151
|
Wang K, Donnarumma F, Herke SW, Dong C, Herke PF, Murray KK. RNA sampling from tissue sections using infrared laser ablation. Anal Chim Acta 2019; 1063:91-98. [PMID: 30967191 DOI: 10.1016/j.aca.2019.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/17/2019] [Accepted: 02/24/2019] [Indexed: 10/27/2022]
Abstract
RNA was obtained from discrete locations of frozen rat brain tissue sections through infrared (IR) laser ablation using a 3-μm wavelength in transmission geometry. The ablated plume was captured in a microcentrifuge tube containing RNAse-free buffer and processed using a commercial RNA purification kit. RNA transfer efficiency and integrity were evaluated based on automated electrophoresis in microfluidic chips. Reproducible IR-laser ablation of intact RNA was demonstrated with purified RNA at laser fluences of 3-5 kJ/m2 (72 ± 12% transfer efficiency) and with tissue sections at a laser fluence of 13 kJ/m2 (79 ± 14% transfer efficiency); laser energies were attenuated ∼20% by the soda-lime glass slides used to support the samples. RNA integrity from tissue ablation was >90% of its original RIN value (∼7) and the purified RNA was sufficiently intact for conversion to cDNA and subsequent qPCR assay.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Scott W Herke
- Genomics Facility, College of Science, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Chao Dong
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Patrick F Herke
- Genomics Facility, College of Science, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States.
| |
Collapse
|
152
|
Mukherji A, Bailey SM, Staels B, Baumert TF. The circadian clock and liver function in health and disease. J Hepatol 2019; 71:200-211. [PMID: 30930223 PMCID: PMC7613420 DOI: 10.1016/j.jhep.2019.03.020] [Citation(s) in RCA: 146] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023]
Abstract
Each day, all organisms are subjected to changes in light intensity because of the Earth's rotation around its own axis. To anticipate this geo-physical variability, and to appropriately respond biochemically, most species, including mammals, have evolved an approximate 24-hour endogenous timing mechanism known as the circadian clock (CC). The 'clock' is self-sustained, cell autonomous and present in every cell type. At the core of the clock resides the CC-oscillator, an exquisitely crafted transcriptional-translational feedback system. Remarkably, components of the CC-oscillator not only maintain daily rhythmicity of their own synthesis, but also generate temporal variability in the expression levels of numerous target genes through transcriptional, post-transcriptional and post-translational mechanisms, thus, ensuring proper chronological coordination in the functioning of cells, tissues and organs, including the liver. Indeed, a variety of physiologically critical hepatic functions and cellular processes are CC-controlled. Thus, it is not surprising that modern lifestyle factors (e.g. travel and jet lag, night and rotating shift work), which force 'circadian misalignment', have emerged as major contributors to global health problems including obesity, non-alcoholic fatty liver disease and steatohepatitis. Herein, we provide an overview of the CC-dependent pathways which play critical roles in mediating several hepatic functions under physiological conditions, and whose deregulation is implicated in chronic liver diseases including non-alcoholic steatohepatitis and alcohol-related liver disease.
Collapse
Affiliation(s)
- Atish Mukherji
- Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR 1110, Université de Strasbourg, Strasbourg, France.
| | - Shannon M. Bailey
- Department of Pathology, School of Medicine, University of Alabama at Birmingham, USA
| | - Bart Staels
- Université de Lille-European Genomic Institute for Diabetes, Institut Pasteur de Lille, CHU de Lille, INSERM UMR 1011, Lille, France
| | - Thomas F. Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques INSERM, UMR 1110, Université de Strasbourg Strasbourg, France,Pôle Hépato-Digestif, Institut Hospitalo-Universitaire, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
153
|
Abstract
Hepatocytes operate in highly structured repeating anatomical units termed liver lobules. Blood flow along the lobule radial axis creates gradients of oxygen, nutrients and hormones, which, together with morphogenetic fields, give rise to a highly variable microenvironment. In line with this spatial variability, key liver functions are expressed non-uniformly across the lobules, a phenomenon termed zonation. Technologies based on single-cell transcriptomics have constructed a global spatial map of hepatocyte gene expression in mice revealing that ~50% of hepatocyte genes are expressed in a zonated manner. This broad spatial heterogeneity suggests that hepatocytes in different lobule zones might have not only different gene expression profiles but also distinct epigenetic features, regenerative capacities, susceptibilities to damage and other functional aspects. Here, we present genomic approaches for studying liver zonation, describe the principles of liver zonation and discuss the intrinsic and extrinsic factors that dictate zonation patterns. We also explore the challenges and solutions for obtaining zonation maps of liver non-parenchymal cells. These approaches facilitate global characterization of liver function with high spatial resolution along physiological and pathological timescales.
Collapse
Affiliation(s)
- Shani Ben-Moshe
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Shalev Itzkovitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
154
|
Gomig THB, Cavalli IJ, Souza RLRD, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, Urban CDA, Cavalli LR, Ribeiro EMDSF. High-throughput mass spectrometry and bioinformatics analysis of breast cancer proteomic data. Data Brief 2019; 25:104125. [PMID: 31294064 PMCID: PMC6595893 DOI: 10.1016/j.dib.2019.104125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/28/2019] [Accepted: 05/31/2019] [Indexed: 12/23/2022] Open
Abstract
Data present here describe a comparative proteomic analysis among the malignant [primary breast tumor (PT) and axillary metastatic lymph nodes (LN)], and the non-tumor [contralateral (NCT) and adjacent (ANT)] breast tissues. Protein identification and quantification were performed through label-free mass spectrometry using a nano-liquid chromatography coupled to an electrospray ionization-mass spectrometry (nLC-ESI-MS/MS). The mass spectrometry proteomic data have been deposited to the ProteomeXchange Consortium via PRIDE partner repository with the dataset identifier PXD012431. A total of 462 differentially expressed proteins was identified among these tissues and was analyzed in six groups' comparisons (named NCTxANT, PTxNCT, PTxANT, LNxNCT, LNxANT and PTxLN). Proteins at 1.5 log2 fold change were submitted to the Ingenuity® Pathway Analysis (IPA) software version 2.3 (QIAGEN Inc.) to identify biological pathways, disease and function annotation, and interaction networks related to cancer biology. The detailed data present here provides information about the proteome alterations and their role on breast tumorigenesis. This information can lead to novel biological insights on cancer research. For further interpretation of these data, please see our research article 'Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer' [2].
Collapse
Affiliation(s)
| | | | | | | | - Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.,Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | - Fabricio Klerynton Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil.,Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | | | | | - Luciane Regina Cavalli
- Research Institute Pele Pequeno Principe, Curitiba, Brazil.,Lombardi Comprehensive Cancer Center, Georgetown University, USA
| | | |
Collapse
|
155
|
Stubblefield JJ, Gao P, Kilaru G, Mukadam B, Terrien J, Green CB. Temporal Control of Metabolic Amplitude by Nocturnin. Cell Rep 2019; 22:1225-1235. [PMID: 29386110 PMCID: PMC5815321 DOI: 10.1016/j.celrep.2018.01.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/20/2017] [Accepted: 01/03/2018] [Indexed: 01/08/2023] Open
Abstract
The timing of food intake and nutrient utilization is critical to health and regulated partly by the circadian clock. Increased amplitude of circadian oscillations and metabolic output has been found to improve health in diabetic and obesity mouse models. Here, we report a function for the circadian deadenylase Nocturnin as a regulator of metabolic amplitude across the day/night cycle and in response to nutrient challenge. We show that mice lacking Nocturnin (Noct−/−) display significantly increased amplitudes of mRNA expression of hepatic genes encoding key metabolic enzymes regulating lipid and cholesterol synthesis, both over the daily circadian cycle and in response to fasting and refeeding. Noct−/− mice have increased plasma triglyceride throughout the night and increased amplitude of hepatic cholesterol levels. Therefore, posttranscriptional control by Nocturnin regulates the amplitude of these critical metabolic pathways, and loss of this activity results in increased metabolic flux and reduced obesity.
Collapse
Affiliation(s)
- Jeremy J Stubblefield
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| | - Peng Gao
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Gokhul Kilaru
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Bilal Mukadam
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Jeremy Terrien
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
156
|
Sun Y, Wen J, Chen R, Deng Y. Variable protein homeostasis in housekeeping and non-housekeeping pathways under mycotoxins stress. Sci Rep 2019; 9:7819. [PMID: 31127180 PMCID: PMC6534621 DOI: 10.1038/s41598-019-44305-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/13/2019] [Indexed: 12/01/2022] Open
Abstract
Transcript levels are the primary factor determining protein levels, but for the majority of genes, fold changes in transcript levels are larger than the corresponding changes in protein levels, a phenomenon that is termed “protein homeostasis”. However, this phenomenon is not well characterized in the context of environmental changes. In this study, we sequenced the entire transcriptome and proteome of chicken primary hepatocytes administered three mycotoxin treatments Aflatoxin B1 (AFB1), Ochoratoxin A (OTA) and Zearalenone (ZEN). Each mycotoxin induced unique set of differential expressed transcripts and proteins, suggesting variable cytotoxicity and biochemical action in cell. We found a weak positive correlation between transcript and protein changes, and the transcript changes were higher than the protein changes. Furthermore, we observed pathway-specific protein homeostasis pattern under mycotoxin stress. Specifically, the “Metabolism”, “Transcription” and “Translation” pathways (housekeeping pathways) showed lower fold changes in protein/mRNA levels than non-housekeeping pathways such as “Cell growth and death” and “Immune system”. Protein molecular weight had a weak negative effect on protein production, and this effect was stronger for non-housekeeping pathways. Overall, we hypothesize housekeeping pathways maintain stable protein production for baseline cellular function, whereas non-housekeeping pathways is associated with the fitness response to environmental stress.
Collapse
Affiliation(s)
- Yu Sun
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China
| | - Jikai Wen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China
| | - Ruohong Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China.,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China. .,Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, Guangdong, 510642, P.R. China.
| |
Collapse
|
157
|
Metabolic reprogramming and Notch activity distinguish between non-small cell lung cancer subtypes. Br J Cancer 2019; 121:51-64. [PMID: 31114017 PMCID: PMC6738087 DOI: 10.1038/s41416-019-0464-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 02/01/2019] [Accepted: 03/07/2019] [Indexed: 01/12/2023] Open
Abstract
Background Previous studies suggested that the metabolism is differently reprogrammed in the major subtypes of non-small cell lung cancer (NSCLC), squamous cell carcinomas (SCC) and adenocarcinomas (AdC). However, a comprehensive analysis of this differential metabolic reprogramming is lacking. Methods Publicly available gene expression data from human lung cancer samples and cell lines were analysed. Stable isotope resolved metabolomics were performed on SCC and ADC tumours in human patients and in freshly resected tumour slices. Results Analysis of multiple transcriptomics data from human samples identified a SCC-distinguishing enzyme gene signature. SCC tumours from patients infused with [U-13C]-glucose and SCC tissue slices incubated with stable isotope tracers demonstrated differential glucose and glutamine catabolism compared to AdCs or non-cancerous lung, confirming increased activity through pathways defined by the SCC metabolic gene signature. Furthermore, the upregulation of Notch target genes was a distinguishing feature of SCCs, which correlated with the metabolic signature. Notch and MYC-driven murine lung tumours recapitulated the SCC-distinguishing metabolic reprogramming. However, the differences between SCCs and AdCs disappear in established cell lines in 2D culture. Conclusions Our data emphasise the importance of studying lung cancer metabolism in vivo. They also highlight potential targets for therapeutic intervention in SCC patients including differentially expressed enzymes that catalyse reactions in glycolysis, glutamine catabolism, serine, nucleotide and glutathione biosynthesis.
Collapse
|
158
|
Mauvoisin D. Circadian rhythms and proteomics: It's all about posttranslational modifications! WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2019; 11:e1450. [PMID: 31034157 DOI: 10.1002/wsbm.1450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/29/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
The circadian clock is a molecular endogenous timekeeping system and allows organisms to adjust their physiology and behavior to the geophysical time. Organized hierarchically, the master clock in the suprachiasmatic nuclei, coordinates peripheral clocks, via direct, or indirect signals. In peripheral organs, such as the liver, the circadian clock coordinates gene expression, notably metabolic gene expression, from transcriptional to posttranslational level. The metabolism in return feeds back on the molecular circadian clock via posttranslational-based mechanisms. During the last two decades, circadian gene expression studies have mostly been relying primarily on genomics or transcriptomics approaches and transcriptome analyses of multiple organs/tissues have revealed that the majority of protein-coding genes display circadian rhythms in a tissue specific manner. More recently, new advances in mass spectrometry offered circadian proteomics new perspectives, that is, the possibilities of performing large scale proteomic studies at cellular and subcellular levels, but also at the posttranslational modification level. With important implications in metabolic health, cell signaling has been shown to be highly relevant to circadian rhythms. Moreover, comprehensive characterization studies of posttranslational modifications are emerging and as a result, cell signaling processes are expected to be more deeply characterized and understood in the coming years with the use of proteomics. This review summarizes the work studying diurnally rhythmic or circadian gene expression performed at the protein level. Based on the knowledge brought by circadian proteomics studies, this review will also discuss the role of posttranslational modification events as an important link between the molecular circadian clock and metabolic regulation. This article is categorized under: Laboratory Methods and Technologies > Proteomics Methods Physiology > Mammalian Physiology in Health and Disease Biological Mechanisms > Cell Signaling.
Collapse
Affiliation(s)
- Daniel Mauvoisin
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
159
|
Millius A, Ode KL, Ueda HR. A period without PER: understanding 24-hour rhythms without classic transcription and translation feedback loops. F1000Res 2019; 8. [PMID: 31031966 PMCID: PMC6468715 DOI: 10.12688/f1000research.18158.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/09/2019] [Indexed: 01/08/2023] Open
Abstract
Since Ronald Konopka and Seymour Benzer's discovery of the gene Period in the 1970s, the circadian rhythm field has diligently investigated regulatory mechanisms and intracellular transcriptional and translation feedback loops involving Period, and these investigations culminated in a 2017 Nobel Prize in Physiology or Medicine for Michael W. Young, Michael Rosbash, and Jeffrey C. Hall. Although research on 24-hour behavior rhythms started with Period, a series of discoveries in the past decade have shown us that post-transcriptional regulation and protein modification, such as phosphorylation and oxidation, are alternatives ways to building a ticking clock.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Laboratory of Systems Immunology and Laboratory of Host Defense, Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Koji L Ode
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroki R Ueda
- Laboratory for Synthetic Biology, RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
160
|
Cusumano P, Damulewicz M, Carbognin E, Caccin L, Puricella A, Specchia V, Bozzetti MP, Costa R, Mazzotta GM. The RNA Helicase BELLE Is Involved in Circadian Rhythmicity and in Transposons Regulation in Drosophila melanogaster. Front Physiol 2019; 10:133. [PMID: 30842743 PMCID: PMC6392097 DOI: 10.3389/fphys.2019.00133] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/04/2019] [Indexed: 02/05/2023] Open
Abstract
Circadian clocks control and synchronize biological rhythms of several behavioral and physiological phenomena in most, if not all, organisms. Rhythm generation relies on molecular auto-regulatory oscillations of interlocked transcriptional-translational feedback loops. Rhythmic clock-gene expression is at the base of rhythmic protein accumulation, though post-transcriptional and post-translational mechanisms have evolved to adjust and consolidate the proper pace of the clock. In Drosophila, BELLE, a conserved DEAD-box RNA helicase playing important roles in reproductive capacity, is involved in the small RNA-mediated regulation associated to the piRNA pathway. Here, we report that BELLE is implicated in the circadian rhythmicity and in the regulation of endogenous transposable elements (TEs) in both nervous system and gonads. We suggest that BELLE acts as important element in the piRNA-mediated regulation of the TEs and raise the hypothesis that this specific regulation could represent another level of post-transcriptional control adopted by the clock to ensure the proper rhythmicity.
Collapse
Affiliation(s)
- Paola Cusumano
- Department of Biology, University of Padua, Padua, Italy
| | - Milena Damulewicz
- Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | | | - Laura Caccin
- Department of Biology, University of Padua, Padua, Italy
| | - Antonietta Puricella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Valeria Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Maria Pia Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Rodolfo Costa
- Department of Biology, University of Padua, Padua, Italy
| | | |
Collapse
|
161
|
Gomig THB, Cavalli IJ, Souza RLRD, Vieira E, Lucena ACR, Batista M, Machado KC, Marchini FK, Marchi FA, Lima RS, de Andrade Urban C, Cavalli LR, Ribeiro EMDSF. Quantitative label-free mass spectrometry using contralateral and adjacent breast tissues reveal differentially expressed proteins and their predicted impacts on pathways and cellular functions in breast cancer. J Proteomics 2019; 199:1-14. [PMID: 30772490 DOI: 10.1016/j.jprot.2019.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 02/08/2023]
Abstract
Proteins play an essential role in the biological processes associated with cancer. Their altered expression levels can deregulate critical cellular pathways and interactive networks. In this study, the mass spectrometry-based label-free quantification followed by functional annotation was performed to investigate the most significant deregulated proteins among tissues of primary breast tumor (PT) and axillary metastatic lymph node (LN) and corresponding non-tumor tissues contralateral (NCT) and adjacent (ANT) from patients diagnosed with invasive ductal carcinoma. A total of 462 proteins was observed as differentially expressed (DEPs) among the groups analyzed. A high level of similarity was observed in the proteome profile of both non-tumor breast tissues and DEPs (n = 12) were mainly predicted in the RNA metabolism. The DEPs among the malignant and non-tumor breast tissues [n = 396 (PTxNCT) and n = 410 (LNxNCT)] were related to pathways of the LXR/RXR, NO, eNOS, eIF2 and sirtuins, tumor-related functions, fatty acid metabolism and oxidative stress. Remarkable similarity was observed between both malignant tissues, which the DEPs were related to metastatic capabilities. Altogether, our findings revealed differential proteomic profiles that affected cancer associated and interconnected signaling processes. Validation studies are recommended to demonstrate the potential of individual proteins and/or pathways as biological markers in breast cancer. SIGNIFICANCE: The proteomic analysis of this study revealed high similarity in the proteomic profile of the contralateral and adjacent non-tumor breast tissues. Significant differences were identified among the proteome of the malignant and non-tumor tissue groups of the same patients, providing relevant insights into the hallmarks, signaling pathways, biological functions, and interactive protein networks that act during tumorigenesis and breast cancer progression. These proteins are suggested as targets of relevant interest to be explored as potential biological markers related to tumor development and metastatic progression in the breast cancer disease.
Collapse
Affiliation(s)
| | | | | | - Evelyn Vieira
- Genetics Department, Federal University of Parana, Curitiba, Brazil
| | | | - Michel Batista
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | - Fabricio Klerynton Marchini
- Functional Genomics Laboratory, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil; Mass Spectrometry Facility - RPT02H, Carlos Chagas Institute, Fiocruz, Curitiba, Parana, Brazil
| | | | | | | | - Luciane Regina Cavalli
- Research Institute Pele Pequeno Principe, Curitiba, Brazil; Lombardi Comprehensive Cancer Center, Georgetown University, USA
| | | |
Collapse
|
162
|
Ryzhikov M, Ehlers A, Steinberg D, Xie W, Oberlander E, Brown S, Gilmore PE, Townsend RR, Lane WS, Dolinay T, Nakahira K, Choi AMK, Haspel JA. Diurnal Rhythms Spatially and Temporally Organize Autophagy. Cell Rep 2019; 26:1880-1892.e6. [PMID: 30759397 PMCID: PMC6442472 DOI: 10.1016/j.celrep.2019.01.072] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/06/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Circadian rhythms are a hallmark of physiology, but how such daily rhythms organize cellular catabolism is poorly understood. Here, we used proteomics to map daily oscillations in autophagic flux in mouse liver and related these rhythms to proteasome activity. We also explored how systemic inflammation affects the temporal structure of autophagy. Our data identified a globally harmonized rhythm for basal macroautophagy, chaperone-mediated autophagy, and proteasomal activity, which concentrates liver proteolysis during the daytime. Basal autophagy rhythms could be resolved into two antiphase clusters that were distinguished by the subcellular location of targeted proteins. Inflammation induced by lipopolysaccharide reprogrammed autophagic flux away from a temporal pattern that favors cytosolic targets and toward the turnover of mitochondrial targets. Our data detail how daily biological rhythms connect the temporal, spatial, and metabolic aspects of protein catabolism.
Collapse
Affiliation(s)
- Mikhail Ryzhikov
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Anna Ehlers
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Deborah Steinberg
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Wenfang Xie
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA; Department of Respiration, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510315, China
| | - Eitan Oberlander
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Samuel Brown
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Petra E Gilmore
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - Reid R Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA
| | - William S Lane
- Harvard University Mass Spectrometry & Proteomics Laboratory, Cambridge, MA 02138, USA
| | - Tamas Dolinay
- Division of Pulmonary and Critical Care Medicine, UCLA Medical Center, 2625 W. Alameda Avenue, Burbank, CA 91505, USA
| | - Kiichi Nakahira
- Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, 555 E. 68 St., New York, NY 10065, USA
| | - Augustine M K Choi
- Department of Medicine, New York Presbyterian/Weill Cornell Medical Center, 555 E. 68 St., New York, NY 10065, USA
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, Campus Box 8052, 660 South Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
163
|
Chaix A, Lin T, Le HD, Chang MW, Panda S. Time-Restricted Feeding Prevents Obesity and Metabolic Syndrome in Mice Lacking a Circadian Clock. Cell Metab 2019; 29:303-319.e4. [PMID: 30174302 PMCID: PMC7751278 DOI: 10.1016/j.cmet.2018.08.004] [Citation(s) in RCA: 425] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/25/2018] [Accepted: 08/01/2018] [Indexed: 12/21/2022]
Abstract
Increased susceptibility of circadian clock mutant mice to metabolic diseases has led to the idea that a molecular clock is necessary for metabolic homeostasis. However, these mice often lack a normal feeding-fasting cycle. We tested whether time-restricted feeding (TRF) could prevent obesity and metabolic syndrome in whole-body Cry1;Cry2 and in liver-specific Bmal1 and Rev-erbα/β knockout mice. When provided access to food ad libitum, these mice rapidly gained weight and showed genotype-specific metabolic defects. However, when fed the same diet under TRF (food access restricted to 10 hr during the dark phase) they were protected from excessive weight gain and metabolic diseases. Transcriptome and metabolome analyses showed that TRF reduced the accumulation of hepatic lipids and enhanced cellular defenses against metabolic stress. These results suggest that the circadian clock maintains metabolic homeostasis by sustaining daily rhythms in feeding and fasting and by maintaining balance between nutrient and cellular stress responses.
Collapse
Affiliation(s)
- Amandine Chaix
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Terry Lin
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hiep D Le
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Max W Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
164
|
Abstract
Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep-wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light-dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.
Collapse
Affiliation(s)
- Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Frank A J L Scheer
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
- Medical Chronobiology Program, Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM, School for Nutrition and Translational Research in Metabolism, Maastricht University Medical Center, Maastricht, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- Laboratory for Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
- Netherlands Institute for Neuroscience (NIN), Royal Dutch Academy of Arts and Sciences (KNAW), Amsterdam, Netherlands.
| |
Collapse
|
165
|
Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. Coupling the Circadian Clock to Homeostasis: The Role of Period in Timing Physiology. Endocr Rev 2019; 40:66-95. [PMID: 30169559 DOI: 10.1210/er.2018-00049] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/06/2018] [Indexed: 01/01/2023]
Abstract
A plethora of physiological processes show stable and synchronized daily oscillations that are either driven or modulated by biological clocks. A circadian pacemaker located in the suprachiasmatic nucleus of the ventral hypothalamus coordinates 24-hour oscillations of central and peripheral physiology with the environment. The circadian clockwork involved in driving rhythmic physiology is composed of various clock genes that are interlocked via a complex feedback loop to generate precise yet plastic oscillations of ∼24 hours. This review focuses on the specific role of the core clockwork gene Period1 and its paralogs on intra-oscillator and extra-oscillator functions, including, but not limited to, hippocampus-dependent processes, cardiovascular function, appetite control, as well as glucose and lipid homeostasis. Alterations in Period gene function have been implicated in a wide range of physical and mental disorders. At the same time, a variety of conditions including metabolic disorders also impact clock gene expression, resulting in circadian disruptions, which in turn often exacerbates the disease state.
Collapse
Affiliation(s)
- Pureum Kim
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany
| | - Hendrik Lehnert
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sebastian M Schmid
- Department of Internal Medicine 1, University of Lübeck, Lübeck, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nicole Salamat
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Johanna L Barclay
- Mater Research Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Erik Maronde
- Department of Anatomy, Goethe University Frankfurt, Frankfurt, Germany
| | - Warrick Inder
- Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - Oliver Rawashdeh
- School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
166
|
|
167
|
Causton HC. Metabolic rhythms: A framework for coordinating cellular function. Eur J Neurosci 2018; 51:1-12. [PMID: 30548718 DOI: 10.1111/ejn.14296] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 01/02/2023]
Abstract
Circadian clocks are widespread among eukaryotes and generally involve feedback loops coupled with metabolic processes and redox balance. The organising power of these oscillations has not only allowed organisms to anticipate day-night cycles, but also acts to temporally compartmentalise otherwise incompatible processes, enhance metabolic efficiency, make the system more robust to noise and propagate signals among cells. While daily rhythms and the function of the circadian transcription-translation loop have been the subject of extensive research over the past four decades, cycles of shorter period and respiratory oscillations, with which they are intertwined, have received less attention. Here, we describe features of yeast respiratory oscillations, which share many features with daily and 12 hr cellular oscillations in animal cells. This relatively simple system enables the analysis of dynamic rhythmic changes in metabolism, independent of cellular oscillations that are a product of the circadian transcription-translation feedback loop. Knowledge gained from studying ultradian oscillations in yeast will lead to a better understanding of the basic mechanistic principles and evolutionary origins of oscillatory behaviour among eukaryotes.
Collapse
Affiliation(s)
- Helen C Causton
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York City, New York
| |
Collapse
|
168
|
Circadian Proteomic Analysis Uncovers Mechanisms of Post-Transcriptional Regulation in Metabolic Pathways. Cell Syst 2018; 7:613-626.e5. [PMID: 30553726 DOI: 10.1016/j.cels.2018.10.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/12/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022]
Abstract
Transcriptional and translational feedback loops in fungi and animals drive circadian rhythms in transcript levels that provide output from the clock, but post-transcriptional mechanisms also contribute. To determine the extent and underlying source of this regulation, we applied newly developed analytical tools to a long-duration, deeply sampled, circadian proteomics time course comprising half of the proteome. We found a quarter of expressed proteins are clock regulated, but >40% of these do not arise from clock-regulated transcripts, and our analysis predicts that these protein rhythms arise from oscillations in translational rates. Our data highlighted the impact of the clock on metabolic regulation, with central carbon metabolism reflecting both transcriptional and post-transcriptional control and opposing metabolic pathways showing peak activities at different times of day. The transcription factor CSP-1 plays a role in this metabolic regulation, contributing to the rhythmicity and phase of clock-regulated proteins.
Collapse
|
169
|
Beyond Transcription: Fine-Tuning of Circadian Timekeeping by Post-Transcriptional Regulation. Genes (Basel) 2018; 9:genes9120616. [PMID: 30544736 PMCID: PMC6315869 DOI: 10.3390/genes9120616] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/28/2022] Open
Abstract
The circadian clock is an important endogenous timekeeper, helping plants to prepare for the periodic changes of light and darkness in their environment. The clockwork of this molecular timer is made up of clock proteins that regulate transcription of their own genes with a 24 h rhythm. Furthermore, the rhythmically expressed clock proteins regulate time-of-day dependent transcription of downstream genes, causing messenger RNA (mRNA) oscillations of a large part of the transcriptome. On top of the transcriptional regulation by the clock, circadian rhythms in mRNAs rely in large parts on post-transcriptional regulation, including alternative pre-mRNA splicing, mRNA degradation, and translational control. Here, we present recent insights into the contribution of post-transcriptional regulation to core clock function and to regulation of circadian gene expression in Arabidopsis thaliana.
Collapse
|
170
|
Kalvisa A, Siersbæk MS, Præstholm SM, Christensen LJL, Nielsen R, Stohr O, Vettorazzi S, Tuckermann J, White M, Mandrup S, Grøntved L. Insulin signaling and reduced glucocorticoid receptor activity attenuate postprandial gene expression in liver. PLoS Biol 2018; 16:e2006249. [PMID: 30532187 PMCID: PMC6301715 DOI: 10.1371/journal.pbio.2006249] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 12/20/2018] [Accepted: 11/16/2018] [Indexed: 02/01/2023] Open
Abstract
Hepatic circadian gene transcription is tightly coupled to feeding behavior, which has a profound impact on metabolic disorders associated with diet-induced obesity. Here, we describe a genomics approach to uncover mechanisms controlling hepatic postprandial gene expression. Combined transcriptomic and cistromic analysis identified hundreds of circadian-regulated genes and enhancers controlled by feeding. Postprandial suppression of enhancer activity was associated with reduced glucocorticoid receptor (GR) and Forkhead box O1 (FOXO1) occupancy of chromatin correlating with reduced serum corticosterone levels and increased serum insulin levels. Despite substantial co-occupancy of feeding-regulated enhancers by GR and FOXO1, selective disruption of corticosteroid and/or insulin signaling resulted in dysregulation of specific postprandial regulated gene programs. In combination, these signaling pathways operate a major part of the genes suppressed by feeding. Importantly, the feeding response was disrupted in diet-induced obese animals, which was associated with dysregulation of several corticosteroid- and insulin-regulated genes, providing mechanistic insights to dysregulated circadian gene transcription associated with obesity. The liver is an essential organ regulating metabolic homeostasis in response to fluctuations of metabolites induced by daily rhythms of food intake. Homeostasis is maintained by precise dynamic regulation of signaling pathways controlling a wealth of enzymatic reactions involving lipid, bile acid, amino acid and glucose synthesis, storage, and redistribution in hepatocytes. Precise temporal expression of hepatic enzymes is crucial for metabolic homeostasis; a major part of circadian hepatic protein expression is regulated by precisely timed gene transcription. Here, we use a genomics approach to identify genes and regulatory regions of the genome involved in feeding-regulated gene expression. We find that transcription factors acting downstream of glucocorticoid and insulin signaling are enriched at regulatory regions repressed by feeding. Importantly, insulin and glucocorticoid signaling operate to cooperatively control the majority of feeding-mediated gene repression, and these signaling pathways are dysregulated in diet-induced obesity impacting dynamic hepatic gene expression.
Collapse
Affiliation(s)
- Adrija Kalvisa
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Majken S. Siersbæk
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Stine M. Præstholm
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Line J. L. Christensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Ronni Nielsen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Oliver Stohr
- Division of Endocrinology, Boston Children's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University of Ulm, Ulm, Germany
| | - Morris White
- Division of Endocrinology, Boston Children's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susanne Mandrup
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
- * E-mail:
| |
Collapse
|
171
|
Yamada Y, Prosser RA. Copper in the suprachiasmatic circadian clock: A possible link between multiple circadian oscillators. Eur J Neurosci 2018; 51:47-70. [PMID: 30269387 DOI: 10.1111/ejn.14181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/05/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
Abstract
The mammalian circadian clock in the suprachiasmatic nucleus (SCN) is very robust, able to coordinate our daily physiological and behavioral rhythms with exquisite accuracy. Simultaneously, the SCN clock is highly sensitive to environmental timing cues such as the solar cycle. This duality of resiliency and sensitivity may be sustained in part by a complex intertwining of three cellular oscillators: transcription/translation, metabolic/redox, and membrane excitability. We suggest here that one of the links connecting these oscillators may be forged from copper (Cu). Cellular Cu levels are highly regulated in the brain and peripherally, and Cu affects cellular metabolism, redox state, cell signaling, and transcription. We have shown that both Cu chelation and application induce nighttime phase shifts of the SCN clock in vitro and that these treatments affect glutamate, N-methyl-D-aspartate receptor, and associated signaling processes differently. More recently we found that Cu induces mitogen-activated protein kinase-dependent phase shifts, while the mechanisms by which Cu removal induces phase shifts remain unclear. Lastly, we have found that two Cu transporters are expressed in the SCN, and that one of these transporters (ATP7A) exhibits a day/night rhythm. Our results suggest that Cu homeostasis is tightly regulated in the SCN, and that changes in Cu levels may serve as a time cue for the circadian clock. We discuss these findings in light of the existing literature and current models of multiple coupled circadian oscillators in the SCN.
Collapse
Affiliation(s)
- Yukihiro Yamada
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| | - Rebecca A Prosser
- Department of Biochemistry & Cellular and Molecular Biology, NeuroNET Research Center, University of Tennessee, Knoxville, Tennessee
| |
Collapse
|
172
|
Becker K, Bluhm A, Casas-Vila N, Dinges N, Dejung M, Sayols S, Kreutz C, Roignant JY, Butter F, Legewie S. Quantifying post-transcriptional regulation in the development of Drosophila melanogaster. Nat Commun 2018; 9:4970. [PMID: 30478415 PMCID: PMC6255845 DOI: 10.1038/s41467-018-07455-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 10/30/2018] [Indexed: 11/10/2022] Open
Abstract
Even though proteins are produced from mRNA, the correlation between mRNA levels and protein abundances is moderate in most studies, occasionally attributed to complex post-transcriptional regulation. To address this, we generate a paired transcriptome/proteome time course dataset with 14 time points during Drosophila embryogenesis. Despite a limited mRNA-protein correlation (ρ = 0.54), mathematical models describing protein translation and degradation explain 84% of protein time-courses based on the measured mRNA dynamics without assuming complex post transcriptional regulation, and allow for classification of most proteins into four distinct regulatory scenarios. By performing an in-depth characterization of the putatively post-transcriptionally regulated genes, we postulate that the RNA-binding protein Hrb98DE is involved in post-transcriptional control of sugar metabolism in early embryogenesis and partially validate this hypothesis using Hrb98DE knockdown. In summary, we present a systems biology framework for the identification of post-transcriptional gene regulation from large-scale, time-resolved transcriptome and proteome data.
Collapse
Affiliation(s)
- Kolja Becker
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Alina Bluhm
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Nuria Casas-Vila
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Nadja Dinges
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Mario Dejung
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Sergi Sayols
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Clemens Kreutz
- Center for Biosystems Analysis (ZBSA), University of Freiburg, Habsburger Str. 49, 79104, Freiburg, Germany
| | - Jean-Yves Roignant
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| | - Stefan Legewie
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
| |
Collapse
|
173
|
Identification and Characterization of Transcripts Regulated by Circadian Alternative Polyadenylation in Mouse Liver. G3-GENES GENOMES GENETICS 2018; 8:3539-3548. [PMID: 30181259 PMCID: PMC6222568 DOI: 10.1534/g3.118.200559] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Dynamic control of gene expression is a hallmark of the circadian system. In mouse liver, approximately 5–20% of RNAs are expressed rhythmically, and over 50% of mouse genes are rhythmically expressed in at least one tissue. Recent genome-wide analyses unveiled that, in addition to rhythmic transcription, various post-transcriptional mechanisms play crucial roles in driving rhythmic gene expression. Alternative polyadenylation (APA) is an emerging post-transcriptional mechanism that changes the 3′-ends of transcripts by alternating poly(A) site usage. APA can thus result in changes in RNA processing, such as mRNA localization, stability, translation efficiency, and sometimes even in the localization of the encoded protein. It remains unclear, however, if and how APA is regulated by the circadian clock. To address this, we used an in silico approach and demonstrated in mouse liver that 57.4% of expressed genes undergo APA and each gene has 2.53 poly(A) sites on average. Among all expressed genes, 2.9% of genes alternate their poly(A) site usage with a circadian (i.e., approximately 24 hr) period. APA transcripts use distal sites with canonical poly(A) signals (PASs) more frequently; however, circadian APA transcripts exhibit less distinct usage preference between proximal and distal sites and use proximal sites more frequently. Circadian APA transcripts also harbor longer 3′UTRs, making them more susceptible to post-transcriptional regulation. Overall, our study serves as a platform to ultimately understand the mechanisms of circadian APA regulation.
Collapse
|
174
|
Opposite Carcinogenic Effects of Circadian Clock Gene BMAL1. Sci Rep 2018; 8:16023. [PMID: 30375470 PMCID: PMC6207783 DOI: 10.1038/s41598-018-34433-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/17/2018] [Indexed: 12/19/2022] Open
Abstract
The circadian clock confers daily rhythmicity on many biochemical and physiological functions and its disruption is associated with increased risks of developing obesity, diabetes, heart disease and cancer. Although, there are studies on the role of Bmal1 in carcinogenesis using germline, conditional or tissue-specific knockouts, it is still not well understood how BMAL1 gene affects cancer-related biological events at the molecular level. We, therefore, took an in vitro approach to understand the contribution of BMAL1 in this molecular mechanism using human breast epithelial cell lines by knocking out BMAL1 gene with CRISPR technology. We preferred epithelial cells over fibroblasts as the most of cancers originate from epithelial cells. After obtaining BMAL1 knockouts by targeting the gene at two different sites from non-tumorigenic MCF10A and invasive tumorigenic MDA-MB-231 cells, we analysed apoptosis and invasion properties of the cell lines as representative events in tumor development. BMAL1 disruption sensitized both cell lines to a bulky-DNA adduct forming agent (cisplatin) and a double-strand break-inducing agent (doxorubicin), while it enhanced the invasive properties of MDA-MB-231 cells. These results show that the disruption of clock genes may have opposing carcinogenic effects.
Collapse
|
175
|
Du J, Zhang Y, Xue Y, Zhao X, Zhao X, Wei Y, Li Z, Zhang Y, Zhao Z. Diurnal protein oscillation profiles in Drosophila head. FEBS Lett 2018; 592:3736-3749. [PMID: 30311939 DOI: 10.1002/1873-3468.13267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/23/2018] [Accepted: 10/02/2018] [Indexed: 11/08/2022]
Abstract
Circadian clocks control daily rhythms in physiology, metabolism and behaviour in most organisms. Proteome-wide analysis of protein oscillations is still lacking in Drosophila. In this study, the total protein and phosphorylated protein in Drosophila heads in a 24-h daily time-course were assayed by using the isobaric tags for relative and absolute quantitation (iTRAQ) method, and 10 and 7 oscillating proteins as well as 19 and 22 oscillating phosphoproteins in the w1118 control and ClkJrk mutant strains were separately identified. Lastly, we performed a mini screen to investigate the functions of some oscillating proteins in circadian locomotion rhythms. This study provides the first proteomic profiling of diurnally oscillating proteins in fly heads, thereby providing a basis for further mechanistic studies of these proteins in circadian rhythm.
Collapse
Affiliation(s)
- Juan Du
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yifan Zhang
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongbo Xue
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Xiaoyun Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xianguo Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yu Wei
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yong Zhang
- Department of Biology, University of Nevada, Reno, NV, USA
| | - Zhangwu Zhao
- Department of Entomology, MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
176
|
Circadian rhythms, metabolic oscillators, and the target of rapamycin (TOR) pathway: the Neurospora connection. Curr Genet 2018; 65:339-349. [DOI: 10.1007/s00294-018-0897-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/09/2018] [Accepted: 10/20/2018] [Indexed: 01/25/2023]
|
177
|
Tan X, Zhao T, Wang Z, Wang J, Wang Y, Liu Z, Liu X. Acrylamide Defects the Expression Pattern of the Circadian Clock and Mitochondrial Dynamics in C57BL/6J Mice Liver and HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10252-10266. [PMID: 30196695 DOI: 10.1021/acs.jafc.8b02473] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Circadian rhythm helps organisms adapt to their environment and control a variety of physiological and metabolic processes. Acrylamide is a toxic compound that can be produced during food processing. The aim of this research is to investigate whether the circadian clock is involved in the toxicity mechanisms of acrylamide in mice liver. Our results revealed that acrylamide markedly induced circadian gene oscillation disorder and blocked circadian-related protein in mice liver and HepG2 cells. Simultaneously, the balance of the daily oscillation of the antioxidant enzymes was impeded under acrylamide treatment. Furthermore, acrylamide treatment elevated the mitochondrial dynamic gene expressions and influenced the mitochondrial morphology at the night phase. Acrylamide blocked circadian protein expression via repressing the phosphorylation of AKT or inducing oxidative stress. Taken together, our work reveals acrylamide as a clock-repressing compound generated through the Maillard browning reaction in certain foods that may possess a toxic effect via circadian clock mechanisms.
Collapse
Affiliation(s)
- Xintong Tan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Tong Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Zihan Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Jia Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Yijie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering , Northwest A&F University , Xinong Road 2 , Yangling , Shaanxi 712100 , People's Republic of China
| |
Collapse
|
178
|
Wong DCS, O’Neill JS. Non-transcriptional processes in circadian rhythm generation. CURRENT OPINION IN PHYSIOLOGY 2018; 5:117-132. [PMID: 30596188 PMCID: PMC6302373 DOI: 10.1016/j.cophys.2018.10.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
'Biological clocks' orchestrate mammalian biology to a daily rhythm. Whilst 'clock gene' transcriptional circuits impart rhythmic regulation to myriad cellular systems, our picture of the biochemical mechanisms that determine their circadian (∼24 hour) period is incomplete. Here we consider the evidence supporting different models for circadian rhythm generation in mammalian cells in light of evolutionary factors. We find it plausible that the circadian timekeeping mechanism in mammalian cells is primarily protein-based, signalling biological timing information to the nucleus by the post-translational regulation of transcription factor activity, with transcriptional feedback imparting robustness to the oscillation via hysteresis. We conclude by suggesting experiments that might distinguish this model from competing paradigms.
Collapse
|
179
|
Ezagouri S, Asher G. Circadian control of mitochondrial dynamics and functions. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
180
|
Abstract
In most organisms, cell‐autonomous circadian clocks are driven by a transcription–translation negative feedback loop (TTFL). Per was the first identified clock gene in the fruit fly and is a core component of the circadian TTFL. Surprisingly, in their recent study, Rey et al (2018 ) demonstrate the presence of apparent circadian rhythmicity in a fly cell line that does not express several core clock genes including per (Rey et al , 2018 ). Quantitative multi‐omics measurements allowed the identification of unknown oscillating components and revealed hundreds of transcripts, proteins, and metabolites showing 24‐h rhythmicity, suggesting that at least in the fly, the circadian clock may be driven by non‐canonical (i.e., independent of per ‐driven TTFL) molecular mechanisms.
Collapse
Affiliation(s)
- Koji L Ode
- Department of Systems PharmacologyGraduate School of MedicineThe University of TokyoTokyoJapan
| | - Hiroki R Ueda
- Department of Systems PharmacologyGraduate School of MedicineThe University of TokyoTokyoJapan
- Laboratory for Synthetic BiologyCenter for Biosystems Dynamics ResearchRIKENOsakaJapan
- International Research Center for Neurointelligence (WPI‐IRCN)UTIASThe University of TokyoTokyoJapan
| |
Collapse
|
181
|
Ruben MD, Wu G, Smith DF, Schmidt RE, Francey LJ, Lee YY, Anafi RC, Hogenesch JB. A database of tissue-specific rhythmically expressed human genes has potential applications in circadian medicine. Sci Transl Med 2018; 10:10/458/eaat8806. [PMID: 30209245 PMCID: PMC8961342 DOI: 10.1126/scitranslmed.aat8806] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/23/2018] [Indexed: 12/14/2022]
Abstract
The discovery that half of the mammalian protein-coding genome is regulated by the circadian clock has clear implications for medicine. Recent studies demonstrated that the circadian clock influences therapeutic outcomes in human heart disease and cancer. However, biological time is rarely given clinical consideration. A key barrier is the absence of information on tissue-specific molecular rhythms in the human body. We have applied the cyclic ordering by periodic structure (CYCLOPS) algorithm, designed to reconstruct sample temporal order in the absence of time-of-day information, to the gene expression collection of 13 tissues from 632 human donors. We identified rhythms in gene expression across the body; nearly half of protein-coding genes were shown to be cycling in at least 1 of the 13 tissues analyzed. One thousand of these cycling genes encode proteins that either transport or metabolize drugs or are themselves drug targets. These results provide a useful resource for studying the role of circadian rhythms in medicine and support the idea that biological time might play a role in determining drug response.
Collapse
Affiliation(s)
- Marc D. Ruben
- Divisions of Human Genetics and Immunobiology, Center for Chronobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 240 Albert, Sabin Way, Cincinnati, OH 45229, USA
| | - Gang Wu
- Divisions of Human Genetics and Immunobiology, Center for Chronobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 240 Albert, Sabin Way, Cincinnati, OH 45229, USA
| | - David F. Smith
- Divisions of Pediatric Otolaryngology and Pulmonary and Sleep Medicine, Cincinnati Children’s Hospital Medical Center, 3333, Burnet Avenue, Cincinnati, OH 45229, USA.,Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati School of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Robert E. Schmidt
- Divisions of Human Genetics and Immunobiology, Center for Chronobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 240 Albert, Sabin Way, Cincinnati, OH 45229, USA
| | - Lauren J. Francey
- Divisions of Human Genetics and Immunobiology, Center for Chronobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 240 Albert, Sabin Way, Cincinnati, OH 45229, USA
| | - Yin Yeng Lee
- Divisions of Human Genetics and Immunobiology, Center for Chronobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 240 Albert, Sabin Way, Cincinnati, OH 45229, USA
| | - Ron C. Anafi
- Department of Medicine, Center for Sleep and Circadian, Neurobiology, Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - John B. Hogenesch
- Divisions of Human Genetics and Immunobiology, Center for Chronobiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, 240 Albert, Sabin Way, Cincinnati, OH 45229, USA.,Corresponding author.
| |
Collapse
|
182
|
Rey G, Milev NB, Valekunja UK, Ch R, Ray S, Silva Dos Santos M, Nagy AD, Antrobus R, MacRae JI, Reddy AB. Metabolic oscillations on the circadian time scale in Drosophila cells lacking clock genes. Mol Syst Biol 2018; 14:e8376. [PMID: 30072421 PMCID: PMC6078164 DOI: 10.15252/msb.20188376] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms are cell‐autonomous biological oscillations with a period of about 24 h. Current models propose that transcriptional feedback loops are the primary mechanism for the generation of circadian oscillations. Within this framework, Drosophila S2 cells are regarded as “non‐rhythmic” cells, as they do not express several canonical circadian components. Using an unbiased multi‐omics approach, we made the surprising discovery that Drosophila S2 cells do in fact display widespread daily rhythms. Transcriptomics and proteomics analyses revealed that hundreds of genes and their products, and in particular metabolic enzymes, are rhythmically expressed in a 24‐h cycle. Metabolomics analyses extended these findings and demonstrate that central carbon metabolism and amino acid metabolism are core metabolic pathways driven by protein rhythms. We thus demonstrate that 24‐h metabolic oscillations, coupled to gene and protein cycles, take place in nucleated cells without the contribution of any known circadian regulators. These results therefore suggest a reconsideration of existing models of the clockwork in Drosophila and other eukaryotic systems.
Collapse
Affiliation(s)
| | | | | | - Ratnasekhar Ch
- The Francis Crick Institute, London, UK.,UCL Institute of Neurology, London, UK
| | - Sandipan Ray
- The Francis Crick Institute, London, UK.,UCL Institute of Neurology, London, UK
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research (CIMR), Wellcome Trust/MRC Building, Addenbrooke's Hospital, Cambridge, UK
| | | | | |
Collapse
|
183
|
Senthil Kumar S, Muthuselvam P, Pugalenthi V, Subramanian N, Ramkumar KM, Suresh T, Suzuki T, Rajaguru P. Toxicoproteomic analysis of human lung epithelial cells exposed to steel industry ambient particulate matter (PM) reveals possible mechanism of PM related carcinogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:483-492. [PMID: 29684875 DOI: 10.1016/j.envpol.2018.04.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/25/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Toxicoproteomic analysis of steel industry ambient particulate matter (PM) that contain high concentrations of PAHs and metals was done by treating human lung cancer cell-line, A549 and the cell lysates were analysed using quantitative label-free nano LC-MS/MS. A total of 18,562 peptides representing 1576 proteins were identified and quantified, with 196 proteins had significantly altered expression in the treated cells. Enrichment analyses revealed that proteins associated to redox homeostsis, metabolism, and cellular energy generation were inhibited while, proteins related to DNA damage and repair and other stresses were over expressed. Altered activities of several tumor associated proteins were observed. Protein-protein interaction network and biological pathway analysis of these differentially expressed proteins were carried out to obtain a systems level view of proteome changes. Together it could be inferred that PM exposure induced oxidative stress which could have lead into DNA damage and tumor related changes. However, lowering of cellular metabolism, and energy production could reduce its ability to overcome these stress. This kind of disequilibrium between the DNA damage and ability of the cells to repair the DNA damage may lead into genomic instability that is capable of acting as the driving force during PM induced carcinogenesis.
Collapse
Affiliation(s)
- S Senthil Kumar
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - P Muthuselvam
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - V Pugalenthi
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - N Subramanian
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India
| | - K M Ramkumar
- SRM Research Institute, SRM University, Kattankulathur, 603203, Tamil Nadu, India
| | - T Suresh
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, 250-9501, Japan
| | - T Suzuki
- Division of Molecular Target and Gene Therapy Products, National Institute of Health Sciences, Tokyo, 250-9501, Japan
| | - P Rajaguru
- Bharathidasan Institute of Technology, Anna University, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
184
|
Sulli G, Manoogian ENC, Taub PR, Panda S. Training the Circadian Clock, Clocking the Drugs, and Drugging the Clock to Prevent, Manage, and Treat Chronic Diseases. Trends Pharmacol Sci 2018; 39:812-827. [PMID: 30060890 DOI: 10.1016/j.tips.2018.07.003] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/09/2022]
Abstract
Daily rhythms in behavior, physiology, and metabolism are an integral part of homeostasis. These rhythms emerge from interactions between endogenous circadian clocks and ambient light-dark cycles, sleep-activity cycles, and eating-fasting cycles. Nearly the entire primate genome shows daily rhythms in expression in tissue- and locus-specific manners. These molecular rhythms modulate several key aspects of cellular and tissue function with profound implications in public health, disease prevention, and disease management. In modern societies light at night disrupts circadian rhythms, leading to further disruption of sleep-activity and eating-fasting cycles. While acute circadian disruption may cause transient discomfort or exacerbate chronic diseases, chronic circadian disruption can enhance risks for numerous diseases. The molecular understanding of circadian rhythms is opening new therapeutic frontiers placing the circadian clock in a central role. Here, we review recent advancements on how to enhance our circadian clock through behavioral interventions, timing of drug administration, and pharmacological targeting of circadian clock components that are already providing new preventive and therapeutic strategies for several diseases, including metabolic syndrome and cancer.
Collapse
Affiliation(s)
- Gabriele Sulli
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | | | - Pam R Taub
- Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | | |
Collapse
|
185
|
Sinitcyn P, Rudolph JD, Cox J. Computational Methods for Understanding Mass Spectrometry–Based Shotgun Proteomics Data. Annu Rev Biomed Data Sci 2018. [DOI: 10.1146/annurev-biodatasci-080917-013516] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Computational proteomics is the data science concerned with the identification and quantification of proteins from high-throughput data and the biological interpretation of their concentration changes, posttranslational modifications, interactions, and subcellular localizations. Today, these data most often originate from mass spectrometry–based shotgun proteomics experiments. In this review, we survey computational methods for the analysis of such proteomics data, focusing on the explanation of the key concepts. Starting with mass spectrometric feature detection, we then cover methods for the identification of peptides. Subsequently, protein inference and the control of false discovery rates are highly important topics covered. We then discuss methods for the quantification of peptides and proteins. A section on downstream data analysis covers exploratory statistics, network analysis, machine learning, and multiomics data integration. Finally, we discuss current developments and provide an outlook on what the near future of computational proteomics might bear.
Collapse
Affiliation(s)
- Pavel Sinitcyn
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jan Daniel Rudolph
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jürgen Cox
- Computational Systems Biochemistry Research Group, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| |
Collapse
|
186
|
Ceglia N, Liu Y, Chen S, Agostinelli F, Eckel-Mahan K, Sassone-Corsi P, Baldi P. CircadiOmics: circadian omic web portal. Nucleic Acids Res 2018; 46:W157-W162. [PMID: 29912458 PMCID: PMC6030824 DOI: 10.1093/nar/gky441] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/17/2018] [Accepted: 06/13/2018] [Indexed: 12/29/2022] Open
Abstract
Circadian rhythms play a fundamental role at all levels of biological organization. Understanding the mechanisms and implications of circadian oscillations continues to be the focus of intense research. However, there has been no comprehensive and integrated way for accessing and mining all circadian omic datasets. The latest release of CircadiOmics (http://circadiomics.ics.uci.edu) fills this gap for providing the most comprehensive web server for studying circadian data. The newly updated version contains high-throughput 227 omic datasets corresponding to over 74 million measurements sampled over 24 h cycles. Users can visualize and compare oscillatory trajectories across species, tissues and conditions. Periodicity statistics (e.g. period, amplitude, phase, P-value, q-value etc.) obtained from BIO_CYCLE and other methods are provided for all samples in the repository and can easily be downloaded in the form of publication-ready figures and tables. New features and substantial improvements in performance and data volume make CircadiOmics a powerful web portal for integrated analysis of circadian omic data.
Collapse
Affiliation(s)
- Nicholas Ceglia
- Department of Computer Science, University of California, Irvine, CA 92617, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92617, USA
| | - Yu Liu
- Department of Computer Science, University of California, Irvine, CA 92617, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92617, USA
| | - Siwei Chen
- Department of Computer Science, University of California, Irvine, CA 92617, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92617, USA
| | - Forest Agostinelli
- Department of Computer Science, University of California, Irvine, CA 92617, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92617, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
| | - Paolo Sassone-Corsi
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92617, USA
- Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92617, USA
- Department of Biochemistry, University of California, Irvine, CA 92617, USA
| | - Pierre Baldi
- Department of Computer Science, University of California, Irvine, CA 92617, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA 92617, USA
- Center for Epigenetics and Metabolism, School of Medicine, University of California, Irvine, CA 92617, USA
- Department of Biochemistry, University of California, Irvine, CA 92617, USA
| |
Collapse
|
187
|
Zhu B, Dacso CC, O’Malley BW. Unveiling "Musica Universalis" of the Cell: A Brief History of Biological 12-Hour Rhythms. J Endocr Soc 2018; 2:727-752. [PMID: 29978151 PMCID: PMC6025213 DOI: 10.1210/js.2018-00113] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
"Musica universalis" is an ancient philosophical concept claiming the movements of celestial bodies follow mathematical equations and resonate to produce an inaudible harmony of music, and the harmonious sounds that humans make were an approximation of this larger harmony of the universe. Besides music, electromagnetic waves such as light and electric signals also are presented as harmonic resonances. Despite the seemingly universal theme of harmonic resonance in various disciplines, it was not until recently that the same harmonic resonance was discovered also to exist in biological systems. Contrary to traditional belief that a biological system is either at stead-state or cycles with a single frequency, it is now appreciated that most biological systems have no homeostatic "set point," but rather oscillate as composite rhythms consisting of superimposed oscillations. These oscillations often cycle at different harmonics of the circadian rhythm, and among these, the ~12-hour oscillation is most prevalent. In this review, we focus on these 12-hour oscillations, with special attention to their evolutionary origin, regulation, and functions in mammals, as well as their relationship to the circadian rhythm. We further discuss the potential roles of the 12-hour clock in regulating hepatic steatosis, aging, and the possibility of 12-hour clock-based chronotherapy. Finally, we posit that biological rhythms are also musica universalis: whereas the circadian rhythm is synchronized to the 24-hour light/dark cycle coinciding with the Earth's rotation, the mammalian 12-hour clock may have evolved from the circatidal clock, which is entrained by the 12-hour tidal cues orchestrated by the moon.
Collapse
Affiliation(s)
- Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Department of Medicine, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Bert W O’Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
188
|
Iuchi H, Sugimoto M, Tomita M. MICOP: Maximal information coefficient-based oscillation prediction to detect biological rhythms in proteomics data. BMC Bioinformatics 2018; 19:249. [PMID: 29954316 PMCID: PMC6025708 DOI: 10.1186/s12859-018-2257-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 06/20/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Circadian rhythms comprise oscillating molecular interactions, the disruption of the homeostasis of which would cause various disorders. To understand this phenomenon systematically, an accurate technique to identify oscillating molecules among omics datasets must be developed; however, this is still impeded by many difficulties, such as experimental noise and attenuated amplitude. RESULTS To address these issues, we developed a new algorithm named Maximal Information Coefficient-based Oscillation Prediction (MICOP), a sine curve-matching method. The performance of MICOP in labeling oscillation or non-oscillation was compared with four reported methods using Mathews correlation coefficient (MCC) values. The numerical experiments were performed with time-series data with (1) mimicking of molecular oscillation decay, (2) high noise and low sampling frequency and (3) one-cycle data. The first experiment revealed that MICOP could accurately identify the rhythmicity of decaying molecular oscillation (MCC > 0.7). The second experiment revealed that MICOP was robust against high-level noise (MCC > 0.8) even upon the use of low-sampling-frequency data. The third experiment revealed that MICOP could accurately identify the rhythmicity of noisy one-cycle data (MCC > 0.8). As an application, we utilized MICOP to analyze time-series proteome data of mouse liver. MICOP identified that novel oscillating candidates numbered 14 and 30 for C57BL/6 and C57BL/6 J, respectively. CONCLUSIONS In this paper, we presented MICOP, which is an MIC-based algorithm, for predicting periodic patterns in large-scale time-resolved protein expression profiles. The performance test using artificially generated simulation data revealed that the performance of MICOP for decaying data was superior to that of the existing widely used methods. It can reveal novel findings from time-series data and may contribute to biologically significant results. This study suggests that MICOP is an ideal approach for detecting and characterizing oscillations in time-resolved omics data sets.
Collapse
Affiliation(s)
- Hitoshi Iuchi
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan. .,Health Promotion and Preemptive Medicine, Research and Development Center for Minimally Invasive Therapies, Tokyo Medical University, Shinjuku, Tokyo, 160-0022, Japan.
| | - Masaru Tomita
- Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, 252-8520, Japan.,Institute for Advanced Biosciences, Keio University, Tsuruoka, 997-0052, Japan.,Department of Environment and Information Studies, Keio University, Fujisawa, 252-8520, Japan
| |
Collapse
|
189
|
Hoyle NP, Seinkmane E, Putker M, Feeney KA, Krogager TP, Chesham JE, Bray LK, Thomas JM, Dunn K, Blaikley J, O'Neill JS. Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Sci Transl Med 2018; 9:9/415/eaal2774. [PMID: 29118260 DOI: 10.1126/scitranslmed.aal2774] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 05/25/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022]
Abstract
Fibroblasts are primary cellular protagonists of wound healing. They also exhibit circadian timekeeping, which imparts an approximately 24-hour rhythm to their biological function. We interrogated the functional consequences of the cell-autonomous clockwork in fibroblasts using a proteome-wide screen for rhythmically expressed proteins. We observed temporal coordination of actin regulators that drives cell-intrinsic rhythms in actin dynamics. In consequence, the cellular clock modulates the efficiency of actin-dependent processes such as cell migration and adhesion, which ultimately affect the efficacy of wound healing. Accordingly, skin wounds incurred during a mouse's active phase exhibited increased fibroblast invasion in vivo and ex vivo, as well as in cultured fibroblasts and keratinocytes. Our experimental results correlate with the observation that the time of injury significantly affects healing after burns in humans, with daytime wounds healing ~60% faster than nighttime wounds. We suggest that circadian regulation of the cytoskeleton influences wound-healing efficacy from the cellular to the organismal scale.
Collapse
Affiliation(s)
- Nathaniel P Hoyle
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| | - Estere Seinkmane
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Marrit Putker
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Kevin A Feeney
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Toke P Krogager
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Johanna E Chesham
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Liam K Bray
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Justyn M Thomas
- Addenbrookes Hospital, Cambridge University Hospitals NHS Foundation Trust, Cambridge CB2 0QH, UK
| | - Ken Dunn
- University Hospital South Manchester and Honorary, Centre for Health Informatics, Institute of Population Health, University of Manchester, Manchester M23 9LT, UK
| | - John Blaikley
- Centre for Respiratory Medicine and Allergy, University of Manchester and University Hospital of South Manchester NHS Foundation Trust, Manchester M23 9LT, UK
| | - John S O'Neill
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
190
|
Beta RAA, Balatsos NAA. Tales around the clock: Poly(A) tails in circadian gene expression. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1484. [PMID: 29911349 DOI: 10.1002/wrna.1484] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 04/15/2018] [Accepted: 04/20/2018] [Indexed: 11/07/2022]
Abstract
Circadian rhythms are ubiquitous time-keeping processes in eukaryotes with a period of ~24 hr. Light is perhaps the main environmental cue (zeitgeber) that affects several aspects of physiology and behaviour, such as sleep/wake cycles, orientation of birds and bees, and leaf movements in plants. Temperature can serve as the main zeitgeber in the absence of light cycles, even though it does not lead to rhythmicity through the same mechanism as light. Additional cues include feeding patterns, humidity, and social rhythms. At the molecular level, a master oscillator orchestrates circadian rhythms and organizes molecular clocks located in most cells. The generation of the 24 hr molecular clock is based on transcriptional regulation, as it drives intrinsic rhythmic changes based on interlocked transcription/translation feedback loops that synchronize expression of genes. Thus, processes and factors that determine rhythmic gene expression are important to understand circadian rhythms. Among these, the poly(A) tails of RNAs play key roles in their stability, translational efficiency and degradation. In this article, we summarize current knowledge and discuss perspectives on the role and significance of poly(A) tails and associating factors in the context of the circadian clock. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > 3' End Processing.
Collapse
Affiliation(s)
- Rafailia A A Beta
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | - Nikolaos A A Balatsos
- Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| |
Collapse
|
191
|
Green CB. Circadian Posttranscriptional Regulatory Mechanisms in Mammals. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a030692. [PMID: 28778869 DOI: 10.1101/cshperspect.a030692] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The circadian clock drives rhythms in the levels of thousands of proteins in the mammalian cell, arising in part from rhythmic transcriptional regulation of the genes that encode them. However, recent evidence has shown that posttranscriptional processes also play a major role in generating the rhythmic protein makeup and ultimately the rhythmic physiology of the cell. Regulation of steps throughout the life of the messenger RNA (mRNA), ranging from initial mRNA processing and export from the nucleus to extensive control of translation and degradation in the cytosol have been shown to be important for producing the final rhythms in protein levels critical for proper circadian rhythmicity. These findings will be reviewed here.
Collapse
Affiliation(s)
- Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9111
| |
Collapse
|
192
|
Terry EE, Zhang X, Hoffmann C, Hughes LD, Lewis SA, Li J, Wallace MJ, Riley LA, Douglas CM, Gutierrez-Monreal MA, Lahens NF, Gong MC, Andrade F, Esser KA, Hughes ME. Transcriptional profiling reveals extraordinary diversity among skeletal muscle tissues. eLife 2018; 7:34613. [PMID: 29809149 PMCID: PMC6008051 DOI: 10.7554/elife.34613] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/15/2018] [Indexed: 11/24/2022] Open
Abstract
Skeletal muscle comprises a family of diverse tissues with highly specialized functions. Many acquired diseases, including HIV and COPD, affect specific muscles while sparing others. Even monogenic muscular dystrophies selectively affect certain muscle groups. These observations suggest that factors intrinsic to muscle tissues influence their resistance to disease. Nevertheless, most studies have not addressed transcriptional diversity among skeletal muscles. Here we use RNAseq to profile mRNA expression in skeletal, smooth, and cardiac muscle tissues from mice and rats. Our data set, MuscleDB, reveals extensive transcriptional diversity, with greater than 50% of transcripts differentially expressed among skeletal muscle tissues. We detect mRNA expression of hundreds of putative myokines that may underlie the endocrine functions of skeletal muscle. We identify candidate genes that may drive tissue specialization, including Smarca4, Vegfa, and Myostatin. By demonstrating the intrinsic diversity of skeletal muscles, these data provide a resource for studying the mechanisms of tissue specialization. About 40% of our weight is formed of skeletal muscles, the hundreds of muscles in our bodies that can be voluntarily controlled by our nervous system. At the moment, the research community largely sees all these muscles as a single group whose tissues are virtually interchangeable. Yet, skeletal muscles have highly diverse origins, shapes and roles. For example, our diaphragm is a long muscle that contracts slowly and rhythmically so we can draw breaths, while tiny muscles in our eyes generate the short and precise movements of our eyeballs. Different skeletal muscles also respond in distinct ways to injuries, drugs and diseases. This suggests that these muscles may be diverse at the genetic level. While all the cells in our body have the same genetic information, exactly which genes are turned on and off (or ‘expressed’) changes between types of cells. On top of this ‘on or off’ regulation, the level of expression of a gene – how active it is – can also differ. However, the studies that examine the differences in gene expression between tissues usually overlook skeletal muscles. Here, Terry et al. use genetic techniques to measure how genes are expressed in over 20 types of muscle in mice and rats. The results show that the expression levels of over 50% of all the animals’ genes vary between muscles. In fact, any two types of muscles express on average 13% of their genes differently from each other. The analyses yield further unexpected findings. For example, the expression levels in a muscle in the foot that helps to flex the rodents’ toes are more similar to those found in eye muscles than to the ones observed in limb muscles. These conclusions indicate that skeletal muscles are a widely diverse family of tissues. The research community will be able to use the data collected by Terry et al. to explore further the origins and the consequences of the differences between skeletal muscles. This could help researchers to understand why specific groups of muscles are more susceptible to disease, or react differently to a drug. This knowledge could also be exploited to refine approaches in tissue engineering, which aims to replace damaged muscles in the body.
Collapse
Affiliation(s)
- Erin E Terry
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
| | - Xiping Zhang
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, United States
| | - Christy Hoffmann
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
| | - Laura D Hughes
- Department of Integrative, Structural and Computational Biology, The Scripps Research Institute, La Jolla, United States
| | - Scott A Lewis
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
| | - Jiajia Li
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
| | - Matthew J Wallace
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
| | - Lance A Riley
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, United States
| | - Collin M Douglas
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, United States
| | - Miguel A Gutierrez-Monreal
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, United States
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Ming C Gong
- Department of Physiology, University of Kentucky School of Medicine, Lexington, United States
| | - Francisco Andrade
- Department of Physiology, University of Kentucky School of Medicine, Lexington, United States
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, United States
| | - Michael E Hughes
- Division of Pulmonary and Critical Care Medicine, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
193
|
Nagy AD, Reddy AB. Redox clocks: Time to rethink redox interventions. Free Radic Biol Med 2018; 119:3-7. [PMID: 29288069 DOI: 10.1016/j.freeradbiomed.2017.12.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 11/29/2022]
Abstract
Redox interventions have been controversial in the management of chronic disease. The key reason is believed to be a lack of clarity in our understanding of how endogenous dynamics unfold in biochemical redox mechanisms in live cells. Time-resolved, quantitative research strategies combined with high throughput analysis tools may result in realistic characterisation of related in vivo processes. Here we review new evidence about redox dynamics in live cells. We discuss a potential of this line of research to establish new and affordable ways of redox interventions which may efficiently decrease mortality related to largely preventable chronic diseases.
Collapse
Affiliation(s)
- Andras D Nagy
- University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK; University of Pécs Medical School, Department of Anatomy, Szigeti út 12, Pécs H-7622, Hungary
| | - Akhilesh B Reddy
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
194
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
195
|
Wang Y, Song L, Liu M, Ge R, Zhou Q, Liu W, Li R, Qie J, Zhen B, Wang Y, He F, Qin J, Ding C. A proteomics landscape of circadian clock in mouse liver. Nat Commun 2018; 9:1553. [PMID: 29674717 PMCID: PMC5908788 DOI: 10.1038/s41467-018-03898-2] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
As a circadian organ, liver executes diverse functions in different phase of the circadian clock. This process is believed to be driven by a transcription program. Here, we present a transcription factor (TF) DNA-binding activity-centered multi-dimensional proteomics landscape of the mouse liver, which includes DNA-binding profiles of different TFs, phosphorylation, and ubiquitylation patterns, the nuclear sub-proteome, the whole proteome as well as the transcriptome, to portray the hierarchical circadian clock network of this tissue. The TF DNA-binding activity indicates diurnal oscillation in four major pathways, namely the immune response, glucose metabolism, fatty acid metabolism, and the cell cycle. We also isolate the mouse liver Kupffer cells and measure their proteomes during the circadian cycle to reveal a cell-type resolved circadian clock. These comprehensive data sets provide a rich data resource for the understanding of mouse hepatic physiology around the circadian clock. As a circadian organ, liver functions are regulated by circadian clock. Here, the authors present a comprehensive proteomics landscape of the mouse liver, including transcription factor binding profiles, phosphorylation and ubiquitylation patterns, nuclear and whole proteome, and the transcriptome.
Collapse
Affiliation(s)
- Yunzhi Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lei Song
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Mingwei Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China
| | - Rui Ge
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Quan Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China
| | - Wanlin Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China
| | - Ruiyang Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jingbo Qie
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Bei Zhen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China
| | - Yi Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China.,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fuchu He
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China.
| | - Jun Qin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing, 102206, China. .,Alkek Center for Molecular Discovery, Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Institutes of Biomedical Sciences, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
196
|
Walton ZE, Altman BJ, Brooks RC, Dang CV. Circadian Clock's Cancer Connections. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2018. [DOI: 10.1146/annurev-cancerbio-030617-050216] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zandra E. Walton
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Brian J. Altman
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Rebekah C. Brooks
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Chi V. Dang
- Ludwig Institute for Cancer Research, New York, NY 10017, USA
- The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
197
|
Aitken S, Semple CA. The circadian dynamics of small nucleolar RNA in the mouse liver. J R Soc Interface 2018; 14:rsif.2017.0034. [PMID: 28468917 PMCID: PMC5454292 DOI: 10.1098/rsif.2017.0034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
The circadian regulation of gene expression allows plants and animals to anticipate predictable environmental changes. While the influence of the circadian clock has recently been shown to extend to ribosome biogenesis, the dynamics and regulation of the many small nucleolar RNA that are required in pre-ribosomal RNA folding and modification are unknown. Using a novel computational method, we show that 18S and 28S pre-rRNA are subject to circadian regulation in a nuclear RNA sequencing time course. A population of snoRNA with circadian expression is identified that is functionally associated with rRNA modification. More generally, we find the abundance of snoRNA known to modify 18S and 28S to be inversely correlated with the abundance of their target. Cyclic patterns in the expression of a number of snoRNA indicate a coordination with rRNA maturation, potentially through an upregulation in their biogenesis, or their release from mature rRNA at the end of the previous cycle of rRNA maturation, in antiphase with the diurnal peak in pre-rRNA. Few cyclic snoRNA have cyclic host genes, indicating the action of regulatory mechanisms in addition to transcriptional activation of the host gene. For highly expressed independently transcribed snoRNA, we find a characteristic RNA polymerase II and H3K4me3 signature that correlates with mean snoRNA expression over the day.
Collapse
Affiliation(s)
- Stuart Aitken
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Colin A Semple
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
198
|
Abstract
Circadian clocks synchronize the daily functions of organisms with environmental cues like light-dark cycles and feeding rhythms. The master clock in the suprachiasmatic nucleus in the hypothalamus of the brain and the many clocks in the periphery are organized in a hierarchical manner; the master clock synchronizes the peripheral clocks, and the peripheral clocks provide feedback to the master clock in return. Not surprisingly, it has been shown that circadian rhythms and metabolism are closely linked. Metabolic disorders like obesity have a large cost to the individual and society and they are marked by adipose tissue and mitochondrial dysfunction. Mitochondria are central to energy metabolism and have key functions in processes like ATP production, oxidative phosphorylation, reactive oxygen species production and Ca2+ homeostasis. Mitochondria also play an important role in adipose tissue homeostasis and remodeling. Despite the extensive research investigating the link between circadian clock and metabolism, the circadian regulation of adipose tissue and mitochondria has mostly been unexplored until recently, and the emerging data in this topic are the focus of this review. Mitochondrial dynamics in BAT and WAT are central to energy homeostasis. Disruption of circadian genes specifically in adipose tissue leads to metabolic dysfunction in mice. Bidirectional communication between the adipocyte-hypothalamic axis clocks is crucial for coordination of energy expenditure and feeding rhythms. Circadian clock helps maintain the ratio of oxidative stress to antioxidant mechanisms in balance
Collapse
Affiliation(s)
- Yasemin Onder
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Carla B Green
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| |
Collapse
|
199
|
Hsieh PN, Zhang L, Jain MK. Coordination of cardiac rhythmic output and circadian metabolic regulation in the heart. Cell Mol Life Sci 2018; 75:403-416. [PMID: 28825119 PMCID: PMC5765194 DOI: 10.1007/s00018-017-2606-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/13/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Over the course of a 24-h day, demand on the heart rises and falls with the sleep/wake cycles of the organism. Cardiac metabolism oscillates appropriately, with the relative contributions of major energy sources changing in a circadian fashion. The cardiac peripheral clock is hypothesized to drive many of these changes, yet the precise mechanisms linking the cardiac clock to metabolism remain a source of intense investigation. Here we summarize the current understanding of circadian alterations in cardiac metabolism and physiology, with an emphasis on novel findings from unbiased transcriptomic studies. Additionally, we describe progress in elucidating the links between the cardiac peripheral clock outputs and cardiac metabolism, as well as their implications for cardiac physiology.
Collapse
Affiliation(s)
- Paishiun Nelson Hsieh
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Room 4-503, Cleveland, OH, USA
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Lilei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mukesh Kumar Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, 2103 Cornell Road, Room 4-503, Cleveland, OH, USA.
- Harrington Heart and Vascular Institute, University Hospitals Case Medical Center, Cleveland, OH, USA.
| |
Collapse
|
200
|
Li Y, Estep JA, Karginov FV. Transcriptome-wide Identification and Validation of Interactions between the miRNA Machinery and HuR on mRNA Targets. J Mol Biol 2017; 430:285-296. [PMID: 29273203 DOI: 10.1016/j.jmb.2017.12.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 11/28/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022]
Abstract
The 3' untranslated region (UTR) of mRNAs is the primary regulatory region that mediates post-transcriptional control by microRNAs and RNA-binding proteins in the cytoplasm. Aside from individual sequence-specific binding and regulation, examples of interaction between these factors at particular 3' UTR sites have emerged. However, the whole picture of such higher-order regulatory modules across the transcriptome is lacking. Here, we investigate the interactions between HuR, a ubiquitous RNA-binding protein, and Ago2, a core effector of the miRNA pathway, at the transcriptome-wide level. Using HITS-CLIP, we map HuR and miRNA binding sites on human 3' UTRs and assess their co-occurrence. In addition, we demonstrate global effects of HuR knockdown on Ago2 occupancy, suggesting a co-regulatory relationship. Focusing on sites of Ago2-HuR overlap, 13 candidates were screened in luciferase reporter assays. Eleven sites showed miRNA-dependent repression, as confirmed in Dicer-null cells. To test for HuR's role in co-regulation, we measured the reporters in HuR KO cells. Three of the miRNA sites demonstrated altered activities, indicating that HuR has an effect on miRNA repression at those sites. Our study presents an efficient search and validation system for studying miRNA-HuR interactions, which expands our understanding of the combinatorial post-transcriptional control of gene expression at the 3' UTR.
Collapse
Affiliation(s)
- Yahui Li
- Department of Molecular, Cell and Systems Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Jason A Estep
- Department of Molecular, Cell and Systems Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA
| | - Fedor V Karginov
- Department of Molecular, Cell and Systems Biology, Institute of Integrative Genome Biology, University of California, Riverside, CA 92521, USA.
| |
Collapse
|