151
|
Ma X, Meng J, Jia M, Bi L, Zhou Y, Wang Y, Hu J, He G, Luo X. Exendin-4, a glucagon-like peptide-1 receptor agonist, prevents osteopenia by promoting bone formation and suppressing bone resorption in aged ovariectomized rats. J Bone Miner Res 2013; 28:1641-52. [PMID: 23427056 DOI: 10.1002/jbmr.1898] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Revised: 01/17/2013] [Accepted: 02/10/2013] [Indexed: 12/13/2022]
Abstract
Osteoporosis mainly affects postmenopausal women and older men. Gastrointestinal hormones released after meal ingestion, such as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide (GLP)-2, have been shown to regulate bone turnover. However, whether GLP-1, another important gastrointestinal hormone, and its analogues also have antiosteoporotic effects, especially in aged postmenopausal situation, has not been confirmed. In the present study, we evaluated the effects of the GLP-1 receptor agonist exendin-4 on ovariectomy (OVX)-induced osteoporosis in old rats. Twelve-month-old female Sprague-Dawley rats were subjected to OVX, and exendin-4 was administrated 4 weeks after the surgery and lasted for 16 weeks. Bone characters and related serum and gene biomarkers were analyzed. Sixteen weeks of treatment with exendin-4 slowed down body weight gain by decreasing fat mass and prevented the loss of bone mass in old OVX rats. Exendin-4 also enhanced bone strength and prevented the deterioration of trabecular microarchitecture. Moreover, exendin-4 decreased the urinary deoxypyridinoline (DPD)/creatinine ratio and serum C-terminal cross-linked telopeptides of type I collagen (CTX-I) and increased serum alkaline phosphatase (ALP), osteocalcin (OC), and N-terminal propeptide of type 1 procollagen (P1NP) levels, key biochemical markers of bone turnover. Interestingly, gene expression results further showed that exendin-4 not only inhibited bone resorption by increasing the osteoprotegerin (OPG)/receptor activator of NF-κB ligand (RANKL) ratio, but also promoted bone formation by increasing the expression of OC, Col1, Runx2, and ALP, which exhibited dual regulatory effects on bone turnover as compared with previous antiosteoporotic agents. In conclusion, these findings demonstrated for the first time the antiosteoporotic effects of exendin-4 in old OVX rats and that it might be a potential candidate for treatment of aged postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Xue Ma
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Incretin peptides, principally GLP-1 and GIP, regulate islet hormone secretion, glucose concentrations, lipid metabolism, gut motility, appetite and body weight, and immune function, providing a scientific basis for utilizing incretin-based therapies in the treatment of type 2 diabetes. Activation of GLP-1 and GIP receptors also leads to nonglycemic effects in multiple tissues, through direct actions on tissues expressing incretin receptors and indirect mechanisms mediated through neuronal and endocrine pathways. Here we contrast the pharmacology and physiology of incretin hormones and review recent advances in mechanisms coupling incretin receptor signaling to pleiotropic metabolic actions in preclinical studies. We discuss whether mechanisms identified in preclinical studies have potential translational relevance for the treatment of human disease and highlight controversies and uncertainties in incretin biology that require resolution in future studies.
Collapse
Affiliation(s)
- Jonathan E Campbell
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Daniel J Drucker
- Department of Medicine, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada.
| |
Collapse
|
153
|
Paldánius PM, Ivaska KK, Hovi P, Andersson S, Eriksson JG, Väänänen K, Kajantie E, Mäkitie O. Total and carboxylated osteocalcin associate with insulin levels in young adults born with normal or very low birth weight. PLoS One 2013; 8:e63036. [PMID: 23658795 PMCID: PMC3643916 DOI: 10.1371/journal.pone.0063036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/27/2013] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Osteocalcin (OC), a bone-derived protein, has been implicated in the regulation of glucose and energy metabolism. Young adults born with very low birth weight (VLBW) have altered glucose regulation and lower bone mineral density (BMD) compared with those born at term. The aim of this study was to explore the association between bone and glucose metabolism in healthy young adults born prematurely or at term. METHODS The cohort of this cross-sectional study comprised 332 non-diabetic young adults (age 18 to 27 years) born either preterm with VLBW (n = 163) or at term (n = 169). OC, carboxylated osteocalcin (cOC) and markers of glucose metabolism were measured at fasting and after a 75-g oral glucose tolerance test (OGTT). RESULTS VLBW adults were shorter, had lower BMD (p<0.001) and higher fasting OC (p = 0.027) and cOC (p = 0.005) than term-born subjects. They also had higher 2-hour insulin (p = 0.001) and glucose (p = 0.037) concentrations. OGTT induced a significant reduction in OC (p<0.001), similar in both groups. OC reduction was not associated with OGTT-induced increases in insulin (p = 0.54). However, fasting total OC and cOC correlated negatively with fasting insulin after adjustment for age, gender, BMD and VLBW status (r = -0.182, p = 0.009 and r = -0.283, p<0.001, respectively). CONCLUSION Adults born with VLBW have higher OC and cOC than their peers born at term. This may in part reflect the mechanisms that underlie their lower BMD and decreased insulin sensitivity. Serum OC appears to be negatively associated with long-term glucose regulation whereas acute changes during OGTT may be mediated via other mechanisms.
Collapse
Affiliation(s)
- Päivi M Paldánius
- Children's Hospital, Helsinki University Central Hospital, and Institute of Clinical Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Baxter I, Rogers A, Eastell R, Peel N. Evaluation of urinary N-telopeptide of type I collagen measurements in the management of osteoporosis in clinical practice. Osteoporos Int 2013; 24:941-7. [PMID: 22872068 DOI: 10.1007/s00198-012-2097-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Accepted: 07/20/2012] [Indexed: 11/28/2022]
Abstract
UNLABELLED We measured urinary N-telopeptide of type I collagen (U-NTX) to monitor response to bisphosphonates for osteoporosis. Decrease in U-NTX was associated with increase in spine bone density. A lesser response in U-NTX was more likely in those with secondary osteoporosis or with poor compliance. U-NTX may be a useful early indicator of treatment non-compliance or secondary osteoporosis. INTRODUCTION This study aims to determine the utility of the bone resorption marker, U-NTX, in the clinical setting, to monitor the response to bisphosphonate therapy (alendronate and risedronate) for osteoporosis. METHODS A retrospective evaluation of data collected as part of the bone turnover marker monitoring service in the Metabolic Bone Centre, Sheffield, UK. Treatment compliance, underlying causes of osteoporosis, change in U-NTX/creatinine (Cr) at 4 months and change in spine and hip bone mineral density (BMD) by dual-energy X-ray absorptiometry were recorded. Treatment response was defined as either a change in U-NTX/Cr greater than a pre-defined least significant change (LSC) of 54 % or to within the lower half of a pre-defined pre-menopausal reference interval (≤ 30 nM BCE/mmol Cr). RESULTS A greater decrease in U-NTX/Cr at 4 months was associated with a greater increase in spine BMD at 18 months (r = -0.33; P < 0.0001, Pearson's correlation). The mean U-NTX/Cr at 4 months was higher in patients with secondary osteoporosis compared with those with primary osteoporosis (P < 0.01, ANOVA). A lesser response in U-NTX/Cr increased the likelihood of secondary osteoporosis or poor treatment compliance (P = 0.04, Fisher's exact test). A lack of response in U-NTX/Cr to within the lower half of the reference interval was a better indicator of secondary osteoporosis and treatment non-compliance than a change in U-NTX/Cr greater than LSC. CONCLUSIONS Treatment monitoring using U-NTX/Cr has a place in clinical practice for the early identification of non-compliance or presence of secondary osteoporosis.
Collapse
Affiliation(s)
- I Baxter
- NIHR Musculoskeletal Biomedical Research Unit, Department of Human Metabolism, University of Sheffield, Sheffield, UK
| | | | | | | |
Collapse
|
155
|
Gaudin-Audrain C, Irwin N, Mansur S, Flatt PR, Thorens B, Baslé M, Chappard D, Mabilleau G. Glucose-dependent insulinotropic polypeptide receptor deficiency leads to modifications of trabecular bone volume and quality in mice. Bone 2013; 53:221-30. [PMID: 23220186 DOI: 10.1016/j.bone.2012.11.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 11/13/2012] [Accepted: 11/28/2012] [Indexed: 12/12/2022]
Abstract
A role for the gastro-intestinal tract in controlling bone remodeling is suspected since serum levels of bone remodeling markers are affected rapidly after a meal. Glucose-dependent insulinotropic polypeptide (GIP) represents a suitable candidate in mediating this effect. The aim of the present study was to investigate the effect of total inhibition of GIP signaling on trabecular bone volume, microarchitecture and quality. We used GIP receptor (GIPR) knockout mice and investigated trabecular bone volume and microarchitecture by microCT and histomorphometry. GIPR-deficient animals at 16 weeks of age presented with a significant (20%) increase in trabecular bone mass accompanied by an increase (17%) in trabecular number. In addition, the number of osteoclasts and bone formation rate was significantly reduced and augmented, respectively in these animals when compared with wild-type littermates. These modifications of trabecular bone microarchitecture are linked to a remodeling in the expression pattern of adipokines in the GIPR-deficient mice. On the other hand, despite significant enhancement in bone volume, intrinsic mechanical properties of the bone matrix was reduced as well as the distribution of bone mineral density and the ratio of mature/immature collagen cross-links. Taken together, these results indicate an increase in trabecular bone volume in GIPR KO animals associated with a reduction in bone quality.
Collapse
|
156
|
Exendin-4 increases bone mineral density in type 2 diabetic OLETF rats potentially through the down-regulation of SOST/sclerostin in osteocytes. Life Sci 2013; 92:533-40. [DOI: 10.1016/j.lfs.2013.01.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 12/17/2012] [Accepted: 01/02/2013] [Indexed: 12/22/2022]
|
157
|
Askov-Hansen C, Jeppesen PB, Lund P, Hartmann B, Holst JJ, Henriksen DB. Effect of glucagon-like peptide-2 exposure on bone resorption: Effectiveness of high concentration versus prolonged exposure. ACTA ACUST UNITED AC 2013; 181:4-8. [DOI: 10.1016/j.regpep.2012.11.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 02/27/2012] [Accepted: 11/18/2012] [Indexed: 11/29/2022]
|
158
|
Pedersen J, Ugleholdt RK, Jørgensen SM, Windeløv JA, Grunddal KV, Schwartz TW, Füchtbauer EM, Poulsen SS, Holst PJ, Holst JJ. Glucose metabolism is altered after loss of L cells and α-cells but not influenced by loss of K cells. Am J Physiol Endocrinol Metab 2013; 304:E60-73. [PMID: 23115082 DOI: 10.1152/ajpendo.00547.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The enteroendocrine K and L cells are responsible for secretion of glucose-dependent insulinotropic polypeptide (GIP) and glucagon like-peptide 1 (GLP-1), whereas pancreatic α-cells are responsible for secretion of glucagon. In rodents and humans, dysregulation of the secretion of GIP, GLP-1, and glucagon is associated with impaired regulation of metabolism. This study evaluates the consequences of acute removal of Gip- or Gcg-expressing cells on glucose metabolism. Generation of the two diphtheria toxin receptor cellular knockout mice, TgN(GIP.DTR) and TgN(GCG.DTR), allowed us to study effects of acute ablation of K and L cells and α-cells. Diphtheria toxin administration reduced the expression of Gip and content of GIP in the proximal jejunum in TgN(GIP.DTR) and expression of Gcg and content of proglucagon-derived peptides in both proximal jejunum and terminal ileum as well as content of glucagon in pancreas in TgN(GCG.DTR) compared with wild-type mice. GIP response to oral glucose was attenuated following K cell loss, but oral and intraperitoneal glucose tolerances were unaffected. Intraperitoneal glucose tolerance was impaired following combined L cell and α-cell loss and normal following α-cell loss. Oral glucose tolerance was improved following L cell and α-cell loss and supernormal following α-cell loss. We present two mouse models that allow studies of the effects of K cell or L cell and α-cell loss as well as isolated α-cell loss. Our findings show that intraperitoneal glucose tolerance is dependent on an intact L cell mass and underscore the diabetogenic effects of α-cell signaling. Furthermore, the results suggest that K cells are less involved in acute regulation of mouse glucose metabolism than L cells and α-cells.
Collapse
Affiliation(s)
- J Pedersen
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Ceccarelli E, Guarino EG, Merlotti D, Patti A, Gennari L, Nuti R, Dotta F. Beyond glycemic control in diabetes mellitus: effects of incretin-based therapies on bone metabolism. Front Endocrinol (Lausanne) 2013; 4:73. [PMID: 23785355 PMCID: PMC3684850 DOI: 10.3389/fendo.2013.00073] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 06/03/2013] [Indexed: 12/31/2022] Open
Abstract
Diabetes mellitus (DM) and osteoporosis (OP) are common disorders with a significant health burden, and an increase in fracture risk has been described both in type 1 (T1DM) and in type 2 (T2DM) diabetes. The pathogenic mechanisms of impaired skeletal strength in diabetes remain to be clarified in details and they are only in part reflected by a variation in bone mineral density. In T2DM, the occurrence of low bone turnover together with a decreased osteoblast activity and compromised bone quality has been shown. Of note, some antidiabetic drugs (e.g., thiazolidinediones, insulin) may deeply affect bone metabolism. In addition, the recently introduced class of incretin-based drugs (i.e., GLP-1 receptor agonists and DPP-4 inhibitors) is expected to exert potentially beneficial effects on bone health, possibly due to a bone anabolic activity of GLP-1, that can be either direct or indirect through the involvement of thyroid C cells. Here we will review the established as well as the putative effects of incretin hormones and of incretin-based drugs on bone metabolism, both in preclinical models and in man, taking into account that such therapeutic strategy may be effective not only to achieve a good glycemic control, but also to improve bone health in diabetic patients.
Collapse
Affiliation(s)
- Elena Ceccarelli
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Elisa G. Guarino
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Daniela Merlotti
- Internal Medicine Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Aurora Patti
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Internal Medicine Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Luigi Gennari
- Internal Medicine Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Internal Medicine Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
- Fondazione Umberto Di Mario ONLUS, Siena, Italy
- *Correspondence: Francesco Dotta, U.O.C. Diabetologia, University of Siena, Policlinico Le Scotte, Viale Bracci 18, Siena 53100, Italy e-mail:
| |
Collapse
|
160
|
Scott JPR, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD. Effect of fasting versus feeding on the bone metabolic response to running. Bone 2012; 51:990-9. [PMID: 22960044 DOI: 10.1016/j.bone.2012.08.128] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 07/30/2012] [Accepted: 08/22/2012] [Indexed: 11/16/2022]
Abstract
Individuals often perform exercise in the fasted state, but the effects on bone metabolism are not currently known. We compared the effect of an overnight fast with feeding a mixed meal on the bone metabolic response to treadmill running. Ten, physically-active males aged 28 ± 4y (mean ±SD) completed two, counterbalanced, 8d trials. After 3d on a standardised diet, participants performed 60 min of treadmill running at 65% VO(2max) on Day 4 following an overnight fast (FAST) or a standardised breakfast (FED). Blood samples were collected at baseline, before and during exercise, for 3h after exercise, and on four consecutive follow-up days (FU1-FU4). Plasma/serum were analysed for the c-terminal telopeptide region of collagen type 1 (β-CTX), n-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone alkaline phosphatase (bone ALP), parathyroid hormone (PTH), albumin-adjusted calcium, phosphate, osteoprotegerin (OPG), cortisol, leptin and ghrelin. Only the β-CTX response was significantly affected by feeding. Pre-exercise concentrations decreased more in FED compared with FAST (47% vs 26%, P<0.001) but increased during exercise in both groups and were not significantly different from baseline at 1h post-exercise. At 3h post-exercise, concentrations were decreased (33%, P<0.001) from baseline in FAST and significantly lower (P<0.001) than in FED. P1NP and PTH increased, and OC decreased during exercise. Bone markers were not significantly different from baseline on FU1-FU4. Fasting had only a minor effect on the bone metabolic response to subsequent acute, endurance exercise, reducing the duration of the increase in β-CTX during early recovery, but having no effect on changes in bone formation markers. The reduced duration of the β-CTX response with fasting was not fully explained by changes in PTH, OPG, leptin or ghrelin.
Collapse
|
161
|
Bone: incretin hormones perceiver or receiver? EXPERIMENTAL DIABETES RESEARCH 2012; 2012:519784. [PMID: 22761607 PMCID: PMC3385656 DOI: 10.1155/2012/519784] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/09/2012] [Indexed: 11/18/2022]
Abstract
Novel incretin-based drugs, such as glucagon-like peptide-1 receptor agonists (GLP-1 RA) and dipeptidyl peptidase-4 inhibitors (DPP-4i), have been last introduced in the pharmacological treatment of type 2 diabetes. In the last few years, the interest on the relationship of gut hormones with bone metabolism in diabetes has been increasing. The aim of present paper is to examine in vitro and in vivo evidence on the connections between incretin hormones and bone metabolism. We also discuss results of clinical trials and metaanalysis, explore the effects of incretin drugs in vitro on osteogenic cells and osteoclasts, and speculate on the possibility of different effects of GLP-1 RA and DPP-4i on the risk of bone fractures risk in humans. Although existing preliminary evidence suggests a protective effect on the bone, at least for DPP-4i, further controlled, long-term studies with measurement of bone markers, bone density, and clinical fractures rates are needed to substantiate and confirm those findings.
Collapse
|
162
|
Abstract
Biochemical markers of bone turnover (bone turnover markers, BTMs) can be used to study changes in bone remodelling in osteoporosis. Investigators and clinicians should be aware of the appropriate sample collection and storage conditions for optimum measurements of these markers. Improvements in the variability of BTM measurements have resulted from the development of assays for automated analysers, and from international consensus regarding their use. Appropriate reference intervals should be used for the optimum interpretation of results. BTMs can provide information that is useful for the management of patients with osteoporosis, for both the initial clinical assessment and for guiding and monitoring of treatment. BTMs are clinically useful to determine possible causes of secondary osteoporosis by identifying patients with high bone turnover and rapid bone loss. In the follow-up of treatment response, BTM levels respond rapidly to both anabolic and antiresorptive treatments. BTM changes can also be used for understanding the mechanism of action of drugs in development and identifying the correct dose; they are also potentially useful as surrogate biomarkers for fracture.
Collapse
|
163
|
Abstract
The past decade has seen a significant expansion of our understanding of the interaction between the neural system and bone. While innervation of bone was long appreciated, the discovery of central relays from the hypothalamus to the cells of bone has seen the identification of a number of efferent neural pathways to bone. The neuropeptide Y (NPY) system has proven to represent a major central pathway, regulating the activity of osteoblasts and osteoclasts, through signaling of central and peripheral ligands, through specific receptors within the hypothalamus and the osteoblast. Moreover, this pathway is now recognized as acting to coordinate both skeletal and energy homeostasis. This review examines the mechanism and actions of the NPY pathway to regulate bone mass and bone cell activity.
Collapse
Affiliation(s)
- Ee Cheng Khor
- Bone Regulation, Neuroscience Research Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| | | |
Collapse
|
164
|
|
165
|
Chubb SAP. Measurement of C-terminal telopeptide of type I collagen (CTX) in serum. Clin Biochem 2012; 45:928-35. [PMID: 22504058 DOI: 10.1016/j.clinbiochem.2012.03.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/26/2012] [Accepted: 03/28/2012] [Indexed: 01/27/2023]
Abstract
Serum CTX assays measure a fragment of the C-terminal telopeptide of type 1 collagen released during resorption of mature bone. Assay reagents are available in manual and automated formats and give good analytical performance. However their standardisation is not transparent and significant differences in results between methods have been demonstrated. CTX is most stable in EDTA plasma, although serum samples processed promptly would be satisfactory. sCTX shows a profound circadian rhythm, especially in non-fasting subjects; specimens should be collected from fasting patients at a well-defined time of day to minimise biological variation. Reference intervals in pre-menopausal women have been well studied but in other adult groups there is less information. Healthy children show the expected age-related variation corresponding to growth rate. Serum CTX fulfils or partially fulfils all the criteria of a reference bone turnover marker. Further studies aimed at reducing inter-method differences in results and establishing the relationships of sCTX with fracture risk and with fracture risk improvement with treatment are required.
Collapse
Affiliation(s)
- S A Paul Chubb
- School of Pathology and Laboratory Medicine and School of Medicine and Pharmacology, University of Western Australia, Australia.
| |
Collapse
|
166
|
Paldánius PM, Ivaska KK, Hovi P, Andersson S, Väänänen HK, Kajantie E, Mäkitie O. The effect of oral glucose tolerance test on serum osteocalcin and bone turnover markers in young adults. Calcif Tissue Int 2012; 90:90-5. [PMID: 22147278 DOI: 10.1007/s00223-011-9551-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 11/10/2011] [Indexed: 11/30/2022]
Abstract
Osteocalcin (OC) is an osteoblast-derived protein implicated in the regulation of glucose tolerance and energy metabolism. This endocrine function has been suggested to be exerted via its undercarboxylated form, which has been shown to induce expression of adiponectin, insulin, and islet cell proliferation in mice. Furthermore, insulin has recently been shown to regulate the biological activity of OC in bone. Our aim was to explore the association between glucose and bone metabolism by evaluating the effect of a standard 75 g oral glucose tolerance test (OGTT) on serum OC, carboxylated OC (cOC) and bone-turnover markers (BTMs) C terminal telopeptide (βCTX-I) and N terminal propeptide (PINP) of type I collagen and tartrate-resistant acid phosphatase 5b (TRACP5b). Serum samples collected at 0 and at 120 min were analyzed in a cohort of normoglycemic young adults (n = 23, mean age 23.6 years). During OGTT a significant decrease was observed in all BTMs (P < 0.001 for all variables). The median decreases from 0 to 120 min for OC, cOC, βCTX-I, PINP, and TRACP5b were -32.1% (-37.9 to -19.6), -34.4% (-39.8 to -22.2), -61.4% (-68.5 to -53.0), -26.8% (-33.2 to -19.2), and -44.5% (-48.3 to -40.2), respectively. A strong association between the changes in OC and cOC was observed (r = 0.83, P < 0.001). The decrease in PINP was associated with changes in OC, whereas the changes in βCTX-I and TRACP5b were not associated with decreases in OC or cOC. The observed OGTT-induced changes in bone-derived proteins were partially independent of each other and potentially mediated by different mechanisms.
Collapse
Affiliation(s)
- P M Paldánius
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Finland.
| | | | | | | | | | | | | |
Collapse
|
167
|
Scott JPR, Sale C, Greeves JP, Fraser WD. Comment on Rogers et al. “Acute response of plasma markers of bone turnover to a single bout of resistance training or plyometrics”. J Appl Physiol (1985) 2012; 112:328-9; author reply 330. [DOI: 10.1152/japplphysiol.01209.2011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
| | - Craig Sale
- School of Science and Technology, Nottingham Trent University, Nottingham
| | - Julie P. Greeves
- Department of Occupational Medicine, HQ Army Recruiting and Training Division, Upavon; and
| | | |
Collapse
|
168
|
Abstract
The incretin hormones, glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), are gut peptides which are secreted by endocrine cells in the intestinal mucosa. Their plasma concentrations increase quickly following food ingestion, and carbohydrate, fat, and protein have all been shown to stimulate GLP-1 and GIP secretion. Although neural and hormonal mechanisms have also been proposed to regulate incretin hormone secretion, direct stimulation of the enteroendocrine cells by the presence of nutrients in the intestinal lumen is probably the most important factor in humans. The actions of the incretin hormones are crucial for maintaining normal islet function and glucose homeostasis. Furthermore, it is also now being recognized that incretin hormones may have other actions in addition to their glucoregulatory effects. Studies have shown that GLP-1 and GIP levels and actions may be perturbed in disease states, but interpretation of the precise relationship between disease and incretins is difficult. The balance of evidence seems to suggest that alterations in secretion and/or action of incretin hormones arise secondarily to the development of insulin resistance, glucose intolerance, and/or increases in body weight rather than being causative factors. However, these impairments may contribute to the deterioration of glycemic control in diabetic patients.
Collapse
Affiliation(s)
- Carolyn F Deacon
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
169
|
Ducher G, Turner AI, Kukuljan S, Pantano KJ, Carlson JL, Williams NI, De Souza MJ. Obstacles in the optimization of bone health outcomes in the female athlete triad. Sports Med 2011; 41:587-607. [PMID: 21688870 DOI: 10.2165/11588770-000000000-00000] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Maintaining low body weight for the sake of performance and aesthetic purposes is a common feature among young girls and women who exercise on a regular basis, including elite, college and high-school athletes, members of fitness centres, and recreational exercisers. High energy expenditure without adequate compensation in energy intake leads to an energy deficiency, which may ultimately affect reproductive function and bone health. The combination of low energy availability, menstrual disturbances and low bone mineral density is referred to as the 'female athlete triad'. Not all athletes seek medical assistance in response to the absence of menstruation for 3 or more months as some believe that long-term amenorrhoea is not harmful. Indeed, many women may not seek medical attention until they sustain a stress fracture. This review investigates current issues, controversies and strategies in the clinical management of bone health concerns related to the female athlete triad. Current recommendations focus on either increasing energy intake or decreasing energy expenditure, as this approach remains the most efficient strategy to prevent further bone health complications. However, convincing the athlete to increase energy availability can be extremely challenging. Oral contraceptive therapy seems to be a common strategy chosen by many physicians to address bone health issues in young women with amenorrhoea, although there is little evidence that this strategy improves bone mineral density in this population. Assessment of bone health itself is difficult due to the limitations of dual-energy X-ray absorptiometry (DXA) to estimate bone strength. Understanding how bone strength is affected by low energy availability, weight gain and resumption of menses requires further investigations using 3-dimensional bone imaging techniques in order to improve the clinical management of the female athlete triad.
Collapse
Affiliation(s)
- Gaele Ducher
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia.
| | | | | | | | | | | | | |
Collapse
|
170
|
Ghrelin is an Osteoblast Mitogen and Increases Osteoclastic Bone Resorption In Vitro. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:605193. [PMID: 21912562 PMCID: PMC3168896 DOI: 10.1155/2011/605193] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 07/07/2011] [Indexed: 11/17/2022]
Abstract
Ghrelin is released in response to fasting, such that circulating levels are highest immediately prior to meals. Bone turnover is acutely responsive to the fed state, with increased bone resorption during fasting and suppression during feeding. The current study investigated the hypothesis that ghrelin regulates the activity of bone cells. Ghrelin increased the bone-resorbing activity of rat osteoclasts, but did not alter osteoclast differentiation in a murine bone marrow assay nor bone resorption in ex vivo calvarial cultures. Ghrelin showed mitogenic activity in osteoblasts, with a strong effect in human cells and a weaker effect in rat osteoblasts. The expression of the human ghrelin receptor, GHSR, varied among individuals and was detectable in 25–30% of bone marrow and osteoblast samples. However, the rodent Ghsr expression was undetectable in bone cells and cell lines from rat and mouse. These data suggest that elevated levels of ghrelin may contribute to the higher levels of bone turnover that occurs in the fasted state.
Collapse
|
171
|
Rogers RS, Dawson AW, Wang Z, Thyfault JP, Hinton PS. Acute response of plasma markers of bone turnover to a single bout of resistance training or plyometrics. J Appl Physiol (1985) 2011; 111:1353-60. [PMID: 21868687 DOI: 10.1152/japplphysiol.00333.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The time course of changes in plasma bone turnover markers following an acute bout of resistance training (RT) or plyometrics (PLY) has not been well characterized. This study is the first to compare the acute response of bone formation and resorption markers to a single bout of RT or PLY. Using a partially randomized, cross-over study design, 12 recreationally active men, aged 43 ± 5 yr, each completed four exercise trials: RT (Fed/Fasted) and PLY (Fed/Fasted). In addition to the RT and PLY trials, 5 of the original 12 participants also completed a fasted, no-exercise control trial to examine time-of-day variation. For each trial, blood was drawn immediately before exercise (PRE), immediately following exercise, and 15 min, 30 min, 1 h, 2 h, and 24 h following PRE for determination of plasma bone-specific alkaline phosphatase (BAP), osteocalcin (OC), tartrate-resistant acid phosphatase 5b (TRAP5b), COOH-terminal telopeptide of type I collagen (CTX), testosterone, parathyroid hormone, and cortisol. A one-factor repeated-measures ANOVA was performed for each trial to detect changes in bone markers during the 2 h following RT or PLY. TRAP5b transiently decreased during the 2 h following all exercise trials (main effect for time, P < 0.05), but returned to PRE concentrations 2 h postexercise. BAP, CTX, and OC remained unchanged, except for reductions in BAP and CTX following PLY-Fasted and PLY-Fed, respectively. During the control trial, BAP decreased, while TRAP5b, CTX, and OC remained unchanged. In general, plasma hormone concentrations decreased during the 2 h following PLY or RT, and cumulative decreases in TRAP5b during the 2 h following exercise were positively correlated with cumulative decreases in parathyroid hormone. The results of the present study suggest that the timing of the measurement of bone turnover markers relative to the last exercise bout is important for detection of exercise-associated changes in bone turnover markers, as the markers returned to preexercise values within 2 h of RT or PLY.
Collapse
Affiliation(s)
- Robert S Rogers
- Dept. of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | |
Collapse
|
172
|
Tee CT, Wallis K, Gabe SM. Emerging treatment options for short bowel syndrome: potential role of teduglutide. Clin Exp Gastroenterol 2011; 4:189-96. [PMID: 22016579 PMCID: PMC3190286 DOI: 10.2147/ceg.s13906] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Current medical management of short bowel syndrome (SBS) involves the use of lifelong parenteral nutrition (PN). Glucagon-like peptide-2 (GLP-2), an important intestinotrophic growth factor has been shown to increase intestinal absorption in SBS through augmentation of post-resection intestinal adaptation. This may lead to the reduction of PN dependence in patients with SBS. AREAS COVERED IN REVIEW Advancing research of GLP-2 physiology has spurred the growing understanding of the diverse effects of GLP-2. The development of the degradation resistant GLP-2 analog, teduglutide (Gattex(TM), NPS Pharmaceuticals, Bedminster, NJ), has allowed its exploration as a therapeutic agent in a variety of clinical settings. Recent multicenter, placebo-controlled studies of GLP-2 in SBS patients demonstrate meaningful reductions in PN requirements with good safety profiles. The reparative and immunomodulatory effects of teduglutide may also be beneficial in patients with inflammatory bowel disease (IBD). Safety concerns about possible carcinogenic properties during long-term use require ongoing evaluation. SUMMARY GLP-2 appears to offer a novel adjuvant treatment modality for SBS. Promise for its use in other clinical settings like IBD has been shown in small pilot studies.
Collapse
Affiliation(s)
- Cheng T Tee
- Lennard-Jones Intestinal Failure Unit, St Mark's Hospital and Academic Institute, Harrow, UK
| | | | | |
Collapse
|
173
|
Pacheco-Pantoja EL, Ranganath LR, Gallagher JA, Wilson PJM, Fraser WD. Receptors and effects of gut hormones in three osteoblastic cell lines. BMC PHYSIOLOGY 2011; 11:12. [PMID: 21801348 PMCID: PMC3162581 DOI: 10.1186/1472-6793-11-12] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/29/2011] [Indexed: 12/23/2022]
Abstract
Background In recent years the interest on the relationship of gut hormones to bone processes has increased and represents one of the most interesting aspects in skeletal research. The proportion of bone mass to soft tissue is a relationship that seems to be controlled by delicate and subtle regulations that imply "cross-talks" between the nutrient intake and tissues like fat. Thus, recognition of the mechanisms that integrate a gastrointestinal-fat-bone axis and its application to several aspects of human health is vital for improving treatments related to bone diseases. This work analysed the effects of gut hormones in cell cultures of three osteoblastic cell lines which represent different stages in osteoblastic development. Also, this is the first time that there is a report on the direct effects of glucagon-like peptide 2, and obestatin on osteoblast-like cells. Methods mRNA expression levels of five gut hormone receptors (glucose-dependent insulinotropic peptide [GIP], glucagon-like peptide 1 [GLP-1], glucagon-like peptide 2 [GLP-2], ghrelin [GHR] and obestatin [OB]) were analysed in three osteoblastic cell lines (Saos-2, TE-85 and MG-63) showing different stages of osteoblast development using reverse transcription and real time polymerase chain reaction. The responses to the gut peptides were studied using assays for cell viability, and biochemical bone markers: alkaline phosphatase (ALP), procollagen type 1 amino-terminal propeptides (P1NP), and osteocalcin production. Results The gut hormone receptor mRNA displayed the highest levels for GIP in Saos-2 and the lowest levels in MG-63, whereas GHR and GPR39 (the putative obestatin receptor) expression was higher in TE-85 and MG-63 and lower in Saos-2. GLP-1 and GLP-2 were expressed only in MG-63 and TE-85. Treatment of gut hormones to cell lines showed differential responses: higher levels in cell viability in Saos-2 after GIP, in TE-85 and MG-63 after GLP-1, GLP-2, ghrelin and obestatin. ALP showed higher levels in Saos-2 after GIP, GHR and OB and in TE-85 after GHR. P1NP showed higher levels after GIP and OB in Saos-2. Decreased levels of P1NP were observed in TE-85 and MG-63 after GLP-1, GLP-2 and OB. MG-63 showed opposite responses in osteocalcin levels after GLP-2. Conclusions These results suggest that osteoblast activity modulation varies according to different development stage under different nutrition related-peptides.
Collapse
Affiliation(s)
- Elda L Pacheco-Pantoja
- Escuela de Medicina, Universidad Anáhuac Mayab, Km 15,5 Carr Merida-Progreso, 97310, Mérida, Yucatán, México.
| | | | | | | | | |
Collapse
|
174
|
Energy Balance, Myostatin, and GILZ: Factors Regulating Adipocyte Differentiation in Belly and Bone. PPAR Res 2011; 2007:92501. [PMID: 18309369 PMCID: PMC2246068 DOI: 10.1155/2007/92501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 08/16/2007] [Indexed: 11/18/2022] Open
Abstract
Peroxisome proliferator-activated receptor gamma (PPAR-gamma) belongs to the nuclear hormone receptor subfamily of transcription factors. PPARs are expressed in key target tissues such as liver, fat, and muscle and thus they play a major role in the regulation of energy balance. Because of PPAR-gamma's role in energy balance, signals originating from the gut (e.g., GIP), fat (e.g., leptin), muscle (e.g., myostatin), or bone (e.g., GILZ) can in turn modulate PPAR expression and/or function. Of the two PPAR-gamma isoforms, PPAR-gamma2 is the key regulator of adipogenesis and also plays a role in bone development. Activation of this receptor favors adipocyte differentiation of mesenchymal stem cells, while inhibition of PPAR-gamma2 expression shifts the commitment towards the osteoblastogenic pathway. Clinically, activation of this receptor by antidiabetic agents of the thiazolidinedione class results in lower bone mass and increased fracture rates. We propose that inhibition of PPAR-gamma2 expression in mesenchymal stem cells by use of some of the hormones/factors mentioned above may be a useful therapeutic strategy to favor bone formation.
Collapse
|
175
|
Abstract
Osteoporosis is a common disease characterised by a systemic impairment of bone mass and microarchitecture that results in fragility fractures. With an ageing population, the medical and socioeconomic effect of osteoporosis, particularly postmenopausal osteoporosis, will increase further. A detailed knowledge of bone biology with molecular insights into the communication between bone-forming osteoblasts and bone-resorbing osteoclasts and the orchestrating signalling network has led to the identification of novel therapeutic targets. Novel treatment strategies have been developed that aim to inhibit excessive bone resorption and increase bone formation. The most promising novel treatments include: denosumab, a monoclonal antibody for receptor activator of NF-κB ligand, a key osteoclast cytokine; odanacatib, a specific inhibitor of the osteoclast protease cathepsin K; and antibodies against the proteins sclerostin and dickkopf-1, two endogenous inhibitors of bone formation. This overview discusses these novel therapies and explains their underlying physiology.
Collapse
Affiliation(s)
- Tilman D. Rachner
- Division of Endocrinology, Diabetes, and Bone Diseases, Dresden Technical University Medical Center, Dresden, Germany
| | | | - Lorenz C. Hofbauer
- Division of Endocrinology, Diabetes, and Bone Diseases, Dresden Technical University Medical Center, Dresden, Germany
- Center for Regenerative Therapies Dresden, Germany
| |
Collapse
|
176
|
K-cells and glucose-dependent insulinotropic polypeptide in health and disease. VITAMINS AND HORMONES 2011; 84:111-50. [PMID: 21094898 DOI: 10.1016/b978-0-12-381517-0.00004-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the 1970s, glucose-dependent insulinotropic polypeptide (GIP, formerly gastric inhibitory polypeptide), a 42-amino acid peptide hormone, was discovered through a search for enterogastrones and subsequently identified as an incretin, or an insulinotropic hormone secreted in response to intraluminal nutrients. Independent of the discovery of GIP, the K-cell was identified in small intestine by characteristic ultrastructural features. Subsequently, it was realized that K-cells are the predominant source of circulating GIP. The density of K-cells may increase under conditions including high-fat diet and obesity, and generally correlates with plasma GIP levels. In addition to GIP, K-cells secrete xenin, a peptide with as of yet poorly understood physiological functions, and GIP is often colocalized with the other incretin hormone glucagon-like peptide-1 (GLP-1). Differential posttranslational processing of proGIP produces 30 and 42 amino acid versions of GIP. Its secretion is elicited by intraluminal nutrients, especially carbohydrate and fat, through the action of SGLT1, GPR40, GPR120, and GPR119. There is also evidence of regulation of GIP secretion via neural pathways and somatostatin. Intracellular signaling mechanisms of GIP secretion are still elusive but include activation of adenylyl cyclase, protein kinase A (PKA), and protein kinase C (PKC). GIP has extrapancreatic actions on adipogenesis, neural progenitor cell proliferation, and bone metabolism. However, the clinical or physiological relevance of these extrapancreatic actions remain to be defined in humans. The application of GIP as a glucose-lowering drug is limited due to reduced efficacy in humans with type 2 diabetes and its potential obesogenic effects demonstrated by rodent studies. There is some evidence to suggest that a reduction in GIP production or action may be a strategy to reduce obesity. The meal-dependent nature of GIP release makes K-cells a potential target for genetically engineered production of satiety factors or glucose-lowering agents, for example, insulin. Transgenic mice engineered to produce insulin from intestinal K-cells are resistant to diabetes induced by a beta-cell toxin. Collectively, K-cells and GIP play important roles in health and disease, and both may be targets for novel therapies.
Collapse
|
177
|
Kyle KA, Willett TL, Baggio LL, Drucker DJ, Grynpas MD. Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice. Endocrinology 2011; 152:457-67. [PMID: 21177828 PMCID: PMC3084690 DOI: 10.1210/en.2010-1098] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patients with type 2 diabetes mellitus have an increased risk of fracture that can be further exacerbated by thiazolidinediones. A new class of antidiabetic agents control glucose through reduction of dipeptidyl peptidase-4 (DPP-4) activity; however the importance of DPP-4 for the control of bone quality has not been extensively characterized. We compared the effects of the thiazolidinedione pioglitazone and the DPP-4 inhibitor sitagliptin on bone quality in high-fat diet (HFD)-fed wild-type mice. In complementary studies, we examined bone quality in Dpp4(+/+) vs. Dpp4(-/-) mice. Pioglitazone produced yellow bones with greater bone marrow adiposity and significantly reduced vertebral bone mechanics in male, female, and ovariectomized (OVX) HFD fed female mice. Pioglitazone negatively affected vertebral volumetric bone mineral density, trabecular architecture, and mineral apposition rate in male mice. Sitagliptin treatment of HFD-fed wild-type mice significantly improved vertebral volumetric bone mineral density and trabecular architecture in female mice, but these improvements were lost in females after OVX. Genetic inactivation of Dpp4 did not produce a major bone phenotype in male and female Dpp4(-/-) mice; however, OVX Dpp4(-/-) mice exhibited significantly reduced femoral size and mechanics. These findings delineate the skeletal consequences of pharmacological and genetic reduction of DPP-4 activity and reveal significant differences in the effects of pioglitazone vs. sitagliptin vs. genetic Dpp4 inactivation on bone mechanics in mice.
Collapse
Affiliation(s)
- Kimberly A. Kyle
- Departments of Laboratory Medicine and Pathobiology and Medicine, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Thomas L. Willett
- Departments of Laboratory Medicine and Pathobiology and Medicine, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Laurie L. Baggio
- Departments of Laboratory Medicine and Pathobiology and Medicine, Samuel Lunenfeld Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | |
Collapse
|
178
|
Scott JPR, Sale C, Greeves JP, Casey A, Dutton J, Fraser WD. The role of exercise intensity in the bone metabolic response to an acute bout of weight-bearing exercise. J Appl Physiol (1985) 2011; 110:423-32. [PMID: 21127210 DOI: 10.1152/japplphysiol.00764.2010] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We compared the effects of exercise intensity (EI) on bone metabolism during and for 4 days after acute, weight-bearing endurance exercise. Ten males [mean ± SD maximum oxygen uptake (Vo(2max)): 56.2 ± 8.1 ml·min(-1)·kg(-1)] completed three counterbalanced 8-day trials. Following three control days, on day 4, subjects completed 60 min of running at 55%, 65%, and 75% Vo(2max). Markers of bone resorption [COOH-terminal telopeptide region of collagen type 1 (β-CTX)] and formation [NH(2)-terminal propeptides of procollagen type 1 (P1NP), osteocalcin (OC), bone-alkaline phosphatase (ALP)], osteoprotegerin (OPG), parathyroid hormone (PTH), albumin-adjusted calcium (ACa), phosphate (PO(4)), and cortisol were measured during and for 3 h after exercise and on four follow-up days (FU1-FU4). At 75% Vo(2max), β-CTX was not significantly increased from baseline by exercise but was higher compared with 55% (17-19%, P < 0.01) and 65% (11-13%, P < 0.05) Vo(2max) in the first hour postexercise. Concentrations were decreased from baseline in all three groups by 39-42% (P < 0.001) at 3 h postexercise but not thereafter. P1NP increased (P < 0.001) during exercise only, while bone-ALP was increased (P < 0.01) at FU3 and FU4, but neither were affected by EI. PTH and cortisol increased (P < 0.001) with exercise at 75% Vo(2max) only and were higher (P < 0.05) than at 55% and 65% Vo(2max) during and immediately after exercise. The increases (P < 0.001) in OPG, ACa, and PO(4) with exercise were not affected by EI. Increasing EI from 55% to 75% Vo(2max) during 60 min of running resulted in higher β-CTX concentrations in the first hour postexercise but had no effect on bone formation markers. Increased bone-ALP concentrations at 3 and 4 days postexercise suggest a beneficial effect of this type of exercise on bone mineralization. The increase in OPG was not influenced by exercise intensity, whereas PTH was increased at 75% Vo(2max) only, which cannot be fully explained by changes in serum calcium or PO(4) concentrations.
Collapse
Affiliation(s)
- Jonathan P R Scott
- QinetiQ, Rm. G077, Bldg. A54, Cody Technology Park, Ively Rd., Farnborough, Hampshire, UK GU14 0LX.
| | | | | | | | | | | |
Collapse
|
179
|
Feeding and bone. Arch Biochem Biophys 2010; 503:11-9. [DOI: 10.1016/j.abb.2010.06.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/23/2022]
|
180
|
Reid IR. Fat and bone. Arch Biochem Biophys 2010; 503:20-7. [DOI: 10.1016/j.abb.2010.06.027] [Citation(s) in RCA: 270] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/23/2010] [Accepted: 06/26/2010] [Indexed: 12/13/2022]
|
181
|
Nuche-Berenguer B, Portal-Núñez S, Moreno P, González N, Acitores A, López-Herradón A, Esbrit P, Valverde I, Villanueva-Peñacarrillo ML. Presence of a functional receptor for GLP-1 in osteoblastic cells, independent of the cAMP-linked GLP-1 receptor. J Cell Physiol 2010; 225:585-92. [PMID: 20506394 DOI: 10.1002/jcp.22243] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) controls glucose metabolism in extrapancreatic tissues through receptors other than the pancreatic cAMP-linked GLP-1 receptor; also, GLP-1 induces an insulin- and PTH-independent bone anabolic action in insulin-resistant and type-2 diabetic rats. Here we searched for the presence and characteristics of GLP-1 receptors in osteoblastic MC3T3-E1 cells. [(125)I]-GLP-1 specific binding to MC3T3-E1 cells was time- and temperature-dependent, reaching maximal value at 30 min at 25 degrees C; in these conditions, [(125)I]-GLP-1 binding was dissociable, and displaced by GLP-1, partially by GLP-2, but not by exendin-4 (Ex-4), exendin-9 (Ex-9), glucagon or insulin; Scatchard analysis of the unlabeled GLP-1 data showed high and low affinity binding sites; cross-linking of GLP-1 binding revealed an estimated 70 kDa band, almost undetectable in the presence of 10(-6) M GLP-1. GLP-1, Ex-9, insulin or glucagon failed to modify cellular cAMP content, while GLP-2 and Ex-4 increased it. However, GLP-1 induced an immediate hydrolysis of glycosylphosphatidylinositols (GPIs) generating short-lived inositolphosphoglycans (IPGs), and an increase in phosphatidylinositol-3 kinase (PI3K) and mitogen activated protein kinase (MAPK) activities; Ex-4 also affected GPIs, but its action was delayed with respect to that of GLP-1. This incretin was found to decrease Runx2 but increased osteocalcin gene expression, without affecting that of osteoprotegerin or the canonical Wnt pathway activity in MC3T3-E1 cells which do not express the pancreatic GLP-1 receptor. Our data demonstrate for the first time that GLP-1 can directly and functionally interact with osteoblastic cells, possibly through a GPI/IPG-coupled receptor.
Collapse
|
182
|
Elnenaei MO, Musto R, Alaghband-Zadeh J, Moniz C, Le Roux CW. Postprandial bone turnover is independent of calories above 250 kcal. Ann Clin Biochem 2010; 47:318-20. [DOI: 10.1258/acb.2010.010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background The mechanisms causing bone turnover after food intake have not yet been elucidated. Several gut hormones are secreted in the postprandial phase, proportional to meal calorie content, and possibly one or more of these could influence bone turnover. The aim of this study was to investigate bone turnover in proportion to graded-calorie and fixed calcium containing meals. Methods A group of healthy volunteers were given six meals with calories varying from 250 to 3000 kcal on different occasions. All the meals contained 500 mg of calcium. C-telopeptide type I collagen (CTX) was measured before and 180 min after each meal. Results All meals significantly reduced CTX between 35.8 ± 5.6% and 44.8 ± 3.8%. No significant difference in CTX was however apparent for the different calorie containing meals. Observed differences suggest a trend to greater CTX suppression with lower protein and higher fat content of meals. Conclusion Changes in CTX are not proportional to calorie contents when the meals contain 500 mg of calcium. Further studies should now determine whether patients with increased bone resorption would benefit from multiple small meals to slow down the rate of bone loss.
Collapse
Affiliation(s)
- Manal O Elnenaei
- Clinical Biochemistry Department, King's College Hospital NHS Foundation Trust,London, SE5 9RS
| | - Rebecca Musto
- Clinical Biochemistry Department, King's College Hospital NHS Foundation Trust,London, SE5 9RS
| | - Jamshid Alaghband-Zadeh
- Clinical Biochemistry Department, King's College Hospital NHS Foundation Trust,London, SE5 9RS
| | - Caje Moniz
- Clinical Biochemistry Department, King's College Hospital NHS Foundation Trust,London, SE5 9RS
| | - Carel W Le Roux
- Clinical Biochemistry Department, King's College Hospital NHS Foundation Trust,London, SE5 9RS
- Department of Metabolic Medicine, Hammersmith Hospital, Imperial College London, London, WI2 0HS, UK
| |
Collapse
|
183
|
Aaboe K, Knop FK, Vilsbøll T, Deacon CF, Holst JJ, Madsbad S, Krarup T. Twelve weeks treatment with the DPP-4 inhibitor, sitagliptin, prevents degradation of peptide YY and improves glucose and non-glucose induced insulin secretion in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2010; 12:323-33. [PMID: 20380653 DOI: 10.1111/j.1463-1326.2009.01167.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIM To examine the effects of 12 weeks of treatment with the DPP-4 inhibitor, sitagliptin, on gastrointestinal hormone responses to a standardized mixed meal and beta cell secretory capacity, measured as glucose and non-glucose induced insulin secretion during a hyperglycaemic clamp, in patients with type 2 diabetes. METHOD A double-blinded, placebo-controlled study over 12 weeks in which 24 patients with T2DM were randomized to receive either sitagliptin (Januvia) 100 mg qd or placebo as an add-on therapy to metformin. In week 0, 1 and 12 patients underwent a meal test and a 90-min 20 mM hyperglycaemic clamp with 5 g of l-arginine infusion. Main outcome measure was postprandial total glucagon-like peptide 1 (GLP-1) concentration. Additional measures were insulin and C-peptide, glycaemic control, intact and total peptide YY (PYY) and glucose-dependent insulinotropic polypeptide (GIP), and intact glucagon-like peptide 2 (GLP-2) and GLP-1. RESULTS All patients [sitagliptin n = 12, age: 59.5 (39-64) years, HbA1c: 8.0 (7.3-10.0)%, BMI: 33.2 (29.3-39.4); placebo n = 12, age: 60 (31-72) years, HbA1c: 7.7 (7.1-9.8)%, BMI: 30.7 (25.7-40.5)] [median (range)] completed the trial. Sitagliptin treatment improved glycaemic control, had no effect on total GLP-1, GIP or intact GLP-2, but reduced total PYY and PYY(3- 36), and increased PYY(1- 36) and intact incretin hormones. Sitagliptin improved first and second phases of beta cell secretion and maximal secretory capacity. All effects were achieved after 1 week. No significant changes occurred in the placebo group. CONCLUSION The postprandial responses of total GLP-1 and GIP and intact GLP-2 were unaltered. PYY degradation was prevented. Glucose and non-glucose induced beta cell secretion was improved. There was no difference in responses to sitagliptin between 1 and 12 weeks of treatment.
Collapse
Affiliation(s)
- K Aaboe
- Department of Internal Medicine F, Gentofte Hospital, University of Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
184
|
Wojcik MH, Meenaghan E, Lawson EA, Misra M, Klibanski A, Miller KK. Reduced amylin levels are associated with low bone mineral density in women with anorexia nervosa. Bone 2010; 46:796-800. [PMID: 19931436 PMCID: PMC2824019 DOI: 10.1016/j.bone.2009.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/23/2009] [Accepted: 11/11/2009] [Indexed: 11/27/2022]
Abstract
CONTEXT Anorexia nervosa, characterized by extreme low body weight due to reduced nutrient intake, is associated with severe bone loss. Peptide hormones, including amylin, GIP, and GLP2, are released immediately after nutrient intake and may be involved in the regulation of bone turnover. OBJECTIVE To investigate fasting levels of amylin, GIP, and GLP2 and their relationships with bone mineral density (BMD) in women with anorexia nervosa compared to healthy controls. DESIGN Cross-sectional. SETTING Clinical Research Center. STUDY PARTICIPANTS 15 women with anorexia nervosa and 16 healthy controls. INTERVENTION None. MAIN OUTCOME MEASURES Fasting serum amylin, GIP, and GLP2, and BMD. RESULTS Women with anorexia nervosa had significantly lower fasting serum amylin and GIP levels than healthy controls. Fasting serum GLP2 levels were not significantly different between groups. Fasting amylin levels were positively associated with BMD and Z-score at the PA spine, total hip, and femoral neck. Fasting amylin levels were also positively associated with weight and percent fat; after controlling for these variables, amylin was still a significant predictor of BMD and Z-score at the femoral neck and of Z-score at the total hip. In the anorexia nervosa group, there was a trend toward an inverse association between amylin and C-terminal telopeptide (CTX) levels (R=-0.47, p=0.08). GIP and GLP2 levels did not predict BMD at any site. CONCLUSION Decreased secretion of amylin may be a mechanism through which reduced nutrient intake adversely affects BMD in anorexia nervosa.
Collapse
Affiliation(s)
- Monica H Wojcik
- Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|
185
|
Nuche-Berenguer B, Moreno P, Portal-Nuñez S, Dapía S, Esbrit P, Villanueva-Peñacarrillo ML. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. ACTA ACUST UNITED AC 2010; 159:61-6. [PMID: 19586609 DOI: 10.1016/j.regpep.2009.06.010] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Accepted: 06/29/2009] [Indexed: 11/29/2022]
Abstract
Poor control of glucose homeostasis accounts for diabetes-related bone loss. Incretins - GLP-1 and GIP - have been proposed to affect bone turnover. GLP-1, apart from its anti-diabetic and other actions, has shown to exert a bone anabolic effect in streptozotocin-induced type 2 diabetic (T2D) and fructose-induced insulin-resistant (IR) rats. Exendin-4 (Ex-4), a peptide of non-mammalian nature, is sharing with GLP-1 part of its structural sequence, and also several glucoregulatory effects in mammals in an even more efficient manner. We have explored the effect of continuous administration (3 days by osmotic pump) of Ex-4 or saline (control) on bone turnover factors and bone structure in T2D and IR rats, compared to N, and the possible interaction of Ex-4 with the Wnt signalling pathway. Blood was taken before and after treatment for plasma measurements; tibiae and femurs were collected for gene expression of bone markers (RT-PCR) and structure (microCT) analysis; we also measured the mRNA levels of LRP5 - an activator of the Wnt pathway - and those of DKK1 and sclerostin (SOST) - both blockers of LRP5 activity. Compared to N-control, plasma glucose and insulin were respectively higher and lower in T2D; osteocalcin (OC) and tartrate-resistant alkaline phosphatase 5b (TRAP5b) were lower; after Ex-4, these turnover markers were further reduced in T2D and IR, while TRAP5b increased in N. Bone OC, osteoprogeterin (OPG) and receptor activator of NF-kB ligand (RANKL) mRNA were lower in T2D and IR; Ex-4 increased OC in all groups and OPG in N and IR, reduced RANKL in N and T2D but increased it in IR; the LRP5/DKK1 and LRP5/SOST mRNA ratios were similarly decreased in T2D, but in IR, the latter ratio was reduced while the former was increased; after Ex-4, both ratios augmented in N, and that of LRP5/DKK1 tended to normalize in T2D and IR. In conclusion, Ex-4 exerts osteogenic effects in T2D and IR models, and interacts with the Wnt pathway to promote bone formation.
Collapse
|
186
|
Asmar M, Holst JJ. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: new advances. Curr Opin Endocrinol Diabetes Obes 2010; 17:57-62. [PMID: 19881341 DOI: 10.1097/med.0b013e3283339051] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This article highlights recent advances in our understanding of glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) physiology and their various sites of action beyond the incretin effect. RECENT FINDINGS Both GLP-1 and GIP stimulate insulin secretion in a glucose-dependent manner and are thus classified as incretins. Beyond glucose-dependent insulin secretion, the peptides have common actions on islet beta cells, leading beta-cell proliferation and resistance to apoptosis. However, the action of GLP-1 and GIP is not limited to the islet cells; they have regulatory functions in many organs. Recent evidence has suggested that GLP-1 has important beneficial effects in the cardiovascular system and central nervous system. GIP may play a role in promoting energy storage in humans, enhances bone formation via stimulation of osteoblast proliferation and inhibition of apoptosis and may play a role in central nervous system function. SUMMARY These new findings suggest further application of these hormones for the treatment of conditions such as cardiovascular disease and obesity.
Collapse
Affiliation(s)
- Meena Asmar
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
187
|
Abstract
PURPOSE OF REVIEW To outline recent developments in research surrounding gastrointestinal peptides and their role in skeletal regulation. RECENT FINDINGS Bone remodeling is influenced by many regulatory systems, which interact to ensure that the complex demands upon mineralized tissue are met without undue compromise. These include local actions such as mechanical factors, but are dominated by systemic endocrine factors. Although the involvement of hypothalamo-pituitary actions on bone homeostasis is well defined, growing evidence suggests that peripheral tissues and the circulating factors they produce represent an important regulatory axis in bone. Given the critical role of diet in mineral homeostasis, the gastrointestinal tract is a rich source of circulating factors capable of regulating bone homeostasis. After a review of manuscripts on known mechanisms and effects of gastrointestinal peptide on bone, these were summarized. SUMMARY Although clearly an exciting and emergent field of research, more studies are required to define the specific actions of gastrointestinal regulator in bone, in particular, the relative contribution of systemic and local effects, to aid interpretation of their potential impact on human health and disease. Nonetheless, this exciting research will further our understanding on bone physiology and provide novel approaches to therapy in a wide range of skeletal conditions.
Collapse
Affiliation(s)
- Iris Pl Wong
- Osteoporosis and Bone Biology Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
188
|
Yavropoulou MP, Yovos JG. Central Regulation of Glucose-Dependent Insulinotropic Polypeptide Secretion. VITAMINS AND HORMONES 2010; 84:185-201. [DOI: 10.1016/b978-0-12-381517-0.00006-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
189
|
Bruno C, Fulford AD, Potts JR, McClintock R, Jones R, Cacucci BM, Gupta CE, Peacock M, Considine RV. Serum markers of bone turnover are increased at six and 18 months after Roux-en-Y bariatric surgery: correlation with the reduction in leptin. J Clin Endocrinol Metab 2010; 95:159-66. [PMID: 19858320 PMCID: PMC2805478 DOI: 10.1210/jc.2009-0265] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE The aim of the study was to examine serum markers of bone turnover at 6 and 18 months after Roux-en-Y gastric bypass surgery. PARTICIPANTS Ten women and 10 men [body mass index (BMI), 50.2 +/- 8.4 kg/m(2)] were studied at 6 months; 10 women and nine men (BMI, 47.2 +/- 6.6 kg/m(2)) were studied at 18 months after surgery. MAIN OUTCOME MEASURES Serum osteocalcin, bone specific alkaline phosphatase (BAP), N-telopeptide of type 1 collagen (NTX), PTH, 25-hydroxy vitamin D, and leptin were measured. RESULTS BMI was reduced 32.7 +/- 6.2% at 6 months after surgery. Serum osteocalcin (6.9 +/- 2.4 to 10.9 +/- 2.6 ng/ml; P < 0.0001), BAP (14.2 +/- 3.7 to 16.4 +/- 4.5 ng/ml; P = 0.04), and NTX (10.9 +/- 1.7 to 19.6 +/- 5.3 nm bone collagen equivalents; P < 0.0001) were increased. Calcium, phosphate, and PTH were unchanged, but 25-hydroxy vitamin D increased (16.0 +/- 8.9 vs. 26.9 +/- 10.6 ng/ml; P <0.0001). The increase in NTX correlated with reduction in serum leptin (r = 0.58; P = 0.007). BMI was reduced 40.9 +/- 7.5% at 18 months after surgery. Serum BAP (17.6 +/- 5.3 to 22.2 +/- 7.8 ng/ml; P = 0.0017) and NTX (10.8 +/- 2.7 to 16.9 +/- 5.5 nm bone collagen equivalents; P < 0.0001) were increased. Calcium, phosphate, and PTH were unchanged, but 25-hydroxy vitamin D increased (17.7 +/- 7.6 to 25.6 +/- 6.8 ng/ml; P < 0.0001). The increase in NTX correlated with reduction in BMI (r = 0.58; P = 0.009) and leptin (r = 0.45; P = 0.04) and the increase in serum 25-hydroxy vitamin D (r = 0.43; P = 0.05). In multiple regression (adjusted model R(2) 0.263; P = 0.013), reduction in leptin was a significant predictor of increase in NTX (P = 0.016), but changes in BMI and 25-hydroxy vitamin D were not. CONCLUSIONS Weight loss after bariatric surgery is associated with long-term increase in serum markers of bone turnover. The increase in NTX is related to the decrease in leptin, which may signal caloric restriction to the skeleton.
Collapse
Affiliation(s)
- Carolina Bruno
- Indiana University School of Medicine, 541 North Clinical Drive, Clinical Building 455, Indianapolis, Indiana 46202-5111.
| | | | | | | | | | | | | | | | | |
Collapse
|
190
|
Lee NJ, Herzog H. NPY regulation of bone remodelling. Neuropeptides 2009; 43:457-63. [PMID: 19748118 DOI: 10.1016/j.npep.2009.08.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Revised: 08/13/2009] [Accepted: 08/21/2009] [Indexed: 01/06/2023]
Abstract
Neuropeptide Y (NPY), a classic neuronal regulator of energy homeostasis, is now also known to be involved in the control of bone homeostasis. Of the five known Y receptors through which the NPY family of ligands signals, the Y1 and Y2 receptors have so far been implicated in the control of osteoblast activity and thus bone formation. Analysis of brain specific NPY overexpressing and Y receptor knockout models has revealed a powerful anabolic pathway likely involving hypothalamic Y2 receptors and osteoblastic Y1 receptors. Furthering our understanding of the mechanisms underlying the involvement of the NPY system in the control of bone could lead to the development of therapies to improve bone mass in patients with diseases such as osteoporosis.
Collapse
Affiliation(s)
- Nicola J Lee
- Neuroscience Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, 384 Victoria St, Darlinghurst, Sydney, NSW 2010, Australia
| | | |
Collapse
|
191
|
Henriksen DB, Alexandersen P, Hartmann B, Adrian CL, Byrjalsen I, Bone HG, Holst JJ, Christiansen C. Four-month treatment with GLP-2 significantly increases hip BMD: a randomized, placebo-controlled, dose-ranging study in postmenopausal women with low BMD. Bone 2009; 45:833-42. [PMID: 19631303 DOI: 10.1016/j.bone.2009.07.008] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 06/18/2009] [Accepted: 07/14/2009] [Indexed: 11/21/2022]
Abstract
We have previously shown that repeated dosing of glucagon-like peptide-2 (GLP-2) at 10 p.m. in postmenopausal women for 14 days results in a dose-dependent decrease in the nocturnal bone resorption, as assessed by s-CTX. In contrast, bone formation, as assessed by serum osteocalcin, appeared to be unaffected by treatment with exogenous GLP-2, at least over 14 days. The present study extends the observation period to four months. The study was a double-blind placebo-controlled dose-ranging trial comparing three different doses of GLP-2 (0.4 mg, 1.6 mg and 3.2 mg GLP-2, administered nightly) against a saline control injection. We examined safety and tolerability, and the effects on biochemical markers of bone turnover and the effect on bone mineral density. Injection of 0.4 mg, 1.6 mg and 3.2 mg GLP-2 resulted in similar reduction in the nocturnal rise of s-CTX, at Treatment Day 120 the mean difference to placebo was approximately -150%*h at AUC(0-10H) (P<0.01). Osteocalcin levels were unaffected in the 10-hour period after injection indicating that injections of 0.4 mg, 1.6 mg and 3.2 mg GLP-2 do not exert any acute stimulatory or inhibitory effect on bone formation. Treatment with GLP-2 resulted in a significant dose-dependent increase in total hip BMD over the course of the study that for the 3.2 mg GLP-2 group reached 1.1% (P=0.007) from baseline. The overall rates of adverse events in the 4 treatment groups were similar and there were no signs of tachyphylaxis or antibodies against GLP-2. The results indicate that GLP-2 produces a substantial decrease in bone resorption without suppression of bone formation thereby changing the bone remodeling balance in favor of bone formation, particularly at the hip.
Collapse
|
192
|
Fatty Acids and Bone. Clin Rev Bone Miner Metab 2009. [DOI: 10.1007/s12018-009-9047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
193
|
Cornish J, Costa JL, Naot D. The bone-fat mass relationship: Laboratory studies. ACTA ACUST UNITED AC 2009. [DOI: 10.1138/20090395] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
194
|
Abstract
PURPOSE OF REVIEW The medical management of short bowel syndrome frequently requires lifelong parenteral nutrition. Methods of increasing intestinal absorption and reducing parenteral nutrition dependence, by improving postresection intestinal adaptation, are increasingly being explored. Glucagon-like peptide-2 (GLP-2) is an important intestinotrophic growth factor and mediator of intestinal adaptation. This review summarizes our current understanding of GLP-2 physiology and provides an update on clinical trials in short bowel syndrome and related conditions. RECENT FINDINGS There is growing understanding how the effects of GLP-2 are mediated by downstream effectors such as insulin-like growth factor-1. In the treatment of short bowel syndrome, GLP-2 and the long-acting GLP-2 analogue teduglutide (Gattex) are effective in improving fluid absorption. A recent multicentre, placebo-controlled study demonstrates that this can translate into meaningful reductions in parenteral nutrition requirements. Treatment dose and timing of treatment initiation might influence the mucosal growth response. Most of the small intestine has to be preserved to facilitate the previously documented benefits of GLP-2 on bone metabolism. Therapeutic uses of GLP-2 in other gastrointestinal conditions are being explored. GLP-2 treatment appears well tolerated, although concerns about the long-term use of this growth-promoting agent remain. SUMMARY GLP-2 therapy holds promise as an adjuvant treatment modality for short bowel syndrome and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Katharina Wallis
- Division of Medicine, Imperial College Healthcare, Hammersmith Hospital, London, UK.
| | | | | |
Collapse
|
195
|
Sripanyakorn S, Jugdaohsingh R, Mander A, Davidson SL, Thompson RPH, Powell JJ. Moderate ingestion of alcohol is associated with acute ethanol-induced suppression of circulating CTX in a PTH-independent fashion. J Bone Miner Res 2009; 24:1380-8. [PMID: 19257829 PMCID: PMC2718797 DOI: 10.1359/jbmr.090222] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 01/15/2009] [Accepted: 02/11/2009] [Indexed: 11/18/2022]
Abstract
The "J shape" curve linking the risk of poor bone health to alcohol intake is now well recognized from epidemiological studies. Ethanol and nonethanol components of alcoholic beverages could influence bone remodeling. However, in the absence of a solid underlying mechanism, the positive association between moderate alcoholic intake and BMD remains questionable because of confounding associated social factors. The objective of this work was to characterize the short-term effects of moderate alcohol consumption on circulating bone markers, especially those involved in bone resorption. Two sequential blood-sampling studies were undertaken in fasted healthy volunteers (age, 20-47 yr) over a 6-h period using beer of different alcohol levels (<0.05-4.6%), solutions of ethanol or orthosilicic acid (two major components of beer), and water +/- calcium chloride (positive and negative controls, respectively). Study 1 (24 subjects) assessed the effects of the different solutions, whereas study 2 (26 subjects) focused on ethanol/beer dose. Using all data in a "mixed effect model," we identified the contributions of the individual components of beer, namely ethanol, energy, low-dose calcium, and high-dose orthosilicic acid, on acute bone resorption. Markers of bone formation were unchanged throughout the study for all solutions investigated. In contrast, the bone resorption marker, serum carboxy terminal telopeptide of type I collagen (CTX), was significantly reduced after ingestion of a 0.6 liters of ethanol solution (>2% ethanol; p 6 h). The early effect on bone resorption is well described after the intake of energy, mediated by glucagon-like peptide-2, but the late effect of moderate alcohol ingestion is novel, seems to be ethanol specific, and is mediated in a non-calcitonin- and a non-PTH-dependent fashion, thus providing a mechanism for the positive association between moderate alcohol ingestion and BMD.
Collapse
Affiliation(s)
- Supannee Sripanyakorn
- Gastrointestinal Laboratory, The Rayne Institute (King's College London), St. Thomas' Hospital, London, United Kingdom
- Faculty of Science and Technology, Loei Rajabhat University, Loei-Chiangkan Road, A. Muang, Loei, Thailand
| | - Ravin Jugdaohsingh
- Gastrointestinal Laboratory, The Rayne Institute (King's College London), St. Thomas' Hospital, London, United Kingdom
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, United Kingdom
| | - Adrian Mander
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, United Kingdom
| | - Sarah L. Davidson
- Gastrointestinal Laboratory, The Rayne Institute (King's College London), St. Thomas' Hospital, London, United Kingdom
| | - Richard P. H. Thompson
- Gastrointestinal Laboratory, The Rayne Institute (King's College London), St. Thomas' Hospital, London, United Kingdom
| | - Jonathan J. Powell
- MRC Human Nutrition Research, Elsie Widdowson Laboratory, Fulbourn Road, Cambridge, United Kingdom
| |
Collapse
|
196
|
|
197
|
Nuche-Berenguer B, Moreno P, Esbrit P, Dapía S, Caeiro JR, Cancelas J, Haro-Mora JJ, Villanueva-Peñacarrillo ML. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int 2009; 84:453-61. [PMID: 19219381 DOI: 10.1007/s00223-009-9220-3] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Accepted: 01/14/2009] [Indexed: 10/21/2022]
Abstract
It has been suggested that hormones released after nutrient absorption, such as glucose-dependent insulinotropic peptide (GIP) and glucagon-like peptide 2 (GLP-2), could be responsible for changes in bone resorption. However, information about the role of GLP-1 in this regard is scanty. Diabetes-related bone loss occurs as a consequence of poor control of glucose homeostasis, but the relationship between osteoporosis and type 2 diabetes remains unclear. Since GLP-1 is decreased in the latter condition, we evaluated some bone characteristics in streptozotocin-induced type 2 diabetic (T2D) and fructose-induced insulin-resistant (IR) rat models compared to normal (N) and the effect of GLP-1 or saline (control) treatment (3 days by osmotic pump). Blood was taken before and after treatment for plasma measurements; tibiae and femora were collected for gene expression of bone markers (RT-PCR) and structure (microCT) analysis. Compared to N, plasma glucose and insulin were, respectively, higher and lower in T2D; osteocalcin (OC) and tartrate-resistant alkaline phosphatase 5b were lower; phosphate in IR showed a tendency to be higher; PTH was not different in T2D and IR; all parameters were unchanged after GLP-1 infusion. Bone OC, osteoprotegerin (OPG) and RANKL mRNA were lower in T2D and IR; GLP-1 increased OC and OPG in all groups and RANKL in T2D. Compared to N, trabecular bone parameters showed an increased degree of anisotropy in T2D and IR, which was reduced after GLP-1. These findings show an insulin-independent anabolic effect of GLP-1 and suggest that GLP-1 could be a useful therapeutic agent for improving the deficient bone formation and bone structure associated with glucose intolerance.
Collapse
Affiliation(s)
- Bernardo Nuche-Berenguer
- Department of Metabolism, Nutrition, and Hormones, Fundación Jiménez Díaz, Avda. Reyes Católicos 2, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
198
|
|
199
|
Bremholm L, Hornum M, Henriksen BM, Larsen S, Holst JJ. Glucagon-like peptide-2 increases mesenteric blood flow in humans. Scand J Gastroenterol 2009; 44:314-9. [PMID: 19005872 DOI: 10.1080/00365520802538195] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Mesenteric blood flow is believed to be influenced by digestion and absorption of ingested macronutrients. We hypothesized that the intestinotrophic hormone, GLP-2 (glucagons-like peptide 2), may be involved in the regulation of mesenteric blood flow. Changes in mesenteric blood flow were measured by Doppler ultrasound scanning of the superior mesenteric artery (SMA). The aim of the study was to demonstrate the influence of GLP-2 on this flow, expressed as changes in resistance index (RI). MATERIAL AND METHODS A homogeneous group of 10 fasting healthy volunteers completed a 2-day trial. On day 1, a standard meal was given, and RI measured in the SMA. On day 2, GLP-2 was infused intravenously (IV) at rates of 0.5, 1.0 and 2.0 pmol/kg/min over 3 x 45 min separated by a 15-20 min rest period. After a further 15-20 min of rest, 450 nmol synthetic GLP-2 was given subcutaneously (SC). RI in the SMA was measured before, during and after the meal and GLP-2 infusions. RESULTS After IV infusion of GLP-2, the following decreases in RI were observed: 0.5 pmol/kg/min: 2.7% (range 0-6.3%), 1.0 pmol/kg/min: 6.7% (range 0.4-15.9%), 2.0 pmol/kg/min: 15.3% (range 9.6-22.7%) p<0.00802. When given SC, GLP-2 elicited a maximum average change in RI of 15.6% (range 5.0-28.1%). The standard meal elicited a 14.7% (range 8.8-21.6%) change, p<0.020 There was a similar change in RI over time (0-90 min) after a standard meal and after subcutaneous GLP-2, p<0.005. CONCLUSIONS Our study showed a significant association between IV and SC administration of synthetic GLP-2 and changes in mesenteric blood flow. An exponential dose-response relationship was observed after IV infusion. The meal-induced changes in mesenteric blood flow over time were similar to those obtained by SC GLP-2. Thus, our results support the hypothesis that GLP-2 is an important regulator of mesenteric blood flow.
Collapse
Affiliation(s)
- Lasse Bremholm
- Department of Gastroenterology, Glostrup Hospital, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
200
|
Gottschalck IB, Jeppesen PB, Hartmann B, Holst JJ, Henriksen DB. Effects of treatment with glucagon-like peptide-2 on bone resorption in colectomized patients with distal ileostomy or jejunostomy and short-bowel syndrome. Scand J Gastroenterol 2009; 43:1304-10. [PMID: 18609184 DOI: 10.1080/00365520802200028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The gut hormone GLP-2 (glucagon-like peptide-2) seems to be involved in the circadian pattern of bone resorption, whereas parathyroid hormone (PTH) is an established key hormone in bone turnover. Endogenous GLP-2 secretion is lacking in colectomized patients with short-bowel syndrome (SBS) and they have reduced bone mineral density (BMD). The aim of the study was to investigate the anti-resorptive effect (assessed by s-CTX) of 14 days of GLP-2 treatment in these patients and to determine whether 56 days of treatment would improve BMD. PTH secretion in response to GLP-2 was also investigated in colectomized SBS patients and colectomized controls (with ileostomy). MATERIAL AND METHODS Eight SBS patients and 13 patients with ileostomy were treated with subcutaneous injections of 1600 microg GLP-2 at bedtime for 56 and 14 consecutive days, respectively. BMD was determined at days 1 and 56 in SBS patients. On days 1 and 14, measurements of CTX, P1NP and PTH were taken 4 h after the GLP-2 injection. RESULTS Patients with ileostomy showed a significant reduction in bone resorption after GLP-2 injections at days 1 and 14. In contrast, there was no change in s-CTX after 1 and 14 days in the SBS patients, and after 56 days of GLP-2 treatment there was no improvement in BMD. A significant reduction in PTH secretion in response to GLP-2 was observed only in patients with ileostomy. CONCLUSIONS The decreased bone resorption in response to GLP-2 injections cannot be elicited in SBS patients and therefore precludes treatment of their osteopenia with GLP-2. The anti-resorptive response to GLP-2 seems to require an intact small intestine and may involve suppression of PTH secretion.
Collapse
|