151
|
Abstract
The mechanism and the evolution of DNA replication and transcription, the key elements of the central dogma of biology, are fundamentally well explained by the physicochemical complementarity between strands of nucleic acids. However, the determinants that have shaped the third part of the dogma-the process of biological translation and the universal genetic code-remain unclear. We review and seek parallels between different proposals that view the evolution of translation through the prism of weak, noncovalent interactions between biological macromolecules. In particular, we focus on a recent proposal that there exists a hitherto unrecognized complementarity at the heart of biology, that between messenger RNA coding regions and the proteins that they encode, especially if the two are unstructured. Reflecting the idea that the genetic code evolved from intrinsic binding propensities between nucleotides and amino acids, this proposal promises to forge a link between the distant past and the present of biological systems.
Collapse
Affiliation(s)
- Bojan Zagrovic
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Marlene Adlhart
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
| | - Thomas H Kapral
- Department of Structural and Computational Biology, Max Perutz Labs & University of Vienna, Vienna, Austria;
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| |
Collapse
|
152
|
Ma X, Bakhtina M, Shulgina I, Cantara WA, Kuzmishin Nagy A, Goto Y, Suga H, Foster MP, Musier-Forsyth K. Structural basis of tRNAPro acceptor stem recognition by a bacterial trans-editing domain. Nucleic Acids Res 2023; 51:3988-3999. [PMID: 36951109 PMCID: PMC10164551 DOI: 10.1093/nar/gkad192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
High fidelity tRNA aminoacylation by aminoacyl-tRNA synthetases is essential for cell viability. ProXp-ala is a trans-editing protein that is present in all three domains of life and is responsible for hydrolyzing mischarged Ala-tRNAPro and preventing mistranslation of proline codons. Previous studies have shown that, like bacterial prolyl-tRNA synthetase, Caulobacter crescentus ProXp-ala recognizes the unique C1:G72 terminal base pair of the tRNAPro acceptor stem, helping to ensure deacylation of Ala-tRNAPro but not Ala-tRNAAla. The structural basis for C1:G72 recognition by ProXp-ala is still unknown and was investigated here. NMR spectroscopy, binding, and activity assays revealed two conserved residues, K50 and R80, that likely interact with the first base pair, stabilizing the initial protein-RNA encounter complex. Modeling studies are consistent with direct interaction between R80 and the major groove of G72. A third key contact between A76 of tRNAPro and K45 of ProXp-ala was essential for binding and accommodating the CCA-3' end in the active site. We also demonstrated the essential role that the 2'OH of A76 plays in catalysis. Eukaryotic ProXp-ala proteins recognize the same acceptor stem positions as their bacterial counterparts, albeit with different nucleotide base identities. ProXp-ala is encoded in some human pathogens; thus, these results have the potential to inform new antibiotic drug design.
Collapse
Affiliation(s)
- Xiao Ma
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Marina Bakhtina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Irina Shulgina
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - William A Cantara
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Alexandra B Kuzmishin Nagy
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mark P Foster
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| | - Karin Musier-Forsyth
- Department of Chemistry and Biochemistry and Center for RNA Biology, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
153
|
Poquérusse J, Nolan M, Thorburn DR, Van Hove JLK, Friederich MW, Love DR, Taylor J, Powell CA, Minczuk M, Snell RG, Lehnert K, Glamuzina E, Jacobsen JC. Severe neonatal onset neuroregression with paroxysmal dystonia and apnoea: Expanding the phenotypic and genotypic spectrum of CARS2-related mitochondrial disease. JIMD Rep 2023; 64:223-232. [PMID: 37151360 PMCID: PMC10159863 DOI: 10.1002/jmd2.12360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Disorders of mitochondrial function are a collectively common group of genetic diseases in which deficits in core mitochondrial translation machinery, including aminoacyl tRNA synthetases, are key players. Biallelic variants in the CARS2 gene (NM_024537.4), which encodes the mitochondrial aminoacyl-tRNA synthetase for cysteine (CARS2, mt-aaRScys; MIM*612800), result in childhood onset epileptic encephalopathy and complex movement disorder with combined oxidative phosphorylation deficiency (MIM#616672). Prior to this report, eight unique pathogenic variants in the CARS2 gene had been reported in seven individuals. Here, we describe a male who presented in the third week of life with apnoea. He rapidly deteriorated with paroxysmal dystonic crises and apnoea resulting in death at 16 weeks. He had no evidence of seizure activity or multisystem disease and had normal brain imaging. Skeletal muscle biopsy revealed a combined disorder of oxidative phosphorylation. Whole-exome sequencing identified biallelic variants in the CARS2 gene: one novel (c.1478T>C, p.Phe493Ser), and one previously reported (c.655G>A, p.Ala219Thr; rs727505361). Northern blot analysis of RNA isolated from the patient's fibroblasts confirmed a clear defect in aminoacylation of the mitochondrial tRNA for cysteine (mt-tRNACys). To our knowledge, this is the earliest reported case of CARS2 deficiency with severe, early onset dystonia and apnoea, without epilepsy.
Collapse
Affiliation(s)
- Jessie Poquérusse
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Melinda Nolan
- Department of NeurologyStarship Children's HealthAucklandNew Zealand
| | - David R. Thorburn
- Murdoch Children's Research InstituteMelbourneVictoriaAustralia
- Department of PaediatricsThe University of MelbourneMelbourneVictoriaAustralia
| | - Johan L. K. Van Hove
- Department of Pediatrics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Marisa W. Friederich
- Department of Pediatrics, School of MedicineUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Department of Pathology and Laboratory MedicineChildren's Hospital ColoradoAuroraColoradoUSA
| | - Donald R. Love
- Diagnostic GeneticsLabPLUS, Auckland City HospitalAucklandNew Zealand
- Present address:
Division Chief, Pathology GeneticsSidra MedicineDohaQatar
| | - Juliet Taylor
- Genetic Health Service New ZealandAuckland City HospitalAucklandNew Zealand
| | | | - Michal Minczuk
- MRC Mitochondrial Biology UnitUniversity of CambridgeCambridgeUK
| | - Russell G. Snell
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Klaus Lehnert
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| | - Emma Glamuzina
- Adult and Paediatric National Metabolic ServiceAuckland City HospitalAucklandNew Zealand
| | - Jessie C. Jacobsen
- School of Biological SciencesThe University of AucklandAucklandNew Zealand
- Centre for Brain ResearchThe University of AucklandAucklandNew Zealand
| |
Collapse
|
154
|
Liu W, Pan Y, Yang L, Xie Y, Chen X, Chang J, Hao W, Zhu L, Wan B. Developmental toxicity of TCBPA on the nervous and cardiovascular systems of zebrafish (Danio rerio): A combination of transcriptomic and metabolomics. J Environ Sci (China) 2023; 127:197-209. [PMID: 36522053 DOI: 10.1016/j.jes.2022.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/19/2022] [Accepted: 04/19/2022] [Indexed: 06/17/2023]
Abstract
Tetrachlorobisphenol A (TCBPA), a widely used halogenated flame retardant, is frequently detected in environmental compartments and human samples. However, unknown developmental toxicity and mechanisms limit the entire understanding of its effects. In this study, zebrafish (Danio rerio) embryos were exposed to various concentrations of TCBPA while a combination of transcriptomics, behavioral and biochemical analyzes as well as metabolomics were applied to decipher its toxic effects and the potential mechanisms. We found that TCBPA could interfere with nervous and cardiovascular development through focal adhesion and extracellular matrix-receptor (ECM-receptor) interaction pathways through transcriptomic analysis. Behavioral and biochemical analysis results indicated abnormal swimming behavior of zebrafish larvae. Morphological observations revealed that TCBPA could cause the loss of head blood vessels. Metabolomic analysis showed that arginine-related metabolic pathways were one of the main pathways leading to TCBPA developmental toxicity. Our study demonstrated that by using omics, TCBPA was shown to have neurological and cardiovascular developmental toxicity and the underlying mechanisms were uncovered and major pathways identified.
Collapse
Affiliation(s)
- Wentao Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Yang
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Xie
- Institute of Food Safety, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Xuanyue Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyu Hao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lifei Zhu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
155
|
Lu H, Zhu X, Wu L, Lou X, Pan X, Liu B, Zhang H, Zhu L, Li L, Wu Z. Alterations in the intestinal microbiome and metabolic profile of patients with cirrhosis supplemented with lactulose, Clostridium butyricum, and Bifidobacterium longum infantis: a randomized placebo-controlled trial. Front Microbiol 2023; 14:1169811. [PMID: 37180228 PMCID: PMC10170289 DOI: 10.3389/fmicb.2023.1169811] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/27/2023] [Indexed: 05/16/2023] Open
Abstract
Background Liver cirrhosis is commonly accompanied by intestinal dysbiosis and metabolic defects. Many clinical trials have shown microbiota-targeting strategies represent promising interventions for managing cirrhosis and its complications. However, the influences of the intestinal metagenomes and metabolic profiles of patients have not been fully elucidated. Methods We administered lactulose, Clostridium butyricum, and Bifidobacterium longum infantis as a synbiotic and used shotgun metagenomics and non-targeted metabolomics to characterize the results. Results Patients treated with the synbiotic for 12 weeks had lower dysbiosis index (DI) scores than placebo-treated patients and patients at baseline (NIP group). We identified 48 bacterial taxa enriched in the various groups, 66 differentially expressed genes, 18 differentially expressed virulence factor genes, 10 differentially expressed carbohydrate-active enzyme genes, and 173 metabolites present at differing concentrations in the Synbiotic versus Placebo group, and the Synbiotic versus NIP group. And Bifidobacteria species, especially B. longum, showed positive associations with many differentially expressed genes in synbiotic-treated patients. Metabolites pathway enrichment analysis showed that synbiotic significantly affected purine metabolism and aminoacyl-tRNA biosynthesis. And the purine metabolism and aminoacyl-tRNA biosynthesis were no longer significant differences in the Synbiotic group versus the healthy controls group. In conclusion, although littles influence on clinical parameters in the early intervention, the synbiotic showed a potential benefit to patients by ameliorating intestinal dysbiosis and metabolic defects; and the DI of intestinal microbiota is useful for the evaluation of the effect of clinical microbiota-targeting strategies on cirrhotic patients. Clinical Trial Registration https://www.clinicaltrials.gov, identifiers NCT05687409.
Collapse
Affiliation(s)
- Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaofei Zhu
- Department of Infectious DiseasesHangzhou Ninth People's Hospital, Hangzhou, Zhejiang, China
| | - Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaobin Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaxia Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Bowen Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lingxiao Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shangdong, China
- Research Units of Infectious Disease and Microecology, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
156
|
Bremer E, Calteau A, Danchin A, Harwood C, Helmann JD, Médigue C, Palsson BO, Sekowska A, Vallenet D, Zuniga A, Zuniga C. A model industrial workhorse:
Bacillus subtilis
strain 168 and its genome after a quarter of a century. Microb Biotechnol 2023; 16:1203-1231. [PMID: 37002859 DOI: 10.1111/1751-7915.14257] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
The vast majority of genomic sequences are automatically annotated using various software programs. The accuracy of these annotations depends heavily on the very few manual annotation efforts that combine verified experimental data with genomic sequences from model organisms. Here, we summarize the updated functional annotation of Bacillus subtilis strain 168, a quarter century after its genome sequence was first made public. Since the last such effort 5 years ago, 1168 genetic functions have been updated, allowing the construction of a new metabolic model of this organism of environmental and industrial interest. The emphasis in this review is on new metabolic insights, the role of metals in metabolism and macromolecule biosynthesis, functions involved in biofilm formation, features controlling cell growth, and finally, protein agents that allow class discrimination, thus allowing maintenance management, and accuracy of all cell processes. New 'genomic objects' and an extensive updated literature review have been included for the sequence, now available at the International Nucleotide Sequence Database Collaboration (INSDC: AccNum AL009126.4).
Collapse
Affiliation(s)
- Erhard Bremer
- Department of Biology, Laboratory for Microbiology and Center for Synthetic Microbiology (SYNMIKRO) Philipps‐University Marburg Marburg Germany
| | - Alexandra Calteau
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Antoine Danchin
- School of Biomedical Sciences, Li KaShing Faculty of Medicine Hong Kong University Pokfulam SAR Hong Kong China
| | - Colin Harwood
- Centre for Bacterial Cell Biology, Biosciences Institute Newcastle University Baddiley Clark Building Newcastle upon Tyne UK
| | - John D. Helmann
- Department of Microbiology Cornell University Ithaca New York USA
| | - Claudine Médigue
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Bernhard O. Palsson
- Department of Bioengineering University of California San Diego La Jolla USA
| | | | - David Vallenet
- LABGeM, Génomique Métabolique, CEA, Genoscope, Institut de Biologie François Jacob Université d'Évry, Université Paris‐Saclay, CNRS Évry France
| | - Abril Zuniga
- Department of Biology San Diego State University San Diego California USA
| | - Cristal Zuniga
- Bioinformatics and Medical Informatics Graduate Program San Diego State University San Diego California USA
| |
Collapse
|
157
|
Neyroud AS, Rudinger-Thirion J, Frugier M, Riley LG, Bidet M, Akloul L, Simpson A, Gilot D, Christodoulou J, Ravel C, Sinclair AH, Belaud-Rotureau MA, Tucker EJ, Jaillard S. LARS2 variants can present as premature ovarian insufficiency in the absence of overt hearing loss. Eur J Hum Genet 2023; 31:453-460. [PMID: 36450801 PMCID: PMC10133321 DOI: 10.1038/s41431-022-01252-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/07/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
Premature ovarian insufficiency (POI) affects 1 in 100 women and is a leading cause of female infertility. There are over 80 genes in which variants can cause POI, with these explaining only a minority of cases. Whole exome sequencing (WES) can be a useful tool for POI patient management, allowing clinical care to be personalized to underlying cause. We performed WES to investigate two French sisters, whose only clinical complaint was POI. Surprisingly, they shared one known and one novel likely pathogenic variant in the Perrault syndrome gene, LARS2. Using amino-acylation studies, we established that the novel missense variant significantly impairs LARS2 function. Perrault syndrome is characterized by sensorineural hearing loss in addition to POI. This molecular diagnosis alerted the sisters to the significance of their difficulty in following conversation. Subsequent audiology assessment revealed a mild bilateral hearing loss. We describe the first cases presenting with perceived isolated POI and causative variants in a Perrault syndrome gene. Our study expands the phenotypic spectrum associated with LARS2 variants and highlights the clinical benefit of having a genetic diagnosis, with prediction of potential co-morbidity and prompt and appropriate medical care, in this case by an audiologist for early detection of hearing loss.
Collapse
Affiliation(s)
- Anne Sophie Neyroud
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000, Rennes, France
| | - Joëlle Rudinger-Thirion
- Université de Strasbourg, Architecture et Réactivité de l'ARN, CNRS, IBMC, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, Architecture et Réactivité de l'ARN, CNRS, IBMC, Strasbourg, France
| | - Lisa G Riley
- Rare Diseases Functional Genomics, Kids Research, The Children's Hospital at Westmead and The Children's Medical Research Institute, Sydney, NSW, Australia
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Maud Bidet
- Clinique Mutualiste La Sagesse, Service of AMP, 35000, Rennes, France
| | - Linda Akloul
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France
| | - Andrea Simpson
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
- College of Health and Human Services, Charles Darwin University, Darwin, NT, Australia
| | - David Gilot
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
- INSERM U1242, COSS, Université Rennes 1, F-35032, Rennes, France
| | - John Christodoulou
- Specialty of Child and Adolescent Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Célia Ravel
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000, Rennes, France
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - Marc-Antoine Belaud-Rotureau
- CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000, Rennes, France
- School of Allied Health, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC, Australia
| | - Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, Australia.
- Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de Recherche en Santé, Environnement et Travail)-UMR_S 1085, F-35000, Rennes, France.
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.
| |
Collapse
|
158
|
Yang K, Qiu T, Gong X, Zhou J, Lan Y, Chen S, Ji Y. Integrated nontargeted and targeted metabolomics analyses amino acids metabolism in infantile hemangioma. Front Oncol 2023; 13:1132344. [PMID: 37025602 PMCID: PMC10070834 DOI: 10.3389/fonc.2023.1132344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/13/2023] [Indexed: 04/08/2023] Open
Abstract
Infantile hemangioma (IH) is the most common benign tumor in children. However, the exact pathogenesis of IH remains unclear. Integrated nontargeted and targeted metabolic analyses were performed to obtain insight into the possible pathogenic mechanism of IH. The results of nontargeted metabolic analysis showed that 216 and 128 differential metabolites (DMs) were identified between hemangioma-derived endothelial cells (HemECs) and HUVECs in positive-ion and negative-ion models, respectively. In both models, these DMs were predominantly enriched in pathways related to amino acid metabolism, including aminoacyl-tRNA biosynthesis and arginine and proline metabolism. Then, targeted metabolic analysis of amino acids was further performed to further clarify HemEC metabolism. A total of 22 amino acid metabolites were identified, among which only 16 metabolites, including glutamine, arginine and asparagine, were significantly differentially expressed between HemECs and HUVECs. These significant amino acids were significantly enriched in 10 metabolic pathways, including 'alanine, aspartate and glutamate metabolism', 'arginine biosynthesis', 'arginine and proline metabolism', and 'glycine, serine and threonine metabolism'. The results of our study revealed that amino acid metabolism is involved in IH. Key differential amino acid metabolites, including glutamine, asparagine and arginine, may play an important role in regulating HemEC metabolism.
Collapse
Affiliation(s)
- Kaiying Yang
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, National Children’s Medical Center for South Central Region, Guangzhou Medical University, Guangzhou, China
| | - Tong Qiu
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xue Gong
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Jiangyuan Zhou
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuru Lan
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Siyuan Chen
- Pediatric Intensive Care Unit, Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Yi Ji
- Division of Oncology, Department of Pediatric Surgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
159
|
Hauth F, Funck D, Hartig JS. A standalone editing protein deacylates mischarged canavanyl-tRNAArg to prevent canavanine incorporation into proteins. Nucleic Acids Res 2023; 51:2001-2010. [PMID: 36626933 PMCID: PMC10018355 DOI: 10.1093/nar/gkac1197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
Error-free translation of the genetic code into proteins is vitally important for all organisms. Therefore, it is crucial that the correct amino acids are loaded onto their corresponding tRNAs. This process is highly challenging when aminoacyl-tRNA-synthetases encounter structural analogues to the native substrate like the arginine antimetabolite canavanine. To circumvent deleterious incorporation due to tRNA mischarging, editing mechanisms have evolved. However, only for half of the tRNA synthetases, editing activity is known and only few specific standalone editing proteins have been described. Understanding the diverse mechanisms resulting in error-free protein synthesis is of great importance. Here, we report the discovery of a protein that is upregulated upon canavanine stimulation in bacteria that live associated with canavanine-producing plants. We demonstrate that it acts as standalone editing protein specifically deacylating canavanylated tRNAArg. We therefore propose canavanyl-tRNAArgdeacylase (CtdA) as systematic name. Knockout strains show severe growth defects in canavanine-containing media and incorporate high amounts of canavanine into the proteome. CtdA is frequently found under control of guanidine riboswitches, revealing a functional connection of canavanine and guanidine metabolisms. Our results are the first to show editing activity towards mischarged tRNAArg and add to the puzzle of how faithful translation is ensured in nature.
Collapse
Affiliation(s)
- Franziskus Hauth
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Dietmar Funck
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Jörg S Hartig
- To whom correspondence should be addressed. Tel: +49 7531 88 4575;
| |
Collapse
|
160
|
Ermanoska B, Asselbergh B, Morant L, Petrovic-Erfurth ML, Hosseinibarkooie S, Leitão-Gonçalves R, Almeida-Souza L, Bervoets S, Sun L, Lee L, Atkinson D, Khanghahi A, Tournev I, Callaerts P, Verstreken P, Yang XL, Wirth B, Rodal AA, Timmerman V, Goode BL, Godenschwege TA, Jordanova A. Tyrosyl-tRNA synthetase has a noncanonical function in actin bundling. Nat Commun 2023; 14:999. [PMID: 36890170 PMCID: PMC9995517 DOI: 10.1038/s41467-023-35908-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 01/06/2023] [Indexed: 03/10/2023] Open
Abstract
Dominant mutations in tyrosyl-tRNA synthetase (YARS1) and six other tRNA ligases cause Charcot-Marie-Tooth peripheral neuropathy (CMT). Loss of aminoacylation is not required for their pathogenicity, suggesting a gain-of-function disease mechanism. By an unbiased genetic screen in Drosophila, we link YARS1 dysfunction to actin cytoskeleton organization. Biochemical studies uncover yet unknown actin-bundling property of YARS1 to be enhanced by a CMT mutation, leading to actin disorganization in the Drosophila nervous system, human SH-SY5Y neuroblastoma cells, and patient-derived fibroblasts. Genetic modulation of F-actin organization improves hallmark electrophysiological and morphological features in neurons of flies expressing CMT-causing YARS1 mutations. Similar beneficial effects are observed in flies expressing a neuropathy-causing glycyl-tRNA synthetase. Hence, in this work, we show that YARS1 is an evolutionary-conserved F-actin organizer which links the actin cytoskeleton to tRNA-synthetase-induced neurodegeneration.
Collapse
Affiliation(s)
- Biljana Ermanoska
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Bob Asselbergh
- Neuromics Support Facility, VIB Center for Molecular Neurology, VIB, 2610, Antwerp, Belgium
- Neuromics Support Facility, Department of Biomedical Sciences, University of Antwerp, 2610, Antwerp, Belgium
| | - Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Seyyedmohsen Hosseinibarkooie
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
- Division of Endocrinology and Metabolism and Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ricardo Leitão-Gonçalves
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Frontiers Media SA, Lausanne, Switzerland
| | - Leonardo Almeida-Souza
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Helsinki Institute of Life Science, Institute of Biotechnology & Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Sven Bervoets
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Litao Sun
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
- School of Public Health (Shenzhen), Sun Yat-Sen University, Guangdong, China
| | - LaTasha Lee
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
- Center for Social and Clinical Research, National Minority Quality Forum, Washington, DC, USA
| | - Derek Atkinson
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Akram Khanghahi
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Ivaylo Tournev
- Department of Neurology, Medical University-Sofia, 1431, Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618, Sofia, Bulgaria
| | | | - Patrik Verstreken
- VIB-KU Leuven Center for Brain & Disease Research, 3000, Leuven, Belgium
- KU Leuven, Department of Neurosciences, Leuven Brain Institute, Mission Lucidity, 3000, Leuven, Belgium
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Brunhilde Wirth
- Institute of Human Genetics; Center for Molecular Medicine Cologne; Center for Rare Diseases Cologne, University Hospital of Cologne; University of Cologne, 50931, Cologne, Germany
| | - Avital A Rodal
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Vincent Timmerman
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Tanja A Godenschwege
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL, 33458, USA
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Biomedical Sciences, University of Antwerp, 2610, Antwerpen, Belgium.
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431, Sofia, Bulgaria.
| |
Collapse
|
161
|
Istvan ES, Guerra F, Abraham M, Huang KS, Rocamora F, Zhao H, Xu L, Pasaje C, Kumpornsin K, Luth MR, Cui H, Yang T, Diaz SP, Gomez-Lorenzo MG, Qahash T, Mittal N, Ottilie S, Niles J, Lee MCS, Llinas M, Kato N, Okombo J, Fidock DA, Schimmel P, Gamo FJ, Goldberg DE, Winzeler EA. Cytoplasmic isoleucyl tRNA synthetase as an attractive multistage antimalarial drug target. Sci Transl Med 2023; 15:eadc9249. [PMID: 36888694 PMCID: PMC10286833 DOI: 10.1126/scitranslmed.adc9249] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
Development of antimalarial compounds into clinical candidates remains costly and arduous without detailed knowledge of the target. As resistance increases and treatment options at various stages of disease are limited, it is critical to identify multistage drug targets that are readily interrogated in biochemical assays. Whole-genome sequencing of 18 parasite clones evolved using thienopyrimidine compounds with submicromolar, rapid-killing, pan-life cycle antiparasitic activity showed that all had acquired mutations in the P. falciparum cytoplasmic isoleucyl tRNA synthetase (cIRS). Engineering two of the mutations into drug-naïve parasites recapitulated the resistance phenotype, and parasites with conditional knockdowns of cIRS became hypersensitive to two thienopyrimidines. Purified recombinant P. vivax cIRS inhibition, cross-resistance, and biochemical assays indicated a noncompetitive, allosteric binding site that is distinct from that of known cIRS inhibitors mupirocin and reveromycin A. Our data show that Plasmodium cIRS is an important chemically and genetically validated target for next-generation medicines for malaria.
Collapse
Affiliation(s)
- Eva S. Istvan
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Francisco Guerra
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Matthew Abraham
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Frances Rocamora
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | - Lan Xu
- The Global Health Drug Discovery Institute, Tsinghua University 30 Shuangqing Rd, Haidian District, Beijing, China
| | - Charisse Pasaje
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Madeline R. Luth
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Haissi Cui
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tuo Yang
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sara Palomo Diaz
- Global Health Medicines, GlaxoSmithKline, Severo Ochoa 2, 28760 Tres Cantos, Spain
| | | | - Tarrick Qahash
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Nimisha Mittal
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Sabine Ottilie
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Jacquin Niles
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Marcus C. S. Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Manuel Llinas
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Huck Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
| | - Nobutaka Kato
- The Global Health Drug Discovery Institute, Tsinghua University 30 Shuangqing Rd, Haidian District, Beijing, China
| | - John Okombo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - David A. Fidock
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, New York 10032, USA
- Center for Malaria Therapeutics and Antimicrobial Resistance, Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, New York 10032, USA
| | - Paul Schimmel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Daniel E. Goldberg
- Departments of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
162
|
Kushwaha V, Capalash N. Evaluation of immunomodulatory potential of recombinant histidyl-tRNA synthetase (rLdHisRS) protein of Leishmania donovani as a vaccine candidate against visceral leishmaniasis. Acta Trop 2023; 241:106867. [PMID: 36878386 DOI: 10.1016/j.actatropica.2023.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 03/07/2023]
Abstract
Visceral leishmaniasis is neglected tropical protozoan disease caused by Leishmania donovani and are associated with high fatality rate in developing countries since prophylactic vaccines are not available. In the present study, we evaluated the immunomodulatory potential of L. donovani histidyl-tRNA synthetase (LdHisRS) and predicted the epitopes using immunoinformatic tools. Histidyl-tRNA synthetase (HisRS) is a class IIa aminoacyl t-RNA synthetase enzyme (aaRS) required for histidine incorporation into proteins during protein synthesis. The recombinant LdHisRS protein (rLdHisRS) was expressed in E coli BL-21cells, and its immunomodulatory role was assessed in J774A.1 murine macrophage and in BALB/c mice, respectively. LdHisRS specifically stimulated and triggered enhance cell proliferation, nitric oxide release and IFN-γ (70%; P < 0.001), and IL-12 (55.37%; P < 0.05) cytokine release in vitro, whereas BALB/c mice immunized with rLdHisRS show higher NO release (80.95%; P<0.001), higher levels of Th1 cytokines IFN-γ (14%; P < 0.05), TNF-α (34.93%; P < 0.001), and IL-12 (28.49%; P < 0.001) and robust IgG (p<0.001) and IgG2a (p<0.001) production. We also identified 20 Helper T-lymphocytes (HTLs), 30 cytotoxic T lymphocytes (CTLs), and 18 B-cell epitopes from HisRS protein of L. donovani. All these epitopes can be further used to make a multiepitope vaccine against L. donovani.
Collapse
Affiliation(s)
- Vikas Kushwaha
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh 160025, India
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh 160025, India.
| |
Collapse
|
163
|
Liu T, Chen J, Fan C, Wu C, Sun T. Crystal structure, DFT calculation, molecular docking, in vitro biological activity evaluation and in silico drug-likeness prediction of (E)-N-(4-bromophenyl)-4-(2-(2-hydroxybenzylidene) hydrazine-1-carbonyl) benzenesulfonamide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
164
|
Kanaji S, Chen W, Morodomi Y, Shapiro R, Kanaji T, Yang XL. Mechanistic perspectives on anti-aminoacyl-tRNA synthetase syndrome. Trends Biochem Sci 2023; 48:288-302. [PMID: 36280495 PMCID: PMC9974581 DOI: 10.1016/j.tibs.2022.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 02/18/2023]
Abstract
Antisynthetase syndrome (ASSD) is an autoimmune disease characterized by circulating autoantibodies against one of eight aminoacyl-tRNA synthetases (aaRSs). Although these autoantibodies are believed to play critical roles in ASSD pathogenesis, the nature of their roles remains unclear. Here we describe ASSD pathogenesis and discuss ASSD-linked aaRSs - from the WHEP domain that may impart immunogenicity to the role of tRNA in eliciting the innate immune response and the secretion of aaRSs from cells. Through these explorations, we propose that ASSD pathogenesis involves the tissue-specific secretion of aaRSs and that extracellular tRNAs or tRNA fragments and their ability to engage Toll-like receptor signaling may be important disease factors.
Collapse
Affiliation(s)
- Sachiko Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenqian Chen
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yosuke Morodomi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ryan Shapiro
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Taisuke Kanaji
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
165
|
Lant JT, Hasan F, Briggs J, Heinemann IU, O’Donoghue P. Genetic Interaction of tRNA-Dependent Mistranslation with Fused in Sarcoma Protein Aggregates. Genes (Basel) 2023; 14:518. [PMID: 36833445 PMCID: PMC9956149 DOI: 10.3390/genes14020518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
High-fidelity protein synthesis requires properly aminoacylated transfer RNAs (tRNAs), yet diverse cell types, from bacteria to humans, show a surprising ability to tolerate errors in translation resulting from mutations in tRNAs, aminoacyl-tRNA synthetases, and other components of protein synthesis. Recently, we characterized a tRNASerAGA G35A mutant (tRNASerAAA) that occurs in 2% of the human population. The mutant tRNA decodes phenylalanine codons with serine, inhibits protein synthesis, and is defective in protein and aggregate degradation. Here, we used cell culture models to test our hypothesis that tRNA-dependent mistranslation will exacerbate toxicity caused by amyotrophic lateral sclerosis (ALS)-associated protein aggregation. Relative to wild-type tRNA, we found cells expressing tRNASerAAA showed slower but effective aggregation of the fused in sarcoma (FUS) protein. Despite reduced levels in mistranslating cells, wild-type FUS aggregates showed similar toxicity in mistranslating cells and normal cells. The aggregation kinetics of the ALS-causative FUS R521C variant were distinct and more toxic in mistranslating cells, where rapid FUS aggregation caused cells to rupture. We observed synthetic toxicity in neuroblastoma cells co-expressing the mistranslating tRNA mutant and the ALS-causative FUS R521C variant. Our data demonstrate that a naturally occurring human tRNA variant enhances cellular toxicity associated with a known causative allele for neurodegenerative disease.
Collapse
Affiliation(s)
- Jeremy T. Lant
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Farah Hasan
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Julia Briggs
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Ilka U. Heinemann
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| | - Patrick O’Donoghue
- Department of Biochemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
- Department of Chemistry, The University of Western Ontario, London, ON N6A 5C1, Canada
| |
Collapse
|
166
|
Levi O, Mallik M, Arava YS. ThrRS-Mediated Translation Regulation of the RNA Polymerase III Subunit RPC10 Occurs through an Element with Similarity to Cognate tRNA ASL and Affects tRNA Levels. Genes (Basel) 2023; 14:462. [PMID: 36833389 PMCID: PMC9956033 DOI: 10.3390/genes14020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Aminoacyl tRNA synthetases (aaRSs) are a well-studied family of enzymes with a canonical role in charging tRNAs with a specific amino acid. These proteins appear to also have non-canonical roles, including post-transcriptional regulation of mRNA expression. Many aaRSs were found to bind mRNAs and regulate their translation into proteins. However, the mRNA targets, mechanism of interaction, and regulatory consequences of this binding are not fully resolved. Here, we focused on yeast cytosolic threonine tRNA synthetase (ThrRS) to decipher its impact on mRNA binding. Affinity purification of ThrRS with its associated mRNAs followed by transcriptome analysis revealed a preference for mRNAs encoding RNA polymerase subunits. An mRNA that was significantly bound compared to all others was the mRNA encoding RPC10, a small subunit of RNA polymerase III. Structural modeling suggested that this mRNA includes a stem-loop element that is similar to the anti-codon stem loop (ASL) structure of ThrRS cognate tRNA (tRNAThr). We introduced random mutations within this element and found that almost every change from the normal sequence leads to reduced binding by ThrRS. Furthermore, point mutations at six key positions that abolish the predicted ASL-like structure showed a significant decrease in ThrRS binding with a decrease in RPC10 protein levels. Concomitantly, tRNAThr levels were reduced in the mutated strain. These data suggest a novel regulatory mechanism in which cellular tRNA levels are regulated through a mimicking element within an RNA polymerase III subunit in a manner that involves the tRNA cognate aaRS.
Collapse
Affiliation(s)
| | | | - Yoav S. Arava
- Faculty of Biology, Technion—Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
167
|
Giegé R, Eriani G. The tRNA identity landscape for aminoacylation and beyond. Nucleic Acids Res 2023; 51:1528-1570. [PMID: 36744444 PMCID: PMC9976931 DOI: 10.1093/nar/gkad007] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 02/07/2023] Open
Abstract
tRNAs are key partners in ribosome-dependent protein synthesis. This process is highly dependent on the fidelity of tRNA aminoacylation by aminoacyl-tRNA synthetases and relies primarily on sets of identities within tRNA molecules composed of determinants and antideterminants preventing mischarging by non-cognate synthetases. Such identity sets were discovered in the tRNAs of a few model organisms, and their properties were generalized as universal identity rules. Since then, the panel of identity elements governing the accuracy of tRNA aminoacylation has expanded considerably, but the increasing number of reported functional idiosyncrasies has led to some confusion. In parallel, the description of other processes involving tRNAs, often well beyond aminoacylation, has progressed considerably, greatly expanding their interactome and uncovering multiple novel identities on the same tRNA molecule. This review highlights key findings on the mechanistics and evolution of tRNA and tRNA-like identities. In addition, new methods and their results for searching sets of multiple identities on a single tRNA are discussed. Taken together, this knowledge shows that a comprehensive understanding of the functional role of individual and collective nucleotide identity sets in tRNA molecules is needed for medical, biotechnological and other applications.
Collapse
Affiliation(s)
- Richard Giegé
- Correspondence may also be addressed to Richard Giegé.
| | | |
Collapse
|
168
|
Kochavi A, Lovecchio D, Faller WJ, Agami R. Proteome diversification by mRNA translation in cancer. Mol Cell 2023; 83:469-480. [PMID: 36521491 DOI: 10.1016/j.molcel.2022.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022]
Abstract
mRNA translation is a highly conserved and tightly controlled mechanism for protein synthesis and is well known to be altered by oncogenes to promote cancer development. This distorted mRNA translation is accompanied by the vulnerability of cancer to inhibitors of key mRNA translation components. Novel studies also suggest that these alternations could be utilized for immunotherapy. Ribosome heterogeneity and alternative responses to nutrient shortages, which aid cancer growth and spread, are proposed to elicit aberrant protein production but may also result in previously unidentified therapeutic targets, such as the presentation of cancer-specific peptides at the surface of cancer cells (neoepitopes). This review will assess the driving forces in tRNA and ribosome function that underlie proteome diversification due to alterations in mRNA translation in cancer cells.
Collapse
Affiliation(s)
- Adva Kochavi
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - Domenica Lovecchio
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands
| | - Reuven Agami
- Division of Oncogenomics, The Netherlands Cancer Institute, Plesmanlaan 121, 1066CX Amsterdam, the Netherlands; Oncode Institute, the Netherlands; Erasmus MC, Rotterdam University, Rotterdam, the Netherlands.
| |
Collapse
|
169
|
Jaramillo Ponce JR, Théobald‐Dietrich A, Bénas P, Paulus C, Sauter C, Frugier M. Solution X-ray scattering highlights discrepancies in Plasmodium multi-aminoacyl-tRNA synthetase complexes. Protein Sci 2023; 32:e4564. [PMID: 36606712 PMCID: PMC9878616 DOI: 10.1002/pro.4564] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
tRip is a tRNA import protein specific to Plasmodium, the causative agent of malaria. In addition to its membrane localization and tRNA trafficking properties, tRip has the capacity to associate with three aminoacyl-tRNA synthetases (aaRS), the glutamyl- (ERS), glutaminyl- (QRS), and methionyl- (MRS) tRNA synthetases. In eukaryotes, such multi-aaRSs complexes (MSC) regulate the moonlighting activities of aaRSs. In Plasmodium, tRip and the three aaRSs all contain an N-terminal GST-like domain involved in the assembly of two independent complexes: the Q-complex (tRip:ERS:QRS) and the M-complex (tRip:ERS:MRS) with a 2:2:2 stoichiometry and in which the association of the GST-like domains of tRip and ERS (tRip-N:ERS-N) is central. In this study, the crystal structure of the N-terminal GST-like domain of ERS was solved and made possible further investigation of the solution architecture of the Q- and M-complexes by small-angle x-ray scattering (SAXS). This strategy relied on the engineering of a tRip-N-ERS-N chimeric protein to study the structural scaffold of both Plasmodium MSCs and confirm the unique homodimerization pattern of tRip in solution. The biological impact of these structural arrangements is discussed.
Collapse
Affiliation(s)
- José R. Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Anne Théobald‐Dietrich
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Philippe Bénas
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Claude Sauter
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002StrasbourgFrance
| |
Collapse
|
170
|
Yan L, Rust BM, Sundaram S, Bukowski MR. Metabolomic Alterations in Mammary Glands from Pubertal Mice Fed a High-Fat Diet. Nutr Metab Insights 2023; 16:11786388221148858. [PMID: 36744049 PMCID: PMC9893363 DOI: 10.1177/11786388221148858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/14/2022] [Indexed: 02/04/2023] Open
Abstract
Dietary malpractice is a risk factor for obesity. This study tested the hypothesis that consumption of a high-fat diet alters mammary metabolome in pubertal mice. We performed untargeted metabolomic analysis of primary metabolism on mammary glands from pubertal mice fed the AIN93G standard diet or a high-fat diet (HFD) for 3 weeks. We identified 97 metabolites for statistical comparisons. The HFD altered the amino acid metabolism considerably. This included elevated expression of branched-chain amino acids, non-essential amino acids (aspartic acid and glutamic acid), and methionine sulfoxide (oxidized methionine) and an alteration in the aminoacyl-tRNA biosynthesis pathway. Furthermore, elevations of fumaric acid and malic acid (both are citrate cycle intermediates) and glyceric acid (its phosphate derivatives are intermediates of glycolysis) in HFD-fed mice suggest an acceleration of both citrate cycle and glycolysis. Lower expression of glycerol, oleic acid, and palmitoleic acid, as well as decreased mammary expression of genes encoding lipid metabolism (Acaca, Fads1, Fasn, Scd1, and Srebf1) in HFD-fed mice indicate an attenuated lipid metabolism in the presence of adequate dietary fat. In conclusion, consumption of the HFD for 3 weeks alters metabolic profile of pubertal mammary glands. This alteration may affect mammary development and growth in pubertal mice.
Collapse
Affiliation(s)
- Lin Yan
- Lin Yan, Lin, USDA-ARS Grand Forks Human
Nutrition Research Center, Grand Forks, ND 58203, USA.
| | | | | | | |
Collapse
|
171
|
Tyrosine-targeted covalent inhibition of a tRNA synthetase aided by zinc ion. Commun Biol 2023; 6:107. [PMID: 36707692 PMCID: PMC9880928 DOI: 10.1038/s42003-023-04517-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Aminoacyl-tRNA synthetases (AARSs), a family of essential protein synthesis enzymes, are attractive targets for drug development. Although several different types of AARS inhibitors have been identified, AARS covalent inhibitors have not been reported. Here we present five unusual crystal structures showing that threonyl-tRNA synthetase (ThrRS) is covalently inhibited by a natural product, obafluorin (OB). The residue forming a covalent bond with OB is a tyrosine in ThrRS active center, which is not commonly modified by covalent inhibitors. The two hydroxyl groups on the o-diphenol moiety of OB form two coordination bonds with the conserved zinc ion in the active center of ThrRS. Therefore, the β-lactone structure of OB can undergo ester exchange reaction with the phenolic group of the adjacent tyrosine to form a covalent bond between the compound and the enzyme, and allow its nitrobenzene structure to occupy the binding site of tRNA. In addition, when this tyrosine was replaced by a lysine or even a weakly nucleophilic arginine, similar bonds could also be formed. Our report of the mechanism of a class of AARS covalent inhibitor targeting multiple amino acid residues could facilitate approaches to drug discovery for cancer and infectious diseases.
Collapse
|
172
|
Zhang HX, Qin JF, Sun JF, Pan Y, Yan TM, Wang CY, Bai LP, Zhu GY, Jiang ZH, Zhang W. Selective Chemical Labeling Strategy for Oligonucleotides Determination: A First Application to Full-Range Profiling of Transfer RNA Modifications. Anal Chem 2023; 95:686-694. [PMID: 36601728 DOI: 10.1021/acs.analchem.2c02302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
To date, the extremely high polarity and poor signal intensity of macromolecular nucleic acids are greatly impeding the progress of mass spectrometry technology in the quality control of nucleic acid drugs and the characterization of DNA oxidation and RNA modifications. We recently described a general N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide (MTBSTFA) labeling method for oligonucleotide determination and applied it to the full-range profiling of tRNA in vitro and in vivo studies for the first time. The primary advantages of this method include strong retention, no observable byproducts, predictable and easily interpreted MS2 data, and the circumvention of instrument harmful reagents that were necessary in previous methods. Selective labeling of N-(tert-butyldimethylsilyl)-N-methyl-trifluoroacetamide to the terminal phosphate groups of oligonucleotides endows it broadly applicable for DNA/RNA profiling. Moreover, the improvement of sequence coverage was achieved in yeast tRNAphe(GAA) analysis owing to this method's good detection capability of 1-12 nucleotides in length. We also extended this strategy to determine the abundance of modified bases and discover new modifications via digesting RNA into single-nucleotide products, promoting the comprehensive mapping of RNA. The easy availability of derivatization reagent and the simple, rapid one-step reaction render it easy to operate for researchers. When applied in characterizing tRNAs in HepG2 cells and rats with nonalcoholic fatty liver disease, a fragment of U[m1G][m2G], specific for tRNAAsn(QUU) in cells, was significantly upregulated, indicating a possible clue to nonalcoholic fatty liver disease pathogenesis.
Collapse
Affiliation(s)
- Hui-Xia Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Jian-Feng Qin
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Jian-Feng Sun
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Yu Pan
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Tong-Meng Yan
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Cai-Yun Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Guo-Yuan Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau 999078, People's Republic of China
| |
Collapse
|
173
|
Lu Q, Zhou X, Liu R, Shi G, Zheng N, Gao G, Wang Y. Impacts of a bacterial algicide on metabolic pathways in Chlorella vulgaris. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114451. [PMID: 38321670 DOI: 10.1016/j.ecoenv.2022.114451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/04/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Chlorella is a dominant species during harmful algal blooms (HABs) worldwide, which bring about great environmental problems and are also a serious threat to drinking water safety. Application of bacterial algicides is a promising way to control HABs. However, the identified bacterial algicides against Chlorella and the understanding of their effects on algal metabolism are very limited. Here, we isolated a novel bacterium Microbacterium paraoxydans strain M1 that has significant algicidal activities against Chlorella vulgaris (algicidal rate 64.38 %, at 120 h). Atrazine-desethyl (AD) was then identified from strain M1 as an effective bacterial algicide, with inhibition or algae-lysing concentration values (EC50) of 1.64 μg/mL and 1.38 μg/mL, at 72 h and 120 h, respectively. LAD (2 μg/mL AD) or HAD (20 μg/mL AD) causes morphology alteration and ultrastructure damage, chlorophyll a reduction, gene expression regulation (for example, psbA, 0.05 fold at 24 h, 2.97 fold at 72 h, and 0.23 fold of the control in HAD), oxidative stress, lipid oxidation (MDA, 2.09 and 3.08 fold of the control in LAD and HAD, respectively, at 120 h) and DNA damage (average percentage of tail DNA 6.23 % at 120 h in HAD, slight damage: 5∼20 %) in the algal cells. The impacts of AD on algal metabolites and metabolic pathways, as well as the algal response to the adverse effects were investigated. The results revealed that amino acids, amines, glycosides and urea decreased significantly compared to the control after 24 h exposure to AD (p < 0.05). The main up-regulated metabolic pathways implied metabonomic resistance and defense against osmotic pressure, oxidative stress, photosynthesis inhibition or partial cellular structure damage, such as phenylalanine metabolism, arginine biosynthesis. The down-regulated glycine, serine and threonine metabolism is a major lead in the algicidal mechanism according to the value of pathway impact. The down-regulated glycine, and serine are responsible for the downregulation of glyoxylate and dicarboxylate metabolism, aminoacyl-tRNA biosynthesis, glutathione metabolism, and sulfur metabolism, which strengthen the algae-lysing effect. It is the first time to highlight the pivotal role of glycine, serine and threonine metabolism in algicidal activities, which provided a new perspective for understanding the mechanism of bacterial algicides exerting on algal cells at the metabolic level.
Collapse
Affiliation(s)
- Qianqian Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Xinzhu Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Ruidan Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Guojing Shi
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Ningning Zheng
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China
| | - Guanghai Gao
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China; State key Laboratory of Hydroscience and Engineering, Tsinghua University, China.
| | - Yingying Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300371, China; Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, China.
| |
Collapse
|
174
|
Chrzanowska-Lightowlers ZM, Lightowlers RN. Translation in Mitochondrial Ribosomes. Methods Mol Biol 2023; 2661:53-72. [PMID: 37166631 DOI: 10.1007/978-1-0716-3171-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mitochondrial protein synthesis is essential for the life of aerobic eukaryotes. Without it, oxidative phosphorylation cannot be coupled. Evolution has shaped a battery of factors and machinery that are key to production of just a handful of critical proteins. In this general concept chapter, we attempt to briefly summarize our current knowledge of the overall process in mitochondria from a variety of species, breaking this down to the four parts of translation: initiation, elongation, termination, and recycling. Where appropriate, we highlight differences between species and emphasize gaps in our understanding. Excitingly, with the current revolution in cryoelectron microscopy and mitochondrial genome editing, it is highly likely that many of these gaps will be resolved in the near future. However, the absence of a faithful in vitro reconstituted system to study mitochondrial translation is still problematic.
Collapse
Affiliation(s)
- Zofia M Chrzanowska-Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK.
| | - Robert N Lightowlers
- Wellcome Centre for Mitochondrial Research, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle upon Tyne, UK
| |
Collapse
|
175
|
Gill J, Sharma A. Exploration of aminoacyl-tRNA synthetases from eukaryotic parasites for drug development. J Biol Chem 2022; 299:102860. [PMID: 36596362 PMCID: PMC9978631 DOI: 10.1016/j.jbc.2022.102860] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023] Open
Abstract
Parasitic diseases result in considerable human morbidity and mortality. The continuous emergence and spread of new drug-resistant parasite strains is an obstacle to controlling and eliminating many parasitic diseases. Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous enzymes essential for protein synthesis. The design and development of diverse small molecule, drug-like inhibitors against parasite-encoded and expressed aaRSs have validated this enzyme family as druggable. In this work, we have compiled the progress to date towards establishing the druggability of aaRSs in terms of their biochemical characterization, validation as targets, inhibitor development, and structural interpretation from parasites responsible for malaria (Plasmodium), lymphatic filariasis (Brugia,Wuchereria bancrofti), giardiasis (Giardia), toxoplasmosis (Toxoplasma gondii), leishmaniasis (Leishmania), cryptosporidiosis (Cryptosporidium), and trypanosomiasis (Trypanosoma). This work thus provides a robust framework for the systematic dissection of aaRSs from these pathogens and will facilitate the cross-usage of potential inhibitors to jump-start anti-parasite drug development.
Collapse
Affiliation(s)
- Jasmita Gill
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- ICMR-National Institute of Malaria Research, New Delhi, India; Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
176
|
Wang S, Lu L, Song T, Xu X, Yu J, Liu T. Optimization of Cordyceps sinensis fermentation Marsdenia tenacissima process and the differences of metabolites before and after fermentation. Heliyon 2022; 8:e12586. [PMID: 36636205 PMCID: PMC9830164 DOI: 10.1016/j.heliyon.2022.e12586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/28/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022] Open
Abstract
In this paper, we explored the interaction of factors which influenced the Cordyceps sinensis fermentation Marsdenia tenacissima (Roxb.) Wight et Arn, a Dai (a national minority of China) medicine, and the optimal fermentation conditions. The differences of C. sinensis metabolites in normal state (CN) and products of two-way liquid fermentation of C. sinensis and Marsdenia tenacissima (CM) and Marsdenia tenacissima (MT). The interactive effect of factors was analyzed and the best conditions are obtained through the box-behnken design (BBD) in response surface methodology (RSM). All metabolites were determined by ultra high performance liquid chromatography quadrupole time of flight mass spectrometer (UHPLC-Q-TOF-MS), analyzed and identified by metabonomics technology. Results showed that the optimum fermentation conditions were the concentration of raw medicinal materials is 160 g/L, the fermentation time is 6 days, the inoculation volume is 9.5%, the rotating speed is 170 rpm. 197 metabolites were identified in both positive ion and negative ion. 119 metabolites were significantly different between CN and CM. 43 metabolites were significantly different between CM and MT. Differential metabolic pathways were enriched. In conclusion, this paper optimizes the bidirectional fermentation process of M. tenacissima and C. sinensis through response surface methodology, and analyzes the changes of components from the level of metabonomics, so as to provide reference for exploring medicinal fungi fermentation of traditional Chinese medicine.
Collapse
Affiliation(s)
- Siqi Wang
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Lin Lu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tianyuan Song
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Xinxin Xu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Jie Yu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China
| | - Tongxiang Liu
- School of Pharmacy, Minzu University of China, Beijing, 100081, China,Key Laboratory of Ethnomedicine, Minority of Education, Minzu University of China, Beijing, 100081, China,Corresponding author.
| |
Collapse
|
177
|
Giant Viruses as a Source of Novel Enzymes for Biotechnological Application. Pathogens 2022; 11:pathogens11121453. [PMID: 36558786 PMCID: PMC9787589 DOI: 10.3390/pathogens11121453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
The global demand for industrial enzymes has been increasing in recent years, and the search for new sources of these biological products is intense, especially in microorganisms. Most known viruses have limited genetic machinery and, thus, have been overlooked by the enzyme industry for years. However, a peculiar group of viruses breaks this paradigm. Giant viruses of the phylum Nucleocytoviricota infect protists (i.e., algae and amoebae) and have complex genomes, reaching up to 2.7 Mb in length and encoding hundreds of genes. Different giant viruses have robust metabolic machinery, especially those in the Phycodnaviridae and Mimiviridae families. In this review, we present some peculiarities of giant viruses that infect protists and discuss why they should be seen as an outstanding source of new enzymes. We revisited the genomes of representatives of different groups of giant viruses and put together information about their enzymatic machinery, highlighting several genes to be explored in biotechnology involved in carbohydrate metabolism, DNA replication, and RNA processing, among others. Finally, we present additional evidence based on structural biology using chitinase as a model to reinforce the role of giant viruses as a source of novel enzymes for biotechnological application.
Collapse
|
178
|
Tsukamoto Y, Nakamura Y, Hirata M, Sakate R, Kimura T. i-tRAP (individual tRNA acylation PCR): A convenient method for selective quantification of tRNA charging. RNA (NEW YORK, N.Y.) 2022; 29:rna.079323.122. [PMID: 36283829 PMCID: PMC9808569 DOI: 10.1261/rna.079323.122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Each transfer RNA (tRNA) is aminoacylated (charged) with a genetic codon-specific amino acid at its 3' end. Charged tRNAs are primarily used for translation, whereas fluctuations in charged tRNA fractions are known to reflect cellular response to stress. Here we report the development of individual tRNA-acylation using PCR (i-tRAP), a convenient PCR-based method that can specifically quantify individual tRNA charging ratio. In this i-tRAP method, demethylases remove base methylations which are problematic for reverse transcription reaction, and β-elimination reaction specifically removes the 3' end of adenine residue in uncharged tRNA. Subsequent TaqMan MGB qRT-PCR can distinguish between cDNA of charged tRNA and uncharged tRNA. By using this method, we revealed that the charging ratio of tRNAGln(CUG) was changed in response to amino acid starvation and also the charging ratio of tRNAGln(CUG) in senescent cells was lower than in young cells under starvation conditions. i-tRAP can be applicable to the quantification of charging ratio of various tRNAs, and provides a simple and convenient method for analyzing tRNA charging.
Collapse
Affiliation(s)
- Yusuke Tsukamoto
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| | - Yumi Nakamura
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| | - Makoto Hirata
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| | - Ryuichi Sakate
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| | - Tomonori Kimura
- National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN)
| |
Collapse
|
179
|
Turvey AK, Horvath GA, Cavalcanti ARO. Aminoacyl-tRNA synthetases in human health and disease. Front Physiol 2022; 13:1029218. [PMID: 36330207 PMCID: PMC9623071 DOI: 10.3389/fphys.2022.1029218] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/04/2022] [Indexed: 11/29/2022] Open
Abstract
The Aminoacyl-tRNA Synthetases (aaRSs) are an evolutionarily ancient family of enzymes that catalyze the esterification reaction linking a transfer RNA (tRNA) with its cognate amino acid matching the anticodon triplet of the tRNA. Proper functioning of the aaRSs to create aminoacylated (or “charged”) tRNAs is required for efficient and accurate protein synthesis. Beyond their basic canonical function in protein biosynthesis, aaRSs have a surprisingly diverse array of non-canonical functions that are actively being defined. The human genome contains 37 genes that encode unique aaRS proteins. To date, 56 human genetic diseases caused by damaging variants in aaRS genes have been described: 46 are autosomal recessive biallelic disorders and 10 are autosomal dominant monoallelic disorders. Our appreciation of human diseases caused by damaging genetic variants in the aaRSs has been greatly accelerated by the advent of next-generation sequencing, with 89% of these gene discoveries made since 2010. In addition to these genetic disorders of the aaRSs, anti-synthetase syndrome (ASSD) is a rare autoimmune inflammatory myopathy that involves the production of autoantibodies that disrupt aaRS proteins. This review provides an overview of the basic biology of aaRS proteins and describes the rapidly growing list of human diseases known to be caused by genetic variants or autoimmune targeting that affect both the canonical and non-canonical functions of these essential proteins.
Collapse
Affiliation(s)
- Alexandra K. Turvey
- Department of Biology, Pomona College, Claremont, CA, United States
- *Correspondence: Alexandra K. Turvey,
| | - Gabriella A. Horvath
- Division of Biochemical Genetics, Department of Pediatrics, University of British Columbia, BC Children’s Hospital, Vancouver, BC, Canada
- Adult Metabolic Diseases Clinic, Vancouver General Hospital, Vancouver, BC, Canada
| | | |
Collapse
|
180
|
Bögershausen N, Krawczyk HE, Jamra RA, Lin SJ, Yigit G, Hüning I, Polo AM, Vona B, Huang K, Schmidt J, Altmüller J, Luppe J, Platzer K, Dörgeloh BB, Busche A, Biskup S, Mendes MI, Smith DEC, Salomons GS, Zibat A, Bültmann E, Nürnberg P, Spielmann M, Lemke JR, Li Y, Zenker M, Varshney GK, Hillen HS, Kratz CP, Wollnik B. WARS1 and SARS1: Two tRNA synthetases implicated in autosomal recessive microcephaly. Hum Mutat 2022; 43:1454-1471. [PMID: 35790048 DOI: 10.1002/humu.24430] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/10/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023]
Abstract
Aminoacylation of transfer RNA (tRNA) is a key step in protein biosynthesis, carried out by highly specific aminoacyl-tRNA synthetases (ARSs). ARSs have been implicated in autosomal dominant and autosomal recessive human disorders. Autosomal dominant variants in tryptophanyl-tRNA synthetase 1 (WARS1) are known to cause distal hereditary motor neuropathy and Charcot-Marie-Tooth disease, but a recessively inherited phenotype is yet to be clearly defined. Seryl-tRNA synthetase 1 (SARS1) has rarely been implicated in an autosomal recessive developmental disorder. Here, we report five individuals with biallelic missense variants in WARS1 or SARS1, who presented with an overlapping phenotype of microcephaly, developmental delay, intellectual disability, and brain anomalies. Structural mapping showed that the SARS1 variant is located directly within the enzyme's active site, most likely diminishing activity, while the WARS1 variant is located in the N-terminal domain. We further characterize the identified WARS1 variant by showing that it negatively impacts protein abundance and is unable to rescue the phenotype of a CRISPR/Cas9 wars1 knockout zebrafish model. In summary, we describe two overlapping autosomal recessive syndromes caused by variants in WARS1 and SARS1, present functional insights into the pathogenesis of the WARS1-related syndrome and define an emerging disease spectrum: ARS-related developmental disorders with or without microcephaly.
Collapse
Affiliation(s)
- Nina Bögershausen
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Hannah E Krawczyk
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Rami A Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Gökhan Yigit
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Irina Hüning
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Anna M Polo
- MVZ Labor Krone, Filialpraxis für Humangenetik, Bielefeld, Germany
| | - Barbara Vona
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
| | - Kevin Huang
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Julia Schmidt
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Core Facility Genomics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Johannes Luppe
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Beate B Dörgeloh
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Andreas Busche
- Institut für Humangenetik, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Saskia Biskup
- CeGaT GmbH, Center for Genomics and Transcriptomics, Tübingen, Germany
| | - Marisa I Mendes
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Desiree E C Smith
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Gajja S Salomons
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology and Metabolism, Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, Netherlands
| | - Arne Zibat
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Eva Bültmann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - Peter Nürnberg
- Cologne Center for Genomics (CCG), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Malte Spielmann
- Institut für Humangenetik, Universitätsklinikum Schleswig-Holstein, Lübeck, Germany
| | - Johannes R Lemke
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Yun Li
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Martin Zenker
- Institute of Human Genetics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Hauke S Hillen
- Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Christian P Kratz
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Bernd Wollnik
- Institute of Human Genetics, University Medical Center Göttingen, Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable cells" (MBExC), University of Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
181
|
Structural and mechanistic basis for recognition of alternative tRNA precursor substrates by bacterial ribonuclease P. Nat Commun 2022; 13:5120. [PMID: 36045135 PMCID: PMC9433436 DOI: 10.1038/s41467-022-32843-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/19/2022] [Indexed: 11/25/2022] Open
Abstract
Binding of precursor tRNAs (ptRNAs) by bacterial ribonuclease P (RNase P) involves an encounter complex (ES) that isomerizes to a catalytic conformation (ES*). However, the structures of intermediates and the conformational changes that occur during binding are poorly understood. Here, we show that pairing between the 5′ leader and 3′RCCA extending the acceptor stem of ptRNA inhibits ES* formation. Cryo-electron microscopy single particle analysis reveals a dynamic enzyme that becomes ordered upon formation of ES* in which extended acceptor stem pairing is unwound. Comparisons of structures with alternative ptRNAs reveals that once unwinding is completed RNase P primarily uses stacking interactions and shape complementarity to accommodate alternative sequences at its cleavage site. Our study reveals active site interactions and conformational changes that drive molecular recognition by RNase P and lays the foundation for understanding how binding interactions are linked to helix unwinding and catalysis. Ribonuclease P efficiently processes all tRNA precursors despite sequence variation at the site of cleavage. Here, authors use high-throughput enzymology and cryoEM to reveal conformational changes that drive recognition by bacterial RNase P.
Collapse
|
182
|
Wang H, Chen S. A streamlined process for discovery and characterization of inhibitors against phenylalanyl-tRNA synthetase of Mycobacterium tuberculosis. Methods Enzymol 2022; 679:275-293. [PMID: 36682865 DOI: 10.1016/bs.mie.2022.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) catalyze aminoacylation of tRNAs to produce aminoacyl-tRNAs for protein synthesis. Bacterial aaRSs have distinctive features, play an essential role in channeling amino acids into biomolecular assembly, and are vulnerable to inhibition by small molecules. The aaRSs continue to be targets for potential antibacterial drug development. The first step of aaRS reaction is the activation of amino acid by hydrolyzing ATP to form an acyladenylate intermediate with the concomitant release of pyrophosphate. None-radioactive assays usually measure the rate of ATP consumption or phosphate generation, offering advantages in high-throughput drug screening. These simple aaRS enzyme assays can be adapted to study the mode of inhibition of natural or synthetic aaRS inhibitors. Taking phenylalanyl-tRNA synthetase (PheRS) of Mycobacterium tuberculosis (Mtb) as an example, we describe a process for identification and characterization of Mtb PheRS inhibitor.
Collapse
Affiliation(s)
- Heng Wang
- Global Health Drug Discovery Institute, Haidian, Beijing, China
| | - Shawn Chen
- Global Health Drug Discovery Institute, Haidian, Beijing, China.
| |
Collapse
|
183
|
Bhattacharya S, Horowitz BB, Zhang J, Li X, Zhang H, Giese GE, Holdorf AD, Walhout AJ. A metabolic regulatory network for the Caenorhabditis elegans intestine. iScience 2022; 25:104688. [PMID: 35847555 PMCID: PMC9283940 DOI: 10.1016/j.isci.2022.104688] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/12/2022] [Accepted: 06/24/2022] [Indexed: 11/12/2022] Open
Abstract
Metabolic perturbations can affect gene expression, for instance to rewire metabolism. While numerous efforts have measured gene expression in response to individual metabolic perturbations, methods that determine all metabolic perturbations that affect the expression for a given gene or set of genes have not been available. Here, we use a gene-centered approach to derive a first-pass metabolic regulatory network for Caenorhabditis elegans by performing RNAi of more than 1,400 metabolic genes with a set of 19 promoter reporter strains that express a fluorescent protein in the animal's intestine. We find that metabolic perturbations generally increase promoter activity, which contrasts with transcription factor (TF) RNAi, which tends to repress promoter activity. We identify several TFs that modulate promoter activity in response to perturbations of the electron transport chain and explore complex genetic interactions among metabolic pathways. This work provides a blueprint for a systems-level understanding of how metabolism affects gene expression.
Collapse
Affiliation(s)
- Sushila Bhattacharya
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Brent B. Horowitz
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jingyan Zhang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xuhang Li
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Hefei Zhang
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gabrielle E. Giese
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Amy D. Holdorf
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Albertha J.M. Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
184
|
Kushwaha V, Capalash N. Aminoacyl-tRNA synthetase (AARS) as an attractive drug target in neglected tropical trypanosomatid diseases-Leishmaniasis, Human African Trypanosomiasis and Chagas disease. Mol Biochem Parasitol 2022; 251:111510. [PMID: 35988745 DOI: 10.1016/j.molbiopara.2022.111510] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/09/2022] [Accepted: 08/16/2022] [Indexed: 10/15/2022]
Abstract
TriTryp diseases (Leishmaniasis, Human African Trypanosomiasis (HAT), and Chagas disease) are devastating parasitic neglected tropical diseases (NTDs) that affect billions of people in developing countries, cause high mortality in humans, and impose a large socio-economic burden. The current treatment options against tritryp diseases are suboptimal and challenging due to the emergence of resistance against available tritryp drugs. Hence, designing and developing effective anti-tritryp drugs with novel targets are required. Aminoacyl-tRNA synthetases (AARSs) involved in specific aminoacylation of transfer RNAs (tRNAs), interrupt protein synthesis through inhibitors, and retard the parasite growth. AaRSs have long been studied as therapeutic targets in bacteria, and three aaRS inhibitors, mupirocin (against IleRS), tavaborole AN2690 (against LeuRS), and halofuginone (against ProRS), are already in clinical practice. The structural differences between tritryp and human aaRSs and the presence of unique sequences (N-terminal domain/C-terminal domain/catalytic domain) make them potential target for developing selective inhibitors. Drugs based on a single aaRS target developed by high-throughput screening (HTS) are less effective due to the emergence of resistance. However, designing multi-targeted drugs may be a better strategy for resistance development. In this perspective, we discuss the characteristics of tritryp aaRSs, sequence conservation in their orthologs and their peculiarities, recent advancements towards the single-target and multi-target aaRS inhibitors developed through rational design.
Collapse
Affiliation(s)
- Vikas Kushwaha
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh 160025, India.
| | - Neena Capalash
- Department of Biotechnology, Panjab University, Sector-25, South Campus, Chandigarh 160025, India.
| |
Collapse
|
185
|
Yan L, Rust BM, Sundaram S, Picklo MJ, Bukowski MR. Alteration in Plasma Metabolome in High-Fat Diet-Fed Monocyte Chemotactic Protein-1 Knockout Mice Bearing Pulmonary Metastases of Lewis Lung Carcinoma. Nutr Metab Insights 2022; 15:11786388221111126. [PMID: 35959507 PMCID: PMC9358346 DOI: 10.1177/11786388221111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/15/2022] [Indexed: 11/17/2022] Open
Abstract
Both clinical and laboratory studies have shown that monocyte chemotactic protein-1 (MCP-1) is involved in cancer spread. To understand the role of MCP-1 in metabolism in the presence of metastasis, we conducted an untargeted metabolomic analysis of primary metabolism on plasma collected from a study showing that MCP-1 deficiency reduces spontaneous metastasis of Lewis lung carcinoma (LLC) to the lungs in mice fed a high-fat diet (HFD). In a 2 × 2 design, wild-type (WT) or Mcp-1 knockout (Mcp-1 -/-) mice maintained on the AIN93G standard diet or HFD were subcutaneously injected with LLC cells to induce lung metastasis. We identified 87 metabolites for metabolomic analysis from this study. Amino acid metabolism was altered considerably in the presence of LLC metastases with the aminoacyl-tRNA biosynthesis pathways as the leading pathway altered. The HFD modified lipid and energy metabolism, evidenced by lower contents of arachidonic acid, cholesterol, and long-chain saturated fatty acids and higher contents of glucose and pyruvic acid in mice fed the HFD. These findings were supported by network analysis showing alterations in fatty acid synthesis and glycolysis/gluconeogenesis pathways between the 2 diets. Furthermore, elevations of the citrate cycle intermediates (citric acid, fumaric acid, isocitric acid, and succinic acid) and glyceric acid in Mcp-1 -/- mice, regardless of diet, suggest the involvement of MCP-1 in mitochondrial energy metabolism during LLC metastasis. The present study demonstrates that MCP-1 deficiency and the HFD altered plasma metabolome in mice bearing LLC metastases. These findings can be useful in understanding the impact of obesity on prevention and treatment of cancer metastasis.
Collapse
Affiliation(s)
- Lin Yan
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| | - Bret M Rust
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| | - Sneha Sundaram
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| | - Matthew J Picklo
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| | - Michael R Bukowski
- U.S. Department of Agriculture, Agricultural
Research Service, Grand Forks Human Nutrition Research Center, Grand Forks, ND,
USA
| |
Collapse
|
186
|
Blaze J, Akbarian S. The tRNA regulome in neurodevelopmental and neuropsychiatric disease. Mol Psychiatry 2022; 27:3204-3213. [PMID: 35505091 PMCID: PMC9630165 DOI: 10.1038/s41380-022-01585-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Accepted: 04/13/2022] [Indexed: 12/14/2022]
Abstract
Transfer (t)RNAs are 70-90 nucleotide small RNAs highly regulated by 43 different types of epitranscriptomic modifications and requiring aminoacylation ('charging') for mRNA decoding and protein synthesis. Smaller cleavage products of mature tRNAs, or tRNA fragments, have been linked to a broad variety of noncanonical functions, including translational inhibition and modulation of the immune response. Traditionally, knowledge about tRNA regulation in brain is derived from phenotypic exploration of monogenic neurodevelopmental and neurodegenerative diseases associated with rare mutations in tRNA modification genes. More recent studies point to the previously unrecognized potential of the tRNA regulome to affect memory, synaptic plasticity, and affective states. For example, in mature cortical neurons, cytosine methylation sensitivity of the glycine tRNA family (tRNAGly) is coupled to glycine biosynthesis and codon-specific alterations in ribosomal translation together with robust changes in cognition and depression-related behaviors. In this Review, we will discuss the emerging knowledge of the neuronal tRNA landscape, with a focus on epitranscriptomic tRNA modifications and downstream molecular pathways affected by alterations in tRNA expression, charging levels, and cleavage while mechanistically linking these pathways to neuropsychiatric disease and provide insight into future areas of study for this field.
Collapse
Affiliation(s)
- Jennifer Blaze
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Schahram Akbarian
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
187
|
Stieglitz JT, Van Deventer JA. High-Throughput Aminoacyl-tRNA Synthetase Engineering for Genetic Code Expansion in Yeast. ACS Synth Biol 2022; 11:2284-2299. [PMID: 35793554 PMCID: PMC10065163 DOI: 10.1021/acssynbio.1c00626] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein expression with genetically encoded noncanonical amino acids (ncAAs) benefits a broad range of applications, from the discovery of biological therapeutics to fundamental biological studies. A major factor limiting the use of ncAAs is the lack of orthogonal translation systems (OTSs) that support efficient genetic code expansion at repurposed stop codons. Aminoacyl-tRNA synthetases (aaRSs) have been extensively evolved in Escherichia coli but are not always orthogonal in eukaryotes. In this work, we use a yeast display-based ncAA incorporation reporter platform with fluorescence-activated cell sorting to screen libraries of aaRSs in high throughput for (1) the incorporation of ncAAs not previously encoded in yeast; (2) the improvement of the performance of an existing aaRS; (3) highly selective OTSs capable of discriminating between closely related ncAA analogues; and (4) OTSs exhibiting enhanced polyspecificity to support translation with structurally diverse sets of ncAAs. The number of previously undiscovered aaRS variants we report in this work more than doubles the total number of translationally active aaRSs available for genetic code manipulation in yeast. The success of myriad screening strategies has important implications related to the fundamental properties and evolvability of aaRSs. Furthermore, access to OTSs with diverse activities and specific or polyspecific properties is invaluable for a range of applications within chemical biology, synthetic biology, and protein engineering.
Collapse
Affiliation(s)
- Jessica T Stieglitz
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
188
|
Fang F, Liu C, Li Q, Xu R, Zhang T, Shen X. The Role of SETBP1 in Gastric Cancer: Friend or Foe. Front Oncol 2022; 12:908943. [PMID: 35898891 PMCID: PMC9309353 DOI: 10.3389/fonc.2022.908943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundGastric cancer (GC) remains a common disease with a poor prognosis worldwide. The SET binding protein 1 (SETBP1) has been implicated in the pathogenesis of several cancers and plays a dual role as an oncogene and a tumor suppressor gene. However, the role and underlying mechanism of SETBP1 in GC remain unclear.Materials and MethodsWe used next-generation RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA) to explore the correlation between SETBP1 expression and tumor progression. We then quantified SETBP1 expression in GC cells with real-time quantitative polymerase chain reactions (RT-qPCR). The chi-square test and logistic regression were used to assess the correlation between SETBP1 expression and clinicopathological features. Kaplan-Meier survival analysis and Cox proportional hazards regression model were used to assess the relationship between SETBP1 expression and survival. Finally, gene set enrichment analyses (GSEA) were used to examine GC-related signaling pathways in low and high SETBP1 expressing samples.ResultsWe found SETBP1 expression levels in GC tissues to be significantly lower than in adjacent non-tumor tissues in the TCGA database. In addition, SETBP1 expression differed significantly between groups classified by tumor differentiation. Furthermore, SETBP1 expression in diffuse-type GC was significantly higher than in intestinal-type GC. However, it did not differ significantly across pathological- or T-stage groups. RT-qPCR and comprehensive meta-analysis showed that SETBP1 expression is downregulated in GC cells and tissues. Interestingly, SETBP1 expression in poorly- or un-differentiated GC cells was higher than in well-differentiated GC cells. Moreover, the chi-square test and logistic regression analyses showed that SETBP1 expression correlates significantly with tumor differentiation. Kaplan–Meier curves indicated that patients with relatively high SETBP1 expression had a poor prognosis. Multivariate analyses indicated that SETBP1 expression might be an important predictor of poor overall survival in GC patients. GSEA indicated that 20 signaling pathways were significantly enriched in samples with high and low SETBP1 expression.ConclusionSETBP1 may play a dual role in GC progression.
Collapse
Affiliation(s)
- Fujin Fang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Chengyou Liu
- Department of Medical Engineering, Nanjing First Hospital, Nanjing, China
| | - Qiong Li
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Rui Xu
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Tiantian Zhang
- Department of Clinical Laboratory, The Third People’s Hospital of Bengbu, Bengbu, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, China
- Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
- *Correspondence: Xiaobing Shen,
| |
Collapse
|
189
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
190
|
Alsoud LO, Soares NC, Al-Hroub HM, Mousa M, Kasabri V, Bulatova N, Suyagh M, Alzoubi KH, El-Huneidi W, Abu-Irmaileh B, Bustanji Y, Semreen MH. Identification of Insulin Resistance Biomarkers in Metabolic Syndrome Detected by UHPLC-ESI-QTOF-MS. Metabolites 2022; 12:metabo12060508. [PMID: 35736441 PMCID: PMC9227428 DOI: 10.3390/metabo12060508] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 02/04/2023] Open
Abstract
Metabolic syndrome (MetS) is a disorder characterized by a group of factors that can increase the risk of chronic diseases, including cardiovascular diseases and type 2 diabetes mellitus (T2D). Metabolomics has provided new insight into disease diagnosis and biomarker identification. This cross-sectional investigation used an untargeted metabolomics-based technique to uncover metabolomic alterations and their relationship to pathways in normoglycemic and prediabetic MetS participants to improve disease diagnosis. Plasma samples were collected from drug-naive prediabetic MetS patients (n = 26), normoglycemic MetS patients (n = 30), and healthy (normoglycemic lean) subjects (n = 30) who met the inclusion criteria for the study. The plasma samples were analyzed using highly sensitive ultra-high-performance liquid chromatography electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS). One-way ANOVA analysis revealed that 59 metabolites differed significantly among the three groups (p < 0.05). Glutamine, 5-hydroxy-L-tryptophan, L-sorbose, and hippurate were highly associated with MetS. However, 9-methyluric acid, sphinganine, and threonic acid were highly associated with prediabetes/MetS. Metabolic pathway analysis showed that arginine biosynthesis and glutathione metabolism were associated with MetS/prediabetes, while phenylalanine, D-glutamine and D-glutamate, and lysine degradation were highly impacted in MetS. The current study sheds light on the potential diagnostic value of some metabolites in metabolic syndrome and the role of their alteration on some of the metabolic pathways. More studies are needed in larger cohorts in order to verify the implication of the above metabolites on MetS and their diagnostic value.
Collapse
Affiliation(s)
- Leen Oyoun Alsoud
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (L.O.A.); (N.C.S.); (K.H.A.)
| | - Nelson C. Soares
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (L.O.A.); (N.C.S.); (K.H.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (H.M.A.-H.); (W.E.-H.)
| | - Hamza M. Al-Hroub
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (H.M.A.-H.); (W.E.-H.)
| | - Muath Mousa
- Research Institute of Science and Engineering, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Violet Kasabri
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (V.K.); (N.B.); (M.S.)
| | - Nailya Bulatova
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (V.K.); (N.B.); (M.S.)
| | - Maysa Suyagh
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (V.K.); (N.B.); (M.S.)
| | - Karem H. Alzoubi
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (L.O.A.); (N.C.S.); (K.H.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (H.M.A.-H.); (W.E.-H.)
| | - Waseem El-Huneidi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (H.M.A.-H.); (W.E.-H.)
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Bashaer Abu-Irmaileh
- Hamdi Mango Center for Scientific Research, The University of Jordan, Amman 11942, Jordan;
| | - Yasser Bustanji
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (H.M.A.-H.); (W.E.-H.)
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan; (V.K.); (N.B.); (M.S.)
- College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
- Correspondence: (Y.B.); (M.H.S.)
| | - Mohammad H. Semreen
- College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (L.O.A.); (N.C.S.); (K.H.A.)
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates; (H.M.A.-H.); (W.E.-H.)
- Correspondence: (Y.B.); (M.H.S.)
| |
Collapse
|
191
|
Gupta T, Malkin MG, Huang S. tRNA Function and Dysregulation in Cancer. Front Cell Dev Biol 2022; 10:886642. [PMID: 35721477 PMCID: PMC9198291 DOI: 10.3389/fcell.2022.886642] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/05/2022] [Indexed: 11/24/2022] Open
Abstract
Transfer RNA (tRNA) is a central component of protein synthesis and plays important roles in epigenetic regulation of gene expression in tumors. tRNAs are also involved in many cell processes including cell proliferation, cell signaling pathways and stress response, implicating a role in tumorigenesis and cancer progression. The complex role of tRNA in cell regulation implies that an understanding of tRNA function and dysregulation can be used to develop treatments for many cancers including breast cancer, colon cancer, and glioblastoma. Moreover, tRNA modifications including methylation are necessary for tRNA folding, stability, and function. In response to certain stress conditions, tRNAs can be cleaved in half to form tiRNAs, or even shorter tRNA fragments (tRF). tRNA structure and modifications, tiRNA induction of stress granule formation, and tRF regulation of gene expression through the repression of translation can all impact a cell’s fate. This review focuses on how these functions of tRNAs, tiRNA, and tRFs can lead to tumor development and progression. Further studies focusing on the specific pathways of tRNA regulation could help identify tRNA biomarkers and therapeutic targets, which might prevent and treat cancers.
Collapse
Affiliation(s)
- Tania Gupta
- Virginia Commonwealth University, Richmond, VA, United States
| | - Mark G. Malkin
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Suyun Huang
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Human and Molecular Genetics, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- Institute of Molecular Medicine, School of Medicine, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Suyun Huang,
| |
Collapse
|
192
|
Jaramillo Ponce JR, Kapps D, Paulus C, Chicher J, Frugier M. Discovery of two distinct aminoacyl-tRNA synthetase complexes anchored to the Plasmodium surface tRNA import protein. J Biol Chem 2022; 298:101987. [PMID: 35487244 PMCID: PMC9136112 DOI: 10.1016/j.jbc.2022.101987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 11/21/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) attach amino acids to their cognate transfer RNAs. In eukaryotes, a subset of cytosolic aaRSs is organized into a multisynthetase complex (MSC), along with specialized scaffolding proteins referred to as aaRS-interacting multifunctional proteins (AIMPs). In Plasmodium, the causative agent of malaria, the tRNA import protein (tRip), is a membrane protein that participates in tRNA trafficking; we show that tRip also functions as an AIMP. We identified three aaRSs, the glutamyl-tRNA synthetase (ERS), glutaminyl-tRNA synthetase (QRS), and methionyl-tRNA synthetase (MRS), which were specifically coimmunoprecipitated with tRip in Plasmodium berghei blood stage parasites. All four proteins contain an N-terminal glutathione-S-transferase (GST)-like domain that was demonstrated to be involved in MSC assembly. In contrast to previous studies, further dissection of GST-like interactions identified two exclusive heterotrimeric complexes: the Q-complex (tRip-ERS-QRS) and the M-complex (tRip-ERS-MRS). Gel filtration and light scattering suggest a 2:2:2 stoichiometry for both complexes but with distinct biophysical properties and mutational analysis further revealed that the GST-like domains of QRS and MRS use different strategies to bind ERS. Taken together, our results demonstrate that neither the singular homodimerization of tRip nor its localization in the parasite plasma membrane prevents the formation of MSCs in Plasmodium. Besides, the extracellular localization of the tRNA-binding module of tRip is compensated by the presence of additional tRNA-binding modules fused to MRS and QRS, providing each MSC with two spatially distinct functions: aminoacylation of intraparasitic tRNAs and binding of extracellular tRNAs. This unique host-pathogen interaction is discussed.
Collapse
Affiliation(s)
- José R Jaramillo Ponce
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Delphine Kapps
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Caroline Paulus
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France
| | - Johana Chicher
- Strasbourg-Esplanade Proteomics Facility, Université de Strasbourg, Strasbourg, France
| | - Magali Frugier
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002, Strasbourg, France.
| |
Collapse
|
193
|
Cai M, Xiao Y, Lin Z, Lu J, Wang X, Rahman SU, Zhu S, Chen X, Gu J, Ma Y, Chen Z, Huo J. Disordered Gut Microbiota in Colorectal Tumor-Bearing Mice Altered Serum Metabolome Related to Fufangchangtai. Front Pharmacol 2022; 13:889181. [PMID: 35694271 PMCID: PMC9178095 DOI: 10.3389/fphar.2022.889181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/18/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose: This study aimed to investigate the relationship between gut microbiota (GM) and serum metabolism using antineoplastic Fufangchangtai (FFCT) as the model prescription in the treatment of colorectal cancer (CRC).Methods: Tumor-bearing mice and normal mice were administered different doses of FFCT. The tumor volume of tumor-bearing mice was observed. The levels of CD4+ and CD8+ T cells in the blood, spleen, and tumor of mice were determined using a flow cytometer. The bacterial microbiota in stool samples from mice and the serum metabolomics of FFCT-treated mice and fecal microbiota transplantation mice were detected using 16s RNA sequencing and liquid chromatography–mass spectrometry (LC/MS), respectively.Results: The tumor volume of mice showed no significant decrease after FFCT intervention. The levels of CD4+ and CD8+T lymphocytes showed a significant increase under the intervention of FFCT. GM of colorectal tumor-bearing mice and healthy mice were determined, and the diversity and abundance of Firmicutes, Deferribacteres, Bacteroidetes, and Proteobacteria were significantly different between the two groups. Furthermore, we found that the levels of matrine, isogingerenone B, and armillaripin were significantly decreased in tumor-bearing mice after FFCT intervention, indicating that the tumor-induced dysbiosis of gut bacteria may affect the absorption and metabolism of FFCT. Under the intervention of FFCT, serum metabolism of mice transplanted with feces from CRC patients showed less metabolites related to FFCT than that from healthy people, indicating that GM could be a single factor affecting the metabolism of FFCT. Furthermore, we found that different doses of FFCT-treated mice had higher abundance of Roseburia, Turicibacter, and Flexispira than that in the non-intervention control group. Firmicutes and Bacteroidetes in FFCT-treated groups showed a similar trend compared to the healthy group, indicating that FFCT might correct the intestinal microenvironment by modulating gut microbiota in colorectal tumor-bearing mice.Conclusion: The dysbiosis of GM in tumor-bearing mice reduced the serum metabolites related to FFCT, and FFCT could correct the disordered GM of colorectal tumor-bearing mice to exert efficacy.
Collapse
Affiliation(s)
- Mengmeng Cai
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ya Xiao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhibing Lin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Jiege Huo, ; Zhaoguo Chen, ; Zhibing Lin,
| | - Jinmiao Lu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- South China Agricultural University, Guangzhou, China
| | - Xiaoyu Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Sajid Ur Rahman
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shilan Zhu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- South China Agricultural University, Guangzhou, China
| | - Xiaoyu Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- South China Agricultural University, Guangzhou, China
| | - Jialin Gu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Yuzhu Ma
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| | - Zhaoguo Chen
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Laboratory of Quality and Safety Risk Assessment for Animal Products on Biohazards (Shanghai) of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- *Correspondence: Jiege Huo, ; Zhaoguo Chen, ; Zhibing Lin,
| | - Jiege Huo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
- *Correspondence: Jiege Huo, ; Zhaoguo Chen, ; Zhibing Lin,
| |
Collapse
|
194
|
Engineering Proteins Containing Noncanonical Amino Acids on the Yeast Surface. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2491:491-559. [PMID: 35482204 DOI: 10.1007/978-1-0716-2285-8_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Yeast display has been used to advance many critical research areas, including the discovery of unique protein binders and biological therapeutics. In parallel, noncanonical amino acids (ncAAs) have been used to tailor antibody-drug conjugates and enable discovery of therapeutic leads. Together, these two technologies have allowed for generation of synthetic antibody libraries, where the introduction of ncAAs in yeast-displayed proteins allows for library screening for therapeutically relevant targets. The combination of yeast display with genetically encoded ncAAs increases the available chemistry in proteins and advances applications that require high-throughput strategies. In this chapter, we discuss methods for displaying proteins containing ncAAs on the yeast surface, generating and screening libraries of proteins containing ncAAs, preparing bioconjugates on the yeast surface in large scale, generating and screening libraries of aminoacyl-tRNA synthetases (aaRSs) for encoding ncAAs by using reporter constructs, and characterizing ncAA-containing proteins secreted from yeast. The experimental designs laid out in this chapter are generalizable for discovery of protein binders to a variety of targets and aaRS evolution to continue expanding the genetic code beyond what is currently available in yeast.
Collapse
|
195
|
Functional and pathologic association of aminoacyl-tRNA synthetases with cancer. Exp Mol Med 2022; 54:553-566. [PMID: 35501376 PMCID: PMC9166799 DOI: 10.1038/s12276-022-00765-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 11/26/2022] Open
Abstract
Although key tumorigenic and tumor-suppressive factors have been unveiled over the last several decades, cancer remains the most life-threatening disease. Multiomic analyses of patient samples and an in-depth understanding of tumorigenic processes have rapidly revealed unexpected pathologic associations of new cellular factors previously overlooked in cancer biology. In this regard, the newly discovered activities of human aminoacyl-tRNA synthases (ARSs) deserve attention not only for their pathological significance in tumorigenesis but also regarding diagnostic and therapeutic implications. ARSs are not only essential enzymes covalently linking substrate amino acids to cognate tRNAs for protein synthesis but also function as regulators of cellular processes by sensing different cellular conditions. With their catalytic role in protein synthesis and their regulatory role in homeostasis, functional alterations or dysregulation of ARSs might be pathologically associated with tumorigenesis. This review focuses on the potential implications of ARS genes and proteins in different aspects of cancer based on various bioinformatic analyses and experimental data. We also review their diverse activities involving extracellular secretion, protein–protein interactions, and amino acid sensing, which are related to cancers. The newly discovered cancer-related activities of ARSs are expected to provide new opportunities for detecting, preventing and curing cancers. Enzymes called aminoacyl-tRNA synthetases (ARSs), which play a central role in all life, are becoming implicated in several aspects of cancer in ways that may lead to new approaches for prevention, detection and treatment. ARS enzymes catalyse the ligation of amino acids to transfer RNA molecules to allow amino acids to combine in the correct sequences to form proteins. Jung Min Han, Sunghoon Kim and colleagues at Yonsei University, Incheon, South Korea, review researches implicating ARS enzymes and the genes that code for them in a variety of cancers. The behavior of ARS enzymes and their genes are found to be altered in several types of cancer cells in ways that may either initiate or support the onset and development of the disease, through which they could be suggested as targets for novel anti-cancer drugs.
Collapse
|
196
|
Yan L, Sundaram S, Rust BM, Picklo MJ, Bukowski MR. Metabolomes of Lewis lung carcinoma metastases and normal lung tissue from mice fed different diets. J Nutr Biochem 2022; 107:109051. [DOI: 10.1016/j.jnutbio.2022.109051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/02/2022] [Accepted: 04/17/2022] [Indexed: 12/20/2022]
|
197
|
Celińska E. "Fight-flight-or-freeze" - how Yarrowia lipolytica responds to stress at molecular level? Appl Microbiol Biotechnol 2022; 106:3369-3395. [PMID: 35488934 PMCID: PMC9151528 DOI: 10.1007/s00253-022-11934-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Yarrowia lipolytica is a popular yeast species employed in multiple biotechnological production processes. High resistance to extreme environmental conditions or metabolic burden triggered by synthetically forced over-synthesis of a target metabolite has its practical consequences. The proud status of an “industrial workhorse” that Y. lipolytica has gained is directly related to such a quality of this species. With the increasing amount of knowledge coming from detailed functional studies and comprehensive omics analyses, it is now possible to start painting the landscape of the molecular background behind stress response and adaptation in Y. lipolytica. This review summarizes the current state-of-art of a global effort in revealing how Y. lipolytica responds to both environmental threats and the intrinsic burden caused by the overproduction of recombinant secretory proteins at the molecular level. Detailed lists of genes, proteins, molecules, and biological processes deregulated upon exposure to external stress factors or affected by over-synthesis of heterologous proteins are provided. Specificities and universalities of Y. lipolytica cellular response to different extrinsic and intrinsic threats are highlighted. Key points • Y. lipolytica as an industrial workhorse is subjected to multiple stress factors. • Cellular responses together with involved genes, proteins, and molecules are reviewed. • Native stress response mechanisms are studied and inspire engineering strategies.
Collapse
Affiliation(s)
- Ewelina Celińska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Wojska Polskiego 48, 60-627, Poznan, Poland.
| |
Collapse
|
198
|
Gupta A, Rangarajan PN. Histidine is essential for growth of Komagataella phaffii cultured in YPA medium. FEBS Open Bio 2022; 12:1241-1252. [PMID: 35416413 PMCID: PMC9157411 DOI: 10.1002/2211-5463.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 04/12/2022] [Indexed: 11/08/2022] Open
Abstract
Komagataella phaffii (a.k.a. Pichia pastoris) requires histidine for optimal growth when cultured in a medium containing yeast extract, peptone (YP) and acetate (YPA). We demonstrate that HIS4-deficient, K. phaffii strain GS115 exhibits a growth defect on YP-media containing acetate, but not on other carbon sources. K. phaffii X33, a prototroph, grows better than K. phaffii GS115 (his4), a histidine auxotroph in YPA. Normal growth of GS115 is restored either by the expression of HIS4 or by culturing in YPA containing ≥0.6 mM histidine. In presence of histidine, expression of several genes is altered including those encoding key subunits of mitochondrial ATP synthase, transporters of amino acids and nutrients, as well as biosynthetic enzymes. Thus, histidine should be included as an essential component for optimal growth of K.phaffii histidine auxotrophs cultured in YPA.
Collapse
Affiliation(s)
- Aditi Gupta
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
199
|
Zivkovic I, Ivkovic K, Cvetesic N, Marsavelski A, Gruic-Sovulj I. Negative catalysis by the editing domain of class I aminoacyl-tRNA synthetases. Nucleic Acids Res 2022; 50:4029-4041. [PMID: 35357484 PMCID: PMC9023258 DOI: 10.1093/nar/gkac207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/28/2022] [Indexed: 11/19/2022] Open
Abstract
Aminoacyl-tRNA synthetases (AARS) translate the genetic code by loading tRNAs with the cognate amino acids. The errors in amino acid recognition are cleared at the AARS editing domain through hydrolysis of misaminoacyl-tRNAs. This ensures faithful protein synthesis and cellular fitness. Using Escherichia coli isoleucyl-tRNA synthetase (IleRS) as a model enzyme, we demonstrated that the class I editing domain clears the non-cognate amino acids well-discriminated at the synthetic site with the same rates as the weakly-discriminated fidelity threats. This unveiled low selectivity suggests that evolutionary pressure to optimize the rates against the amino acids that jeopardize translational fidelity did not shape the editing site. Instead, we propose that editing was shaped to safeguard cognate aminoacyl-tRNAs against hydrolysis. Misediting is prevented by the residues that promote negative catalysis through destabilisation of the transition state comprising cognate amino acid. Such powerful design allows broad substrate acceptance of the editing domain along with its exquisite specificity in the cognate aminoacyl-tRNA rejection. Editing proceeds by direct substrate delivery to the editing domain (in cis pathway). However, we found that class I IleRS also releases misaminoacyl-tRNAIle and edits it in trans. This minor editing pathway was up to now recognized only for class II AARSs.
Collapse
Affiliation(s)
- Igor Zivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Kate Ivkovic
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Nevena Cvetesic
- Institute for Clinical Sciences, Faculty of Medicine, Imperial College London and MRC London Institute of Medical Sciences, London, SW7 2AZ, UK
| | - Aleksandra Marsavelski
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| | - Ita Gruic-Sovulj
- Department of Chemistry, Faculty of Science, University of Zagreb, Zagreb 10000, Croatia
| |
Collapse
|
200
|
Leucyl-tRNA synthetase is a tumour suppressor in breast cancer and regulates codon-dependent translation dynamics. Nat Cell Biol 2022; 24:307-315. [PMID: 35288656 PMCID: PMC8977047 DOI: 10.1038/s41556-022-00856-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/27/2022] [Indexed: 12/17/2022]
Abstract
Tumourigenesis and cancer progression require enhanced global protein translation1–3. Such enhanced translation is caused by oncogenic and tumour suppressive events that drive the synthesis and activity of translational machinery4,5. Here we report the surprising observation that leucyl-tRNA synthetase (LARS) becomes repressed during mammary cell transformation and in human breast cancer. Monoallelic genetic deletion of LARS in mouse mammary glands enhanced breast cancer tumour formation and proliferation. LARS repression reduced the abundance of select leucine tRNA isoacceptors, leading to impaired leucine codon-dependent translation of growth suppressive genes including epithelial membrane protein 3 (EMP3) and gamma-glutamyltransferase 5 (GGT5). Our findings uncover a tumour suppressive tRNA synthetase and reveal that dynamic repression of a specific tRNA synthetase—along with its downstream cognate tRNAs—elicits a downstream codon-biased translational gene network response that enhances breast tumour formation and growth.
Collapse
|