests a Clara to goblet cell transdifferentiation mechanism induced by Pneumocystis and independent of Notch.
Collapse
Affiliation(s)
- Andrea Méndez
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Diego A. Rojas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Carolina A. Ponce
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Rebeca Bustamante
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Caroll J. Beltrán
- Servicio de Gastroenterología, Hospital Clínico Universidad de Chile y Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Jorge Toledo
- Laboratorio de Análisis Imágenes Científicas, SCIAN-lab, Instituto de Neurociencias Biomédicas (BNI), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Victor A. García-Angulo
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Mauricio Henriquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
| | - Sergio L. Vargas
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Santiago, Chile
- * E-mail:
| |
Collapse
|
161
|
DiNicolantonio JJ, McCarty M. Autophagy-induced degradation of Notch1, achieved through intermittent fasting, may promote beta cell neogenesis: implications for reversal of type 2 diabetes. Open Heart 2019; 6:e001028. [PMID: 31218007 PMCID: PMC6546199 DOI: 10.1136/openhrt-2019-001028] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/06/2019] [Indexed: 02/06/2023] Open
|
162
|
Laner-Plamberger S, Oeller M, Poupardin R, Krisch L, Hochmann S, Kalathur R, Pachler K, Kreutzer C, Erdmann G, Rohde E, Strunk D, Schallmoser K. Heparin Differentially Impacts Gene Expression of Stromal Cells from Various Tissues. Sci Rep 2019; 9:7258. [PMID: 31076619 PMCID: PMC6510770 DOI: 10.1038/s41598-019-43700-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Pooled human platelet lysate (pHPL) is increasingly used as replacement of animal serum for manufacturing of stromal cell therapeutics. Porcine heparin is commonly applied to avoid clotting of pHPL-supplemented medium but the influence of heparin on cell behavior is still unclear. Aim of this study was to investigate cellular uptake of heparin by fluoresceinamine-labeling and its impact on expression of genes, proteins and function of human stromal cells derived from bone marrow (BM), umbilical cord (UC) and white adipose tissue (WAT). Cells were isolated and propagated using various pHPL-supplemented media with or without heparin. Flow cytometry and immunocytochemistry showed differential cellular internalization and lysosomal accumulation of heparin. Transcriptome profiling revealed regulation of distinct gene sets by heparin including signaling cascades involved in proliferation, cell adhesion, apoptosis, inflammation and angiogenesis, depending on stromal cell origin. The influence of heparin on the WNT, PDGF, NOTCH and TGFbeta signaling pathways was further analyzed by a bead-based western blot revealing most alterations in BM-derived stromal cells. Despite these observations heparin had no substantial effect on long-term proliferation and in vitro tri-lineage differentiation of stromal cells, indicating compatibility for clinically applied cell products.
Collapse
Affiliation(s)
- Sandra Laner-Plamberger
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Michaela Oeller
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Rodolphe Poupardin
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Linda Krisch
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Sarah Hochmann
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Ravi Kalathur
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department for Biomedicine, University of Basel, Basel, Switzerland
| | - Karin Pachler
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,GMP Unit, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Christina Kreutzer
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Institute for Experimental Neuroregeneration, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | | | - Eva Rohde
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Dirk Strunk
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria.,Cell Therapy Institute, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Katharina Schallmoser
- Spinal Cord Injury and Tissue Regeneration Center Salzburg, Paracelsus Medical University of Salzburg, Salzburg, Austria. .,Department of Transfusion Medicine, Paracelsus Medical University of Salzburg, Salzburg, Austria.
| |
Collapse
|
163
|
Abstract
A wide range of cell–microenvironmental interactions are mediated by membrane-localized receptors that bind ligands present on another cell or the extracellular matrix. This situation introduces a number of physical effects including spatial organization of receptor–ligand complexes and development of mechanical forces in cells. Unlike traditional experimental approaches, hybrid live cell–supported lipid bilayer (SLB) systems, wherein a live cell interacts with a synthetic substrate supported membrane, allow interrogation of these aspects of receptor signaling. The SLB system directly offers facile control over the identity, density, and mobility of ligands used for engaging cellular receptors. Further, application of various nano- and micropatterning techniques allows for spatial patterning of ligands. In this review, we describe the hybrid live cell–SLB system and its application in uncovering a range of spatial and mechanical aspects of receptor signaling. We highlight the T cell immunological synapse, junctions formed between EphA2- and ephrinA1-expressing cells, and adhesions formed by cadherin and integrin receptors.
Collapse
Affiliation(s)
- Kabir H. Biswas
- NTU Institute for Health Technologies, Nanyang Technological University, Singapore 637553
| | - Jay T. Groves
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| |
Collapse
|
164
|
Piera-Velazquez S, Jimenez SA. Endothelial to Mesenchymal Transition: Role in Physiology and in the Pathogenesis of Human Diseases. Physiol Rev 2019; 99:1281-1324. [PMID: 30864875 DOI: 10.1152/physrev.00021.2018] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Numerous studies have demonstrated that endothelial cells are capable of undergoing endothelial to mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation. EndMT is a complex biological process in which endothelial cells adopt a mesenchymal phenotype displaying typical mesenchymal cell morphology and functions, including the acquisition of cellular motility and contractile properties. Endothelial cells undergoing EndMT lose the expression of endothelial cell-specific proteins such as CD31/platelet-endothelial cell adhesion molecule, von Willebrand factor, and vascular-endothelial cadherin and initiate the expression of mesenchymal cell-specific genes and the production of their encoded proteins including α-smooth muscle actin, extra domain A fibronectin, N-cadherin, vimentin, fibroblast specific protein-1, also known as S100A4 protein, and fibrillar type I and type III collagens. Transforming growth factor-β1 is considered the main EndMT inducer. However, EndMT involves numerous molecular and signaling pathways that are triggered and modulated by multiple and often redundant mechanisms depending on the specific cellular context and on the physiological or pathological status of the cells. EndMT participates in highly important embryonic development processes, as well as in the pathogenesis of numerous genetically determined and acquired human diseases including malignant, vascular, inflammatory, and fibrotic disorders. Despite intensive investigation, many aspects of EndMT remain to be elucidated. The identification of molecules and regulatory pathways involved in EndMT and the discovery of specific EndMT inhibitors should provide novel therapeutic approaches for various human disorders mediated by EndMT.
Collapse
Affiliation(s)
- Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine, Thomas Jefferson University , Philadelphia, Pennsylvania
| |
Collapse
|
165
|
Cheng W, Zheng T, Wang Y, Cai K, Wu W, Zhao T, Xu R. Activation of Notch1 signaling by HTLV-1 Tax promotes proliferation of adult T-cell leukemia cells. Biochem Biophys Res Commun 2019; 512:598-603. [PMID: 30914196 DOI: 10.1016/j.bbrc.2019.03.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/16/2019] [Indexed: 01/04/2023]
Abstract
Human T-cell leukemia virus 1 (HTLV-1), an oncogenic retrovirus, and Notch1 signaling, implicated in tumor formation and progression, are both associated with the development of adult T-cell leukemia (ATL). Here we explored the possibility of a mechanistic link between the two. We observed that the expression of Notch intracellular domain (NICD) was elevated in HTLV-1 infected cell lines. Knocking down of Notch1 in ATL cells repressed cellular proliferation and tumor formation both in vitro and in vivo. As a mechanism for these actions, we found that Tax activated Notch1 signaling by prolonging the half-life of NICD. We then showed that Tax, NICD, and RBP-jκ formed a ternary complex, that Tax enhanced the association of NICD with RBP-jκ, and that Tax, NICD, and RBP-jκ were bound to RBP-jκ-responsive elements. Hence, our results suggest that HTLV-1 promotes cellular proliferation and tumor formation of ATL cells by modulating Notch signaling via a posttranslational mechanism that involves interactions between Tax, NICD, and RBP-jκ.
Collapse
Affiliation(s)
- Wenzhao Cheng
- Engineering Research Center of Molecular Medicine, Ministry of Education, China. Fujian Provincial Key Laboratory of Molecular Medicine, School of Medicine, Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian Province, 361021, China
| | - Tingjin Zheng
- Engineering Research Center of Molecular Medicine, Ministry of Education, China. Fujian Provincial Key Laboratory of Molecular Medicine, School of Medicine, Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian Province, 361021, China
| | - Yong Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China
| | - Kun Cai
- Engineering Research Center of Molecular Medicine, Ministry of Education, China. Fujian Provincial Key Laboratory of Molecular Medicine, School of Medicine, Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian Province, 361021, China
| | - Wencai Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China
| | - Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua, Zhejiang Province, 321004, China.
| | - Ruian Xu
- Engineering Research Center of Molecular Medicine, Ministry of Education, China. Fujian Provincial Key Laboratory of Molecular Medicine, School of Medicine, Huaqiao University, 668 Jimei Avenue, Xiamen, Fujian Province, 361021, China.
| |
Collapse
|
166
|
Bazzoni R, Bentivegna A. Role of Notch Signaling Pathway in Glioblastoma Pathogenesis. Cancers (Basel) 2019; 11:cancers11030292. [PMID: 30832246 PMCID: PMC6468848 DOI: 10.3390/cancers11030292] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 02/17/2019] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway that regulates important biological processes, such as cell proliferation, apoptosis, migration, self-renewal, and differentiation. In mammals, Notch signaling is composed of four receptors (Notch1–4) and five ligands (Dll1-3–4, Jagged1–2) that mainly contribute to the development and maintenance of the central nervous system (CNS). Neural stem cells (NSCs) are the starting point for neurogenesis and other neurological functions, representing an essential aspect for the homeostasis of the CNS. Therefore, genetic and functional alterations to NSCs can lead to the development of brain tumors, including glioblastoma. Glioblastoma remains an incurable disease, and the reason for the failure of current therapies and tumor relapse is the presence of a small subpopulation of tumor cells known as glioma stem cells (GSCs), characterized by their stem cell-like properties and aggressive phenotype. Growing evidence reveals that Notch signaling is highly active in GSCs, where it suppresses differentiation and maintains stem-like properties, contributing to Glioblastoma tumorigenesis and conventional-treatment resistance. In this review, we try to give a comprehensive view of the contribution of Notch signaling to Glioblastoma and its possible implication as a target for new therapeutic approaches.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Pz.le Scuro 10, 37134 Verona, Italy.
- Program in Clinical and Experimental Biomedical Sciences, University of Verona, 37134 Verona, Italy.
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
| | - Angela Bentivegna
- NeuroMi, Milan Center for Neuroscience, Department of Neurology and Neuroscience, San Gerardo Hospital, University of Milano-Bicocca, 20900 Monza, Italy.
- School of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| |
Collapse
|
167
|
Epsins Regulate Mouse Embryonic Stem Cell Exit from Pluripotency and Neural Commitment by Controlling Notch Activation. Stem Cells Int 2019; 2019:4084351. [PMID: 30930949 PMCID: PMC6410434 DOI: 10.1155/2019/4084351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/29/2018] [Accepted: 11/19/2018] [Indexed: 01/09/2023] Open
Abstract
Epsins are part of the internalization machinery pivotal to control clathrin-mediated endocytosis. Here, we report that epsin family members are expressed in mouse embryonic stem cells (mESCs) and that epsin1/2 knockdown alters both mESC exits from pluripotency and their differentiation. Furthermore, we show that epsin1/2 knockdown compromises the correct polarization and division of mESC-derived neural progenitors and their conversion into expandable radial glia-like neural stem cells. Finally, we provide evidence that Notch signaling is impaired following epsin1/2 knockdown and that experimental restoration of Notch signaling rescues the epsin-mediated phenotypes. We conclude that epsins contribute to control mESC exit from pluripotency and allow their neural differentiation by appropriate modulation of Notch signaling.
Collapse
|
168
|
Lens differentiation is controlled by the balance between PDGF and FGF signaling. PLoS Biol 2019; 17:e3000133. [PMID: 30716082 PMCID: PMC6375662 DOI: 10.1371/journal.pbio.3000133] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 02/14/2019] [Accepted: 01/17/2019] [Indexed: 12/15/2022] Open
Abstract
How multiple receptor tyrosine kinases coordinate cell fate determination is yet to be elucidated. We show here that the receptor for platelet-derived growth factor (PDGF) signaling recruits the p85 subunit of Phosphoinositide 3-kinase (PI3K) to regulate mammalian lens development. Activation of PI3K signaling not only prevents B-cell lymphoma 2 (BCL2)-Associated X (Bax)- and BCL2 Antagonist/Killer (Bak)-mediated apoptosis but also promotes Notch signaling to prevent premature cell differentiation. Reducing PI3K activity destabilizes the Notch intracellular domain, while the constitutive activation of Notch reverses the PI3K deficiency phenotype. In contrast, fibroblast growth factor receptors (FGFRs) recruit Fibroblast Growth Factor Receptor Substrate 2 (Frs2) and Rous sarcoma oncogene (Src) Homology Phosphatase 2 (Shp2) to activate Mitogen-Activated Protein Kinase (MAPK) signaling, which induces the Notch ligand Jagged 1 (Jag1) and promotes cell differentiation. Inactivation of Shp2 restored the proper timing of differentiation in the p85 mutant lens, demonstrating the antagonistic interaction between FGF-induced MAPK and PDGF-induced PI3K signaling. By selective activation of PI3K and MAPK, PDGF and FGF cooperate with and oppose each other to balance progenitor cell maintenance and differentiation. A central aim in understanding cell signaling is to decode the cellular logic that underlies the functional specificity of growth factors. Although these factors are known to activate a common set of intracellular pathways, they nevertheless play specific roles in development and physiology. Using lens development in mice as a model, we show that fibroblast growth factor (FGF) and platelet-derived growth factor (PDGF) antagonize each other through their intrinsic biases toward distinct downstream targets. While FGF primarily induces the Ras–Mitogen-Activated Protein Kinase (MAPK) axis to promote lens cell differentiation, PDGF preferentially stimulates Phosphoinositide 3-kinase (PI3K) to enhance Notch signaling, which is necessary for maintaining the lens progenitor cell pool. By revealing the intricate interactions between PDGF, FGF, and Notch, we present a paradigm for how signaling crosstalk enables balanced growth and differentiation in multicellular organisms.
Collapse
|
169
|
Golan T, Levy C. Negative Regulatory Loop between Microphthalmia-Associated Transcription Factor (MITF) and Notch Signaling. Int J Mol Sci 2019; 20:E576. [PMID: 30699982 PMCID: PMC6387231 DOI: 10.3390/ijms20030576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 11/29/2022] Open
Abstract
Melanoma, a melanocyte-origin neoplasm, is a highly metastatic and treatment-resistance cancer. While it is well established that notch signaling activation promotes melanoma progression, little is known about the reciprocal interactions between Notch signaling and melanoma-specific pathways. Here we reveal a negative regulatory loop between Notch signaling and microphthalmia-associated transcription factor (MITF), the central regulator of melanoma progression and the driver of melanoma plasticity. We further demonstrate that Notch signaling activation, in addition to the known competition-based repression mechanism of MITF transcriptional activity, inhibits the transcription of MITF, leading to a decrease in MITF expression. We also found that MITF binds to the promoter of the gene encoding the master regulator of Notch signaling, recombination signal binding protein J kappa (RBPJK), leading to its upregulation. Our findings suggest that, once activated, Notch signaling represses MITF signaling to maintain the melanoma invasiveness and metastatic phenotype.
Collapse
Affiliation(s)
- Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
170
|
Nolin E, Gans S, Llamas L, Bandyopadhyay S, Brittain SM, Bernasconi-Elias P, Carter KP, Loureiro JJ, Thomas JR, Schirle M, Yang Y, Guo N, Roma G, Schuierer S, Beibel M, Lindeman A, Sigoillot F, Chen A, Xie KX, Ho S, Reece-Hoyes J, Weihofen WA, Tyskiewicz K, Hoepfner D, McDonald RI, Guthrie N, Dogra A, Guo H, Shao J, Ding J, Canham SM, Boynton G, George EL, Kang ZB, Antczak C, Porter JA, Wallace O, Tallarico JA, Palmer AE, Jenkins JL, Jain RK, Bushell SM, Fryer CJ. Discovery of a ZIP7 inhibitor from a Notch pathway screen. Nat Chem Biol 2019; 15:179-188. [PMID: 30643281 DOI: 10.1038/s41589-018-0200-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022]
Abstract
The identification of activating mutations in NOTCH1 in 50% of T cell acute lymphoblastic leukemia has generated interest in elucidating how these mutations contribute to oncogenic transformation and in targeting the pathway. A phenotypic screen identified compounds that interfere with trafficking of Notch and induce apoptosis via an endoplasmic reticulum (ER) stress mechanism. Target identification approaches revealed a role for SLC39A7 (ZIP7), a zinc transport family member, in governing Notch trafficking and signaling. Generation and sequencing of a compound-resistant cell line identified a V430E mutation in ZIP7 that confers transferable resistance to the compound NVS-ZP7-4. NVS-ZP7-4 altered zinc in the ER, and an analog of the compound photoaffinity labeled ZIP7 in cells, suggesting a direct interaction between the compound and ZIP7. NVS-ZP7-4 is the first reported chemical tool to probe the impact of modulating ER zinc levels and investigate ZIP7 as a novel druggable node in the Notch pathway.
Collapse
Affiliation(s)
- Erin Nolin
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sara Gans
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Luis Llamas
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | - Kyle P Carter
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | | | - Jason R Thomas
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Markus Schirle
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Yi Yang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Ning Guo
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Guglielmo Roma
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Sven Schuierer
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Martin Beibel
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Alicia Lindeman
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Amy Chen
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Kevin X Xie
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Samuel Ho
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | | | | | | | | | - Abhishek Dogra
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Haibing Guo
- Novartis Institutes for Biomedical Research, Shanghai, China
| | - Jian Shao
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Jian Ding
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Geoff Boynton
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Zhao B Kang
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | | | - Owen Wallace
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | | | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO, USA
| | | | - Rishi K Jain
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Simon M Bushell
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| | - Christy J Fryer
- Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
171
|
Karschnia P, Nishimura S, Louvi A. Cerebrovascular disorders associated with genetic lesions. Cell Mol Life Sci 2019; 76:283-300. [PMID: 30327838 PMCID: PMC6450555 DOI: 10.1007/s00018-018-2934-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 01/15/2023]
Abstract
Cerebrovascular disorders are underlain by perturbations in cerebral blood flow and abnormalities in blood vessel structure. Here, we provide an overview of the current knowledge of select cerebrovascular disorders that are associated with genetic lesions and connect genomic findings with analyses aiming to elucidate the cellular and molecular mechanisms of disease pathogenesis. We argue that a mechanistic understanding of genetic (familial) forms of cerebrovascular disease is a prerequisite for the development of rational therapeutic approaches, and has wider implications for treatment of sporadic (non-familial) forms, which are usually more common.
Collapse
Affiliation(s)
- Philipp Karschnia
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Sayoko Nishimura
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA
| | - Angeliki Louvi
- Departments of Neurosurgery and Neuroscience, Program on Neurogenetics, Yale School of Medicine, P.O. Box 208082, New Haven, CT, 06520-8082, USA.
| |
Collapse
|
172
|
Myocardial Notch1-Rbpj deletion does not affect NOTCH signaling, heart development or function. PLoS One 2018; 13:e0203100. [PMID: 30596653 PMCID: PMC6312338 DOI: 10.1371/journal.pone.0203100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 12/11/2018] [Indexed: 01/09/2023] Open
Abstract
During vertebrate cardiac development NOTCH signaling activity in the endocardium is essential for the crosstalk between endocardium and myocardium that initiates ventricular trabeculation and valve primordium formation. This crosstalk leads later to the maturation and compaction of the ventricular chambers and the morphogenesis of the cardiac valves, and its alteration may lead to disease. Although endocardial NOTCH signaling has been shown to be crucial for heart development, its physiological role in the myocardium has not been clearly established. Here we have used mouse genetics to evaluate the role of NOTCH in myocardial development. We have inactivated the unique and ubiquitous NOTCH effector RBPJ in early cardiomyocytes progenitors, and examined its consequences in cardiac development and function. Our results show that mice with Tnnt2-Cre-mediated myocardial-specific deletion of Rbpj develop to term, with homozygous mutant animals showing normal expression of cardiac development markers, and normal adult heart function. Similar observations have been obtained after Notch1 deletion with Tnnt2-Cre. We have also deleted Rbpj in both myocardial and endocardial progenitor cells, using the Nkx2.5-Cre driver, resulting in ventricular septal defect (VSD), double outlet right ventricle (DORV), and bicuspid aortic valve (BAV), due to NOTCH signaling abrogation in the endocardium of cardiac valves. Our data demonstrate that NOTCH-RBPJ inactivation in the myocardium does not affect heart development or adult cardiac function.
Collapse
|
173
|
Dergilev KV, Zubkova ЕS, Beloglazova IB, Menshikov МY, Parfyonova ЕV. Notch signal pathway - therapeutic target for regulation of reparative processes in the heart. TERAPEVT ARKH 2018; 90:112-121. [PMID: 30701843 DOI: 10.26442/00403660.2018.12.000014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Notch signaling pathway is a universal regulator of cell fate in embryogenesis and in maintaining the cell homeostasis of adult tissue. Through local cell-cell interactions, he controls neighboring cells behavior and determines their capacity for self-renewal, growth, survival, differentiation, and apoptosis. Recent studies have shown that the control of regenerative processes in the heart is also carried out with the participation of Notch system. At the heart of Notch regulates migration bone marrow progenitors and stimulates the proliferation of cardiomyocytes, cardiac progenitor cell activity, limits cardiomyocyte hypertrophy and fibrosis progression and stimulates angiogenesis. Notch signaling pathway may be regarded as a very promising target for the development of drugs for the stimulation of regeneration in the myocardium.
Collapse
Affiliation(s)
- K V Dergilev
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Е S Zubkova
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - I B Beloglazova
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - М Yu Menshikov
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Е V Parfyonova
- National Medical Research Center for Cardiology of the Ministry of Health of the Russian Federation, Moscow, Russia.,M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
174
|
Kamalakar A, Oh MS, Stephenson YC, Ballestas-Naissir SA, Davis ME, Willett NJ, Drissi HM, Goudy SL. A non-canonical JAGGED1 signal to JAK2 mediates osteoblast commitment in cranial neural crest cells. Cell Signal 2018; 54:130-138. [PMID: 30529759 DOI: 10.1016/j.cellsig.2018.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 12/07/2018] [Accepted: 12/07/2018] [Indexed: 12/24/2022]
Abstract
During craniofacial development, cranial neural crest (CNC) cells migrate into the developing face and form bone through intramembranous ossification. Loss of JAGGED1 (JAG1) signaling in the CNC cells is associated with maxillary hypoplasia or maxillary bone deficiency (MBD) in mice and recapitulates the MBD seen in humans with Alagille syndrome. JAGGED1, a membrane-bound NOTCH ligand, is required for normal craniofacial development, and Jagged1 mutations in humans are known to cause Alagille Syndrome, which is associated with cardiac, biliary, and bone phenotypes and these children experience increased bony fractures. Previously, we demonstrated deficient maxillary osteogenesis in Wnt1-cre;Jagged1f/f (Jag1CKO) mice by conditional deletion of Jagged1 in maxillary CNC cells. In this study, we investigated the JAG1 signaling pathways in a CNC cell line. Treatment with JAG1 induced osteoblast differentiation and maturation markers, Runx2 and Ocn, respectively, Alkaline Phosphatase (ALP) production, as well as classic NOTCH1 targets, Hes1 and Hey1. While JAG1-induced Hes1 and Hey1 expression levels were predictably decreased after DAPT (NOTCH inhibitor) treatment, JAG1-induced Runx2 and Ocn levels were surprisingly constant in the presence of DAPT, indicating that JAG1 effects in the CNC cells are independent of the canonical NOTCH pathway. JAG1 treatment of CNC cells increased Janus Kinase 2 (JAK2) phosphorylation, which was refractory to DAPT treatment, highlighting the importance of the non-canonical NOTCH pathway during CNC cells osteoblast commitment. Pharmacologic inhibition of JAK2 phosphorylation, with and without DAPT treatment, upon JAG1 induction reduced ALP production and, Runx2 and Ocn gene expression. Collectively, these data suggest that JAK2 is an essential component downstream of a non-canonical JAG1-NOTCH1 pathway through which JAG1 stimulates expression of osteoblast-specific gene targets in CNC cells that contribute to osteoblast differentiation and bone mineralization.
Collapse
Affiliation(s)
| | - Melissa S Oh
- Department of Otolaryngology, Emory University, Atlanta, GA, USA.
| | | | | | - Michael E Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech College of Engineering, Atlanta, GA, USA.
| | - Nick J Willett
- Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Hicham M Drissi
- Department of Cell biology, Emory University, Atlanta, GA, USA; Department of Orthopaedics, Emory University, Atlanta, GA, USA; The Atlanta Veterans Affairs Medical Center, Atlanta, GA, USA.
| | - Steven L Goudy
- Department of Otolaryngology, Emory University, Atlanta, GA, USA.
| |
Collapse
|
175
|
Zhang Z, Han H, Rong Y, Zhu K, Zhu Z, Tang Z, Xiong C, Tao J. Hypoxia potentiates gemcitabine-induced stemness in pancreatic cancer cells through AKT/Notch1 signaling. J Exp Clin Cancer Res 2018; 37:291. [PMID: 30486896 PMCID: PMC6263055 DOI: 10.1186/s13046-018-0972-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/19/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Profound chemoresistance remains an intractable obstacle in pancreatic cancer treatment. Pancreatic cancer stem cells (CSCs) and the ubiquitous hypoxic niche have been proposed to account for drug resistance. However, the mechanism involved requires further exploration. This study investigated whether the hypoxic niche enhances gemcitabine-induced stemness and acquired resistance in pancreatic cancer cells by activating the AKT/Notch1 signaling cascade. The therapeutic effects of blockading this signaling cascade on gemcitabine-enriched CSCs were also investigated. METHODS The expression levels of CSC-associated markers Bmi1 and Sox2 as well as those of proteins involved in AKT/Notch1 signaling were measured by Western blot analysis. The expression level of the pancreatic CSC marker CD24 was measured by flow cytometry. Change in gemcitabine sensitivity was evaluated by the MTT assay. The ability of sphere formation was tested by the sphere-forming assay in stem cell medium. The ability of migration and invasion was detected by the transwell migration/invasion assay. A mouse xenograft model of pancreatic cancer was established to determine the effect of Notch1 inhibition on the killing effect of gemcitabine in vivo. The ability of metastasis was investigated by an in vivo lung metastasis assay. RESULTS Gemcitabine promoted pancreatic cancer cell stemness and associated malignant phenotypes such as enhanced migration, invasion, metastasis, and chemoresistance. The AKT/Notch1 signaling cascade was activated after gemcitabine treatment and mediated this process. Blockading this pathway enhanced the killing effect of gemcitabine in vivo. However, supplementation with hypoxia treatment synergistically enhanced the AKT/Notch1 signaling pathway and collaboratively promoted gemcitabine-induced stemness. CONCLUSIONS These findings demonstrate a novel mechanism of acquired gemcitabine resistance in pancreatic cancer cells through induction of stemness, which was mediated by the activation of AKT/Notch1 signaling and synergistically aggravated by the ubiquitous hypoxic niche. Our results might provide new insights for identifying potential targets for reversing chemoresistance in patients with pancreatic cancer.
Collapse
Affiliation(s)
- Zhengle Zhang
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060 Hubei Province China
| | - Han Han
- Department of Dermatology, Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014 Hubei Province China
| | - Yuping Rong
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060 Hubei Province China
| | - Kongfan Zhu
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060 Hubei Province China
| | - Zhongchao Zhu
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060 Hubei Province China
| | - Zhigang Tang
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060 Hubei Province China
| | - Chenglong Xiong
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060 Hubei Province China
| | - Jing Tao
- Department of Pancreatic Surgery, Renmin Hospital, Wuhan University, 238 Jiefang Road, Wuhan, 430060 Hubei Province China
| |
Collapse
|
176
|
Tulina NM, Brown AG, Barila GO, Elovitz MA. The Absence of TLR4 Prevents Fetal Brain Injury in the Setting of Intrauterine Inflammation. Reprod Sci 2018; 26:1082-1093. [PMID: 30463495 DOI: 10.1177/1933719118805859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
BACKGROUND Exposure to intrauterine inflammation during pregnancy is linked to brain injury and neurobehavioral disorders in affected children. Innate immunity, specifically Toll-like receptor (TLR) signaling pathways are present throughout the reproductive tract as well as in the placenta, fetal membranes, and fetus. The TLR pathways are mechanistically involved in host responses to foreign pathogens and may lead to brain injury associated with prenatal inflammation. OBJECTIVE We aimed to determine whether the activation of the TLR4 signaling pathway, in the mother and fetus, is critical to fetal brain injury in the setting of intrauterine inflammation. METHODS A mini-laparotomy was performed on time pregnant C57B6 mice and 2 knockout mouse strains lacking the function of the Tlr4 and Myd88 genes on embryonic day 15. Intrauterine injections of Escherichia coli lipopolysaccharide or saline were administered as described previously. Dams were killed 6 hours postsurgery, and placental, amniotic fluid, and fetal brain tissue were collected. To assess brain injury, quantitative polymerase chain reaction (qPCR) analysis was performed on multiple components of the NOTCH signaling pathway, including Hes genes. Interleukin (IL) IL6, IL1β, and CCL5 expression was assessed using qPCR and enzyme-linked immunosorbent assay. RESULTS Using an established mouse model of intrauterine inflammation, we demonstrate that the abrogation of TLR4 signaling eliminates the cytokine response in mother and fetus and prevents brain injury associated with increased expression of transcriptional effectors of the NOTCH signaling pathway, Hes1 and Hes5. CONCLUSIONS These data show that the activation of the TLR4 signaling pathway is necessary for the development of fetal brain injury in response to intrauterine inflammation.
Collapse
Affiliation(s)
- Natalia M Tulina
- 1 Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy G Brown
- 1 Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guillermo O Barila
- 1 Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michal A Elovitz
- 1 Department of Obstetrics and Gynecology, Maternal and Child Health Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
177
|
Jiao W, Ji J, Li F, Guo J, Zheng Y, Li S, Xu W. Activation of the Notch‑Nox4‑reactive oxygen species signaling pathway induces cell death in high glucose‑treated human retinal endothelial cells. Mol Med Rep 2018; 19:667-677. [PMID: 30431086 DOI: 10.3892/mmr.2018.9637] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 10/19/2018] [Indexed: 11/06/2022] Open
Abstract
Diabetic retinopathy (DR) occurs in almost all patients with diabetes and remains as one of the major causes of vision loss worldwide. Nevertheless, the molecular mechanisms underlying the pathogenesis of DR remain elusive. The present study aimed to investigate the role and association of Notch signaling and NADPH oxidase 4 (Nox4)‑mediated oxidative stress in high glucose (HG)‑treated retinal cells. Human retinal endothelial cells were cultured for various durations in RPMI‑1640 medium containing 30 mM glucose (HG) or 30 mM mannitol (MN) as an osmotic control; apoptotic cell death and reactive oxygen species (ROS) levels were assessed, respectively. Alterations in the expression profiles of Nox and Notch proteins were evaluated using reverse transcription‑quantitative polymerase chain reaction and western blot analysis. Knockdown of Nox4 and recombination signal‑binding protein J (RBPj) was generated by transfection with specific small interfering (siRNA). Persistent activation of Notch signaling was induced via the overexpression of Notch intracellular domain (NICD). In the present study, time‑dependent increases in ROS production and cell death were detected in HG‑treated cells. Depletion of ROS by diphenyleneiodonium decreased HG‑induced cell death, and suppressed increases in caspase 3 activity and B‑cell lymphoma 2‑associated X protein levels. In HG‑treated cells, Nox4 expression was upregulated at the mRNA and protein levels, and inhibition of Nox4 by GKT137831 or knockdown of expression by siRNA Nox4 significantly reduced ROS levels and cell death. In the presence of HG, Notch1 expression levels were elevated, and increased NICD abundance was detected in whole cell lysates and nuclear fractions. Additionally, HG‑induced cell death was decreased by treatment with γ‑secretase inhibitor (GSI), but increased via the overexpression of NICD. The application of GSI or knockdown of RBPj by siRNA RBPj prevented increases in Nox4 expression within HG‑treated cells. The findings of the present study demonstrated that Nox4‑mediated ROS serves an important role in HG‑induced retinal cell damage, in which the activation of Notch signaling may be responsible for Nox4 upregulation. Therefore, inhibition of Notch signaling or Nox4 expression may be considered as potential therapeutic targets in patients with DR.
Collapse
Affiliation(s)
- Wanzhen Jiao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jiafu Ji
- Department of Anesthesiology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250014, P.R. China
| | - Fengjiao Li
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Jianlian Guo
- Department of Ophthalmology, Jinan Eighth People's Hospital, Jinan, Shandong 250014, P.R. China
| | - Yuanjie Zheng
- School of Information Science and Engineering, Shandong Normal University, Jinan, Shandong 250014, P.R. China
| | - Shangbin Li
- Department of Healthcare, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| | - Wenwen Xu
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
178
|
Petruccelli E, Feyder M, Ledru N, Jaques Y, Anderson E, Kaun KR. Alcohol Activates Scabrous-Notch to Influence Associated Memories. Neuron 2018; 100:1209-1223.e4. [PMID: 30482693 DOI: 10.1016/j.neuron.2018.10.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/17/2018] [Accepted: 10/02/2018] [Indexed: 12/17/2022]
Abstract
Drugs of abuse, like alcohol, modulate gene expression in reward circuits and consequently alter behavior. However, the in vivo cellular mechanisms through which alcohol induces lasting transcriptional changes are unclear. We show that Drosophila Notch/Su(H) signaling and the secreted fibrinogen-related protein Scabrous in mushroom body (MB) memory circuitry are important for the enduring preference of cues associated with alcohol's rewarding properties. Alcohol exposure affects Notch responsivity in the adult MB and alters Su(H) targeting at the dopamine-2-like receptor (Dop2R). Alcohol cue training also caused lasting changes to the MB nuclear transcriptome, including changes in the alternative splicing of Dop2R and newly implicated transcripts like Stat92E. Together, our data suggest that alcohol-induced activation of the highly conserved Notch pathway and accompanying transcriptional responses in memory circuitry contribute to addiction. Ultimately, this provides mechanistic insight into the etiology and pathophysiology of alcohol use disorder.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Michael Feyder
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Nicolas Ledru
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Yanabah Jaques
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Edward Anderson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
179
|
Abstract
Notch signaling is a form of intercellular communication which plays pivotal roles at various stages in development and disease. Previous findings have hinted that integrins and extracellular matrix may regulate Notch signaling, although a mechanistic basis for this interaction had not been identified. Here, we reveal that the regulation of Notch by integrins and extracellular matrix is carried out by Src family kinases (SFKs) working downstream of integrins. We identify a physical interaction between the SFK member, c-Src, and the Notch intracellular domain (NICD) that is enhanced by β3 integrin and the integrin binding ECM protein, MAGP2. Our results demonstrate that c-Src directly phosphorylates the NICD at specific tyrosine residues and that mutation of these phosphorylation sites increases Notch responsive transcriptional activity. Furthermore, we also find that phosphorylation of the NICD by SFKs attenuates Notch mediated transcription by decreasing recruitment of MAML to the Notch co-transcriptional complex. Finally, we also find that SFK activity decreases NICD half-life. Collectively, our results provide important mechanistic data that underlie the emerging role of Notch as a general sensor and responder to extracellular signals.
Collapse
|
180
|
Aoshima K, Fukui Y, Gulay KCM, Erdemsurakh O, Morita A, Kobayashi A, Kimura T. Notch2 signal is required for the maintenance of canine hemangiosarcoma cancer stem cell-like cells. BMC Vet Res 2018; 14:301. [PMID: 30285832 PMCID: PMC6171240 DOI: 10.1186/s12917-018-1624-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022] Open
Abstract
Background Hemangiosarcoma (HSA) is a malignant tumor derived from endothelial cells which usually shows poor prognosis due to its high invasiveness, metastatic rate and severe hemorrhage from tumor ruptures. Since the pathogenesis of HSA is not yet complete, further understanding of its molecular basis is required. Results Here, we identified Notch2 signal as a key factor in maintaining canine HSA cancer stem cell (CSC)-like cells. We first cultured HSA cell lines in adherent serum-free condition and confirmed their CSC-like characteristics. Notch signal was upregulated in the CSC-like cells and Notch signal inhibition by a γ-secretase inhibitor significantly repressed their growth. Notch2, a Notch receptor, was highly expressed in the CSC-like cells. Constitutive activation of Notch2 increased clonogenicity and number of cells which were able to survive in serum-free condition. In contrast, inhibition of Notch2 activity showed opposite effects. These results suggest that Notch2 is an important factor for maintaining HSA CSC-like cells. Neoplastic cells in clinical cases also express Notch2 higher than endothelial cells in the normal blood vessels in the same slides. Conclusion This study provides foundation for further stem cell research in HSA and can provide a way to develop effective treatments to CSCs of endothelial tumors. Electronic supplementary material The online version of this article (10.1186/s12917-018-1624-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keisuke Aoshima
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan.
| | - Yuki Fukui
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Kevin Christian Montecillo Gulay
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Ochbayar Erdemsurakh
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsuya Morita
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18 Nishi 9, Kita-ku, Sapporo, Hokkaido, 060-0818, Japan
| |
Collapse
|
181
|
Avci S, Simsek M, Soylu H, Ustunel I. Misoprostol-Induced Modification of the Notch Signaling Pathway in the Human Cervix. Reprod Sci 2018; 26:909-917. [PMID: 30278829 DOI: 10.1177/1933719118799208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The complex and multifactorial mechanisms that initiate and sustain the early labor process in the human uterus and cervix are still not well defined. Cervical maturation or ripening is likely to play a key role in preparing for birth. Prostaglandins have many different functions, including the regulation of uterine contractility and structure during pregnancy. The prostaglandin E1 analogue misoprostol is frequently used as a uterotonic and cervical ripening agent. Notch is a transmembrane receptor family responsible for basic functions such as cell survival, cell-cell communication, and differentiation and decidualization in pregnancy. However, our understanding of the effect of Notch signaling on the cervical ripening process is limited. This study was conducted in 20 pregnant women aged at 12 to 20 weeks of gestation undergoing medical abortion for fetal or maternal indications. True-Cut needle biopsies were taken from the anterior cervix 4 hours after oral ingestion of 200-μg misoprostol or before the ingestion of misoprostol in the control group. Cervical expression of Notch receptors and ligands changed during the early phase of prostaglandin-induced preterm labor. Four hours after the administration of misoprostol, it was seen that N1 expression increased in muscle, while DLL1 and J2 expression increased in blood vessels, and N4 expression increased in macrophages. Knowing the mechanisms that initiate preterm birth is the most important step in planning the treatments and actions to prevent premature birth. As a signal that affects and perhaps directs preterm labor, Notch is prone to be an important actor in this process.
Collapse
Affiliation(s)
- Sema Avci
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Mehmet Simsek
- Department of Obstetrics and Gynecology, Akdeniz University School of Medicine, Antalya, Turkey
| | - Hakan Soylu
- Department of Histology and Embryology, Duzce University School of Medicine, Duzce, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| |
Collapse
|
182
|
Loss of Notch1 predisposes oro-esophageal epithelium to tumorigenesis. Exp Cell Res 2018; 372:129-140. [PMID: 30266659 DOI: 10.1016/j.yexcr.2018.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 09/11/2018] [Accepted: 09/24/2018] [Indexed: 12/29/2022]
Abstract
Notch signaling functions in diverse developmental and homeostatic processes, including stem cell self-renewal and cell fate determination. Notch1-inactivating mutations are frequently detected in skin and oro-esophageal cancers, suggesting a role for Notch1 as a tumor suppressor. Here, we clarify the contribution of Notch1 deficiency to oro-esophageal tumorigenesis using a physiological experimental model. Tongue and esophageal tumors induced in mice by 4-nitroquinoline-1-oxide (4-NQO) showed pathophysiological similarities to human tumors, including decreased Notch1 expression in the basal cells. We created mutant mice (N1cKO), in which the Notch1 gene was disrupted specifically in the squamous epithelium. The epithelium formed normally in N1cKO mice, and although multiple skin tumors were detected at 65 weeks, no tumors developed in the tongue and esophagus. However, 4-NQO-induced tumorigenesis assays revealed that tumor onset occurred earlier in N1cKO mice than in wild-type littermates, and the tumors arose preferentially from the Notch1-negative epithelium, indicating the tumor susceptibility of Notch1-deficient epithelium. Notch1 regulates the expression of TERT, and age-related telomere erosion was more rapid in Notch1-deficient basal cells. Our results indicated that although Notch1 deficiency had little effect on squamous epithelium formation, it predisposed the affected epithelium to tumor development, at least in part through accelerated telomere erosion.
Collapse
|
183
|
Baron M. Combining genetic and biophysical approaches to probe the structure and function relationships of the notch receptor. Mol Membr Biol 2018; 34:33-49. [PMID: 30246579 DOI: 10.1080/09687688.2018.1503742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Notch is a conserved cell signalling receptor regulating many aspects of development and tissue homeostasis. Notch is activated by ligand-induced proteolytic cleavages that release the Notch intracellular domain, which relocates to the nucleus to regulate gene transcription. Proteolytic activation first requires mechanical force to be applied to the Notch extracellular domain through an endocytic pulling mechanism transmitted through the ligand/receptor interface. This exposes the proteolytic cleavage site allowing the signal to be initiated following removal of the Notch extracellular domain. Ligands can also act, when expressed in the same cell, through non-productive cis-interactions to inhibit Notch activity. Furthermore, ligand selectivity and Notch activation are regulated by numerous post-translational modifications of the extracellular domain. Additional non-canonical trans and cis interactions with other regulatory proteins may modulate alternative mechanisms of Notch activation that depend on endocytic trafficking of the full-length receptor and proteolytic release of the intracellular domain from endo-lysosomal surface. Mutations of Notch, located in different regions of the protein, are associated with a spectrum of different loss and gain of function phenotypes and offer the possibility to dissect distinct regulatory interactions and mechanisms, particularly when combined with detailed structural analysis of Notch in complex with various regulatory partners.
Collapse
Affiliation(s)
- Martin Baron
- a School of Biological Sciences , University of Manchester , Manchester , UK
| |
Collapse
|
184
|
Kunanopparat A, Issara-Amphorn J, Leelahavanichkul A, Sanpavat A, Patumraj S, Tangkijvanich P, Palaga T, Hirankarn N. Delta-like ligand 4 in hepatocellular carcinoma intrinsically promotes tumour growth and suppresses hepatitis B virus replication. World J Gastroenterol 2018; 24:3861-3870. [PMID: 30228780 PMCID: PMC6141339 DOI: 10.3748/wjg.v24.i34.3861] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the role of Delta-like ligand 4 (DLL4) on tumour growth in hepatitis B virus (HBV)-associated hepatocellular carcinoma (HCC) in vivo.
METHODS We suppressed DLL4 expression in an HBV expressing HCC cell line, HepG2.2.15 and analysed the growth ability of cells as subcutaneous tumours in nude mice. The expression of tumour angiogenesis regulators, VEGF-A and VEGF-R2 in tumour xenografts were examined by western blotting. The tumour proliferation and neovasculature were examined by immunohistochemistry. The viral replication and viral protein expression were measured by quantitative PCR and western blotting, respectively.
RESULTS Eighteen days after implantation, tumour volume in mice implanted with shDLL4 HepG2.2.15 was significantly smaller than in mice implanted with control HepG2.2.15 (P < 0.0001). The levels of angiogenesis regulators, VEGF-A and VEGF-R2 were significantly decreased in implanted tumours with suppressed DLL4 compared with the control group (P < 0.001 and P < 0.05, respectively). Furthermore, the suppression of DLL4 expression in tumour cells reduced cell proliferation and the formation of new blood vessels in tumours. Unexpectedly, increased viral replication was observed after suppression of DLL4 in the tumours.
CONCLUSION This study demonstrates that DLL4 is important in regulating the tumour growth of HBV-associated HCC as well as the neovascularization and suppression of HBV replication.
Collapse
Affiliation(s)
- Areerat Kunanopparat
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraphorn Issara-Amphorn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anapat Sanpavat
- Department of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Suthiluk Patumraj
- Center of Excellence for Microcirculation, Department of Physiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pisit Tangkijvanich
- Research Unit of Hepatitis and Liver Cancer, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nattiya Hirankarn
- Center of Excellence in Immunology and Immune Mediated Diseases, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
185
|
The role of the Notch signaling pathway in liver injury and repair. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
186
|
Di Ianni M, Del Papa B, Baldoni S, Di Tommaso A, Fabi B, Rosati E, Natale A, Santarone S, Olioso P, Papalinetti G, Giancola R, Accorsi P, Di Bartolomeo P, Sportoletti P, Falzetti F. NOTCH and Graft-Versus-Host Disease. Front Immunol 2018; 9:1825. [PMID: 30147692 PMCID: PMC6096230 DOI: 10.3389/fimmu.2018.01825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/24/2018] [Indexed: 12/19/2022] Open
Abstract
In allogeneic hematopoietic stem cell transplantation, which is the major curative therapy for hematological malignancies, T cells play a key role in the development of graft-versus-host disease (GvHD). NOTCH pathway is a conserved signal transduction system that regulates T cell development and differentiation. The present review analyses the role of the NOTCH signaling as a new regulator of acute GvHD. NOTCH signaling could also represent a new therapeutic target for GvHD.
Collapse
Affiliation(s)
- Mauro Di Ianni
- Department of Medicine and Aging Sciences, University of Chieti-Pescara, Chieti, Italy.,Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Beatrice Del Papa
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Stefano Baldoni
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Ambra Di Tommaso
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Bianca Fabi
- Department of Life, Health and Environmental Sciences, Hematology Section, University of L'Aquila, L'Aquila, Italy
| | - Emanuela Rosati
- Department of Experimental Medicine, Biosciences and Medical Embriology Section, University of Perugia, Perugia, Italy
| | - Annalisa Natale
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Stella Santarone
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paola Olioso
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Gabriele Papalinetti
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Raffaella Giancola
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Patrizia Accorsi
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paolo Di Bartolomeo
- Department of Hematology, Transfusion Medicine and Biotechnologies, Ospedale Civile, Pescara, Italy
| | - Paolo Sportoletti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| | - Franca Falzetti
- Institute of Hematology-Centro di Ricerche Emato-Oncologiche (CREO), University of Perugia, Perugia, Italy
| |
Collapse
|
187
|
Yeh CH, Bellon M, Nicot C. FBXW7: a critical tumor suppressor of human cancers. Mol Cancer 2018; 17:115. [PMID: 30086763 PMCID: PMC6081812 DOI: 10.1186/s12943-018-0857-2] [Citation(s) in RCA: 371] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/16/2018] [Indexed: 12/14/2022] Open
Abstract
The ubiquitin-proteasome system (UPS) is involved in multiple aspects of cellular processes, such as cell cycle progression, cellular differentiation, and survival (Davis RJ et al., Cancer Cell 26:455-64, 2014; Skaar JR et al., Nat Rev Drug Discov 13:889-903, 2014; Nakayama KI and Nakayama K, Nat Rev Cancer 6:369-81, 2006). F-box and WD repeat domain containing 7 (FBXW7), also known as Sel10, hCDC4 or hAgo, is a member of the F-box protein family, which functions as the substrate recognition component of the SCF E3 ubiquitin ligase. FBXW7 is a critical tumor suppressor and one of the most commonly deregulated ubiquitin-proteasome system proteins in human cancer. FBXW7 controls proteasome-mediated degradation of oncoproteins such as cyclin E, c-Myc, Mcl-1, mTOR, Jun, Notch and AURKA. Consistent with the tumor suppressor role of FBXW7, it is located at chromosome 4q32, a genomic region deleted in more than 30% of all human cancers (Spruck CH et al., Cancer Res 62:4535-9, 2002). Genetic profiles of human cancers based on high-throughput sequencing have revealed that FBXW7 is frequently mutated in human cancers. In addition to genetic mutations, other mechanisms involving microRNA, long non-coding RNA, and specific oncogenic signaling pathways can inactivate FBXW7 functions in cancer cells. In the following sections, we will discuss the regulation of FBXW7, its role in oncogenesis, and the clinical implications and prognostic value of loss of function of FBXW7 in human cancers.
Collapse
Affiliation(s)
- Chien-Hung Yeh
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Marcia Bellon
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Christophe Nicot
- Department of Pathology and Laboratory Medicine, Center for Viral Pathogenesis, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
188
|
Matrine blocks AGEs- induced HCSMCs phenotypic conversion via suppressing Dll4-Notch pathway. Eur J Pharmacol 2018; 835:126-131. [PMID: 30063915 DOI: 10.1016/j.ejphar.2018.07.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/26/2018] [Accepted: 07/27/2018] [Indexed: 11/23/2022]
Abstract
Vascular smooth muscle cells (VSMCs) contractile- synthetic phenotypic conversion takes responsibility in the atherosclerotic plaque formation by abnormal synthesis, secretion and deposition of extracellular matrix (ECM). Matrine exerts therapeutic effects on both cardiovascular diseases and organ fibrosis. In this study, we investigated matrine's inhibitory effect and mechanisms on AGEs- induced VSMC contractile- synthetic phenotypic conversion. Cultured human coronary smooth muscle cells (HCSMCs) were exposed to AGEs. Matrine at serially diluted concentrations were used to treat the cells. HCSMCs phenotype was identified by immunofluorescent staining of contractile phenotypic markers including mooth muscle myosin heavy chain (MYH11) and smooth muscle α-actin (ACTA2). Sircol collagen assay was used to assess the collagen secretion level. Notch signaling activation was determined by luciferase assay. Western blotting was used to evaluate expression levels of collagen I, collagen VIII, Delta-like (Dll)1, Dll3, Dll4, Jagged1, Jagged2, Notch intracellular domain (NICD)1 and Hes family basic helix-loop-helix (bHLH) transcription factor1 (HES1). Matrine pre-treatment recovered the AGEs- induced contractile- synthetic phenotypic conversion by increasing MYH11 and ACTA2 in HCSMCs. Matrine reduced AGEs- mediated activation of Notch signaling, down-regulated expression levels of NICD1, HES1, collagen I and collagen VIII and collagen secretion contents in HCSMCs. Matrine inhibited expression level of Dll4 without affecting other Notch ligands including Dll1, Dll3, Jagged1 and Jagged2 in HCSMCs exposed to AGEs. These results suggested that AGEs exposure facilitated the contractile- synthetic phenotypic conversion of HCSMCs. Matrine blocked this phenotypic conversion by suppressing Dll4- Notch signaling pathway activation.
Collapse
|
189
|
Schütte-Nütgen K, Edeling M, Mendl G, Krahn MP, Edemir B, Weide T, Kremerskothen J, Michgehl U, Pavenstädt H. Getting a Notch closer to renal dysfunction: activated Notch suppresses expression of the adaptor protein Disabled-2 in tubular epithelial cells. FASEB J 2018; 33:821-832. [PMID: 30052485 DOI: 10.1096/fj.201800392rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reactivation of Notch signaling in kidneys of animal models and patients with chronic kidney disease (CKD) has been shown to contribute to epithelial injury and fibrosis development. Here, we investigated the mechanisms of Notch-induced injury in renal epithelial cells. We performed genome-wide transcriptome analysis to identify Notch target genes using an in vitro system of cultured tubular epithelial cells expressing the intracellular domain of Notch1. One of the top downregulated genes was Disabled-2 ( Dab2). With the use of Drosophila nephrocytes as a model system, we found that Dab (the Drosophila homolog of Dab2) knockdown resulted in a significant filtration defect, indicating that loss of Dab2 plays a functional role in kidney disease development. We showed that Dab2 expression in cultured tubular epithelial cells is involved in endocytic regulation and that it also protects cells from TGF-β-induced epithelial-to-mesenchymal transition. In vivo correlation studies indicated its additional role in renal ischemia-induced injury. Together, these data suggest that Dab2 plays a versatile role in the kidney and may impact on acute and CKDs.-Schütte-Nütgen, K., Edeling, M., Mendl, G., Krahn, M. P., Edemir, B., Weide, T., Kremerskothen, J., Michgehl, U., Pavenstädt, H. Getting a Notch closer to renal dysfunction: activated Notch suppresses expression of the adaptor protein Disabled-2 in tubular epithelial cells.
Collapse
Affiliation(s)
| | - Maria Edeling
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | - Gudrun Mendl
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | - Michael P Krahn
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | - Bayram Edemir
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and.,Department of Hematology and Oncology, Internal Medicine IV, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Thomas Weide
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | | | - Ulf Michgehl
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| | - Hermann Pavenstädt
- Internal Medicine D, University Hospital Muenster, Muenster, Germany; and
| |
Collapse
|
190
|
Bigas A, Espinosa L. The multiple usages of Notch signaling in development, cell differentiation and cancer. Curr Opin Cell Biol 2018; 55:1-7. [PMID: 30006050 DOI: 10.1016/j.ceb.2018.06.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/17/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Notch is a well-conserved signaling pathway all through evolution that is crucial to specify different cell fates. Although there is a strong context dependent component in each decision, the basic mechanisms that originate from the interplay among ligands and receptors is greatly preserved. In this review we will cover the latest findings on the different mechanisms for Notch activation and signaling. The regulation of this pathway is essential to understand development, cell differentiation and disease.
Collapse
Affiliation(s)
- Anna Bigas
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain.
| | - Lluis Espinosa
- Program in Cancer Research, Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), CIBERONC, Barcelona, Spain.
| |
Collapse
|
191
|
Cartilage oligomeric matrix protein is a novel notch ligand driving embryonic stem cell differentiation towards the smooth muscle lineage. J Mol Cell Cardiol 2018; 121:69-80. [PMID: 29981303 DOI: 10.1016/j.yjmcc.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/06/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022]
Abstract
Cartilage oligomeric matrix protein (COMP), a protective component of vascular extracellular matrix (ECM), maintains the homeostasis of mature vascular smooth muscle cells (VSMCs). However, whether COMP modulates the differentiation of stem cells towards the smooth muscle lineage is still elusive. Firstly, purified mouse COMP directly induced mouse embryonic stem cell (ESC) differentiation into VSMCs both in vitro and in vivo, while the silencing of endogenous COMP markedly inhibited ESC-VSMC differentiation. RNA-Sequencing revealed that Notch signaling was significantly activated by COMP during ESC-VSMC differentiation, whereas the inhibition of Notch signaling attenuated COMP-directed ESC-VSMC differentiation. Furthermore, COMP deficiency inhibited Notch activation and VSMC differentiation in mice. Through silencing distinct Notch receptors, we identified that Notch1 mainly mediated COMP-initiated ESC-VSMC differentiation. Mechanistically, COMP N-terminus directly interacted with the EGF11-12 domain of Notch1 and activated Notch1 signaling, as evidenced by co-immunoprecipitation and mammalian two-hybrid assay. In conclusion, COMP served as a potential ligand of Notch1, thereby driving ESC-VSMC differentiation.
Collapse
|
192
|
Garcia-Concejo A, Jimenez-Gonzalez A, Rodriguez RE. Opioid and Notch signaling pathways are reciprocally regulated through miR- 29a and miR-212 expression. Biochim Biophys Acta Gen Subj 2018; 1862:2605-2612. [PMID: 30251655 DOI: 10.1016/j.bbagen.2018.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/28/2022]
Abstract
BACKGROUND The abuse of opioids, such as morphine and phentanyl or other drugs as heroin is a social and health problem that affects an increasing number of people each year. The activation of the mu opioid receptor triggers several molecular changes that alter the expression of diverse genes, including miRNAs. The dysregulation of these molecules could explain some of the developmental alterations that are induced after drug intake. In addition, the Notch signaling cascade has also been related to alterations on these processes. METHODS Zebrafish embryos and SH-SY5Y cells were used to assess the effects of opioid and Notch signaling on the expression on miR-29a and miR-212/132 by qPCR and ChIP-qPCR. Notch1 expression was analyzed using in situ hybridization on 24 hpf zebrafish embryos. In addition, OPRM1 and NICD levels were measured using western blot on the cultured cells to determine the cross-talk between the two pathways. RESULTS We have observed changes in the levels of miR-212/132 after administrating DAPT to zebrafish embryos indicating that this pathway could be regulating mu opioid receptor expression. In addition, the ISH experiment showed changes in Notch1 expression after morphine and DAPT administration. Moreover, morphine affects the expression of miR-29a through NF-κB, therefore controlling the cleavage and activation of Notch through ADAM12 expression. CONCLUSIONS This study shows that these two pathways are closely related, and could explain the alterations triggered in the early stages of the development of addiction. GENERAL SIGNIFICANCE Opioid and Notch pathway are reciprocally regulated by the miRNAs 212/132 and 29a.
Collapse
Affiliation(s)
- Adrian Garcia-Concejo
- Institute of Neurosciences of Castilla y Leon (INCyL), C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Edificio Virgen de la Vega. Décima Planta, P° de San Vicente 58-182, 37007 Salamanca, Spain
| | - Ada Jimenez-Gonzalez
- Institute of Neurosciences of Castilla y Leon (INCyL), C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Edificio Virgen de la Vega. Décima Planta, P° de San Vicente 58-182, 37007 Salamanca, Spain
| | - Raquel E Rodriguez
- Institute of Neurosciences of Castilla y Leon (INCyL), C/Pintor Fernando Gallego, 1, 37007 Salamanca, Spain; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Salamanca, C/Alfonso X El Sabio, 0 S-N Campus Miguel De Unamuno, 37007 Salamanca, Spain; Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Edificio Virgen de la Vega. Décima Planta, P° de San Vicente 58-182, 37007 Salamanca, Spain.
| |
Collapse
|
193
|
Insight into Notch Signaling Steps That Involve pecanex from Dominant-Modifier Screens in Drosophila. Genetics 2018; 209:1099-1119. [PMID: 29853475 DOI: 10.1534/genetics.118.300935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/14/2022] Open
Abstract
Notch signaling plays crucial roles in intercellular communications. In Drosophila, the pecanex (pcx) gene, which encodes an evolutionarily conserved multi-pass transmembrane protein, appears to be required to activate Notch signaling in some contexts, especially during neuroblast segregation in the neuroectoderm. Although Pcx has been suggested to contribute to endoplasmic reticulum homeostasis, its functions remain unknown. Here, to elucidate these roles, we performed genetic modifier screens of pcx We found that pcx heterozygotes lacking its maternal contribution exhibit cold-sensitive lethality, which is attributed to a reduction in Notch signaling at decreased temperatures. Using sets of deletions that uncover most of the second and third chromosomes, we identified four enhancers and two suppressors of the pcx cold-sensitive lethality. Among these, five genes encode known Notch-signaling components: big brain, Delta (Dl), neuralized (neur), Brother of Bearded A (BobA), a member of the Bearded (Brd) family, and N-ethylmaleimide-sensitive factor 2 (Nsf2). We showed that BobA suppresses Dl endocytosis during neuroblast segregation in the neuroectoderm, as Brd family genes reportedly do in the mesoderm for mesectoderm specification. Analyses of Nsf2, a key regulator of vesicular fusion, suggested a novel role in neuroblast segregation, which is distinct from Nsf2's previously reported role in imaginal tissues. Finally, jim lovell, which encodes a potential transcription factor, may play a role in Notch signaling during neuroblast segregation. These results reveal new research avenues for Pcx functions and Notch signaling.
Collapse
|
194
|
Lin Z, Chen B, Wu T, Xu X. Highly Tumorigenic Diffuse Large B Cell Lymphoma Cells Are Produced by Coculture with Stromal Cells. Acta Haematol 2018; 139:201-216. [PMID: 29791894 DOI: 10.1159/000488385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS Diffuse large B cell lymphoma (DLBCL) is heterogeneous. We aimed to explore how tumor microenvironment promotes lymphoma cell aggressiveness and heterogeneity. METHODS We created a coculture system using human DLBCL cells and mouse bone marrow stromal cells. Proliferative capacity, drug resistance, clonogenicity, and tumorigenicity were compared in lymphoma cells from the coculture system and lymphoma cells cultured alone. Expression of Notch signaling associated genes was evaluated using real-time reverse transcriptase PCR and Western blot. RESULTS Lymphoma cells in the coculture system differentiated into a suspended cell group and an adherent cell group. They acquired a stronger proliferative capacity and drug resistance than lymphoma cells cultured alone, and differences existed between the adherent cell and suspended cell groups. The suspended cell group acquired the most powerful clonogenic and tumorigenic potential. However, Notch3 was exclusively expressed in the adherent lymphoma cell group and the use of N-[N-(3, 5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester, an inhibitor of Notch pathway, could abolish the emergence of highly aggressive lymphoma cells. CONCLUSION Highly tumorigenic lymphoma cells could be generated by coculture with stromal cells, and it was dependent on Notch3 expression in the adjacent lymphoma cells through interaction with stromal cells.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Biomarkers
- Cell Line, Tumor
- Cell Proliferation
- Cell Transformation, Neoplastic
- Coculture Techniques
- Disease Models, Animal
- Disease Progression
- Drug Resistance, Neoplasm
- Humans
- Immunohistochemistry
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Mice
- Signal Transduction/drug effects
- Stromal Cells/metabolism
- Tumor Microenvironment
- Xenograft Model Antitumor Assays
Collapse
|
195
|
González-Foruria I, Santulli P, Chouzenoux S, Carmona F, Chapron C, Batteux F. Dysregulation of the ADAM17/Notch signalling pathways in endometriosis: from oxidative stress to fibrosis. Mol Hum Reprod 2018; 23:488-499. [PMID: 28486700 DOI: 10.1093/molehr/gax028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/28/2017] [Indexed: 12/15/2022] Open
Abstract
STUDY QUESTION Is oxidative stress associated with the A disintegrin and metalloproteases (ADAM) metallopeptidase domain 17 (ADAM17)/Notch signalling pathway and fibrosis in the development of endometriosis? SUMMARY ANSWER Oxidative stress is correlated with hyperactivation of the ADAM17/Notch signalling pathway and a consequent increase in fibrosis in patients with endometriosis. WHAT IS KNOWN ALREADY It is nowadays accepted that oxidative stress plays an important role in the onset and progression of endometriosis. Oxidative stress is able to induce the synthesis of some members of the 'ADAM' family, such as ADAM17. ADAM17/Notch signalling is dysregulated in other profibrotic and inflammatory diseases. STUDY DESIGN, SIZE, DURATION This was a prospective laboratory study conducted in a tertiary-care university hospital between January 2011 and April 2013. We investigated non-pregnant, younger than 42-year-old patients (n = 202) during surgery for a benign gynaecological condition. PARTICIPANTS/MATERIALS, SETTING, METHODS After complete surgical exploration of the abdominopelvic cavity, 121 women with histologically proven endometriosis and 81 endometriosis-free control women were enrolled. Peritoneal fluid (PF) samples were obtained from all the study participants during surgery in order to detect advanced oxidation protein products (AOPPs) and metalloproteinase activity of ADAM17. Stromal cells from endometrial specimens (n = 8) were obtained from endometrium of control patients (Cs), and from eutopic (Es) and ectopic (Ps) endometrium of patients with deep infiltrating endometriosis (DIE) (n = 8). ADAM17, Notch and the fibrosis markers α-smooth muscle actin (α-SMA) and type-I collagen were assessed using immunoblotting in all the endometrial samples obtained. Additionally, fibrosis was assessed after using Notch cleavage inhibitors (DAPT and FLI-06). Notch and fibrosis were also evaluated after stimulation of stromal endometrial cells with ADAM17 purified protein, increasing concentrations of H2O2 and primary cell culture supernatants. MAIN RESULTS AND THE ROLE OF CHANCE Patients with DIE presented higher PF AOPP and ADAM17 protein levels than controls (P < 0.01 and P < 0.05, respectively). In addition, these two markers were positively correlated (r = 0.614; P < 0.001). At the cellular level, ADAM17 activity was increased in Es and Ps compared to Cs (P < 0.001 and P < 0.01, respectively). Furthermore, Ps presented hyperactivation of Notch signalling (P < 0.05) and augmentation of fibrosis markers (P = 0.009 for α-SMA and P = 0.015 for type-I collagen) compared to controls. The use of DAPT and FLI-06 reduced both fibrosis markers in Ps but not in Cs. Stimulation with ADAM17, H2O2 and Ps supernatant culture significantly increased Notch and fibrosis in both Ps and Cs. LARGE SCALE DATA N/A. LIMITATIONS REASONS FOR CAUTION The control group consisted of women who underwent surgery for benign gynaecological conditions, which could lead to biases because some of these conditions may cause alterations in oxidative stress and the ADAM17/Notch pathways. The small sample size of endometrial biopsies used for each group of patients (n = 8) is a limitation of the study, and results should be interpreted with caution. WIDER IMPLICATIONS OF THE FINDINGS We propose a novel pathway in endometriosis pathogenesis that correlates oxidative stress, hyperactivation of ADAM17/Notch signalling and a consequent increase in fibrosis. This study suggests that Notch signalling plays a key role in the fibrotic processes that take place in ectopic lesions of patients with DIE, as already observed in other pro-fibrotic diseases. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by grants from University Paris Descartes, INSERM and Fundación Alfonso Martín Escudero. The authors have no competing interests to declare.
Collapse
Affiliation(s)
- Iñaki González-Foruria
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016, Equipe Pr. Batteux, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynaecology Obstetrics II and Reproductive Medicine, 75679 Paris Cedex 14, France.,Institut Clínic of Gynecology, Obstetrics and Neonatology, Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine - University of Barcelona, Barcelona, Spain
| | - Pietro Santulli
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016, Equipe Pr. Batteux, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynaecology Obstetrics II and Reproductive Medicine, 75679 Paris Cedex 14, France
| | - Sandrine Chouzenoux
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016, Equipe Pr. Batteux, Paris, France
| | - Francisco Carmona
- Institut Clínic of Gynecology, Obstetrics and Neonatology, Hospital Clínic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine-University of Barcelona, Barcelona, Spain
| | - Charles Chapron
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016, Equipe Pr. Batteux, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire (CHU) Cochin, Department of Gynaecology Obstetrics II and Reproductive Medicine, 75679 Paris Cedex 14, France
| | - Frédéric Batteux
- Département Développement, Reproduction et Cancer, Institut Cochin, INSERM U1016, Equipe Pr. Batteux, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Universitaire Paris Centre, Centre Hospitalier Universitaire (CHU) Cochin, Service d'immunologie biologique, 75679 Paris Cedex 14, France
| |
Collapse
|
196
|
Ratliff M, Hill-Harfe KL, Gleason EJ, Ling H, Kroft TL, L'Hernault SW. MIB-1 Is Required for Spermatogenesis and Facilitates LIN-12 and GLP-1 Activity in Caenorhabditis elegans. Genetics 2018; 209:173-193. [PMID: 29531012 PMCID: PMC5935030 DOI: 10.1534/genetics.118.300807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022] Open
Abstract
Covalent attachment of ubiquitin to substrate proteins changes their function or marks them for proteolysis, and the specificity of ubiquitin attachment is mediated by the numerous E3 ligases encoded by animals. Mind Bomb is an essential E3 ligase during Notch pathway signaling in insects and vertebrates. While Caenorhabditis elegans encodes a Mind Bomb homolog (mib-1), it has never been recovered in the extensive Notch suppressor/enhancer screens that have identified numerous pathway components. Here, we show that C. elegans mib-1 null mutants have a spermatogenesis-defective phenotype that results in a heterogeneous mixture of arrested spermatocytes, defective spermatids, and motility-impaired spermatozoa. mib-1 mutants also have chromosome segregation defects during meiosis, molecular null mutants are intrinsically temperature-sensitive, and many mib-1 spermatids contain large amounts of tubulin. These phenotypic features are similar to the endogenous RNA intereference (RNAi) mutants, but mib-1 mutants do not affect RNAi. MIB-1 protein is expressed throughout the germ line with peak expression in spermatocytes followed by segregation into the residual body during spermatid formation. C. elegans mib-1 expression, while upregulated during spermatogenesis, also occurs somatically, including in vulva precursor cells. Here, we show that mib-1 mutants suppress both lin-12 and glp-1 (C. elegans Notch) gain-of-function mutants, restoring anchor cell formation and a functional vulva to the former and partly restoring oocyte production to the latter. However, suppressed hermaphrodites are only observed when grown at 25°, and they are self-sterile. This probably explains why mib-1 was not previously recovered as a Notch pathway component in suppressor/enhancer selection experiments.
Collapse
Affiliation(s)
- Miriam Ratliff
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Katherine L Hill-Harfe
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322
| | | | - Huiping Ling
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Tim L Kroft
- Department of Biology, Emory University, Atlanta, Georgia 30322
| | - Steven W L'Hernault
- Department of Biology, Emory University, Atlanta, Georgia 30322
- Program in Genetics and Molecular Biology, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia 30322
| |
Collapse
|
197
|
Abstract
The complement system is an evolutionarily ancient key component of innate immunity required for the detection and removal of invading pathogens. It was discovered more than 100 years ago and was originally defined as a liver-derived, blood-circulating sentinel system that classically mediates the opsonization and lytic killing of dangerous microbes and the initiation of the general inflammatory reaction. More recently, complement has also emerged as a critical player in adaptive immunity via its ability to instruct both B and T cell responses. In particular, work on the impact of complement on T cell responses led to the surprising discoveries that the complement system also functions within cells and is involved in regulating basic cellular processes, predominantly those of metabolic nature. Here, we review current knowledge about complement's role in T cell biology, with a focus on the novel intracellular and noncanonical activities of this ancient system.
Collapse
Affiliation(s)
- Erin E West
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
| | - Martin Kolev
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
| | - Claudia Kemper
- Laboratory of Molecular Immunology and Immunology Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, United States; ,
- Division of Transplant Immunology and Mucosal Biology, King's College London, London SE1 9RT, United Kingdom;
- Institute for Systemic Inflammation Research, University of Lübeck, 23562 Lübeck, Germany
| |
Collapse
|
198
|
Staller MV, Holehouse AS, Swain-Lenz D, Das RK, Pappu RV, Cohen BA. A High-Throughput Mutational Scan of an Intrinsically Disordered Acidic Transcriptional Activation Domain. Cell Syst 2018; 6:444-455.e6. [PMID: 29525204 PMCID: PMC5920710 DOI: 10.1016/j.cels.2018.01.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/14/2017] [Accepted: 01/25/2018] [Indexed: 01/11/2023]
Abstract
Transcriptional activation domains are essential for gene regulation, but their intrinsic disorder and low primary sequence conservation have made it difficult to identify the amino acid composition features that underlie their activity. Here, we describe a rational mutagenesis scheme that deconvolves the function of four activation domain sequence features-acidity, hydrophobicity, intrinsic disorder, and short linear motifs-by quantifying the activity of thousands of variants in vivo and simulating their conformational ensembles using an all-atom Monte Carlo approach. Our results with a canonical activation domain from the Saccharomyces cerevisiae transcription factor Gcn4 reconcile existing observations into a unified model of its function: the intrinsic disorder and acidic residues keep two hydrophobic motifs from driving collapse. Instead, the most-active variants keep their aromatic residues exposed to the solvent. Our results illustrate how the function of intrinsically disordered proteins can be revealed by high-throughput rational mutagenesis.
Collapse
Affiliation(s)
- Max V Staller
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA; Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Alex S Holehouse
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Center for Biological Systems Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Devjanee Swain-Lenz
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA; Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA
| | - Rahul K Das
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Center for Biological Systems Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Rohit V Pappu
- Department of Biomedical Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA; Center for Biological Systems Engineering, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Barak A Cohen
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA; Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
199
|
Lleonart ME, Abad E, Graifer D, Lyakhovich A. Reactive Oxygen Species-Mediated Autophagy Defines the Fate of Cancer Stem Cells. Antioxid Redox Signal 2018; 28:1066-1079. [PMID: 28683561 DOI: 10.1089/ars.2017.7223] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Significance: A fraction of tumorigenic cells, also known as tumor initiating or cancer stem cells (CSCs), is thought to drive tumor growth, metastasis, and chemoresistance. However, little is known regarding mechanisms that convey relevant pathways contributing to their self-renewal, proliferation, and differentiation abilities. Recent Advances: Recent works on CSCs provide evidence on the role of redox disruption and regulation of autophagic flux. This has been linked to increased DNA repair capacity and chemoresistance. Critical Issues: The current review summarizes the most recent studies assessing the role of redox homeostasis, autophagy, and chemoresistance in CSCs, including some novel findings on microRNAs and their role in horizontal transfer within cancer cell populations. Future Directions: Rational anticancer therapy and prevention should rely on the fact that cancer is a redox disease with the CSCs being the apex modulated by redox-mediated autophagy. Antioxid. Redox Signal. 28, 1066-1079.
Collapse
Affiliation(s)
- Matilde E Lleonart
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Etna Abad
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain
| | - Dmitry Graifer
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Alex Lyakhovich
- Biomedical Research in Cancer Stem Cells, Vall d'Hebron Research Institute, Barcelona, Spain.,Institute of Molecular Biology and Biophysics, Novosibirsk, Russia.,ICRC-FNUSA, International Clinical Research Center and St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|
200
|
Mechanosensitivity of Jagged-Notch signaling can induce a switch-type behavior in vascular homeostasis. Proc Natl Acad Sci U S A 2018; 115:E3682-E3691. [PMID: 29610298 PMCID: PMC5910818 DOI: 10.1073/pnas.1715277115] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hemodynamic forces and Notch signaling are both known as key regulators of arterial remodeling and homeostasis. However, how these two factors integrate in vascular morphogenesis and homeostasis is unclear. Here, we combined experiments and modeling to evaluate the impact of the integration of mechanics and Notch signaling on vascular homeostasis. Vascular smooth muscle cells (VSMCs) were cyclically stretched on flexible membranes, as quantified via video tracking, demonstrating that the expression of Jagged1, Notch3, and target genes was down-regulated with strain. The data were incorporated in a computational framework of Notch signaling in the vascular wall, where the mechanical load was defined by the vascular geometry and blood pressure. Upon increasing wall thickness, the model predicted a switch-type behavior of the Notch signaling state with a steep transition of synthetic toward contractile VSMCs at a certain transition thickness. These thicknesses varied per investigated arterial location and were in good agreement with human anatomical data, thereby suggesting that the Notch response to hemodynamics plays an important role in the establishment of vascular homeostasis.
Collapse
|