151
|
Borecka P, Ratajczak-Wielgomas K, Ciaputa R, Kandefer-Gola M, Janus I, Piotrowska A, Kmiecik A, Podhorska-Okolów M, Dzięgiel P, Nowak M. Expression of Periostin in Cancer-associated Fibroblasts in Mammary Cancer in Female Dogs. In Vivo 2021; 34:1017-1026. [PMID: 32354887 DOI: 10.21873/invivo.11870] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND/AIM Mammary neoplasms, like breast neoplasms in women, are one of the most common tumours in female dogs. Cancer-associated fibroblasts (CAFs) found in the tumour stroma play a role in angiogenesis and increase cell migration, contributing to tumour growth and progression, as well as metastasis. The aim of our work was to determine the level of periostin (POSTN) expression in CAFs in mammary tumours of female dogs. MATERIALS AND METHODS The research material consisted of 77 carcinomas and 24 adenomas of the mammary ridge in female dogs. Immunohistochemistry tests were performed using antibodies directed against the antigens POSTN, Ki-67, ERB-B2 receptor tyrosine kinase 2 (HER2), vimentin, and alpha smooth muscle actin (αSMA). Expression of POSTN at the mRNA level was determined using real-time polymerase chain reaction methods in 20 cases of mammary neoplasms. RESULTS Expression of POSTN in CAFs was observed in 92% of mammary cancer samples and in 25% of mammary adenoma samples in female dogs. A statistically significant increase in POSNT expression in CAFs was found in the carcinomas compared with mammary adenomas in female dogs. Expression of POSTN in CAFs in mammary carcinomas in female dogs positively correlated with the histological malignancy grade of tumours and the expression of Ki-67 proliferative antigen. CONCLUSION Our results suggest a role of POSTN on the pathogenesis of mammary tumours in female dogs. Moreover, POSTN may prove to be a useful marker in the evaluation of cancerous stroma of mammary tumours in female dogs, and may have prognostic significance.
Collapse
Affiliation(s)
- Paulina Borecka
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Rafal Ciaputa
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Małgorzata Kandefer-Gola
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Izabela Janus
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | | | - Alicja Kmiecik
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland.,Department of Physiotherapy, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Marcin Nowak
- Department of Pathology, Division of Pathomorphology and Forensic Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| |
Collapse
|
152
|
Lincoln V, Chao L, Woodley DT, Murrell D, Kim M, O'Toole EA, Ly A, Cogan J, Mosallaei D, Wysong A, Chen M. Over-expression of stromal periostin correlates with poor prognosis of cutaneous squamous cell carcinomas. Exp Dermatol 2021; 30:698-704. [PMID: 33450077 DOI: 10.1111/exd.14281] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/24/2020] [Accepted: 01/08/2021] [Indexed: 12/17/2022]
Abstract
Periostin, an extracellular matrix macromolecule implicated in tumorigenesis, serves as a prognostic marker for many cancer types. However, there are no data on periostin expression in cutaneous squamous cell carcinoma (cSCC). This study examined periostin expression in patients with cSCC and explored its clincopathological relationship and prognosis. Using immunohistochemistry and ImageJ analysis, we compared periostin expression in 95 cSCCs across a spectrum of cSCC aggressiveness: cSCC in situ (SCCIS) (n = 25), low-risk cSCC (LR-cSCC) (n = 26), high-risk cSCC (HR-cSCC) (n = 38), and cSCC in recessive dystrophic epidermolysis bullosa patients (RDEB cSCC) (n = 6). Immunohistochemistry demonstrated periostin expression within the intra-tumoral stroma but not within tumor cells. Periostin levels significantly (P < 0.001) increased from SCCIS, LR-cSCC, HR-cSCC to RDEB SCC. The stroma of most of the cSCCs we evaluated contained cancer-associated fibroblasts with a myofibroblastic (α -SMA-positive) phenotype. Co-localization of periostin with α-SMA, evidence of fibroblast periostin expression, and absence of keratinocyte or tumor cell periostin expression suggest that, in cSCC, periostin is a product of the peritumoral microenvironment and not the tumor cells themselves. Our data indicate that fibroblast periostin expression is highly correlated with the aggressiveness of cSCC, and may thereby provide a molecular marker that will be useful for subtyping and diagnosing cSCCs according to their biological nature.
Collapse
Affiliation(s)
- Vadim Lincoln
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Lyu Chao
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David T Woodley
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Minhee Kim
- University of New South Wales, Sydney, Australia
| | - Edel A O'Toole
- Barts and the London School of Medicine and Dentistry, Blizard Institute, London, UK
| | - Alexandre Ly
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jon Cogan
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Mosallaei
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Ashley Wysong
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mei Chen
- Department of Dermatology, The Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
153
|
Okada T, Suzuki H. The Role of Tenascin-C in Tissue Injury and Repair After Stroke. Front Immunol 2021; 11:607587. [PMID: 33552066 PMCID: PMC7859104 DOI: 10.3389/fimmu.2020.607587] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Stroke is still one of the most common causes for mortality and morbidity worldwide. Following acute stroke onset, biochemical and cellular changes induce further brain injury such as neuroinflammation, cell death, and blood-brain barrier disruption. Matricellular proteins are non-structural proteins induced by many stimuli and tissue damage including stroke induction, while its levels are generally low in a normal physiological condition in adult tissues. Currently, a matricellular protein tenascin-C (TNC) is considered to be an important inducer to promote neuroinflammatory cascades and the resultant pathology in stroke. TNC is upregulated in cerebral arteries and brain tissues including astrocytes, neurons, and brain capillary endothelial cells following subarachnoid hemorrhage (SAH). TNC may be involved in blood-brain barrier disruption, neuronal apoptosis, and cerebral vasospasm via the activation of mitogen-activated protein kinases and nuclear factor-kappa B following SAH. In addition, post-SAH TNC levels in cerebrospinal fluid predicted the development of delayed cerebral ischemia and angiographic vasospasm in clinical settings. On the other hand, TNC is reported to promote fibrosis and exert repair effects for an experimental aneurysm via macrophages-induced migration and proliferation of smooth muscle cells. The authors review TNC-induced inflammatory signal cascades and the relationships with other matricellular proteins in stroke-related pathology.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Neurosurgery, Kuwana City Medical Center, Kuwana, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
154
|
Liu E, MacMillan CP, Shafee T, Ma Y, Ratcliffe J, van de Meene A, Bacic A, Humphries J, Johnson KL. Fasciclin-Like Arabinogalactan-Protein 16 (FLA16) Is Required for Stem Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:615392. [PMID: 33362841 PMCID: PMC7758453 DOI: 10.3389/fpls.2020.615392] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/23/2020] [Indexed: 05/19/2023]
Abstract
The predominant Fascilin 1 (FAS1)-containing proteins in plants belong to the Fasciclin-Like Arabinogalactan-protein (FLA) family of extracellular glycoproteins. In addition to FAS1 domains, these multi-domain FLA proteins contain glycomotif regions predicted to direct addition of large arabinogalactan (AG) glycans and many contain signal sequences for addition of a glycosylphosphatidylinositol (GPI)-anchor to tether them to the plasma membrane. FLAs are proposed to play both structural and signaling functions by forming a range of interactions in the plant extracellular matrix, similar to FAS1-containing proteins in animals. FLA group B members contain two FAS1 domains and are not predicted to be GPI-anchored. None of the group B members have been functionally characterized or their sub-cellular location resolved, limiting understanding of their function. We investigated the group B FLA16 in Arabidopsis that is predominantly expressed in inflorescence tissues. FLA16 is the most highly expressed FLA in the stem after Group A members FLA11 and FLA12 that are stem specific. A FLA16-YFP fusion protein driven by the endogenous putative FLA16 promoter in wild type background showed expression in cells with secondary cell walls, and FLA16 displayed characteristics of cell wall glycoproteins with moderate glycosylation. Investigation of a fla16 mutant showed loss of FLA16 leads to reduced stem length and altered biomechanical properties, likely as a result of reduced levels of cellulose. Immuno-labeling indicated support for FLA16 location to the plasma-membrane and (apoplastic) cell wall of interfascicular stem fiber cells. Together these results indicate FLA16, a two-FAS1 domain FLAs, plays a role in plant secondary cell wall synthesis and function.
Collapse
Affiliation(s)
- Edgar Liu
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | - Colleen P. MacMillan
- CSIRO, Agriculture and Food, CSIRO Black Mountain Science and Innovation Park, Canberra, ACT, Australia
| | - Thomas Shafee
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | | | - Antony Bacic
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - John Humphries
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Kim L. Johnson
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
155
|
An in situ hybridization study of decorin and biglycan mRNA in mouse osteoblasts in vivo. Anat Sci Int 2020; 96:265-272. [PMID: 33219434 DOI: 10.1007/s12565-020-00588-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/04/2020] [Indexed: 10/23/2022]
Abstract
In situ hybridization of decorin and biglycan mRNA, principal members of small leucine-rich proteoglycan, was performed using [35S]-labeled RNA probes, in the context of the hypothesis that they show different expression patterns associated with osteoblast differentiation in mice. We adopted two ossifying sites that can clearly follow the developmental process of bone formation: ossifying tympanic ring and developing bone collar of mandibular condylar cartilage. Decorin mRNA was expressed in osteoblasts of developing tympanic ring at E14.0, as well as of developing bone collar at E15.0, but biglycan mRNA was not, indicating decorin mRNA was expressed earlier in newly differentiating osteoblasts than biglycan. With maturation of osteoblasts, biglycan mRNA became expressed and maintained its expression both in the outer region (periosteum) and in the interior region (endosteum) of bone. By contrast, decorin mRNA expression was maintained in the outer region but diminished in the interior region. These results indicate that decorin and biglycan show differential expression patterns in differentiating osteoblasts and play specific roles in bone formation.
Collapse
|
156
|
Sueyama T, Kajiwara Y, Mochizuki S, Shimazaki H, Shinto E, Hase K, Ueno H. Periostin as a key molecule defining desmoplastic environment in colorectal cancer. Virchows Arch 2020; 478:865-874. [PMID: 33215229 DOI: 10.1007/s00428-020-02965-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/26/2020] [Accepted: 11/01/2020] [Indexed: 11/30/2022]
Abstract
Categorizing desmoplastic reaction (DR) based on the histological findings of cancer-associated fibroblasts is shown to be a promising novel method to predict prognosis of patients with colorectal cancer (CRC). Periostin (POSTN) in cancer-associated stroma is reportedly associated with poor clinical outcomes. Immunohistochemical staining with an anti-POSTN antibody was performed in 73 patients with pStage III CRC (cohort 1). In addition, to evaluate mRNA and protein expression levels of POSTN, we analyzed paired normal and invasive cancer frozen specimens by quantitative real-time polymerase chain reaction and western blot analysis in 41 patients (cohort 2). In cohort 1, according to the DR categorization, 18, 22, and 33 patients were classified as immature, intermediate, and mature, respectively. High immunoreactivity of POSTN was observed 100%, 68.2%, and 27.3%, respectively (p < 0.0001). The 5-year relapse-free survival rates were 56.8% and 82.7% in high and low POSTN expression subgroups, respectively (p = 0.015). In cohort 2, the POSTN mRNA and protein levels were significantly higher in the immature stroma as compared to the stroma characterized as other DR patterns. POSTN expression was closely associated with DR categorization. POSTN may be a key molecule that contributes to the malignant potential of CRC.
Collapse
Affiliation(s)
- Takahiro Sueyama
- Department of Surgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Yoshiki Kajiwara
- Department of Surgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan.
| | - Satsuki Mochizuki
- Department of Surgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hideyuki Shimazaki
- Department of Laboratory Medicine, National Defense Medical College, Tokorozawa, Japan
| | - Eiji Shinto
- Department of Surgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Kazuo Hase
- Department of Surgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, 3-2, Namiki, Tokorozawa, Saitama, 359-8513, Japan
| |
Collapse
|
157
|
Bunwanna A, Damrongrungruang T, Puasiri S, Kantrong N, Chailertvanitkul P. Preservation of the viability and gene expression of human periodontal ligament cells by Thai propolis extract. Dent Traumatol 2020; 37:123-130. [PMID: 33185962 DOI: 10.1111/edt.12612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/16/2020] [Accepted: 09/22/2020] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIM Success of tooth replantation depends on the quality and quantity of periodontal ligament (PDL) cells. The aims of this study were to evaluate Thai propolis extract as a storage medium for maintaining PDL cell viability and preserving gene expressions in PDL tissues. MATERIALS AND METHODS PDL cells from human premolars were tested for cytotoxicity of the extract by PrestoBlue assay to determine a non-toxic concentration. Subsequently, 96 freshly extracted premolars were allocated into different treatment groups. Control groups were freshly extracted premolars or they had been stored dry for 12 hours. Experimental avulsed teeth were created by leaving them air-dried for 30 minutes immediately after extraction, then they were immersed in Thai propolis extract, HBSS or milk for 3, 6 and 12 hours. After tooth storage, the remaining PDL cells were determined for their cell viability. RNA isolated from PDL tissues of three premolars treated similarly was analysed for periostin and S100A4 expressions using RT-qPCR. RESULTS Thai propolis extract at 0.625 mg mL-1 promoted the greatest PDL cell viability. Tooth storage in 0.625 mg mL-1 Thai propolis extract, HBSS or milk showed no difference in maintaining cell viability. Periostin mRNA level was preserved by Thai propolis extract. Expression of S100A4 mRNA in PDL tissues stored in all tested media was dampened. CONCLUSIONS PDL cells from mock avulsed teeth stored in 0.625 mg mL-1 Thai propolis extract for 3, 6 and 12 hours remained viable and the expression of periostin was preserved. This study suggests this extract as an alternative for a tooth storage medium for up to 12 hours. However, transporting an avulsed tooth in a storage medium for extended extra-oral time might affect the PDL cell phenotypes.
Collapse
Affiliation(s)
- Atittaya Bunwanna
- Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | | | - Subin Puasiri
- Department of Preventive Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Nutthapong Kantrong
- Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Pattama Chailertvanitkul
- Department of Restorative Dentistry, Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
158
|
Jia YY, Yu Y, Li HJ. The research status and prospect of Periostin in chronic kidney disease. Ren Fail 2020; 42:1166-1172. [PMID: 33241962 PMCID: PMC7717610 DOI: 10.1080/0886022x.2020.1846562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 11/12/2022] Open
Abstract
The continuous accumulation of extracellular matrix will eventually lead to glomerular sclerosis, interstitial fibrosis, tubular atrophy and vascular sclerosis, which are involved in the progression of chronic kidney disease (CKD). If these processes can be discovered early and effective interventions given in time, the progression of kidney disease may be delayed. Therefore, exploring new biomarkers and therapeutic targets that can identify CKD at an early stage is urgently needed. In recent years, studies have shown that urine periostin may be used as a marker of early renal tubular injury. And in an animal model experiment of hypertensive nephropathy, periostin is involved in the progression of kidney injury and reflects its progression. Here we review the current progress on the role of periostin in pathologic pathways of kidney system to explore whether periostin is a potential therapeutic target for the treatment of CKD.
Collapse
Affiliation(s)
- Yuan-yuan Jia
- Department of Health Management Medical Center, The Third Hospital of Jilin University, Changchun, China
| | - Yue Yu
- Department of Endocrinology and Metabolism, The Third Hospital of Jilin University, Changchun, China
| | - Hong -jun Li
- Department of Health Management Medical Center, The Third Hospital of Jilin University, Changchun, China
| |
Collapse
|
159
|
Arslan R, Karsiyaka Hendek M, Kisa U, Olgun E. The effect of non-surgical periodontal treatment on gingival crevicular fluid periostin levels in patients with gingivitis and periodontitis. Oral Dis 2020; 27:1478-1486. [PMID: 33012041 DOI: 10.1111/odi.13664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The objective of the study was to evaluate the effect of non-surgical periodontal treatment on gingival crevicular fluid (GCF) periostin levels in patients with gingivitis (G) and periodontitis (P). SUBJECTS AND METHODS A total of 90 subjects, 30 patients with P, 30 with G, and 30 periodontally healthy (H) subjects were included. Patients with periodontal disease received non-surgical periodontal treatment. GCF periostin levels were assessed at baseline, at the 6th week, and the 3rd month after treatment. RESULTS It was found that GCF periostin level was the lowest in the H group (89.31[47.12] pg/30 sec), followed by the G group (132.82[145.14] pg/30 sec), and the highest in the P group (207.75[189.45] pg/30 sec). These differences were statistically significant between H and the other groups (p < .001). After treatment, GCF periostin levels significantly decreased at the 6th week and the 3rd month in the G group, at the 3rd month in the P group compared to baseline values (p < .05). CONCLUSION The results of this study suggest that GCF periostin plays a role as a reliable biological marker in the pathogenesis of periodontal disease and non-surgical periodontal treatment is effective in decreasing GCF periostin levels.
Collapse
Affiliation(s)
- Rana Arslan
- Oral and Dental Health Center, Yozgat, Turkey
| | | | - Ucler Kisa
- Department of Biochemistry, Faculty of Medicine, Kirikkale University, Kirikkale, Turkey
| | - Ebru Olgun
- Department of Periodontology, Faculty of Dentistry, Kirikkale University, Kirikkale, Turkey
| |
Collapse
|
160
|
Lin JH, Lin IP, Ohyama Y, Mochida H, Kudo A, Kaku M, Mochida Y. FAM20C directly binds to and phosphorylates Periostin. Sci Rep 2020; 10:17155. [PMID: 33051588 PMCID: PMC7555550 DOI: 10.1038/s41598-020-74400-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
It is widely accepted that FAM20C functions as a Golgi casein kinase and has large numbers of kinase substrates within the secretory pathway. It has been previously reported that FAM20C is required for maintenance of healthy periodontal tissues. However, there has been no report that any extracellular matrix molecules expressed in periodontal tissues are indeed substrates of FAM20C. In this study, we sought to identify the binding partner(s) of FAM20C. FAM20C wild-type (WT) and its kinase inactive form D478A proteins were generated. These proteins were electrophoresed and the Coomassie Brilliant Blue (CBB)-positive bands were analyzed to identify FAM20C-binding protein(s) by Mass Spectrometry (MS) analysis. Periostin was found by the analysis and the binding between FAM20C and Periostin was investigated in cell cultures and in vitro. We further determined the binding region(s) within Periostin responsible for FAM20C-binding. Immunolocalization of FAM20C and Periostin was examined using mouse periodontium tissues by immunohistochemical analysis. In vitro kinase assay was performed using Periostin and FAM20C proteins to see whether FAM20C phosphorylates Periostin in vitro. We identified Periostin as one of FAM20C-binding proteins by MS analysis. Periostin interacted with FAM20C in a kinase-activity independent manner and the binding was direct in vitro. We further identified the binding domain of FAM20C in Periostin, which was mapped within Fasciclin (Fas) I domain 1-4 of Periostin. Immunolocalization of FAM20C was observed in periodontal ligament (PDL) extracellular matrix where that of Periostin was also immunostained in murine periodontal tissues. FAM20C WT, but not D478A, phosphorylated Periostin in vitro. Consistent with the overlapped expression pattern of FAM20C and Periostin, our data demonstrate for the first time that Periostin is a direct FAM20C-binding partner and that FAM20C phosphorylates Periostin in vitro.
Collapse
Affiliation(s)
- Ju-Hsien Lin
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - I-Ping Lin
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
- Graduate Institute of Clinical Dentistry, School of Dentistry, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yoshio Ohyama
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Hanna Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA
| | - Akira Kudo
- Department of Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | - Masaru Kaku
- Division of Bio-Prosthodontics, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, USA.
| |
Collapse
|
161
|
Farnebo S, Wiig M, Holm B, Ghafouri B. Differentially Expressed Proteins in Intra Synovial Compared to Extra Synovial Flexor Tendon Grafts in a Rabbit Tendon Transplantation Model. Biomedicines 2020; 8:biomedicines8100408. [PMID: 33053838 PMCID: PMC7650534 DOI: 10.3390/biomedicines8100408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/07/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022] Open
Abstract
Uncomplicated healing of grafts for tendon reconstruction remains an unsolved problem in hand surgery. Results are limited by adhesion formation and decreased strength properties, especially within the tight fibro-osseous sheath of the digits. This is especially problematic when an extra synovial tendon graft is used to replace an intra synovial flexor tendon. Compositional differences are likely to play an important role in these processes. The aim of this study was, therefore, to compare protein expression in pair-matched intra synovial tendon grafts with extra synovial tendon grafts, using a rabbit tendon injury model. We hypothesized that there would be significant differences in proteins critical for response to tensile loading and adhesion formation between the two groups. Using mass spectrometry and multivariate statistical data analysis, we found tissue-specific differences in 22 proteins, where 7 explained 93% (R2) of the variation, with a prediction of 81% (Q2). Among the highest discriminating proteins were Galectin, Histone H2A, and Periostin, which were found in a substantially larger amount in the extra synovial tendons compared to the intra synovial tendons. These findings may contribute to improved understanding of the differences in outcome seen after tendon reconstruction using tendon grafts with intra synovial and extra synovial grafts.
Collapse
Affiliation(s)
- Simon Farnebo
- Department of Hand Surgery, Plastic Surgery, and Burns, Linköping University, SE 581 83 Linköping, Sweden
- Correspondence: (S.F.); (B.G.)
| | - Monica Wiig
- Department of Surgical Science, Hand Surgery, Uppsala University, and Uppsala University Hospital, 751 85 Uppsala, Sweden; (M.W.); (B.H.)
| | - Björn Holm
- Department of Surgical Science, Hand Surgery, Uppsala University, and Uppsala University Hospital, 751 85 Uppsala, Sweden; (M.W.); (B.H.)
| | - Bijar Ghafouri
- Pain and Rehabilitation Centre, and Department of Health, Medicine and Caring Sciences, Linköping University, SE 581 83 Linköping, Sweden
- Correspondence: (S.F.); (B.G.)
| |
Collapse
|
162
|
Affiliation(s)
- Peiran Yang
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Paul B Yu
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
163
|
Kawasaki S, Yamazaki K, Nishikata T, Ishige T, Toyoshima H, Miyata A. Photooxidative stress-inducible orange and pink water-soluble astaxanthin-binding proteins in eukaryotic microalga. Commun Biol 2020; 3:490. [PMID: 32895456 PMCID: PMC7477208 DOI: 10.1038/s42003-020-01206-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022] Open
Abstract
Lipid astaxanthin, a potent antioxidant known as a natural sunscreen, accumulates in eukaryotic microalgae and confers photoprotection. We previously identified a photooxidative stress-inducible water-soluble astaxanthin-binding carotenoprotein (AstaP) in a eukaryotic microalga (Coelastrella astaxanthina Ki-4) isolated from an extreme environment. The distribution in eukaryotic microalgae remains unknown. Here we identified three novel AstaP orthologs in a eukaryotic microalga, Scenedesmus sp. Oki-4N. The purified proteins, named AstaP-orange2, AstaP-pink1, and AstaP-pink2, were identified as secreted fasciclin proteins with potent 1O2 quenching activity in aqueous solution, which are characteristics shared with Ki-4 AstaP. Nonetheless, the absence of glycosylation in the AstaP-pinks, the presence of a glycosylphosphatidylinositol (GPI) anchor motif in AstaP-orange2, and highly acidic isoelectric points (pI = 3.6-4.7), differed significantly from that of AstaP-orange1 (pI = 10.5). These results provide unique examples on the use of water-soluble forms of astaxanthin in photosynthetic organisms as novel strategies for protecting single cells against severe photooxidative stresses.
Collapse
Affiliation(s)
- Shinji Kawasaki
- Department of Molecular Microbiology, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan.
| | - Keita Yamazaki
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Tohya Nishikata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Taichiro Ishige
- NODAI Genome Research Centre, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Hiroki Toyoshima
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Ami Miyata
- Department of Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
164
|
Lu EMC, Hobbs C, Dyer C, Ghuman M, Hughes FJ. Differential regulation of epithelial growth by gingival and periodontal fibroblasts in vitro. J Periodontal Res 2020; 55:859-867. [PMID: 32885443 DOI: 10.1111/jre.12778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/23/2020] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To investigate the underlying molecular mechanisms by which gingival and periodontal ligament (PDL) fibroblasts regulate epithelial phenotype. BACKGROUND Fibroblast populations regulate the epithelial phenotype through epithelial-mesenchymal interactions (EMI). Previous studies have proposed that maintenance of the junctional epithelium (JE) is dependent on the differential effects from gingival and PDL tissues. However, these cell populations are undefined and the signalling mechanisms which may regulate JE are unknown. METHODS Immunohistochemical analyses were performed on formalin-fixed paraffin-embedded sections of dentogingival tissues to identify phenotypic differences in fibroblast populations. The effect of distinct fibroblasts on epithelial phenotype was studied via 3D organotypic cultures, consisting of an H400 epithelium supported by human gingival fibroblasts (HGF) or human periodontal ligament fibroblasts (HPDLF), embedded in collagen gel. To investigate the involvement of Wnt signalling in EMI, the Wnt antagonist rhDKK1 was added to HGF constructs. The gene expression of Wnt antagonists and agonists was tested via RNA extraction and qPCR. Specific gene silencing using RNA interference was performed on HPDLF/HGF constructs. RESULTS Gingival fibroblasts were characterized by Sca1 expression, and PDL fibroblasts, characterized by Periostin and Asporin expression. Through the construction of 3D organotypic cultures, we showed that HGF supported epithelial multilayering, whilst HPDLF failed to support epithelial cell growth. Furthermore, HGF constructs treated with rhDKK1 resulted in a profound reduction in epithelial thickness. We identified SFRP4 to be highly specifically expressed in HPDLF, at both the mRNA and protein levels. A knockdown of SFRP4 in HPDLF constructs led to an increase in epithelial growth. CONCLUSION The study demonstrates the presence of phenotypically distinct fibroblast populations within dentogingival tissues and that these specific populations have different influences on the epithelium. Our data suggest that a downregulation of Wnt signalling within PDL may be important in maintaining the integrity and anatomical position of the JE.
Collapse
Affiliation(s)
- Emily Ming-Chieh Lu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, Wolfson Wing, London, UK
| | - Carlene Dyer
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - Mandeep Ghuman
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| | - Francis J Hughes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
165
|
Iwata T, Mizuno N, Nagahara T, Kaneda-Ikeda E, Kajiya M, Kitagawa M, Takeda K, Yoshioka M, Yagi R, Takata T, Kurihara H. Identification of regulatory mRNA and microRNA for differentiation into cementoblasts and periodontal ligament cells. J Periodontal Res 2020; 56:69-82. [PMID: 32797637 DOI: 10.1111/jre.12794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 07/09/2020] [Accepted: 07/18/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Periodontitis causes periodontal tissue destruction and results in physiological tooth dysfunction. Therefore, periodontal regeneration is ideal therapy for periodontitis. Mesenchymal stem cells (MSCs) are useful for periodontal regenerative therapy as they can differentiate into periodontal cells; however, the underlying regulatory mechanism is unclear. In this study, we attempted to identify regulatory genes involved in periodontal cell differentiation and clarify the differentiation mechanism for effective periodontal regenerative therapy. BACKGROUND The cementum and periodontal ligament play important roles in physiological tooth function. Therefore, cementum and periodontal ligament regeneration are critical for periodontal regenerative therapy. Mesenchymal stem cell transplantation can be a common periodontal regenerative therapy because these cells have multipotency and self-renewal ability, which induces new cementum or periodontal ligament formation. Moreover, MSCs can differentiate into cementoblasts. Cementoblast- or periodontal ligament cell-specific proteins have been reported; however, it is unclear how these proteins are regulated. MicroRNA (miRNA) can also act as a key regulator of MSC function. Therefore, in this study, we identified regulatory genes involved in cementoblast or periodontal cell differentiation and commitment. METHODS Human MSCs (hMSCs), cementoblasts (HCEM), and periodontal ligament cells (HPL cells) were cultured, and mRNA or miRNA expression was evaluated. Additionally, cementoblast-specific genes were overexpressed or suppressed in hMSCs and their expression levels were investigated. RESULTS HCEM and HPL cells expressed characteristic genes, of which we focused on ets variant 1 (ETV1), miR-628-5p, and miR-383 because ETV1 is a differentiation-related transcription factor, miR-628-5p was the second-highest expressed gene in HCEM and lowest expressed gene in HPL cells, and miR-383 was the highest expressed gene in HCEM. miR-628-5p and miR-383 overexpression in hMSCs regulated ETV1 mRNA expression, and miR-383 overexpression downregulated miR-628-5p expression. Moreover, miR-383 suppression decreased miR-383 expression and enhanced ETV1 mRNA expression, but miR-383 suppression also decreased miR-628-5p. Furthermore, silencing of ETV1 expression in hMSCs regulated miR-628-5p and miR-383 expression. Concerning periodontal cell commitment, miR-628-5p, miR-383, and ETV1 regulated the expression of HCEM- or HPL cell-related genes by adjusting the expression of these miRNAs. CONCLUSION HCEM and HPL cells show characteristic mRNA and miRNA profiles. In particular, these cells have specific miR-383, miR-628-5p, and ETV1 expression patterns, and these genes interact with each other. Therefore, miR-383, miR-628-5p, and ETV1 are key genes involved in cementogenesis or HPL cell differentiation.
Collapse
Affiliation(s)
- Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Center of Oral Clinical Examination, Hiroshima University Hospital, Hiroshima, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Ryoichi Yagi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.,Tokuyama University, Tokuyama, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
166
|
Choi Y, Oh H, Ahn M, Kang T, Chun J, Shin T, Kim J. Immunohistochemical analysis of periostin in the hearts of Lewis rats with experimental autoimmune myocarditis. J Vet Med Sci 2020; 82:1545-1550. [PMID: 32759575 PMCID: PMC7653304 DOI: 10.1292/jvms.20-0225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Periostin plays a critical role in tissue regeneration and homeostasis. The aim of this study was to evaluate the changes in periostin levels in the hearts of rats with experimental autoimmune myocarditis (EAM). Western blot analysis revealed that the expression levels of periostin and alpha-smooth muscle actin were significantly increased at day 14 post-immunization. Immunohistochemical analysis indicated that periostin was expressed in macrophages and fibroblasts in the hearts of EAM-induced rats. In conclusion, these results suggest that increased periostin expression in macrophages and fibroblasts promotes cardiac fibrosis in EAM-induced rats, potentially by enhancing immune cell infiltration. Therefore, periostin should be further investigated as a candidate therapeutic target for myocarditis.
Collapse
Affiliation(s)
- Yuna Choi
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Hanseul Oh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Taeyoung Kang
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Jiyoon Chun
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Taekyun Shin
- College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Jeongtae Kim
- Department of Anatomy, Kosin University College of Medicine, Busan 49267, Republic of Korea
| |
Collapse
|
167
|
Park JW, Fu S, Huang B, Xu RH. Alternative splicing in mesenchymal stem cell differentiation. Stem Cells 2020; 38:1229-1240. [PMID: 32627865 PMCID: PMC7586970 DOI: 10.1002/stem.3248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023]
Abstract
The differentiation and maturation of mesenchymal stem cells (MSCs) to mesodermal and other lineages are known to be controlled by various extrinsic and intrinsic signals. The dysregulation of the MSC differentiation balance has been linked to several pathophysiological conditions, including obesity and osteoporosis. Previous research of the molecular mechanisms governing MSC differentiation has mostly focused on transcriptional regulation. However, recent findings are revealing the underrated role of alternative splicing (AS) in MSC differentiation and functions. In this review, we discuss recent progress in elucidating the regulatory roles of AS in MSC differentiation. We catalogue and highlight the key AS events that modulate MSC differentiation to major osteocytes, chondrocytes, and adipocytes, and discuss the regulatory mechanisms by which AS is regulated.
Collapse
Affiliation(s)
- Jung Woo Park
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Siyi Fu
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Borong Huang
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| | - Ren-He Xu
- Center for Reproduction, Development, and Aging and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, People's Republic of China
| |
Collapse
|
168
|
Men Y, Wang Y, Yi Y, Jing D, Luo W, Shen B, Stenberg W, Chai Y, Ge WP, Feng JQ, Zhao H. Gli1+ Periodontium Stem Cells Are Regulated by Osteocytes and Occlusal Force. Dev Cell 2020; 54:639-654.e6. [PMID: 32652075 DOI: 10.1016/j.devcel.2020.06.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 02/04/2020] [Accepted: 06/02/2020] [Indexed: 01/05/2023]
Abstract
Teeth are attached to alveolar bone by the periodontal ligament (PDL), which contains stem cells supporting tissue turnover. Here, we identified Gli1+ cells in adult mouse molar PDL as multi-potential stem cells (PDLSCs) giving rise to PDL, alveolar bone, and cementum. They support periodontium tissue turnover and injury repair. Gli1+ PDLSCs are surrounding the neurovascular bundle and more enriched in the apical region. Canonical Wnt signaling is essential for their activation. Alveolar bone osteocytes negatively regulate Gli1+ PDLSCs activity through sclerostin, a Wnt inhibitor. Blockage of sclerostin accelerates the PDLSCs lineage contribution rate in vivo. Sclerostin expression is modulated by physiological occlusal force. Removal of occlusal force upregulates sclerostin and inhibits PDLSCs activation. In summary, Gli1+ cells are the multipotential PDLSCs in vivo. Osteocytes provide negative feedback to PDLSCs and inhibit their activities through sclerostin. Physiological occlusal force indirectly regulates PDLSCs activities by fine-tuning this feedback loop.
Collapse
Affiliation(s)
- Yi Men
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yuhong Wang
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA; West China School of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yating Yi
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Dian Jing
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Wenjing Luo
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Bo Shen
- Children's Research Institute, UT Southwestern Medical Center Dallas, TX 75235, USA
| | - William Stenberg
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Herman Ostrow School of Dentistry, Los Angeles, CA 90089, USA
| | - Woo-Ping Ge
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Jian Q Feng
- Department of Biomedical Sciences, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA
| | - Hu Zhao
- Department of Comprehensive Dentistry, College of Dentistry, Texas A&M University, Dallas, TX 75246, USA.
| |
Collapse
|
169
|
Nielsen NS, Poulsen ET, Lukassen MV, Chao Shern C, Mogensen EH, Weberskov CE, DeDionisio L, Schauser L, Moore TC, Otzen DE, Hjortdal J, Enghild JJ. Biochemical mechanisms of aggregation in TGFBI-linked corneal dystrophies. Prog Retin Eye Res 2020; 77:100843. [DOI: 10.1016/j.preteyeres.2020.100843] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/22/2022]
|
170
|
Ishibashi Y, Tsujimoto H, Einama T, Mochizuki S, Kouzu K, Nomura S, Ito N, Harada M, Sugasawa H, Shinto E, Kishi Y, Ueno H. Correlation Between Immunoinflammatory Measures and Periostin Expression in Esophageal Squamous Cell Carcinoma: A Single-Center, Retrospective Cohort Study. Ann Surg Oncol 2020; 28:1228-1237. [PMID: 32613365 DOI: 10.1245/s10434-020-08765-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Immunoinflammatory measures such as the neutrophil-lymphocyte ratio (NLR), the platelet-lymphocyte ratio (PLR), and the C-reactive protein (CRP)-albumin ratio (CAR) are useful prognostic measures in various malignancies. However, no study has investigated the correlation of these measures with microenvironmental inflammation. Periostin (POSTN), a small extracellular matrix protein, strongly associates with cancer microenvironmental inflammation. The current study investigated the correlation of NLR, PLR, and CAR with periostin expression in esophageal squamous cell carcinoma (ESCC). METHODS The study retrospectively evaluated preoperative NLR, PLR, and CAR hematologically and POSTN immunohistochemically in 171 patients. The correlation of immunoinflammatory measures, POSTN expression, and survival outcomes was measured. RESULTS The study showed a significant correlation of POSTN-positive expression with poor overall survival (OS) (P < 0.0001) and recurrence-free survival (RFS) (P = 0.03). The POSTN-positive group had higher PLR (189.6 ± 8 vs. 159.3 ± 12; P = 0.04) and CAR (0.36 ± 0.06 vs. 0.14 ± 0.09; P < 0.05) than the POSTN-negative group, whereas NLR did not differ between the two groups (3.27 ± 0.19 vs. 2.65 ± 0.28; P = 0.07). The uni- and multivariate analyses showed that POSTN-positive expression (hazard ratio [HR], 1.595; 95% confidence interval [CI], 0.770-3.031; P = 0.03), CAR (HR, 1.663; 95% CI, 1.016-2.764; P = 0.03), gender (HR, 2.303; 95% CI, 1.067-6.019; P = 0.03), and tumor depth (HR, 1.957; 95% CI, 1.122-3.526; P = 0.01) were independent prognostic factors. CONCLUSIONS Because POSTN-positive expression strongly correlates with immunoinflammatory measures, especially PLR and CAR, it is an independent prognostic factor in ESCC.
Collapse
Affiliation(s)
- Yusuke Ishibashi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hironori Tsujimoto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan.
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Satsuki Mochizuki
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Keita Kouzu
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Shinsuke Nomura
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Nozomi Ito
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Manabu Harada
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hidekazu Sugasawa
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Eiji Shinto
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yoji Kishi
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Hideki Ueno
- Department of Surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| |
Collapse
|
171
|
Tang Y, Chen Y, Huang L, Gao F, Sun H, Huang C. Intramembranous Ossification Imitation Scaffold with the Function of Macrophage Polarization for Promoting Critical Bone Defect Repair. ACS APPLIED BIO MATERIALS 2020; 3:3569-3581. [PMID: 35025227 DOI: 10.1021/acsabm.0c00233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The regeneration of craniofacial bone defects remains a crucial clinical challenge. To date, numerous biomaterials are applied in this field. However, current strategies have ignored the importance of intramembranous ossification and the vital role of macrophages in regulating osteogenesis. Here, an osteoblast (OB)-targeting peptide (SDSSD)-modified chitosan scaffold (CS-SDSSD) is developed for imitating the physiological process of bone development from the fibrous membrane. The addition of free peptide (fSDSSD) can recruit host OBs, and the peptide grafted on the scaffold (CS-SDSSD) can well organize the migrated OBs by binding with their surface periostin. Besides, macrophage polarization is found in the bone defects. CS-SDSSD + fSDSSD displays advantages in prioritizing M2 macrophage polarization and promoting the intramembranous ossification bone repair process. In summary, our strategy provides an economical and effective path for craniofacial bone repair and holds great potential for biomedical applications.
Collapse
Affiliation(s)
- Ying Tang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Yang Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Liyuan Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Fan Gao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan 430079, China
| | - Hualing Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| | - Cui Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBM), School & Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei, China
| |
Collapse
|
172
|
Nikoloudaki G, Creber K, Hamilton DW. Wound healing and fibrosis: a contrasting role for periostin in skin and the oral mucosa. Am J Physiol Cell Physiol 2020; 318:C1065-C1077. [PMID: 32267719 PMCID: PMC7311745 DOI: 10.1152/ajpcell.00035.2020] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023]
Abstract
Both skin and oral mucosa are characterized by the presence of keratinized epithelium in direct apposition to an underlying collagen-dense connective tissue. Despite significant overlap in structure and physiological function, skin and the oral mucosa exhibit significantly different healing profiles in response to injury. The oral mucosa has a propensity for rapid restoration of barrier function with minimal underlying fibrosis, but in contrast, skin is associated with slower healing and scar formation. Modulators of cell function, matricellular proteins have been shown to play significant roles in cutaneous healing, but their role in restoration of the oral mucosa is poorly defined. As will be discussed in this review, over the last 12 years our research group has been actively investigating the role of the profibrotic matricellular protein periostin in tissue homeostasis and fibrosis, as well as healing, in both skin and gingiva. In the skin, periostin is highly expressed in fibrotic scars and is upregulated during cutaneous wound repair, where it facilitates myofibroblast differentiation. In contrast, in gingival healing, periostin regulates extracellular matrix synthesis but does not appear to be associated with the transition of mesenchymal cells to a contractile phenotype. The significance of these findings will be discussed, with a focus on periostin as a potential therapeutic to augment healing of soft tissues or suppress fibrosis.
Collapse
Affiliation(s)
- Georgia Nikoloudaki
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Kendal Creber
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
| | - Douglas W Hamilton
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
- School of Biomedical Engineering, University of Western Ontario, London, Ontario, Canada
- Division of Oral Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
173
|
Possible Roles of Periostin in the Formation of Hemodialysis Vascular Access Stenosis after Polytetrafluoroethylene Graft Implantation in Dogs. Int J Mol Sci 2020; 21:ijms21093251. [PMID: 32375347 PMCID: PMC7246470 DOI: 10.3390/ijms21093251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/02/2020] [Accepted: 05/03/2020] [Indexed: 01/10/2023] Open
Abstract
Periostin, a recently found matricellular protein, has been implicated in neointima formation after balloon injury. However, the relationship between periostin and hyperplastic intima formation after PTFE graft implantation is unclear. Under mixed anesthesia, PTFE grafts were implanted between the canine carotid artery and jugular vein, and PTFE graft samples were harvested 1, 2, and 4 months after implantation. Intima formation started on the luminal surface of PTFE grafts at the venous anastomotic region 1 month after implantation. Thereafter, the increase in intimal volume was not only observed in the venous and arterial anastomotic regions, but also in the middle region of the PTFE grafts. In accordance with the increased intimal formation, time-dependent increases in mRNA expressions of periostin and transforming growth factor beta 1 (TGF-β1), as well as a strong positive correlation between periostin and TGF-β1, were observed. These findings suggest that periostin may play a very important role in the pathogenesis of hemodialysis vascular access stenosis through the acceleration of intimal formation. Thus, periostin may be a very important therapeutic target for the treatment of vascular access graft dysfunction in hemodialysis patients.
Collapse
|
174
|
An Immunofluorescence Study to Analyze Wound Healing Outcomes of Regenerative Endodontics in an Immature Premolar with Chronic Apical Abscess. J Endod 2020; 46:627-640. [DOI: 10.1016/j.joen.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/06/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|
175
|
Epçaçan S, Yücel E. Serum periostin levels in acute rheumatic fever: is it useful as a new biomarker? Paediatr Int Child Health 2020; 40:111-116. [PMID: 31648625 DOI: 10.1080/20469047.2019.1682330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: Acute rheumatic fever (ARF) continues to be a public health problem in low- and middle-income countries. Because there is no specific laboratory test for the exact diagnosis of ARF, the diagnosis is made by the modified Jones criteria. Periostin is an extracellular matrix protein which has been shown to be expressed during remodelling, mechanical stress and tissue repair. There are no data on the relationship between periostin and ARF.Aim: To evaluate serum periostin levels in patients with ARF and investigate its usefulness as a biomarker for diagnosing and monitoring the efficacy of treatment.Methods: Serum periostin levels were estimated in 31 patients with ARF and compared with a control group of 25 healthy patients. The control group comprised patients referred to the outpatient clinic for further evaluation of cardiac murmur, palpitations or chest pain. Patients who were diagnosed with any other cardiac or systemic illness after detailed systemic and cardiac examination were excluded.Results: The mean (SD) age at diagnosis was 12.1 (3.3) years in the patient group, 48.4% of whom were male. There were no significant differences in age or gender between patients and controls. All the study patients had various degrees of carditis, 58.1% had arthritis and 9.6% had Sydenham chorea. Mean (SD) serum periostin levels in patients with ARF on admission [58.4 (13.9) ng/mL] were significantly higher than in the control group [35.1 (10.7) ng/mL, p < 0.01] and were also significantly decreased in the patient group after treatment [35.1 (13.1) ng/mL, p < 0.01]. There was no significant difference in serum periostin levels regarding the severity of carditis in the patient group while patients with any severity of carditis had significantly higher periostin levels than the controls (p < 0.01). Periostin levels were significantly correlated with ESR and CRP values before treatment, but this correlation was detected for only ESR after treatment. For the initial diagnosis of ARF, a serum periostin level of 53.45 ng/mL was found to be the cut-off point with 80.6% sensitivity and 100% specificity.Conclusion: There was a significant increase in serum periostin levels in patients with ARF and a reduction after adequate treatment which was independent of the severity of carditis. Periostin may be a biomarker which acts as an acute phase reactant in ARF.
Collapse
Affiliation(s)
- Serdar Epçaçan
- Department of Pediatric Cardiology, Van Training and Research Hospital, University of Health Sciences, Van, Turkey
| | - Esra Yücel
- Department of Pediatric Allergy and Immunology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
176
|
Extracellular matrix, integrins, and focal adhesion signaling in polycystic kidney disease. Cell Signal 2020; 72:109646. [PMID: 32311505 DOI: 10.1016/j.cellsig.2020.109646] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
In autosomal dominant polycystic kidney disease (ADPKD), the inexorable growth of numerous fluid-filled cysts leads to massively enlarged kidneys, renal interstitial damage, inflammation, and fibrosis, and progressive decline in kidney function. It has long been recognized that interstitial fibrosis is the most important manifestation associated with end-stage renal disease; however, the role of abnormal extracellular matrix (ECM) production on ADPKD pathogenesis is not fully understood. Early evidence showed that cysts in end-stage human ADPKD kidneys had thickened and extensively laminated cellular basement membranes, and abnormal regulation of gene expression of several basement membrane components, including collagens, laminins, and proteoglycans by cyst epithelial cells. These basement membrane changes were also observed in dilated tubules and small cysts of early ADPKD kidneys, indicating that ECM alterations were early features of cyst development. Renal cystic cells were also found to overexpress several integrins and their ligands, including ECM structural components and soluble matricellular proteins. ECM ligands binding to integrins stimulate focal adhesion formation and can promote cell attachment and migration. Abnormal expression of laminin-332 (laminin-5) and its receptor α6β4 stimulated cyst epithelial cell proliferation; and mice that lacked laminin α5, a component of laminin-511 normally expressed by renal tubules, had an overexpression of laminin-332 that was associated with renal cyst formation. Periostin, a matricellular protein that binds αVβ3- and αVβ5-integrins, was found to be highly overexpressed in the kidneys of ADPKD and autosomal recessive PKD patients, and several rodent models of PKD. αVβ3-integrin is also overexpressed by cystic epithelial cells, and the binding of periostin to αVβ3-integrin activates the integrin-linked kinase and downstream signal transduction pathways involved in tissue repair promoting cyst growth, ECM synthesis, and tissue fibrosis. This chapter reviews the roles of the ECM, integrins, and focal adhesion signaling in cyst growth and fibrosis in PKD.
Collapse
|
177
|
Novosad J, Krčmová I, Bartoš V, Drahošová M, Vaník P, Růžičková-Kirchnerová O, Teřl M, Krejsek J. Serum periostin levels in asthma patients in relation to omalizumab therapy and presence of chronic rhinosinusitis with nasal polyps. Postepy Dermatol Alergol 2020; 37:240-249. [PMID: 32489361 PMCID: PMC7262810 DOI: 10.5114/ada.2020.94842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/19/2018] [Indexed: 01/04/2023] Open
Abstract
INTRODUCTION The serum periostin level is a promising biomarker of type 2- high inflammation pattern of bronchial asthma. It has been proven that serum periostin levels decrease in response to systemic and inhaled corticosteroid (ICS) therapy. However, we have only limited knowledge about changes in serum periostin levels reflecting omalizumab (OMA) treatment and other variables, such as chronic rhinosinusitis with nasal polyps (CRSwNP). AIM To critically appraise clinically relevant parameters influencing periostin levels in asthma patients. MATERIAL AND METHODS A pilot, cross-sectional, observational study to assess serum periostin levels of 48 asthma patients (38 treated by conventional therapy comprising ICS and 10 treated by ICS and OMA as an add-on therapy) with respect to asthma clinical traits, comorbidities and to other biomarkers of type 2-high asthma phenotype (total IgE, absolute and relative eosinophil count, eosinophilic cationic protein (ECP) and a fraction of exhaled NO (FeNO)). RESULTS Serum periostin correlates with total IgE levels (Spearman rho = 0.364, p = 0.025) in a subgroup of conventionally treated patients, and with eosinophil count (Spearman rho = 0.401, p = 0.021) in a subgroup of patients with concurrent CRSwNP. Serum periostin levels were decreased in omalizumab-treated patients in comparison to conventionally treated patients (p = 0.025). This effect was remarkably apparent only if CRSwNP was not present (p = 0.005). Conversely, we measured elevated periostin levels in OMA-treated patients with concurrent CRSwNP (p = 0.017). CONCLUSIONS Serum periostin production is significantly associated with treatment modality (omalizumab vs. conventional) and presence of CRSwNP. These variables need to be taken into account to interpret periostin levels accurately.
Collapse
Affiliation(s)
- Jakub Novosad
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Irena Krčmová
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Vladimír Bartoš
- Department of Pulmonary Medicine, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Marcela Drahošová
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Petr Vaník
- Department of Respiratory Diseases, Hospital in České Budějovice, Faculty of Medicine in Pilsen, Charles University in Prague, Czech Republic
| | - Olga Růžičková-Kirchnerová
- Department of Pulmonary Medicine, University Hospital in Pilsen, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Milan Teřl
- Department of Pulmonary Medicine, University Hospital in Pilsen, Faculty of Medicine, Charles University in Prague, Czech Republic
| | - Jan Krejsek
- Institute of Clinical Immunology and Allergy, University Hospital in Hradec Králové, Faculty of Medicine, Charles University in Prague, Czech Republic
| |
Collapse
|
178
|
Sophia K, Suresh S, Sudhakar U, Abdul Cader S, Vardhini VM, Arunachalam LT, Jean SC. Comparative Evaluation of Serum and Gingival Crevicular Fluid Periostin Levels in Periodontal Health and Disease: A Biochemical Study. Cureus 2020; 12:e7218. [PMID: 32274276 PMCID: PMC7141796 DOI: 10.7759/cureus.7218] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction Periostin, a secreted adhesion molecule, is a matricellular protein secreted most in periodontal ligament and periosteum. This periostin is needed for integrity and maturation of periodontal tissue. The present study was conducted to estimate and compare the gingival crevicular fluid and serum periostin levels in subjects having chronic periodontitis, gingivitis and healthy periodontium. Methods Ninety patients belonging to both sexes were categorized into three groups, 30 patients each as healthy periodontium (Group I), chronic gingivitis (Group II) and generalised chronic periodontitis (Group III). The clinical parameters included assessment of plaque index (PI), gingival index (GI), probing pocket depth (PPD) and clinical attachment level (CAL). Gingival crevicular fluid (GCF) and serum samples were collected and the enzyme-linked immunosorbent assay was used to estimate periostin levels. Results Periostin levels in GCF were comparatively low in the chronic periodontitis than in the gingivitis and healthy periodontium groups and the difference was statistically significant. No statistical difference was found for serum periostin levels among Group I, Group II and Group III. On comparison of clinical parameters, significant difference was noticed among the three groups. GCF periostin levels were correlated inversely with the clinical parameters in chronic periodontitis patients. Conclusion GCF periostin levels were gradually reduced with the increase in severity of periodontal disease. This novel biomarker has role in maintaining normal periodontal tissue function and may be used as a potential marker in periodontal disease activity evaluation.
Collapse
Affiliation(s)
- Khumukcham Sophia
- Periodontics, Jawaharlal Nehru Institute of Medical Sciences, Imphal, IND
| | - Snophia Suresh
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Uma Sudhakar
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Shaik Abdul Cader
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | - Varsha M Vardhini
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| | | | - S Catherine Jean
- Periodontics, Thai Moogambigai Dental College & Hospital, Chennai, IND
| |
Collapse
|
179
|
Denes BJ, Ait-Lounis A, Wehrle-Haller B, Kiliaridis S. Core Matrisome Protein Signature During Periodontal Ligament Maturation From Pre-occlusal Eruption to Occlusal Function. Front Physiol 2020; 11:174. [PMID: 32194440 PMCID: PMC7066325 DOI: 10.3389/fphys.2020.00174] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/13/2020] [Indexed: 12/14/2022] Open
Abstract
The pre-occlusal eruption brings the molars into functional occlusion and initiates tensional strains during mastication. We hypothesized that upon establishment of occlusal contact, the periodontal ligament (PDL) undergoes cell and extracellular matrix maturation to adapt to this mechanical function. The PDL of 12 Wistar male rats were laser microdissected to observe the proteomic changes between stages of pre-occlusal eruption, initial occlusal contact and 1-week after occlusion. The proteome was screened by mass spectrometry and confirmed by immunofluorescence. The PDL underwent maturation upon establishment of occlusion. Downregulation of alpha-fetoprotein stem cell marker and protein synthesis markers indicate cell differentiation. Upregulated proteins were components of the extracellular matrix (ECM) and were characterized with the matrisome project database. In particular, periostin, a major protein of the PDL, was induced following occlusal contact and localized around collagen α-1 (III) bundles. This co-localization coincided with organization of collagen fibers in direction of the occlusal forces. Establishment of occlusion coincides with cellular differentiation and the maturation of the PDL. Co-localization of periostin and collagen with subsequent fiber organization may help counteract tensional forces and reinforce the ECM structure. This may be a key mechanism of the PDL to adapt to occlusal forces and maintain structural integrity.
Collapse
Affiliation(s)
- Balazs Jozsef Denes
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| | - Aouatef Ait-Lounis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland.,Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, Centre Médical Universitaire, University of Geneva, Geneva, Switzerland
| | - Stavros Kiliaridis
- Department of Orthodontics, Clinique Universitaire de Médecine Dentaire, University of Geneva, Geneva, Switzerland
| |
Collapse
|
180
|
Roschger A, Wagermaier W, Gamsjaeger S, Hassler N, Schmidt I, Blouin S, Berzlanovich A, Gruber GM, Weinkamer R, Roschger P, Paschalis EP, Klaushofer K, Fratzl P. Newly formed and remodeled human bone exhibits differences in the mineralization process. Acta Biomater 2020; 104:221-230. [PMID: 31926334 DOI: 10.1016/j.actbio.2020.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/08/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022]
Abstract
During human skeletal growth, bone is formed via different processes. Two of them are: new bone formation by depositing bone at the periosteal (outer) surface and bone remodeling corresponding to a local renewal of tissue. Since in remodeling formation is preceded by resorption, we hypothesize that modeling and remodeling could require radically different transport paths for ionic precursors of mineralization. While remodeling may recycle locally resorbed mineral, modeling implies the transport over large distances to the site of bone apposition. Therefore, we searched for potential differences of size, arrangement and chemical composition of mineral particles just below surfaces of modeling and remodeling sites in femur midshaft cross-sections from healthy children. These bone sites were mapped using scanning synchrotron X-ray scattering, Raman microspectroscopy, energy dispersive X-ray analysis and quantitative backscattered electron microscopy. The results show clear differences in mineral particle size and composition between the sites, which cannot be explained by a change in the rate of mineral apposition or accumulation. At periosteal modeling sites, mineral crystals are distinctly larger, display higher crystallinity and exhibit a lower calcium to phosphorus ratio and elevated Na and Mg content. The latter may originate from Mg used for phase stabilization of mineral precursors and therefore indicate different time periods for mineral transport. We conclude that the mineralization process is distinctively different between modeling and remodeling sites due to varying requirements for the transport distance and, therefore, the stability of non-crystalline ionic precursors, resulting in distinct compositions of the deposited mineral phase. STATEMENT OF SIGNIFICANCE: In growing children new bone is formed either due to apposition of bone tissue e.g. at the outer ridge of long bones to allow growth in thickness (bone modeling), or in cavities inside the mineralized matrix when replacing tissue (bone remodeling). We demonstrate that mineral crystal shape and composition are not the same between these two sites, which is indicative of differences in mineralization precursors. We suggest that this may be due to a longer mineral transport distance to sites of new bone formation as compared to remodeling where mineral can be locally recycled.
Collapse
Affiliation(s)
- Andreas Roschger
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany; Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria; Department for Chemistry and Physics of Materials, Paris Lodron University of Salzburg, Jakob-Haringer Straße 2a, 5020 Salzburg, Austria.
| | - Wolfgang Wagermaier
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Sonja Gamsjaeger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Norbert Hassler
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Ingo Schmidt
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Andrea Berzlanovich
- Department of Forensic Medicine, Medical University of Vienna, Sensengasse 2, A-1090 Vienna, Austria
| | - Gerlinde M Gruber
- Department of Anatomy, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna
| | - Richard Weinkamer
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Eleftherios P Paschalis
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Klaus Klaushofer
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Med. Dept. Hanusch Hospital, A-1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, D-14424 Potsdam, Germany
| |
Collapse
|
181
|
Rachner TD, Göbel A, Hoffmann O, Erdmann K, Kasimir-Bauer S, Breining D, Kimmig R, Hofbauer LC, Bittner AK. High serum levels of periostin are associated with a poor survival in breast cancer. Breast Cancer Res Treat 2020; 180:515-524. [PMID: 32040688 DOI: 10.1007/s10549-020-05570-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 02/03/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Periostin is a secreted extracellular matrix protein, which was originally described in osteoblasts. It supports osteoblastic differentiation and bone formation and has been implicated in the pathogenesis of several human malignancies, including breast cancer. However, little is known about the prognostic value of serum periostin levels in breast cancer. METHODS In this study, we analyzed serum levels of periostin in a cohort of 509 primary, non-metastatic breast cancer patients. Disseminated tumor cell (DTC) status was determined using bone marrow aspirates obtained from the anterior iliac crests. Periostin levels were stratified according to several clinical parameters and Pearson correlation analyses were performed. Kaplan-Meier survival curves were assessed by using the log-rank (Mantel-Cox) test. To identify prognostic factors, multivariate Cox regression analyses were used. RESULTS Mean serum levels of periostin were 505 ± 179 pmol/l. In older patients (> 60 years), periostin serum levels were significantly increased compared to younger patients (540 ± 184 pmol/l vs. 469 ± 167 pmol/l; p < 0.0001) and age was positively correlated with periostin expression (p < 0.0001). When stratifying the cohort according to periostin serum concentrations, the overall and breast cancer-specific mortality were significantly higher in those patients with high serum periostin (above median) compared to those with low periostin during a mean follow-up of 8.5 years (17.7% vs. 11.4% breast cancer-specific death; p = 0.03; hazard ratio 1.65). Periostin was confirmed to be an independent prognostic marker for breast cancer-specific survival (p = 0.017; hazard ratio 1.79). No significant differences in serum periostin were observed when stratifying the patients according to their DTC status. CONCLUSIONS Our findings emphasize the relevance of periostin in breast cancer and reveal serum periostin as a potential marker for disease prediction, independent on the presence of micrometastases.
Collapse
Affiliation(s)
- Tilman D Rachner
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andy Göbel
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany. .,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Oliver Hoffmann
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Kati Erdmann
- Department of Urology, Technische Universität Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Partner Site Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Helmholtz Association / Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany
| | - Sabine Kasimir-Bauer
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dorit Breining
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rainer Kimmig
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lorenz C Hofbauer
- Division of Endocrinology and Metabolic Bone Diseases, Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,Center for Healthy Ageing Department of Medicine III, Technische Universität Dresden, Dresden, Germany.,German Cancer Consortium (DKTK), Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ann-Kathrin Bittner
- Department of Gynecology and Obstetrics, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
182
|
Okada T, Suzuki H. Mechanisms of neuroinflammation and inflammatory mediators involved in brain injury following subarachnoid hemorrhage. Histol Histopathol 2020; 35:623-636. [PMID: 32026458 DOI: 10.14670/hh-18-208] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Subarachnoid hemorrhage (SAH) is a devastating cerebrovascular disorder. Neuroinflammation is a critical cause of brain injury following SAH in both acute and chronic phases. While accumulating evidence has shown that therapies targeting neuroinflammation exerted beneficial effects in experimental SAH, there is little clinical evidence. One of the factors making neuroinflammation complicated is that inflammatory signaling pathways and mediators act as protective or detrimental responses at different phases. In addition, biomarkers to detect neuroinflammation are little known in clinical settings. In this review, first, we discuss how the inflammatory signaling pathways contribute to brain injury and other secondary pathophysiological changes in SAH. Damage-associated molecular patterns arising from mechanical stress, transient global cerebral ischemia, red blood cell breakdown and delayed cerebral ischemia following SAH trigger to activate pattern recognition receptors (PRRs) such as Toll-like receptors, nucleotide-binding oligomerization domain-like receptors, and receptors for advanced glycation end products. Most of PRRs activate common downstream signaling transcriptional factor nuclear factor-κΒ and mitogen-activated protein kinases, releasing pro-inflammatory mediators and cytokines. Next, we focus on how pro-inflammatory substances play a role during the course of SAH. Finally, we highlight an important inducer of neuroinflammation, matricellular protein (MCP). MCPs are a component of extracellular matrix and exert beneficial and harmful effects through binding to receptors, other matrix proteins, growth factors, and cytokines. Treatment targeting MCPs is being proved efficacious in pre-clinical models for preventing brain injury including neuroinflammation in SAH. In addition, MCPs may be a candidate of biomarkers predicting brain injury following SAH in clinical settings.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
183
|
Architecture of connective tissue regenerated by enamel matrix derivative around hydroxyapatite implanted into tooth extraction sockets in the rat maxilla. Anat Sci Int 2020; 95:334-341. [DOI: 10.1007/s12565-020-00526-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022]
|
184
|
Kaneda-Ikeda E, Iwata T, Mizuno N, Nagahara T, Kajiya M, Takeda K, Hirata R, Ishida S, Yoshioka M, Fujita T, Kawaguchi H, Kurihara H. Periodontal ligament cells regulate osteogenesis via miR-299-5p in mesenchymal stem cells. Differentiation 2020; 112:47-57. [PMID: 31951879 DOI: 10.1016/j.diff.2020.01.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/29/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The periodontal ligament contains periodontal ligament cells, which is a heterogeneous cell population, and includes progenitor cells that can differentiate into osteoblasts/cementoblasts. Mesenchymal stem cells (MSCs) can differentiate into various cells and can be used for periodontal regenerative therapy. Therefore, transplanted MSCs can be affected by humoral factors from periodontal ligament cells via the transcription factors or microRNAs (miRNAs) of MSCs. In addition, periostin (POSTN) is secreted from HPL cells and can regulate periodontal regeneration and homeostasis. To clarify the regulatory mechanism of humoral factors from periodontal ligament cells, we attempted to identify key genes, specifically microRNAs, involved in this process. METHODS Human MSCs (hMSCs) were indirectly co-cultured with human periodontal ligament cells (HPL cells) and then evaluated for osteogenesis, undifferentiated MSCs markers, and miRNA profiles. Furthermore, hMSCs were indirectly co-cultured with HPL cells in the presence of anti-POSTN monoclonal antibody (anti-POSTN Ab) to block the effect of POSTN from HPL cells, and then evaluated for osteogenesis or undifferentiated MSC markers. Moreover, hMSCs showed alterations in miRNA expression or cultured with HPL were challenged with POSTN during osteogenesis, and cells were evaluated for osteogenesis or undifferentiated MSC markers. RESULTS hMSCs co-cultured with HPL cells showed suppressed osteogenesis and characteristic expression of SOX11, an undifferentiated MSC marker, as well as miR-299-5p. Overexpression of miR-299-5p regulated osteogenesis and SOX11 expression as observed with indirect co-culture with HPL cells. Furthermore, MSCs co-cultured with HPL cells were recovered from the suppression of osteogenesis and SOX11 mRNA expression by anti-POSTN Ab. However, POSTN induced miR-299-5p and SOX11 expression, and enhanced osteogenesis. CONCLUSION Humoral factors from HPL cells suppressed osteogenesis in hMSCs. The suppressive effect was mediated by miR-299-5p and SOX11 in hMSCs.
Collapse
Affiliation(s)
- Eri Kaneda-Ikeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tomoyuki Iwata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan.
| | - Noriyoshi Mizuno
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Takayoshi Nagahara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Mikihito Kajiya
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Katsuhiro Takeda
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan; Department of Biological Endodontics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Reika Hirata
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Shu Ishida
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Minami Yoshioka
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Tsuyoshi Fujita
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| | - Hiroyuki Kawaguchi
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan; Department of Department of General Dentistry, Hiroshima University Hospital, Hiroshima, 734-8553, Japan
| | - Hidemi Kurihara
- Department of Periodontal Medicine, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, 734-8553, Japan
| |
Collapse
|
185
|
Fibronectin and Periostin as Prognostic Markers in Ovarian Cancer. Cells 2020; 9:cells9010149. [PMID: 31936272 PMCID: PMC7016975 DOI: 10.3390/cells9010149] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/30/2019] [Accepted: 01/05/2020] [Indexed: 12/28/2022] Open
Abstract
Previously, based on a DNA microarray experiment, we identified a 96-gene prognostic signature associated with the shorter survival of ovarian cancer patients. We hypothesized that some differentially expressed protein-coding genes from this signature could potentially serve as prognostic markers. The present study was aimed to validate two proteins, namely fibronectin (FN1) and periostin (POSTN), in the independent set of ovarian cancer samples. Both proteins are mainly known as extracellular matrix proteins with many important functions in physiology. However, there are also indications that they are implicated in cancer, including ovarian cancer. The expression of these proteins was immunohistochemically analyzed in 108 surgical samples of advanced ovarian cancer (majority: high-grade serous) and additionally on tissue arrays representing different stages of the progression of ovarian and fallopian tube epithelial tumors, from normal epithelia, through benign tumors, to adenocarcinomas of different stages. The correlation with clinical, pathological, and molecular features was evaluated. Kaplan-Meier survival analysis and Cox-proportional hazards models were used to estimate the correlation of the expression levels these proteins with survival. We observed that the higher expression of fibronectin in the tumor stroma was highly associated with shorter overall survival (OS) (Kaplan-Meier analysis, log-rank test p = 0.003). Periostin was also associated with shorter OS (p = 0.04). When we analyzed the combined score, calculated by adding together individual scores for stromal fibronectin and periostin expression, Cox regression demonstrated that this joint FN1&POSTN score was an independent prognostic factor for OS (HR = 2.16; 95% CI: 1.02-4.60; p = 0.044). The expression of fibronectin and periostin was also associated with the source of ovarian tumor sample: metastases showed higher expression of these proteins than primary tumor samples (χ2 test, p = 0.024 and p = 0.032). Elevated expression of fibronectin and periostin was also more common in fallopian cancers than in ovarian cancers. Our results support some previous observations that fibronectin and periostin have a prognostic significance in ovarian cancer. In addition, we propose the joint FN1&POSTN score as an independent prognostic factor for OS. Based on our results, it may also be speculated that these proteins are related to tumor progression and/or may indicate fallopian-epithelial origin of the tumor.
Collapse
|
186
|
Wu L, Gu Y, Liu L, Tang J, Mao J, Xi K, Jiang Z, Zhou Y, Xu Y, Deng L, Chen L, Cui W. Hierarchical micro/nanofibrous membranes of sustained releasing VEGF for periosteal regeneration. Biomaterials 2020; 227:119555. [DOI: 10.1016/j.biomaterials.2019.119555] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/26/2019] [Accepted: 10/15/2019] [Indexed: 01/15/2023]
|
187
|
Rigoglio NN, Rabelo ACS, Borghesi J, de Sá Schiavo Matias G, Fratini P, Prazeres PHDM, Pimentel CMMM, Birbrair A, Miglino MA. The Tumor Microenvironment: Focus on Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:1-38. [PMID: 32266651 DOI: 10.1007/978-3-030-40146-7_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) regulates the development and maintains tissue homeostasis. The ECM is composed of a complex network of molecules presenting distinct biochemical properties to regulate cell growth, survival, motility, and differentiation. Among their components, proteoglycans (PGs) are considered one of the main components of ECM. Its composition, biomechanics, and anisotropy are exquisitely tuned to reflect the physiological state of the tissue. The loss of ECM's homeostasis is seen as one of the hallmarks of cancer and, typically, defines transitional events in tumor progression and metastasis. In this chapter, we discuss the types of proteoglycans and their roles in cancer. It has been observed that the amount of some ECM components is increased, while others are decreased, depending on the type of tumor. However, both conditions corroborate with tumor progression and malignancy. Therefore, ECM components have an increasingly important role in carcinogenesis and this leads us to believe that their understanding may be a key in the discovery of new anti-tumor therapies. In this book, the main ECM components will be discussed in more detail in each chapter.
Collapse
Affiliation(s)
- Nathia Nathaly Rigoglio
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Jessica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Alexander Birbrair
- Department of Radiology, Columbia University Medical Center, New York, NY, USA
- Department of Pathology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
188
|
Wojahn I, Lüdtke TH, Christoffels VM, Trowe MO, Kispert A. TBX2-positive cells represent a multi-potent mesenchymal progenitor pool in the developing lung. Respir Res 2019; 20:292. [PMID: 31870435 PMCID: PMC6929292 DOI: 10.1186/s12931-019-1264-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/18/2019] [Indexed: 12/18/2022] Open
Abstract
Background In the embryonic mammalian lung, mesenchymal cells act both as a signaling center for epithelial proliferation, differentiation and morphogenesis as well as a source for a multitude of differentiated cell types that support the structure of the developing and mature organ. Whether the embryonic pulmonary mesenchyme is a homogenous precursor pool and how it diversifies into different cell lineages is poorly understood. We have previously shown that the T-box transcription factor gene Tbx2 is expressed in the pulmonary mesenchyme of the developing murine lung and is required therein to maintain branching morphogenesis. Methods We determined Tbx2/TBX2 expression in the developing murine lung by in situ hybridization and immunofluorescence analyses. We used a genetic lineage tracing approach with a Cre line under the control of endogenous Tbx2 control elements (Tbx2cre), and the R26mTmG reporter line to trace TBX2-positive cells in the murine lung. We determined the fate of the TBX2 lineage by co-immunofluorescence analysis of the GFP reporter and differentiation markers in normal murine lungs and in lungs lacking or overexpressing TBX2 in the pulmonary mesenchyme. Results We show that TBX2 is strongly expressed in mesenchymal progenitors in the developing murine lung. In differentiated smooth muscle cells and in fibroblasts, expression of TBX2 is still widespread but strongly reduced. In mesothelial and endothelial cells expression is more variable and scattered. All fetal smooth muscle cells, endothelial cells and fibroblasts derive from TBX2+ progenitors, whereas half of the mesothelial cells have a different descent. The fate of TBX2-expressing cells is not changed in Tbx2-deficient and in TBX2-constitutively overexpressing mice but the distribution and abundance of endothelial and smooth muscle cells is changed in the overexpression condition. Conclusion The fate of pulmonary mesenchymal progenitors is largely independent of TBX2. Nevertheless, a successive and precisely timed downregulation of TBX2 is necessary to allow proper differentiation and functionality of bronchial smooth muscle cells and to limit endothelial differentiation. Our work suggests expression of TBX2 in an early pulmonary mesenchymal progenitor and supports a role of TBX2 in maintaining the precursor state of these cells.
Collapse
Affiliation(s)
- Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| |
Collapse
|
189
|
Increased expression of periostin and tenascin-C in eyes with neovascular glaucoma secondary to PDR. Graefes Arch Clin Exp Ophthalmol 2019; 258:621-628. [PMID: 31863397 DOI: 10.1007/s00417-019-04574-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/04/2019] [Accepted: 12/13/2019] [Indexed: 12/17/2022] Open
Abstract
PURPOSE To investigate periostin (PN) and tenascin-C (TNC) expression in the aqueous humor and trabeculectomy specimens of patients with neovascular glaucoma (NVG) secondary to proliferative diabetic retinopathy (PDR). METHODS This study enrolled 37 eyes of 37 patients who were grouped into (1) NVG secondary to PDR (NVG; n = 8); (2) PDR without NVG (PDR; n = 9); (3) primary open-angle glaucoma (POAG; n = 11); and (4) cataract surgery patients as a control group (CG; n = 9). Aqueous humor samples were collected from the anterior chamber at the start of surgery or intravitreal injection of anti-VEGF drug. The concentrations of PN, TNC, VEGF, and TGF-β2 (transforming growth factor-beta 2) were measured by ELISA. Sclerostomy tissues containing trabecular meshwork were obtained from two NVG patients and a POAG patient who underwent trabeculectomy surgery. Immunohistochemical analyses were performed to determine the localization of PN and TNC expression in the sclerostomy tissues. RESULTS PN and TNC-C levels were below detection threshold in the POAG and CG groups. The NVG group had significantly higher levels of PN and TNC compared with the PDR group (84.7 ng/ml vs 2.2 ng/ml and 18.5 ng/ml vs 4.6 ng/ml, respectively; p < 0.05). There was a significant correlation between the levels of PN and TNC-C in the NVG group (r = 0.86, p < 0.05). We found significant expression of PN in the trabecular meshwork and Schlemm's canal of sclerostomy tissues excised from patients with NVG. CONCLUSIONS Increased PN and TNC expression suggests their possible involvement in the pathogenesis of NVG secondary to PDR.
Collapse
|
190
|
Park JC, Han SH, Lee H, Jeong H, Byun MS, Bae J, Kim H, Lee DY, Yi D, Shin SA, Kim YK, Hwang D, Lee SW, Mook-Jung I. Prognostic plasma protein panel for Aβ deposition in the brain in Alzheimer’s disease. Prog Neurobiol 2019; 183:101690. [DOI: 10.1016/j.pneurobio.2019.101690] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/02/2019] [Accepted: 08/28/2019] [Indexed: 12/15/2022]
|
191
|
Brophy RH, Cai L, Duan X, Zhang Q, Townsend RR, Nunley R, Guilak F, Rai MF. Proteomic analysis of synovial fluid identifies periostin as a biomarker for anterior cruciate ligament injury. Osteoarthritis Cartilage 2019; 27:1778-1789. [PMID: 31430535 PMCID: PMC6875635 DOI: 10.1016/j.joca.2019.08.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/25/2019] [Accepted: 08/07/2019] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Emerging evidence suggests that injury to the anterior cruciate ligament (ACL) typically initiates biological changes that contribute to the development of osteoarthritis (OA). The molecular biomarkers or mediators of these biological events remain unknown. The goal of this exploratory study was to identify novel synovial fluid biomarkers associated with early biological changes following ACL injury distinct from findings in end-stage OA. METHODS Synovial fluid was aspirated from patients with acute (≤30 days) and subacute (31-90 days) ACL tears and from patients with advanced OA and probed via tandem mass spectrometry for biomarkers to distinguish OA from ACL injury. Periostin (POSTN) was identified as a potential candidate. Further analyses of POSTN were performed in synovial fluid, OA cartilage, torn ACL remnants, and cultured cells and media by Western blot, PCR, immunostaining and ELISA. RESULTS Synovial fluid analysis revealed that POSTN exhibited higher expression in subacute ACL injury than OA. POSTN expression was relatively low in cartilage/chondrocytes suggesting it is also produced by other intra-articular tissues. Conversely, high and time-dependent expression of POSTN in ACL tear remnants and isolated cells was consistent with the synovial fluid results. CONCLUSIONS Elevated POSTN may provide a synovial fluid biomarker of subacute ACL injury setting separate from OA. Increased expression of POSTN in ACL suggests that the injured ACL may play a pivotal role in POSTN production, which is sensitive to time from injury. Previous studies have shown potential catabolic effects of POSTN, raising the possibility that POSTN contributes to the initiation of joint degeneration and may offer a window of opportunity to intervene in the early stages of post-traumatic OA.
Collapse
Affiliation(s)
- Robert H. Brophy
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Lei Cai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Xin Duan
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Qiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - R. Reid Townsend
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ryan Nunley
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States,,Shriners Hospitals for Children – St. Louis, St. Louis, MO, United States
| | - Muhammad Farooq Rai
- Department of Orthopaedic Surgery, Musculoskeletal Research Center, Washington University School of Medicine, St. Louis, MO, United States,,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
192
|
Evaluation of periostin level for predicting severity and chronicity of childhood atopic dermatitis. Postepy Dermatol Alergol 2019; 36:616-619. [PMID: 31839780 PMCID: PMC6906968 DOI: 10.5114/ada.2018.79728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Introduction Periostin has some effects on the pathogenesis of atopic dermatitis (AD) via release of pro-inflammatory cytokines and chemokines from activated keratinocytes and it is related to chronicity of skin lesions. Aim To evaluate the relationship between plasma periostin levels and severity and chronicity of AD in children. Material and methods The study population consisted of 29 children with atopic dermatitis without concomitant allergic disease such as asthma or allergic rhinitis and 31 healthy controls. Data of demographic features, serum eosinophil, total IgE and skin prick test results were collected through the patient's medical records. The severity of the disease was assessed by the SCORAD index. Serum periostin levels were measured with a human periostin ELISA kit. Results The mean ages of the AD patients and the control group participants were 80.7 ±52.8 and 90.3 ±41.6 months, respectively. Mean plasma periostin levels were 63.0 ±19.0 ng/ml in AD patients, and 23.6 ±7.3 in healthy controls, and there was a statistically significant difference between the two groups (p = 0.001). Plasma periostin level did not vary according to total IgE or serum eosinophil count (p > 0.05). Age of onset and duration of symptoms also were not correlated with plasma periostin levels. Although there was a positive relationship between plasma periostin level and the SCORAD index of patients, it was not statistically significant (r = 0.19, p > 0.05). Conclusions This study showed that plasma periostin levels were increased in children with atopic dermatitis. Periostin may have a partial role in the pathogenesis of atopic dermatitis, but it is not associated with severity or chronicity in children with atopic dermatitis.
Collapse
|
193
|
Kormann R, Kavvadas P, Placier S, Vandermeersch S, Dorison A, Dussaule JC, Chadjichristos CE, Prakoura N, Chatziantoniou C. Periostin Promotes Cell Proliferation and Macrophage Polarization to Drive Repair after AKI. J Am Soc Nephrol 2019; 31:85-100. [PMID: 31690575 DOI: 10.1681/asn.2019020113] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 09/28/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The matricellular protein periostin has been associated with CKD progression in animal models and human biopsy specimens. Periostin functions by interacting with extracellular matrix components to drive collagen fibrillogenesis and remodeling or by signaling through cell-surface integrin receptors to promote cell adhesion, migration, and proliferation. However, its role in AKI is unknown. METHODS We used mice with conditional tubule-specific overexpression of periostin or knockout mice lacking periostin expression in the renal ischemia-reperfusion injury model, and primary cultures of isolated tubular cells in a hypoxia-reoxygenation model. RESULTS Tubular epithelial cells showed strong production of periostin during the repair phase of ischemia reperfusion. Periostin overexpression protected mice from renal injury compared with controls, whereas knockout mice showed increased tubular injury and deteriorated renal function. Periostin interacted with its receptor, integrin-β1, to inhibit tubular cell cycle arrest and apoptosis in in vivo and in vitro models. After ischemia-reperfusion injury, periostin-overexpressing mice exhibited diminished expression of proinflammatory molecules and had more F4/80+ macrophages compared with knockout mice. Macrophages from periostin-overexpressing mice showed increased proliferation and expression of proregenerative factors after ischemia-reperfusion injury, whereas knockout mice exhibited the opposite. Coculturing a macrophage cell line with hypoxia-treated primary tubules overexpressing periostin, or treating such macrophages with recombinant periostin, directly induced macrophage proliferation and expression of proregenerative molecules. CONCLUSIONS In contrast to the detrimental role of periostin in CKD, we discovered a protective role of periostin in AKI. Our findings suggest periostin may be a novel and important mediator of mechanisms controlling renal repair after AKI.
Collapse
Affiliation(s)
- Raphaёl Kormann
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Panagiotis Kavvadas
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Sandrine Placier
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Sophie Vandermeersch
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Aude Dorison
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Jean-Claude Dussaule
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Christos E Chadjichristos
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and.,Faculty of Medicine, Sorbonne University, Paris, France
| | - Niki Prakoura
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and
| | - Christos Chatziantoniou
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unité Mixte de Recherche Scientifique 1155, Tenon Hospital, Paris, France; and .,Faculty of Medicine, Sorbonne University, Paris, France
| |
Collapse
|
194
|
Hasegawa T, Miyamoto-Takasaki Y, Abe M, Qiu Z, Yamamoto T, Yoshida T, Yoshino H, Hongo H, Yokoyama A, Sasaki M, Kuroshima S, Hara K, Kobayashi M, Akiyama Y, Maeda T, Luiz de Freitas PH, Li M, Amizuka N. Histochemical examination on principal collagen fibers in periodontal ligaments of ascorbic acid-deficient ODS-od/od rats. Microscopy (Oxf) 2019; 68:349-358. [PMID: 31271212 DOI: 10.1093/jmicro/dfz021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, we aimed to clarify the role of ascorbic acid in collagen synthesis in periodontal ligaments using osteogenic disorder Shionogi (ODS)/ShiJcl-od/od rats lacking L-gulonolactone oxidase. These rats cannot synthesize ascorbic acid in vivo. Eight-week-old ODS/ShiJcl-od/od male rats were administered ascorbic acid solution at a concentration of 200 mg/dL (control group, n = 6) or ascorbic acid solution at concentration of 0.3 mg/dL (insufficient group, n = 12). Six rats of the insufficient group were then given with ascorbic acid solution at concentration of 200 mg/dL for additional 3 weeks (rescued group, n = 6), and then, their mandibles were histochemically examined. Consequently, the insufficient group specimens were seen to possess fewer collagen fibers, and silver impregnation revealed numerous fine, reticular fiber-like fibrils branching off from collagen in the periodontal ligaments. In control group, faint immunoreactivities for matrix metalloproteinase (MMP)2 and cathepsin H were seen in the periphery of blood vessels and throughout the ligament, respectively. In contrast, in the insufficient group, intense MMP2-immunoreactivity was observed to be associated with collagen fibrils in the periodontal ligaments, and cathepsin H-immunopositivity was seen in ligamentous cells. The rescued group showed abundant collagen fibers filling the periodontal ligament space. Under transmission electron microscopy, ligamentous fibroblasts incorporated collagen fibrils into tubular endosomes/lysosomes while simultaneously synthesizing collagen fibril bundles. Thus, ascorbic acid insufficiency affected the immunolocalization of cathepsin H and MMP2; however, ligamentous fibroblasts appear to possess the potential to synthesize collagen fibers when supplied with ascorbic acid.
Collapse
Affiliation(s)
- Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo Japan
| | - Yukina Miyamoto-Takasaki
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo Japan
| | - Zixuan Qiu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo Japan
| | - Tomomaya Yamamoto
- Section of Dentistry, Japan Ground Self-Defense Forces Camp Asaka, Tokyo, Japan
| | - Taiji Yoshida
- School of Dental Medicine, Hokkaido University, Sapporo Japan
| | - Hirona Yoshino
- School of Dental Medicine, Hokkaido University, Sapporo Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo Japan
| | - Ayako Yokoyama
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo Japan.,Gerodontology, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo Japan
| | - Muneteru Sasaki
- Department of Applied Prosthodontics, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Shinichiro Kuroshima
- Department of Applied Prosthodontics, Medical and Dental Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kuniko Hara
- Pharmacological Evaluation Section, Eisai, Co. Ltd, Tokyo, Japan
| | | | - Yasuhiro Akiyama
- Pharmacological Evaluation Section, Eisai, Co. Ltd, Tokyo, Japan
| | - Takeyasu Maeda
- Center for Advanced Oral Science, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Faculty of Dental Medicine, University of Airlangga, Surabaya, Indonesia
| | | | - Minqi Li
- Division of Basic Science of Stomatology, The School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo Japan
| |
Collapse
|
195
|
Kumaresan D, Balasundaram A, Naik VK, Appukuttan DP. Gingival crevicular fluid periostin levels in chronic periodontitis patients following nonsurgical periodontal treatment with low-level laser therapy. Eur J Dent 2019; 10:546-550. [PMID: 28042273 PMCID: PMC5166314 DOI: 10.4103/1305-7456.195179] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Objective: Periostin is a matricellular protein highly expressed in periosteum, periodontal ligament and is essential for tissue integrity and maturation. It plays a role in collagen fibrillogenesis and is downregulated in periodontal disease. Biostimulation utilizing low-level laser therapy (LLLT) influences periodontal ligament fibroblast proliferation. This study was conducted with the objective of estimating periostin levels in chronic periodontitis (CP) patients following LLLT as an adjunct to root surface debridement (RSD). Materials and Methods: Thirty periodontally healthy participants (Group I) and sixty CP participants were recruited. Based on the therapeutic intervention, CP patients were allocated to either RSD (Group II) or to RSD with LLLT (Group III) group. Clinical parameters and gingival crevicular fluid (GCF) periostin levels were assessed at the baseline and at the 3rd month. Results: Periostin levels were significantly lower in CP patients when compared to healthy individuals at the baseline (P < 0.01). Following nonsurgical periodontal treatment (NSPT), periostin levels significantly increased in both Group II and III, when compared to baseline values (P < 0.001). Comparison of mean periostin levels between both the treatment groups showed a significant increase in LLLT group than RSD at the 3rd month (P < 0.05). Conclusion: Within the limitations of the present study, LLLT application was found to have additional benefits over RSD with respect to clinical periodontal parameters and GCF periostin levels. Moreover, periostin may be used as a possible biomarker to evaluate the outcome following NSPT.
Collapse
Affiliation(s)
| | - Aruna Balasundaram
- Department of Periodontology, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Vanaja Krishna Naik
- Department of Periodontology, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| | - Deva Priya Appukuttan
- Department of Periodontology, SRM Dental College and Hospital, Chennai, Tamil Nadu, India
| |
Collapse
|
196
|
Li D, Zhou W, Cao M. Periostin-modified bone marrow mesenchymal stem cells from osteoporotic rats promote alveolar bone regeneration. J Mol Histol 2019; 50:493-502. [DOI: 10.1007/s10735-019-09843-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023]
|
197
|
Yang T, Deng Z, Pan Z, Qian Y, Yao W, Wang J. Prognostic value of periostin in multiple solid cancers: A systematic review with meta-analysis. J Cell Physiol 2019; 235:2800-2808. [PMID: 31517399 DOI: 10.1002/jcp.29184] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 08/26/2019] [Indexed: 12/15/2022]
Abstract
Previous studies have shown that the expression of periostin (POSTN) is significantly correlated with prognosis in multiple solid cancers. However, the function of POSTN in tumorigenesis and its relationship with clinical outcomes have not been systematically summarized and analyzed. Thus, a meta-analysis was performed to evaluate the prognostic pertinence of POSTN in solid cancer. We conducted a systematic search in the PubMed, EMBASE, Web of Science, and Cochrane library databases, and a total of 10 studies were used to assess the association of POSTN expression and patients' overall survival (OS) and disease-free survival (DFS). The hazard ratio (HR) or odds ratio (OR) and their corresponding 95% confidence intervals (95% CIs) were further calculated to estimate the association between POSTN and relevant clinical parameters of solid cancer patients. The pooled results indicated that POSTN overexpression was associated with poor OS (HR = 2.35, 95% CI = 1.88-2.93, p < .00001) and DFS (HR = 2.70, 95% CI = 2.00-3.65, p < .00001) in a cohort of 993 patients with cancer. Subsequent analyses showed that the positive expression ratio of POSTN was evidently higher in cancer tissues than in normal tissues (OR = 7.44, 95% CI = 3.66-13.95, p < .00001). In addition, subgroup analysis showed that POSTN was related to microvascular invasion (OR = 5.09, 95% CI = 3.07-8.44, p < .00001), tumor differentiation (OR = 2.03, 95% CI = 1.41-2.91, p = .0001), and lymph node metastasis (OR = 3.05, 95% CI = 2.01-4.64, p < .00001). These data showed that POSTN could be a credible prognostic biomarker and a potential therapeutic target in human solid cancer.
Collapse
Affiliation(s)
- Tao Yang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengdong Deng
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Pan
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yawei Qian
- Department of Hepato-Biliary-Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Wei Yao
- Department of Oncology Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianming Wang
- Department of Biliary and Pancreatic Surgery/Cancer Research Center Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Affiliated Tianyou Hospital, Wuhan University of Science & Technology, Wuhan, China
| |
Collapse
|
198
|
Prakoura N, Hadchouel J, Chatziantoniou C. Novel Targets for Therapy of Renal Fibrosis. J Histochem Cytochem 2019; 67:701-715. [PMID: 31116064 PMCID: PMC6713972 DOI: 10.1369/0022155419849386] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/15/2019] [Indexed: 12/19/2022] Open
Abstract
Renal fibrosis is an important component of chronic kidney disease, an incurable pathology with increasing prevalence worldwide. With a lack of available therapeutic options, end-stage renal disease is currently treated with renal replacement therapy through dialysis or transplantation. In recent years, many efforts have been made to identify novel targets for therapy of renal diseases, with special focus on the characterization of unknown mediators and pathways participating in renal fibrosis development. Using experimental models of renal disease and patient biopsies, we identified four novel mediators of renal fibrosis with potential to constitute future therapeutic targets against kidney disease: discoidin domain receptor 1, periostin, connexin 43, and cannabinoid receptor 1. The four candidates were highly upregulated in different models of renal disease and were localized at the sites of injury. Subsequent studies showed that they are centrally involved in the underlying mechanisms of renal fibrosis progression. Interestingly, inhibition of either of these proteins by different strategies, including gene deletion, antisense administration, or specific blockers, delayed the progression of renal disease and preserved renal structure and function, even when the inhibition started after initiation of the disease. This review will summarize the current findings on these candidates emphasizing on their potential to constitute future targets of therapy.
Collapse
Affiliation(s)
- Niki Prakoura
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
| | - Juliette Hadchouel
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
- Sorbonne Université, Paris, France
| | - Christos Chatziantoniou
- Institut National de la Santé Et de la Recherche Médicale (INSERM) UMRS 1155, Tenon Hospital, Paris, France
- Sorbonne Université, Paris, France
| |
Collapse
|
199
|
Seki M, Furukawa N, Koitabashi N, Obokata M, Conway SJ, Arakawa H, Kurabayashi M. Periostin-expressing cell-specific transforming growth factor-β inhibition in pulmonary artery prevents pulmonary arterial hypertension. PLoS One 2019; 14:e0220795. [PMID: 31437169 PMCID: PMC6705784 DOI: 10.1371/journal.pone.0220795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 07/23/2019] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor beta (TGF-β) has been shown to play a critical role in pathogenesis of pulmonary arterial hypertension (PAH) although the precise role of TGF-β signaling remains uncertain. A recent report has shown that periostin (Pn) is one of the most upregulated proteins in human PAH lung compared with healthy lungs. We established type I TGF-β receptor knockout mice specifically with Pn expressing cell (Pn-Cre/Tgfb1fl/fl mice). Increases in PA pressure and pulmonary artery muscularization were induced by hypoxia of 10% oxygen for 4 weeks. Lung Pn expression was markedly induced by 4 week-hypoxia. Pn-Cre/Tgfb1fl/fl mice showed lower right ventricular pressure elevation, inhibition of PA medial thickening. Fluorescent co-immunostaining showed that Smad3 activation in Pn expressing cell is attenuated. These results suggest that TGF-β signaling in Pn expressing cell may have an important role in the pathogenesis of PAH by controlling medial thickening.
Collapse
Affiliation(s)
- Mitsuru Seki
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- Department of Pediatrics, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Nozomi Furukawa
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Norimichi Koitabashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
- * E-mail:
| | - Masaru Obokata
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Simon J. Conway
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Hirokazu Arakawa
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Masahiko Kurabayashi
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| |
Collapse
|
200
|
Sterzyńska K, Kaźmierczak D, Klejewski A, Świerczewska M, Wojtowicz K, Nowacka M, Brązert J, Nowicki M, Januchowski R. Expression of Osteoblast-Specific Factor 2 (OSF-2, Periostin) Is Associated with Drug Resistance in Ovarian Cancer Cell Lines. Int J Mol Sci 2019; 20:ijms20163927. [PMID: 31412536 PMCID: PMC6719218 DOI: 10.3390/ijms20163927] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 12/22/2022] Open
Abstract
One of the main obstacles to the effective treatment of ovarian cancer patients continues to be the drug resistance of cancer cells. Osteoblast-Specific Factor 2 (OSF-2, Periostin) is a secreted extracellular matrix protein (ECM) expressed in fibroblasts during bone and teeth development. Expression of OSF-2 has been also related to the progression and drug resistance of different tumors. The present study investigated the role of OSF-2 by evaluating its expression in the primary serous ovarian cancer cell line, sensitive (W1) and resistant to doxorubicin (DOX) (W1DR) and methotrexate (MTX) (W1MR). The OSF-2 transcript (real-time PCR analysis), protein expression in cell lysates and cell culture medium (western blot), and expression of the OSF-2 protein in cell lines (immunofluorescence) were investigated in this study. Increased expression of OSF-2 mRNA was observed in drug-resistant cells and followed by increased protein expression in cell culture media of drug-resistant cell lines. A subpopulation of ALDH1A1-positive cells was noted for W1DR and W1MR cell lines; however, no direct co-expression with OSF-2 was demonstrated. Both drugs induced OSF-2 expression after a short period of exposure of the drug-sensitive cell line to DOX and MTX. The obtained results indicate that OSF-2 expression might be associated with the development of DOX and MTX resistance in the primary serous W1 ovarian cancer cell line.
Collapse
Affiliation(s)
- Karolina Sterzyńska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Dominika Kaźmierczak
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Andrzej Klejewski
- Department of Nursing, Poznan University of Medical Sciences, Smoluchowskiego 11 St., 60-179 Poznań, Poland
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Monika Świerczewska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Karolina Wojtowicz
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Marta Nowacka
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Jacek Brązert
- Department of Obstetrics and Women's Diseases, Poznan University of Medical Sciences, Polna 33 St., 60-535 Poznań, Poland
| | - Michał Nowicki
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland
| | - Radosław Januchowski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., 61-781 Poznań, Poland.
| |
Collapse
|