151
|
Lens SMA, Voest EE, Medema RH. Shared and separate functions of polo-like kinases and aurora kinases in cancer. Nat Rev Cancer 2010; 10:825-41. [PMID: 21102634 DOI: 10.1038/nrc2964] [Citation(s) in RCA: 481] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large numbers of inhibitors for polo-like kinases and aurora kinases are currently being evaluated as anticancer drugs. Interest in these drugs is fuelled by the idea that these kinases have unique functions in mitosis. Within the polo-like kinase family, the emphasis for targeted therapies has been on polo-like kinase 1 (PLK1), and in the aurora kinase family drugs have been developed to specifically target aurora kinase A (AURKA; also known as STK6) and/or aurora kinase B (AURKB; also known as STK12). Information on the selectivity of these compounds in vivo is limited, but it is likely that off-target effects within the same kinase families will affect efficacy and toxicity profiles. In addition, it is becoming clear that interplay between polo-like kinases and aurora kinases is much more extensive than initially anticipated, and that both kinase families are important factors in the response to classical chemotherapeutics that damage the genome or the mitotic spindle. In this Review we discuss the implications of these novel insights on the clinical applicability of polo-like kinase and aurora kinase inhibitors.
Collapse
Affiliation(s)
- Susanne M A Lens
- Department of Medical Oncology and Cancer Genomics Centre, UMC Utrecht, Universiteitsweg 100, Stratenum 2. 118, Utrecht 3584 CG, The Netherlands.
| | | | | |
Collapse
|
152
|
Bastos RN, Barr FA. Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission. J Cell Biol 2010; 191:751-60. [PMID: 21079244 PMCID: PMC2983065 DOI: 10.1083/jcb.201008108] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 10/13/2010] [Indexed: 01/06/2023] Open
Abstract
Cytokinesis requires a membrane-remodeling and fission event termed abscission that occurs after chromosome segregation, cleavage furrow formation, and contraction have completed. In this study, we show how abscission factor recruitment is controlled by the Polo-like kinase 1 (Plk1). At the metaphase-anaphase transition, Plk1 initiates cleavage furrow formation and is then progressively degraded during mitotic exit. During this period, Plk1 phosphorylates the abscission factor Cep55 in trans and prevents its untimely recruitment to the anaphase spindle. A Plk1 phosphorylation site mutant of Cep55 is prematurely recruited to the anaphase spindle and fails to support abscission. Endogenous Cep55 behaves similarly after Plk1 inhibition by the drugs BI2536 or GW842862. Only once Plk1 is degraded can Cep55 target to the midbody and promote abscission. Blocking Plk1 degradation leads to elevated levels of Plk1 at the midbody and the failure of Cep55 recruitment. Thus, Plk1 activity negatively regulates Cep55 to ensure orderly abscission factor recruitment and ensures that this occurs only once cell contraction has completed.
Collapse
|
153
|
Pal D, Wu D, Haruta A, Matsumura F, Wei Q. Role of a novel coiled-coil domain-containing protein CCDC69 in regulating central spindle assembly. Cell Cycle 2010; 9:4117-29. [PMID: 20962590 PMCID: PMC3055196 DOI: 10.4161/cc.9.20.13387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 08/22/2010] [Indexed: 11/19/2022] Open
Abstract
The formation of the central spindle (or the spindle midzone) is essential for cytokinesis in animal cells. In this study, we report that coiled-coil domain-containing protein 69 (CCDC69) is implicated in controlling the assembly of central spindles and the recruitment of midzone components. Exogenous expression of CCDC69 in HeLa cells interfered with microtubule polymerization and disrupted the formation of bipolar mitotic spindles. Endogenous CCDC69 proteins were localized to the central spindle during anaphase. RNA interference (RNAi)-mediated knockdown of CCDC69 led to the formation of aberrant central spindles and disrupted the localization of midzone components such as aurora B kinase, protein regulator of cytokinesis 1 (PRC1), MgcRacGAP/HsCYK-4, and polo-like kinase 1 (Plk1) at the central spindle. Aurora B kinase was found to bind to CCDC69 and this binding depended on the coiled-coil domains at the C-terminus of CCDC69. Further, disruption of aurora B function in HeLa cells by treatment with a small chemical inhibitor led to the mislocalization of CCDC69 at the central spindle. Our results indicate that CCDC69 acts as a scaffold to regulate the recruitment of midzone components and the assembly of central spindles.
Collapse
Affiliation(s)
- Debjani Pal
- Department of Biochemistry; Kansas State University; Manhattan, KS USA
| | - Di Wu
- Department of Biochemistry; Kansas State University; Manhattan, KS USA
| | - Akiko Haruta
- Department of Biochemistry; Kansas State University; Manhattan, KS USA
| | - Fumio Matsumura
- Department of Molecular Biology and Biochemistry; Rutgers University; Piscataway, NJ USA
| | - Qize Wei
- Department of Molecular Biology and Biochemistry; Rutgers University; Piscataway, NJ USA
| |
Collapse
|
154
|
Abstract
Polo-like kinase 4 (PLK4) is a unique member of the Polo-like family of kinases that shares little homology with its siblings and has an essential role in centriole duplication. The turn-over of this kinase must be strictly controlled to prevent centriole amplification. This is achieved, in part, by an autoregulatory mechanism, whereby PLK4 autophosphorylates residues in a PEST sequence located carboxy-terminal to its catalytic domain. Phosphorylated PLK4 is subsequently recognized by the SCF complex, ubiquitinylated and targeted to the proteasome for degradation. Recent data have also shown that active PLK4 is restricted to the centrosome, a mechanism that could serve to prevent aberrant centriole assembly elsewhere in the cell. While significant advances have been made in understanding how PLK4 is regulated it is certain that additional regulatory mechanisms exist to safeguard the fidelity of centriole duplication. Here, we overview past and present data discussing the regulation and functions of PLK4.
Collapse
|
155
|
von Schubert C, Xue G, Schmuckli-Maurer J, Woods KL, Nigg EA, Dobbelaere DAE. The transforming parasite Theileria co-opts host cell mitotic and central spindles to persist in continuously dividing cells. PLoS Biol 2010; 8:e1000499. [PMID: 20927361 PMCID: PMC2946958 DOI: 10.1371/journal.pbio.1000499] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 08/17/2010] [Indexed: 12/01/2022] Open
Abstract
The protozoan parasite Theileria inhabits the host cell cytoplasm and possesses the unique capacity to transform the cells it infects, inducing continuous proliferation and protection against apoptosis. The transforming schizont is a multinucleated syncytium that resides free in the host cell cytoplasm and is strictly intracellular. To maintain transformation, it is crucial that this syncytium is divided over the two daughter cells at each host cell cytokinesis. This process was dissected using different cell cycle synchronization methods in combination with the targeted application of specific inhibitors. We found that Theileria schizonts associate with newly formed host cell microtubules that emanate from the spindle poles, positioning the parasite at the equatorial region of the mitotic cell where host cell chromosomes assemble during metaphase. During anaphase, the schizont interacts closely with host cell central spindle. As part of this process, the schizont recruits a host cell mitotic kinase, Polo-like kinase 1, and we established that parasite association with host cell central spindles requires Polo-like kinase 1 catalytic activity. Blocking the interaction between the schizont and astral as well as central spindle microtubules prevented parasite segregation between the daughter cells during cytokinesis. Our findings provide a striking example of how an intracellular eukaryotic pathogen that evolved ways to induce the uncontrolled proliferation of the cells it infects usurps the host cell mitotic machinery, including Polo-like kinase 1, one of the pivotal mitotic kinases, to ensure its own persistence and survival.
Collapse
Affiliation(s)
- Conrad von Schubert
- Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Gongda Xue
- Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Kerry L. Woods
- Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Erich A. Nigg
- Max-Planck Institute for Biochemistry, Martinsried, Germany
| | - Dirk A. E. Dobbelaere
- Molecular Pathobiology, DCR-VPH, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
156
|
Antagonistic roles of PP2A-Pab1 and Etd1 in the control of cytokinesis in fission yeast. Genetics 2010; 186:1261-70. [PMID: 20876564 DOI: 10.1534/genetics.110.121368] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In Schizosaccharomyces pombe, Etd1 is a positive regulator of the septation initiation network (SIN), a conserved GTPase-regulated kinase cascade that triggers cytokinesis. Here we show that a mutation in the pab1 gene, which encodes the B-regulatory subunit of the protein phosphatase 2A (PP2A), suppresses mutations in the etd1 gene. Etd1 is required for the function of the GTPase Spg1, a key regulator of SIN signaling. Interestingly, the loss of Pab1 function restored the activity of Spg1 in Etd1-deficient cells. This result suggests that PP2A-Pab1-mediated dephosphorylation inhibits Spg1, thus antagonizing Etd1 function. The loss of pab1 function also rescues the lethality of mutants of other genes in the SIN cascade such as mob1, sid1, and cdc11. Two-hybrid assays indicate that Pab1 physically interacts with Mob1, Sid1, Sid2, and Cdc11, suggesting that the phosphatase 2A B-subunit is a component of the SIN complex. Together, our results indicate that PP2A-Pab1 plays a novel role in cytokinesis, regulating SIN activity at different levels. Pab1 is also required to activate polarized cell growth. Thus, PP2A-Pab1 may be involved in coordinating polar growth and cytokinesis.
Collapse
|
157
|
Still entangled: assembly of the central spindle by multiple microtubule modulators. Semin Cell Dev Biol 2010; 21:899-908. [PMID: 20732438 DOI: 10.1016/j.semcdb.2010.08.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 06/25/2010] [Accepted: 08/03/2010] [Indexed: 01/10/2023]
Abstract
The central spindle is a microtubule-based structure that assembles during anaphase of mitosis in animal cells and is essential for multiple steps of cytokinesis. Central spindle assembly occurs by the cooperative action of multiple microtubule motors and modulators. Here, we review the mechanism by which the central spindle is formed, the role of several key proteins in this process and how central spindle assembly is temporally and spatially coordinated with mitosis.
Collapse
|
158
|
Ebrahimi S, Fraval H, Murray M, Saint R, Gregory SL. Polo kinase interacts with RacGAP50C and is required to localize the cytokinesis initiation complex. J Biol Chem 2010; 285:28667-73. [PMID: 20628062 DOI: 10.1074/jbc.m110.103887] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The assembly and constriction of an actomyosin contractile ring in cytokinesis is dependent on the activation of Rho at the equatorial cortex by a complex, here termed the cytokinesis initiation complex, between a microtubule-associated kinesin-like protein (KLP), a member of the RacGAP family, and the RhoGEF Pebble. Recently, the activity of the mammalian Polo kinase ortholog Plk1 has been implicated in the formation of this complex. We show here that Polo kinase interacts directly with the cytokinesis initiation complex by binding RacGAP50C. We find that a new domain of Polo kinase, termed the intermediate domain, interacts directly with RacGAP50C and that Polo kinase is essential for localization of the KLP-RacGAP centralspindlin complex to the cell equator and spindle midzone. In the absence of Polo kinase, RacGAP50C and Pav-KLP fail to localize normally, instead decorating microtubules along their length. Our results indicate that Polo kinase directly binds the conserved cytokinesis initiation complex and is required to trigger centralspindlin localization as a first step in cytokinesis.
Collapse
Affiliation(s)
- Saman Ebrahimi
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | | | |
Collapse
|
159
|
Cytokinesis and cancer: Polo loves ROCK'n' Rho(A). J Genet Genomics 2010; 37:159-72. [PMID: 20347825 DOI: 10.1016/s1673-8527(09)60034-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 12/11/2022]
Abstract
Cytokinesis is the last step of the M (mitosis) phase, yet it is crucial for the faithful division of one cell into two. Cytokinesis failure is often associated with cancer. Cytokinesis can be morphologically divided into four steps: cleavage furrow initiation, cleavage furrow ingression, midbody formation and abscission. Molecular studies have revealed that RhoA as well as its regulators and effectors are important players to ensure a successful cytokinesis. At the same time, Polo-like kinase 1 (Plk1) is an important kinase that can target many substrates and carry out different functions during mitosis, including cytokinesis. Recent studies are beginning to unveil a closer tie between Plk1 and RhoA networks. More specifically, Plk1 phosphorylates the centralspindlin complex Cyk4 and MKLP1/CHO1, thus recruiting RhoA guanine nucleotide-exchange factor (GEF) Ect2 through its phosphopeptide-binding BRCT domains. Ect2 itself can be phosphorylated by Plk1 in vitro. Plk1 can also phosphorylate another GEF MyoGEF to regulate RhoA activity. Once activated, RhoA-GTP will activate downstream effectors, including ROCK1 and ROCK2. ROCK2 is among the proteins that associate with Plk1 Polo-binding domain (PBD) in a large proteomic screen, and Plk1 can phosphorylate ROCK2 in vitro. We review current understandings of the interplay between Plk1, RhoA proteins and other proteins (e.g., NudC, MKLP2, PRC1, CEP55) involved in cytokinesis, with particular emphasis of its clinical implications in cancer.
Collapse
|
160
|
Gregory SL, Lorensuhewa N, Saint R. Signalling through the RhoGEF Pebble in Drosophila. IUBMB Life 2010; 62:290-5. [PMID: 20175154 DOI: 10.1002/iub.310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Small GTPase pathways of the Ras superfamily are implicated in a wide range of signalling processes in animal cells. Small GTPases control pathways by acting as molecular switches. They are converted from an inactive GDP-bound form to an active GTP-bound form by GTP exchange factors (GEFs). The spatial and temporal regulation of GEFs is a major component of the regulation of small GTPases. Here we review the role of the Drosophila RhoGEF, Pebble (the Drosophila ortholog of mammalian ECT2). We discuss its roles in cytokinesis and cell migration, highlighting the diversity with which Rho family signalling pathways operate in biological systems.
Collapse
Affiliation(s)
- Stephen L Gregory
- School of Molecular and Biomedical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | | | | |
Collapse
|
161
|
Park JE, Soung NK, Johmura Y, Kang YH, Liao C, Lee KH, Park CH, Nicklaus MC, Lee KS. Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol Life Sci 2010; 67:1957-70. [PMID: 20148280 PMCID: PMC2877763 DOI: 10.1007/s00018-010-0279-9] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 01/13/2010] [Accepted: 01/19/2010] [Indexed: 12/23/2022]
Abstract
Members of the polo subfamily of protein kinases have emerged as important regulators in diverse aspects of the cell cycle and cell proliferation. A large body of evidence suggests that a highly conserved polo-box domain (PBD) present in the C-terminal non-catalytic region of polo kinases plays a pivotal role in the function of these enzymes. Recent advances in our comprehension of the mechanisms underlying mammalian polo-like kinase 1 (Plk1)-dependent protein-protein interactions revealed that the PBD serves as an essential molecular mediator that brings the kinase domain of Plk1 into proximity with its substrates, mainly through phospho-dependent interactions with its target proteins. In this review, current understanding of the structure and functions of PBD, mode of PBD-dependent interactions and substrate phosphorylation, and other phospho-independent functions of PBD are discussed.
Collapse
Affiliation(s)
- Jung-Eun Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Nak-Kyun Soung
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Yoshikazu Johmura
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Young H. Kang
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chenzhong Liao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung H. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Chi Hoon Park
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, MD 21702 USA
| | - Kyung S. Lee
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 9000 Rockville Pike, Bldg. 37, Rm. 3118, Bethesda, MD 20892-4258 USA
| |
Collapse
|
162
|
Hornick JE, Karanjeet K, Collins ES, Hinchcliffe EH. Kinesins to the core: The role of microtubule-based motor proteins in building the mitotic spindle midzone. Semin Cell Dev Biol 2010; 21:290-9. [PMID: 20109573 PMCID: PMC3951275 DOI: 10.1016/j.semcdb.2010.01.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/19/2010] [Indexed: 12/23/2022]
Abstract
In mammalian cultured cells the initiation of cytokinesis is regulated - both temporally and spatially - by the overlapping, anti-parallel microtubules of the spindle midzone. This region recruits several key central spindle components: PRC-1, polo-like kinase 1 (Plk-1), the centralspindlin complex, and the chromosome passenger complex (CPC), which together serve to stabilize the microtubule overlap, and also to coordinate the assembly of the cortical actin/myosin cytoskeleton necessary to physically cleave the cell in two. The localization of these crucial elements to the spindle midzone requires members of the kinesin superfamily of microtubule-based motor proteins. Here we focus on reviewing the role played by a variety of kinesins in both building and operating the spindle midzone machinery during cytokinesis.
Collapse
Affiliation(s)
- Jessica E. Hornick
- Department of Obstetrics and Gynecology, and Robert H. Lurie Cancer Center, Northwestern University School of Medicine, Chicago, IL 60611 USA
| | - Kul Karanjeet
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
| | - Elizabeth S. Collins
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003 USA
| | - Edward H. Hinchcliffe
- Cell Dynamics Section, The Hormel Institute University of Minnesota, Austin, MN 55912 USA
| |
Collapse
|
163
|
Li Z, Umeyama T, Li Z, Wang CC. Polo-like kinase guides cytokinesis in Trypanosoma brucei through an indirect means. EUKARYOTIC CELL 2010; 9:705-16. [PMID: 20228202 PMCID: PMC2863957 DOI: 10.1128/ec.00330-09] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2009] [Accepted: 03/01/2010] [Indexed: 12/21/2022]
Abstract
Polo-like kinase in Trypanosoma brucei (TbPLK) is confined to the flagellum attachment zone (FAZ) and regulates only cytokinetic initiation. However, it apparently diffuses into the cytoplasm before the trans-localization of chromosomal passenger complex (CPC) from the midzone of central spindle to FAZ, which is known to be required for initiating cytokinesis. Synchronized T. brucei procyclic cells treated with a TbPLK inhibitor, GW843682X (GW), in late S phase were found to go through a full cell cycle at a normal pace before being arrested at cytokinetic initiation in the second cycle. However, synchronized cells treated with GW in G(1) phase were arrested at cytokinetic initiation within the first cell cycle, suggesting that inhibition of TbPLK at its emergence blocks cytokinesis within the same cell cycle. To rule out potential off-target effects from GW, TbPLK RNA interference (RNAi) was induced to deplete TbPLK, and the progression of synchronized cells from late S phase was also found to be arrested at cytokinetic initiation within the first cell cycle. Apparently, TbPLK has accomplished its role in guiding cytokinesis before the late S phase, presumably by phosphorylating a certain substrate(s) during S phase, which may play a critical role in initiating the subsequent cytokinesis.
Collapse
Affiliation(s)
- Zhi Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2280, and
- Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, People's Republic of China
| | - Takashi Umeyama
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2280, and
| | - Ziyin Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2280, and
| | - Ching C. Wang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94158-2280, and
| |
Collapse
|
164
|
Abstract
A bundle of microtubules known as the spindle midzone is rapidly assembled after anaphase onset, recruiting multiple signaling proteins that regulate cytokinesis. A new study reveals that positive feedback driven by clustering of a kinesin-6 motor underlies the explosive assembly of the spindle midzone.
Collapse
Affiliation(s)
- Ann L Miller
- Department of Zoology and Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | |
Collapse
|
165
|
Plk4 is required for cytokinesis and maintenance of chromosomal stability. Proc Natl Acad Sci U S A 2010; 107:6888-93. [PMID: 20348415 DOI: 10.1073/pnas.0910941107] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aneuploidy is a characteristic feature of established cancers and can promote tumor development. Aneuploidy may arise directly, through unequal distribution of chromosomes into daughter cells, or indirectly, through a tetraploid intermediate. The polo family kinase Plk4/Sak is required for late mitotic progression and is haploinsufficient for tumor suppression in mice. Here we show that loss of heterozygosity (LOH) occurs at the Plk4 locus in 50% of human hepatocellular carcinomas (HCC) and is present even in preneoplastic cirrhotic liver nodules. LOH at Plk4 is associated with reduced Plk4 expression in HCC tumors but not with mutations in the remaining allele. Plk4(+/-) murine embryonic fibroblasts (MEFs) at early passage show a high incidence of multinucleation, supernumerary centrosomes, and a near-tetraploid karyotype. Underlying these phenotypes is a high rate of primary cytokinesis failure, associated with aberrant actomyosin ring formation, reduced RhoA activation, and failure to localize the RhoA guanine nucleotide exchange factor Ect2 to the spindle midbody. We further show that Plk4 normally localizes to the midbody and binds to and phosphorylates Ect2 in vitro. With serial passaging Plk4(+/-) MEFs rapidly immortalize, acquiring an increasing burden of nonclonal and clonal gross chromosomal irregularities, and form tumors in vivo. Our results indicate that haploid levels of Plk4 disrupt RhoGTPase function during cytokinesis, resulting in aneuploidy and tumorigenesis, thus implicating early LOH at Plk4 as one of the drivers of human hepatocellular carcinogenesis. These findings represent an advance in our understanding of genetic predisposition to HCC, which continues to increase in incidence globally and particularly in North America.
Collapse
|
166
|
Pollard TD. Mechanics of cytokinesis in eukaryotes. Curr Opin Cell Biol 2010; 22:50-6. [PMID: 20031383 PMCID: PMC2871152 DOI: 10.1016/j.ceb.2009.11.010] [Citation(s) in RCA: 233] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/19/2009] [Accepted: 11/20/2009] [Indexed: 12/11/2022]
Abstract
Research on eukaryotic cytokinesis using advantageous model systems is rapidly advancing our understanding of most aspects of the process. Cytokinesis is very complicated with more than 100 proteins participating. Both fungi and animal cells use proteins to mark the cleavage site for the assembly of a contractile ring of actin filaments and myosin-II. Formins nucleate and elongate the actin filaments and myosin-II helps to organize the filaments into a contractile ring. Much is still to be learned about the organization of the contractile ring and the mechanisms that disassemble the ring as it constricts. Although fungi and animals share many proteins that contribute to cytokinesis, the extent to which they share mechanisms for the location, assembly, constriction, and disassembly of their contractile rings is still in question.
Collapse
Affiliation(s)
- Thomas D Pollard
- Department of Molecular Cellular, Yale University, PO Box 208103, New Haven, CT 06520-8103, USA.
| |
Collapse
|
167
|
Atilla-Gokcumen GE, Castoreno AB, Sasse S, Eggert US. Making the cut: the chemical biology of cytokinesis. ACS Chem Biol 2010; 5:79-90. [PMID: 20014865 DOI: 10.1021/cb900256m] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Cytokinesis is the last step in the cell cycle, where daughter cells finally separate. It is precisely regulated in both time and space to ensure that each daughter cell receives an equal share of DNA and other cellular materials. Chemical biology approaches have been used very successfully to study the mechanism of cytokinesis. In this review, we discuss the use of small molecule probes to perturb cytokinesis, as well as the role naturally occurring small molecule metabolites such as lipids play during cytokinesis.
Collapse
Affiliation(s)
- G. Ekin Atilla-Gokcumen
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Adam B. Castoreno
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| | - Sofia Sasse
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
- Westfälische Wilhelms-Universität Münster, Germany
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
168
|
Hutterer A, Glotzer M, Mishima M. Clustering of centralspindlin is essential for its accumulation to the central spindle and the midbody. Curr Biol 2009; 19:2043-9. [PMID: 19962307 DOI: 10.1016/j.cub.2009.10.050] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 09/25/2009] [Accepted: 10/16/2009] [Indexed: 12/29/2022]
Abstract
Cytokinesis in animal cells requires the central spindle and midbody, which contain prominent microtubule bundles. Centralspindlin, a heterotetrameric complex consisting of kinesin-6 and RhoGAP (Rho-family GTPase-activating protein) subunits, is essential for the formation of these structures. Centralspindlin becomes precisely localized to the central spindle, where it promotes the equatorial recruitment of important cytokinetic regulators. These include ECT2, the activator of the small GTPase RhoA, which controls cleavage furrow formation and ingression. Centralspindlin's own RhoGAP domain also contributes to furrow ingression. Finally, centralspindlin facilitates recruitment of the chromosome passenger complex and factors that control abscission. Despite the importance of localized accumulation of centralspindlin, the mechanism by which this motor protein complex suddenly concentrates to the center of interpolar microtubule bundles during anaphase is unclear. Here, we show that centralspindlin travels along central spindle microtubules as higher-order clusters. Clustering of centralspindlin is critical for microtubule bundling and motility along microtubules in vitro and for midbody formation in vivo. These data support a positive feedback loop of centralspindlin clustering and microtubule organization that may underlie its distinctive localization during cytokinesis.
Collapse
Affiliation(s)
- Andrea Hutterer
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | | | | |
Collapse
|
169
|
In brief. Nat Rev Mol Cell Biol 2009. [DOI: 10.1038/nrm2723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
170
|
Abstract
Proper spatial and temporal regulation of the small GTPase RhoA at the equatorial cortex represents a critical step in the specification of the division plane in eukaryotes. Despite increased understanding of the mechanisms whereby RhoA becomes active following chromosome segregation, far less is known about how RhoA is spatially regulated so that it concentrates precisely at the division site. In the April 1, 2009, issue of Genes & Development, Yoshida and colleagues (pp. 810-823) uncovered two genetically separable mechanisms whereby Rho1 is recruited to the bud neck in the budding yeast Saccharomyces cerevisiae to facilitate cytokinesis.
Collapse
Affiliation(s)
- Benjamin A Wolfe
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Illinois 60637, USA
| | | |
Collapse
|