151
|
Davey HM, Cross EJM, Davey CL, Gkargkas K, Delneri D, Hoyle DC, Oliver SG, Kell DB, Griffith GW. Genome-wide analysis of longevity in nutrient-deprived Saccharomyces cerevisiae reveals importance of recycling in maintaining cell viability. Environ Microbiol 2012; 14:1249-60. [PMID: 22356628 DOI: 10.1111/j.1462-2920.2012.02705.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although typically cosseted in the laboratory with constant temperatures and plentiful nutrients, microbes are frequently exposed to much more stressful conditions in their natural environments where survival and competitive fitness depend upon both growth rate when conditions are favourable and on persistence in a viable and recoverable state when they are not. In order to determine the role of genetic heterogeneity in environmental fitness we present a novel approach that combines the power of fluorescence-activated cell sorting with barcode microarray analysis and apply this to determining the importance of every gene in the Saccharomyces cerevisiae genome in a high-throughput, genome-wide fitness screen. We have grown > 6000 heterozygous mutants together and exposed them to a starvation stress before using fluorescence-activated cell sorting to identify and isolate those individual cells that have not survived the stress applied. Barcode array analysis of the sorted and total populations reveals the importance of cellular recycling mechanisms (autophagy, pexophagy and ribosome breakdown) in maintaining cell viability during starvation and provides compelling evidence for an important role for fatty acid degradation in maintaining viability. In addition, we have developed a semi-batch fermentor system that is a more realistic model of environmental fitness than either batch or chemostat culture. Barcode array analysis revealed that arginine biosynthesis was important for fitness in semi-batch culture and modelling of this regime showed that rapid emergence from lag phase led to greatly increased fitness. One hundred and twenty-five strains with deletions in unclassified proteins were identified as being over-represented in the sorted fraction, while 27 unclassified proteins caused a haploinsufficient phenotype in semi-batch culture. These methods thus provide a screen to identifying other genes and pathways that have a role in maintaining cell viability.
Collapse
Affiliation(s)
- Hazel M Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Abstract
Autophagy is a cytoplasmic catabolic process that protects the cell against stressful conditions. Damaged cellular components are funneled by autophagy into the lysosomes, where they are degraded and can be re-used as alternative building blocks for protein synthesis and cellular repair. In contrast, aging is the gradual failure over time of cellular repair mechanisms that leads to the accumulation of molecular and cellular damage and loss of function. The cell's capacity for autophagic degradation also declines with age, and this in itself may contribute to the aging process. Studies in model organisms ranging from yeast to mice have shown that single-gene mutations can extend lifespan in an evolutionarily conserved fashion, and provide evidence that the aging process can be modulated. Interestingly, autophagy is induced in a seemingly beneficial manner by many of the same perturbations that extend lifespan, including mutations in key signaling pathways such as the insulin/IGF-1 and TOR pathways. Here, we review recent progress, primarily derived from genetic studies with model organisms, in understanding the role of autophagy in aging and age-related diseases.
Collapse
Affiliation(s)
- Sara Gelino
- Sanford-Burnham Medical Research Institute, USA ; Graduate School of Biomedical Sciences, Del E. Webb Neuroscience, Aging and Stem Cell Research Center, Program of Development and Aging, La Jolla, CA, USA
| | | |
Collapse
|
153
|
Abstract
When investigating aging it is important to focus on the factors that are needed to attain, and which can be manipulated to extend, the longest lifespans. This has long been appreciated by those workers who use Drosophila or Caenorhabditis elegans as model experimental systems to study aging. Often though it seems it is not a consideration in many studies of yeast chronological aging. In this chapter I summarise how recent work has revealed the preconditioning that is needed for yeast to survive for long periods in stationary phase, therefore for it to exhibit a long chronological life span (CLS). Of critical importance in this regard is the nature of the nutrient limitation that, during the earlier growth phase, had forced the cells to undergo growth arrest. I have attempted to highlight those studies that have focussed on the longest CLSs, as this helps to identify investigations that may be addressing - not just factors that can influence chronological longevity - but those factors that are correlated with the authentic processes of chronological aging. Attempting to maximize long-term stationary survival in yeast should also enhance the potential relevance of this organism as an aging model to those who wrestle with the problems of aging in more complex systems. Finally I also give a personal perspective of how studies on the yeast CLS may still yet provide some important new insights into events that are correlated with aging.
Collapse
Affiliation(s)
- Peter W Piper
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, UK,
| |
Collapse
|
154
|
Valerio A, D'Antona G, Nisoli E. Branched-chain amino acids, mitochondrial biogenesis, and healthspan: an evolutionary perspective. Aging (Albany NY) 2011; 3:464-78. [PMID: 21566257 PMCID: PMC3156598 DOI: 10.18632/aging.100322] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Malnutrition is common among older persons, with important consequences increasing frailty and morbidity and reducing health expectancy. On the contrary, calorie restriction (CR, a low-calorie dietary regimen with adequate nutrition) slows the progression of age-related diseases and extends the lifespan of many species. Identification of strategies mimicking key CR mechanisms – increased mitochondrial respiration and reduced production of oxygen radicals – is a hot topic in gerontology. Dietary supplementation with essential and/or branched chain amino acids (BCAAs) exerts a variety of beneficial effects in experimental animals and humans and has been recently demonstrated to support cardiac and skeletal muscle mitochondrial biogenesis, prevent oxidative damage, and enhance physical endurance in middle-aged mice, resulting in prolonged survival. Here we review recent studies addressing the possible role of BCAAs in energy metabolism and in the longevity of species ranging from unicellular organisms to mammals. We also summarize observations from human studies supporting the exciting hypothesis that dietary BCAA enriched mixture supplementation might be a health-promoting strategy in aged patients at risk.
Collapse
Affiliation(s)
- Alessandra Valerio
- Pharmacology Unit, Department of Biomedical Sciences and Biotechnologies, Brescia University, Italy
| | | | | |
Collapse
|
155
|
Johnson JG, Morey JS, Neely MG, Ryan JC, Van Dolah FM. Transcriptome remodeling associated with chronological aging in the dinoflagellate, Karenia brevis. Mar Genomics 2011; 5:15-25. [PMID: 22325718 DOI: 10.1016/j.margen.2011.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/15/2011] [Accepted: 08/19/2011] [Indexed: 10/17/2022]
Abstract
The toxic dinoflagellate, Karenia brevis, forms dense blooms in the Gulf of Mexico that persist for many months in coastal waters, where they can cause extensive marine animal mortalities and human health impacts. The mechanisms that enable cell survival in high density, low growth blooms, and the mechanisms leading to often rapid bloom demise are not well understood. To gain an understanding of processes that underlie chronological aging in this dinoflagellate, a microarray study was carried out to identify changes in the global transcriptome that accompany the entry and maintenance of stationary phase up to the onset of cell death. The transcriptome of K. brevis was assayed using a custom 10,263 feature oligonucleotide microarray from mid-logarithmic growth to the onset of culture demise. A total of 2958 (29%) features were differentially expressed, with the mid-stationary phase timepoint demonstrating peak changes in expression. Gene ontology enrichment analyses identified a significant shift in transcripts involved in energy acquisition, ribosome biogenesis, gene expression, stress adaptation, calcium signaling, and putative brevetoxin biosynthesis. The extensive remodeling of the transcriptome observed in the transition into a quiescent non-dividing phase appears to be indicative of a global shift in the metabolic and signaling requirements and provides the basis from which to understand the process of chronological aging in a dinoflagellate.
Collapse
Affiliation(s)
- Jillian G Johnson
- NOAA Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC 29412, USA.
| | | | | | | | | |
Collapse
|
156
|
|
157
|
Kwan EX, Foss E, Kruglyak L, Bedalov A. Natural polymorphism in BUL2 links cellular amino acid availability with chronological aging and telomere maintenance in yeast. PLoS Genet 2011; 7:e1002250. [PMID: 21901113 PMCID: PMC3161923 DOI: 10.1371/journal.pgen.1002250] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Accepted: 07/06/2011] [Indexed: 12/21/2022] Open
Abstract
Aging and longevity are considered to be highly complex genetic traits. In order to gain insight into aging as a polygenic trait, we employed an outbred Saccharomyces cerevisiae model, generated by crossing a vineyard strain RM11 and a laboratory strain S288c, to identify quantitative trait loci that control chronological lifespan. Among the major loci that regulate chronological lifespan in this cross, one genetic linkage was found to be congruent with a previously mapped locus that controls telomere length variation. We found that a single nucleotide polymorphism in BUL2, encoding a component of an ubiquitin ligase complex involved in trafficking of amino acid permeases, controls chronological lifespan and telomere length as well as amino acid uptake. Cellular amino acid availability changes conferred by the BUL2 polymorphism alter telomere length by modulating activity of a transcription factor Gln3. Among the GLN3 transcriptional targets relevant to this phenotype, we identified Wtm1, whose upregulation promotes nuclear retention of ribonucleotide reductase (RNR) components and inhibits the assembly of the RNR enzyme complex during S-phase. Inhibition of RNR is one of the mechanisms by which Gln3 modulates telomere length. Identification of a polymorphism in BUL2 in this outbred yeast population revealed a link among cellular amino acid availability, chronological lifespan, and telomere length control.
Collapse
Affiliation(s)
- Elizabeth X. Kwan
- Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Eric Foss
- Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Leonid Kruglyak
- Lewis-Sigler Institute for Integrative Genomics and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Antonio Bedalov
- Clinical Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Molecular and Cellular Biology Program, University of Washington and Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
158
|
Burtner CR, Murakami CJ, Olsen B, Kennedy BK, Kaeberlein M. A genomic analysis of chronological longevity factors in budding yeast. Cell Cycle 2011; 10:1385-96. [PMID: 21447998 DOI: 10.4161/cc.10.9.15464] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronological life span (CLS) has been studied as an aging paradigm in yeast. A few conserved aging genes have been identified that modulate both chronological and replicative longevity in yeast as well as longevity in the nematode Caenorhabditis elegans; however, a comprehensive analysis of the relationship between genetic control of chronological longevity and aging in other model systems has yet to be reported. To address this question, we performed a functional genomic analysis of chronological longevity for 550 single-gene deletion strains, which accounts for approximately 12% of the viable homozygous diploid deletion strains in the yeast ORF deletion collection. This study identified 33 previously unknown determinants of CLS. We found no significant enrichment for enhanced CLS among deletions corresponding to yeast orthologs of worm aging genes or among replicatively long-lived deletion strains, although a trend toward overlap was noted. In contrast, a subset of gene deletions identified from a screen for reduced acidification of culture media during growth to stationary phase was enriched for increased CLS. These results suggest that genetic control of CLS under the most commonly utilized assay conditions does not strongly overlap with longevity determinants in C. elegans, with the existing confined to a small number of genetic pathways. These data also further support the model that acidification of the culture medium plays an important role in survival during chronological aging in synthetic medium, and suggest that chronological aging studies using alternate medium conditions may be more informative with regard to aging of multicellular eukaryotes.
Collapse
|
159
|
Suzuki SW, Onodera J, Ohsumi Y. Starvation induced cell death in autophagy-defective yeast mutants is caused by mitochondria dysfunction. PLoS One 2011; 6:e17412. [PMID: 21364763 PMCID: PMC3045454 DOI: 10.1371/journal.pone.0017412] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 01/30/2011] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a highly-conserved cellular degradation and recycling system that is essential for cell survival during nutrient starvation. The loss of viability had been used as an initial screen to identify autophagy-defective (atg) mutants of the yeast Saccharomyces cerevisiae, but the mechanism of cell death in these mutants has remained unclear. When cells grown in a rich medium were transferred to a synthetic nitrogen starvation media, secreted metabolites lowered the extracellular pH below 3.0 and autophagy-defective mutants mostly died. We found that buffering of the starvation medium dramatically restored the viability of atg mutants. In response to starvation, wild-type (WT) cells were able to upregulate components of the respiratory pathway and ROS (reactive oxygen species) scavenging enzymes, but atg mutants lacked this synthetic capacity. Consequently, autophagy-defective mutants accumulated the high level of ROS, leading to deficient respiratory function, resulting in the loss of mitochondria DNA (mtDNA). We also showed that mtDNA deficient cells are subject to cell death under low pH starvation conditions. Taken together, under starvation conditions non-selective autophagy, rather than mitophagy, plays an essential role in preventing ROS accumulation, and thus in maintaining mitochondria function. The failure of response to starvation is the major cause of cell death in atg mutants.
Collapse
Affiliation(s)
- Sho W. Suzuki
- Frontier Research Center, Tokyo Institute of Technology, Yokohama, Japan
- Graduate School of Bioscience, Tokyo Institute of Technology, Yokohama, Japan
| | - Jun Onodera
- Department of Cell Biology, Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki, Japan
| | - Yoshinori Ohsumi
- Frontier Research Center, Tokyo Institute of Technology, Yokohama, Japan
- Department of Cell Biology, Division of Molecular Cell Biology, National Institute for Basic Biology, Okazaki, Japan
- * E-mail:
| |
Collapse
|
160
|
Davidson GS, Joe RM, Roy S, Meirelles O, Allen CP, Wilson MR, Tapia PH, Manzanilla EE, Dodson AE, Chakraborty S, Carter M, Young S, Edwards B, Sklar L, Werner-Washburne M. The proteomics of quiescent and nonquiescent cell differentiation in yeast stationary-phase cultures. Mol Biol Cell 2011; 22:988-98. [PMID: 21289090 PMCID: PMC3069023 DOI: 10.1091/mbc.e10-06-0499] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
As yeast cultures enter stationary phase in rich, glucose-based medium, differentiation of two major subpopulations of cells, termed quiescent and nonquiescent, is observed. Differences in mRNA abundance between exponentially growing and stationary-phase cultures and quiescent and nonquiescent cells are known, but little was known about protein abundance in these cells. To measure protein abundance in exponential and stationary-phase cultures, the yeast GFP-fusion library (4159 strains) was examined during exponential and stationary phases, using high-throughput flow cytometry (HyperCyt). Approximately 5% of proteins in the library showed twofold or greater changes in median fluorescence intensity (abundance) between the two conditions. We examined 38 strains exhibiting two distinct fluorescence-intensity peaks in stationary phase and determined that the two fluorescence peaks distinguished quiescent and nonquiescent cells, the two major subpopulations of cells in stationary-phase cultures. GFP-fusion proteins in this group were more abundant in quiescent cells, and half were involved in mitochondrial function, consistent with the sixfold increase in respiration observed in quiescent cells and the relative absence of Cit1p:GFP in nonquiescent cells. Finally, examination of quiescent cell-specific GFP-fusion proteins revealed symmetry in protein accumulation in dividing quiescent and nonquiescent cells after glucose exhaustion, leading to a new model for the differentiation of these cells.
Collapse
Affiliation(s)
- George S Davidson
- Biology Department, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
In the past several decades the budding yeast Saccharomyces cerevisiae has emerged as a prominent model for aging research. The creation of a single-gene deletion collection covering the majority of open reading frames in the yeast genome and advances in genomic technologies have opened yeast research to genome-scale screens for a variety of phenotypes. A number of screens have been performed looking for genes that modify secondary age-associated phenotypes such as stress resistance or growth rate. More recently, moderate-throughput methods for measuring replicative life span and high-throughput methods for measuring chronological life span have allowed for the first unbiased screens aimed at directly identifying genes involved in determining yeast longevity. In this chapter we discuss large-scale life span studies performed in yeast and their implications for research related to the basic biology of aging.
Collapse
Affiliation(s)
- George L Sutphin
- Department of Pathology and the Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195-7470, USA,
| | | | | | | |
Collapse
|
162
|
Aris JP, Fishwick LK, Marraffini ML, Seo AY, Leeuwenburgh C, Dunn WA. Amino acid homeostasis and chronological longevity in Saccharomyces cerevisiae. Subcell Biochem 2011; 57:161-86. [PMID: 22094422 DOI: 10.1007/978-94-007-2561-4_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Understanding how non-dividing cells remain viable over long periods of time, which may be decades in humans, is of central importance in understanding mechanisms of aging and longevity. The long-term viability of non-dividing cells, known as chronological longevity, relies on cellular processes that degrade old components and replace them with new ones. Key among these processes is amino acid homeostasis. Amino acid homeostasis requires three principal functions: amino acid uptake, de novo synthesis, and recycling. Autophagy plays a key role in recycling amino acids and other metabolic building blocks, while at the same time removing damaged cellular components such as mitochondria and other organelles. Regulation of amino acid homeostasis and autophagy is accomplished by a complex web of pathways that interact because of the functional overlap at the level of recycling. It is becoming increasingly clear that amino acid homeostasis and autophagy play important roles in chronological longevity in yeast and higher organisms. Our goal in this chapter is to focus on mechanisms and pathways that link amino acid homeostasis, autophagy, and chronological longevity in yeast, and explore their relevance to aging and longevity in higher eukaryotes.
Collapse
Affiliation(s)
- John P Aris
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL, 32610-0235, USA,
| | | | | | | | | | | |
Collapse
|
163
|
Sharma PK, Mittal N, Deswal S, Roy N. Calorie restriction up-regulates iron and copper transport genes in Saccharomyces cerevisiae. MOLECULAR BIOSYSTEMS 2010; 7:394-402. [PMID: 21031176 DOI: 10.1039/c0mb00084a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Calorie restriction (CR) is a non genetic intervention, known to confer longevity benefits across the various phyla from unicellular yeast to mammals. CR also invokes homeostatic responses similar to stress, however the sequence of molecular events leading to longevity is still illusive. In this study, we analysed the whole genome gene expression profile in response to CR, mutations mimicking CR, heat shock and H(2)O(2) from a gene ontology perspective. Our analysis revealed that mitochondrion is a common hub in the gene expression programme under these conditions and the electron transport chain (ETC) is a major player. Consequently the genes involved in the metal ion transport were also significantly up-regulated. We confirmed the results of the in silico analysis using quantitative real time PCR which showed up-regulation of genes involved in respiration and transport of iron and copper. The promoter activity of one of the representative genes, FET3, was also found to be higher upon calorie restriction. Altogether, our results indicate that upon calorie restriction the levels of iron and copper fall in cells, which elicits a transcriptional response up-regulating the genes involved in their uptake to maintain cellular homeostasis.
Collapse
Affiliation(s)
- Praveen Kumar Sharma
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Sector 67, S A S Nagar, Punjab, 160062, India
| | | | | | | |
Collapse
|
164
|
System-level analysis of genes and functions affecting survival during nutrient starvation in Saccharomyces cerevisiae. Genetics 2010; 187:299-317. [PMID: 20944018 DOI: 10.1534/genetics.110.120766] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An essential property of all cells is the ability to exit from active cell division and persist in a quiescent state. For single-celled microbes this primarily occurs in response to nutrient deprivation. We studied the genetic requirements for survival of Saccharomyces cerevisiae when starved for either of two nutrients: phosphate or leucine. We measured the survival of nearly all nonessential haploid null yeast mutants in mixed populations using a quantitative sequencing method that estimates the abundance of each mutant on the basis of frequency of unique molecular barcodes. Starvation for phosphate results in a population half-life of 337 hr whereas starvation for leucine results in a half-life of 27.7 hr. To measure survival of individual mutants in each population we developed a statistical framework that accounts for the multiple sources of experimental variation. From the identities of the genes in which mutations strongly affect survival, we identify genetic evidence for several cellular processes affecting survival during nutrient starvation, including autophagy, chromatin remodeling, mRNA processing, and cytoskeleton function. In addition, we found evidence that mitochondrial and peroxisome function is required for survival. Our experimental and analytical methods represent an efficient and quantitative approach to characterizing genetic functions and networks with unprecedented resolution and identified genotype-by-environment interactions that have important implications for interpretation of studies of aging and quiescence in yeast.
Collapse
|
165
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
166
|
TOR Signaling and Aging. STRUCTURE, FUNCTION AND REGULATION OF TOR COMPLEXES FROM YEASTS TO MAMMALS PART B 2010. [DOI: 10.1016/s1874-6047(10)28014-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|