151
|
Morin G, Orlando V, St-Martin Crites K, Patey N, Mailhot G. Vitamin D attenuates inflammation in CFTR knockdown intestinal epithelial cells but has no effect in cells with intact CFTR. Am J Physiol Gastrointest Liver Physiol 2016; 310:G539-49. [PMID: 26893158 DOI: 10.1152/ajpgi.00060.2015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 01/31/2016] [Indexed: 01/31/2023]
Abstract
The cystic fibrosis (CF) intestine is characterized by chronic inflammation. CF patients are instructed to ingest supplemental vitamin D on a daily basis thereby exposing their intestinal tract to pharmacological amounts of this vitamin. It has been shown that vitamin D exerts intestinal anti-inflammatory properties. We therefore postulate that vitamin D may be beneficial in the management of CF intestinal inflammation by attenuating cellular inflammatory responses. In this study, we investigated the anti-inflammatory effects of the oral form of vitamin D3 (cholecalciferol) and its metabolites, 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3, on cytokine-induced inflammatory responses in intestinal epithelial Caco-2/15 cells with intact expression of CF transmembrane conductance regulator (CFTR) and knockdown for CFTR. We show that 25-hydroxyvitamin D3 and 1,25-dihydroxyvitamin D3 inhibited p38MAPK phosphorylation and that these effects were not mediated by changes in the expression of MAPK phosphatase-1 (MKP-1). However, 1,25-dihydroxyvitamin D3 exhibited superior anti-inflammatory effects as it furthermore reduced cytokine-induced NF-κB nuclear translocation and interleukin-8 mRNA stability and secretion. Intriguingly, the anti-inflammatory effects of vitamin D metabolites were only observed in CFTR knockdown cells, which may be explained by alterations in its catabolism associated with changes in CYP24A1 expression. These observations were supported in vivo whereby Cftr(-/-) mice fed large amounts of vitamin D3 for 2 mo led to a reduction in the number of eosinophils and apoptotic cells in the duodenal mucosa of females but not males. Altogether, these findings suggest that vitamin D exerts intestinal anti-inflammatory actions under specific circumstances and may thus prove beneficial in CF.
Collapse
Affiliation(s)
- Geneviève Morin
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada; and
| | - Valérie Orlando
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada; and
| | | | - Natacha Patey
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada; and
| | - Geneviève Mailhot
- Research Centre, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Quebec, Canada; and Department of Nutrition, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
152
|
Madan JC. Neonatal Gastrointestinal and Respiratory Microbiome in Cystic Fibrosis: Potential Interactions and Implications for Systemic Health. Clin Ther 2016; 38:740-6. [PMID: 26973296 DOI: 10.1016/j.clinthera.2016.02.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
Abstract
PURPOSE The gastrointestinal microbiome plays a critical role in nutrition and metabolic and immune functions in infants and young children and has implications for lifelong health. Cystic fibrosis (CF) transmembrane conductance regulator (CFTR) mutations in CF result in viscous mucous production, frequent exposure to antibiotics, and atypical colonization patterns, resulting in an evolving dysbiosis of the gastrointestinal and respiratory microsystems; dysbiosis in CF results in systemic inflammation, chronic infection, and dysregulation of immune function. Dysbiosis in both the respiratory system and gut contributes to undernutrition, growth failure, and long-term respiratory and systemic morbidity in infants and children with CF. Understanding the role that the gut and respiratory microbiome plays in health or disease progression in CF will afford opportunities to better identify interventions to affect clinical changes. METHODS Summary was done of the pertinent literature in CF and the study of the microbiome and probiotics. FINDINGS New studies have identified bacteria in the respiratory tract in CF that are typically members of the intestinal microbiota, and enteral exposures to breast milk and probiotics are associated with prolonged periods of respiratory stability in CF. IMPLICATIONS Understanding the complex interactions between the CFTR mutations, microbial colonization, and mucosal and systemic immunity is of major importance to inform new treatment strategies (such as restoring a healthier microbiome with probiotics or dietary interventions) to improve nutritional status and immune competence and to decrease morbidity and mortality in CF.
Collapse
Affiliation(s)
- Juliette C Madan
- Division of Neonatology, Department of Pediatrics, Children's Hospital at Dartmouth, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire.
| |
Collapse
|
153
|
Metagenomic evidence for taxonomic dysbiosis and functional imbalance in the gastrointestinal tracts of children with cystic fibrosis. Sci Rep 2016; 6:22493. [PMID: 26940651 PMCID: PMC4778032 DOI: 10.1038/srep22493] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 02/12/2016] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) results in inflammation, malabsorption of fats and other nutrients, and obstruction in the gastrointestinal (GI) tract, yet the mechanisms linking these disease manifestations to microbiome composition remain largely unexplored. Here we used metagenomic analysis to systematically characterize fecal microbiomes of children with and without CF, demonstrating marked CF-associated taxonomic dysbiosis and functional imbalance. We further showed that these taxonomic and functional shifts were especially pronounced in young children with CF and diminished with age. Importantly, the resulting dysbiotic microbiomes had significantly altered capacities for lipid metabolism, including decreased capacity for overall fatty acid biosynthesis and increased capacity for degrading anti-inflammatory short-chain fatty acids. Notably, these functional differences correlated with fecal measures of fat malabsorption and inflammation. Combined, these results suggest that enteric fat abundance selects for pro-inflammatory GI microbiota in young children with CF, offering novel strategies for improving the health of children with CF-associated fat malabsorption.
Collapse
|
154
|
|
155
|
VanDevanter DR, Kahle JS, O’Sullivan AK, Sikirica S, Hodgkins PS. Cystic fibrosis in young children: A review of disease manifestation, progression, and response to early treatment. J Cyst Fibros 2016; 15:147-57. [DOI: 10.1016/j.jcf.2015.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 12/31/2022]
|
156
|
Abstract
Cystic fibrosis is a life-limiting, recessive disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. Increased survival outcomes and the multisystem nature of the disease, including the involvement of hepatobiliary and gastrointestinal tracts, now require the need for more extensive knowledge and expertise in cystic fibrosis among gastroenterologists. Manifestations are either a direct consequence of the primary defect in cystic fibrosis or a secondary complication of the disease or therapy. Adult patients with cystic fibrosis also have an increased risk of malignancy in the gastrointestinal and pancreatico-biliary tracts compared with the general population. Novel treatments that target the basic defects in the CFTR protein have emerged, but to date not much is known about their effects on the gastrointestinal and hepatobiliary systems. The introduction of such therapies has provided new opportunities for the application of intestinal endpoints in clinical trials and the understanding of underlying disease mechanisms that affect the gut in cystic fibrosis.
Collapse
Affiliation(s)
- Chee Y Ooi
- Sydney Children's Hospital, School of Women's and Children's Health, High Street, Randwick, New South Wales 2031, Sydney, Australia
| | - Peter R Durie
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children 555 University Avenue Toronto, Ontario M5G 1X8, Canada
| |
Collapse
|
157
|
Streptomycin treatment alters the intestinal microbiome, pulmonary T cell profile and airway hyperresponsiveness in a cystic fibrosis mouse model. Sci Rep 2016; 6:19189. [PMID: 26754178 PMCID: PMC4709690 DOI: 10.1038/srep19189] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/07/2015] [Indexed: 12/14/2022] Open
Abstract
Cystic fibrosis transmembrane conductance regulator deficient mouse models develop phenotypes of relevance to clinical cystic fibrosis (CF) including airway hyperresponsiveness, small intestinal bacterial overgrowth and an altered intestinal microbiome. As dysbiosis of the intestinal microbiota has been recognized as an important contributor to many systemic diseases, herein we investigated whether altering the intestinal microbiome of BALB/c Cftr(tm1UNC) mice and wild-type littermates, through treatment with the antibiotic streptomycin, affects the CF lung, intestinal and bone disease. We demonstrate that streptomycin treatment reduced the intestinal bacterial overgrowth in Cftr(tm1UNC) mice and altered the intestinal microbiome similarly in Cftr(tm1UNC) and wild-type mice, principally by affecting Lactobacillus levels. Airway hyperresponsiveness of Cftr(tm1UNC) mice was ameliorated with streptomycin, and correlated with Lactobacillus abundance in the intestine. Additionally, streptomycin treated Cftr(tm1UNC) and wild-type mice displayed an increased percentage of pulmonary and mesenteric lymph node Th17, CD8 + IL-17+ and CD8 + IFNγ+ lymphocytes, while the CF-specific increase in respiratory IL-17 producing γδ T cells was decreased in streptomycin treated Cftr(tm1UNC) mice. Bone disease and intestinal phenotypes were not affected by streptomycin treatment. The airway hyperresponsiveness and lymphocyte profile of BALB/c Cftr(tm1UNC) mice were affected by streptomycin treatment, revealing a potential intestinal microbiome influence on lung response in BALB/c Cftr(tm1UNC) mice.
Collapse
|
158
|
Aktas B, De Wolfe TJ, Tandee K, Safdar N, Darien BJ, Steele JL. The Effect of Lactobacillus casei 32G on the Mouse Cecum Microbiota and Innate Immune Response Is Dose and Time Dependent. PLoS One 2015; 10:e0145784. [PMID: 26714177 PMCID: PMC4705108 DOI: 10.1371/journal.pone.0145784] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 12/08/2015] [Indexed: 01/12/2023] Open
Abstract
Lactobacilli have been associated with a variety of immunomodulatory effects and some of these effects have been related to changes in gastrointestinal microbiota. However, the relationship between probiotic dose, time since probiotic consumption, changes in the microbiota, and immune system requires further investigation. The objective of this study was to determine if the effect of Lactobacillus casei 32G on the murine gastrointestinal microbiota and immune function are dose and time dependent. Mice were fed L. casei 32G at doses of 106, 107, or 108 CFU/day/mouse for seven days and were sacrificed 0.5h, 3.5h, 12h, or 24h after the last administration. The ileum tissue and the cecal content were collected for immune profiling by qPCR and microbiota analysis, respectively. The time required for L. casei 32G to reach the cecum was monitored by qPCR and the 32G bolus reaches the cecum 3.5h after the last administration. L. casei 32G altered the cecal microbiota with the predominance of Lachnospiraceae IS, and Oscillospira decreasing significantly (p < 0.05) in the mice receiving 108 CFU/mouse 32G relative to the control mice, while a significant (p < 0.05) increase was observed in the prevalence of lactobacilli. The lactobacilli that increased were determined to be a commensal lactobacilli. Interestingly, no significant difference in the overall microbiota composition, regardless of 32G doses, was observed at the 12h time point. A likely explanation for this observation is the level of feed derived-nutrients resulting from the 12h light/dark cycle. 32G results in consistent increases in Clec2h expression and reductions in TLR-2, alpha-defensins, and lysozyme. Changes in expression of these components of the innate immune system are one possible explanation for the observed changes in the cecal microbiota. Additionally, 32G administration was observed to alter the expression of cytokines (IL-10rb and TNF-α) in a manner consistent with an anti-inflammatory response.
Collapse
Affiliation(s)
- Busra Aktas
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
| | - Travis J. De Wolfe
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
| | - Kanokwan Tandee
- Food Science and Technology, Maejo University, Chiangmai, Thailand
| | - Nasia Safdar
- Infectious Diseases Division, Department of Medicine, University of Wisconsin, Madison, WI, United States of America
- William S. Middleton Veterans Affairs Hospital, Madison, WI, United States of America
| | - Benjamin J. Darien
- Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI, United States of America
| | - James L. Steele
- Department of Food Science, University of Wisconsin, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
159
|
Abstract
Observations from studies during the last decade have changed the conventional view of cystic fibrosis (CF) microbiology, which has traditionally focused on a limited suite of opportunistic bacterial pathogens. It is now appreciated that CF airways typically harbor complex microbial communities, and that changes in the structure and activity of these communities have a bearing on patient clinical condition and lung disease progression. Recent studies of gut microbiota also suggest that disordered bacterial ecology of the CF gastrointestinal tract is associated with pulmonary outcomes. These new insights may alter future clinical management of CF.
Collapse
Affiliation(s)
- Yvonne J Huang
- Division of Pulmonary/Critical Care Medicine, University of Michigan Medical School, 6301 MSRB III/SPC 5642, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, 8323 MSRB III/SPC 5646, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA
| |
Collapse
|
160
|
Crites KSM, Morin G, Orlando V, Patey N, Cantin C, Martel J, Brochiero E, Mailhot G. CFTR Knockdown induces proinflammatory changes in intestinal epithelial cells. JOURNAL OF INFLAMMATION-LONDON 2015; 12:62. [PMID: 26549988 PMCID: PMC4636765 DOI: 10.1186/s12950-015-0107-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 11/05/2015] [Indexed: 12/20/2022]
Abstract
Background Hyperinflammation is a hallmark feature of cystic fibrosis (CF) airways. However, inflammation has also been documented systemically and, more recently, in extrapulmonary CF-affected tissues such as the pancreas and intestine. The pathogenesis of CF-related inflammation and more specifically the role of the cystic fibrosis transmembrane conductance regulator (CFTR) in that respect are not entirely understood. We have tested the hypothesis that genetic depletion of CFTR will affect the inflammatory status of human intestinal epithelial cell lines. Methods CFTR expression was genetically depleted from Caco-2/15 and HT-29 cells using short hairpin RNA interference (shRNAi). Inflammatory conditions were induced by the addition of human recombinant tumor necrosis factor (TNF) or Interleukin-1β (IL-1β) for various periods of time. Gene expression, mRNA stability and secreted levels of interleukin (IL)-6, −8 and 10 were assessed. Analysis of pro- and anti-inflammatory signaling pathways including mitogen-activated protein kinases (p38, ERK 1/2 and JNK), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha (IκBα), and nuclear factor-kappa B (NF-κB) was also performed. Eosinophils were counted in the jejunal mucosa of Cftr−/− and Cftr+/+ mice. Results CFTR gene and protein knockdown caused a significant increase in basal secretion of IL-8 as well as in IL-1β-induced secretion of IL-6 and −8. Release of the anti-inflammatory cytokine, IL-10, remained unaffected by CFTR depletion. The enhanced secretion of IL-8 stems in part from increased IL8 mRNA levels and greater activation of ERK1/2 MAPK, IκBα and NF-κB in the CFTR knockdown cells. By contrast, phosphorylation levels of p38 and JNK MAPK did not differ between control and knockdown cells. We also found a higher number of infiltrating eosinophils in the jejunal mucosa of Cftr −/− females, but not males, compared to Cftr +/+ mice, thus providing in vivo support to our in vitro findings. Conclusion Collectively, these data underscore the role played by CFTR in regulating the intestinal inflammatory responses. Such findings lend support to the theory that CFTR exerts functions that may go beyond its role as a chloride channel whereby its disruption may prevent cells to optimally respond to exogenous or endogenous challenges. These observations are of particular interest to CF patients who were found to display alterations in their intestinal microbiota, thus predisposing them to pathogens that may elicit exaggerated inflammatory responses. Electronic supplementary material The online version of this article (doi:10.1186/s12950-015-0107-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Geneviève Morin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Valérie Orlando
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Natacha Patey
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Catherine Cantin
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Judith Martel
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada
| | - Emmanuelle Brochiero
- Research Center, CHUM, 900 Saint-Denis Street, Montreal, Quebec H2X 0A9 Canada ; Department of Medicine, Université de Montreal, 2900, Édouard-Montpetit Blvd, Montreal, Quebec H3T 1J4 Canada
| | - Geneviève Mailhot
- Research Centre, CHU Sainte-Justine, 3175 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1C5 Canada ; Department of Nutrition, Université de Montreal, 2405 Cote Sainte-Catherine Rd, Montreal, Quebec H3T 1A8 Canada
| |
Collapse
|
161
|
Ooi CY, Pang T, Leach ST, Katz T, Day AS, Jaffe A. Fecal Human β-Defensin 2 in Children with Cystic Fibrosis: Is There a Diminished Intestinal Innate Immune Response? Dig Dis Sci 2015; 60:2946-2952. [PMID: 26271615 DOI: 10.1007/s10620-015-3842-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 08/02/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Defects in bacterial host defenses in the cystic fibrosis (CF) airways have been extensively investigated, but the role of the intestinal innate immune system in CF is unknown. Human β-defensin 2 (HBD-2) is an antimicrobial protein produced by epithelial surfaces and upregulated by inflammation. Its expression in the CF intestine is unknown. AIM To determine whether HBD-2 was present in the feces of patients with CF, and to compare fecal HBD-2 levels between CF and healthy controls (HC). To compare fecal HBD-2 levels in inflamed and noninflamed states, as measured by fecal calprotectin, as a secondary aim. METHODS Feces from children with CF and HC were collected for analysis. RESULTS Thirty-three CF patients and 33 HC were recruited. All CF patients had detectable fecal HBD-2. There was no difference between fecal HBD-2 in CF and HC (median (IQR) 49.1 (19.7-77.2) versus 43.4 (26.5-71.9) ng/g; P = 0.7). Fecal calprotectin was significantly higher in the CF cohort than in HC (median (IQR) 61.3 (43.8-143.8) versus 19.5 (19.5-35.1) mg/kg; P < 0.0001). There was no difference in fecal HBD-2 levels between CF subjects with fecal calprotectin ≥50 mg/kg and <50 mg/kg (50.5 (19.6-80.2) versus 43.0 (19.0-70.4); P = 0.7). There was no correlation between fecal HBD-2 and calprotectin in CF (r = 0.14; P = 0.4). CONCLUSION Fecal HBD-2 levels were not increased in children with CF, in inflamed or noninflamed states. The lack of HBD-2 induction and upregulation under inflammatory conditions may suggest a diminished intestinal innate immune response in CF.
Collapse
Affiliation(s)
- Chee Y Ooi
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, Sydney Children's Hospital, University of New South Wales, High Street, Randwick, Sydney, NSW, 2031, Australia.
- Department of Paediatric Gastroenterology, Sydney Children's Hospital, High Street, Randwick, Sydney, NSW, 2031, Australia.
| | - Tamara Pang
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, Sydney Children's Hospital, University of New South Wales, High Street, Randwick, Sydney, NSW, 2031, Australia.
| | - Steven T Leach
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, Sydney Children's Hospital, University of New South Wales, High Street, Randwick, Sydney, NSW, 2031, Australia.
| | - Tamarah Katz
- Department of Nutrition and Dietetics, Sydney Children's Hospital, High Street, Randwick, Sydney, NSW, 2031, Australia.
| | - Andrew S Day
- Department of Paediatrics, Christchurch Hospital, University of Otago, Christchurch, 4710, New Zealand.
| | - Adam Jaffe
- Discipline of Paediatrics, School of Women's and Children's Health, Medicine, Sydney Children's Hospital, University of New South Wales, High Street, Randwick, Sydney, NSW, 2031, Australia.
- Department of Paediatric Respiratory, Sydney Children's Hospital, High Street, Randwick, Sydney, NSW, 2031, Australia.
| |
Collapse
|
162
|
Vidal R, Ginard D, Khorrami S, Mora-Ruiz M, Munoz R, Hermoso M, Díaz S, Cifuentes A, Orfila A, Rosselló-Móra R. Crohn associated microbial communities associated to colonic mucosal biopsies in patients of the western Mediterranean. Syst Appl Microbiol 2015; 38:442-52. [PMID: 26275394 DOI: 10.1016/j.syapm.2015.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 02/08/2023]
Abstract
Next generation sequencing approaches allow the retrieval of several orders of magnitude larger numbers of amplified single sequences in 16S rRNA diversity surveys than classical methods. However, the sequences are only partial and thus lack sufficient resolution for a reliable identification. The OPU approach used here, based on a tandem combination of high quality 454 sequences (mean >500 nuc) applying strict OTU thresholds, and phylogenetic inference based on parsimony additions to preexisting trees, seemed to improve the identification yields at the species and genus levels. A total of thirteen biopsies of Crohn-diagnosed patients (CD) and seven healthy controls (HC) were studied. In most of the cases (73%), sequences were affiliated to known species or genera and distinct microbial patterns could be distinguished among the CD subjects, with a common depletion of Clostridia and either an increased presence of Bacteroidetes (CD1) or an anomalous overrepresentation of Proteobacteria (CD2). Faecalibacterium prausnitzii presence was undetectable in CD, whereas Bacteroides vulgatus-B. dorei characterized HC and some CD groups. Altogether, the results showed that a microbial composition with predominance of Clostridia followed by Bacteroidetes, with F. prausnitzii and B. vulgatus-B. dorei as major key bacteria, characterized what could be considered a balanced structure in HC. The depletion of Clostridia seemed to be a common trait in CD.
Collapse
Affiliation(s)
- Roberto Vidal
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, CL 8380453, Chile
| | - Daniel Ginard
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Sam Khorrami
- Department of Gastroenterology and Palma Health Research Institute, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Merit Mora-Ruiz
- Institut Mediterrani d'Estudis Avançats (IMEDEA; CSIC-UIB), 07190 Illes Balears, Spain
| | - Raul Munoz
- Institut Mediterrani d'Estudis Avançats (IMEDEA; CSIC-UIB), 07190 Illes Balears, Spain
| | - Marcela Hermoso
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, CL 8380453, Chile
| | - Sara Díaz
- Institut Mediterrani d'Estudis Avançats (IMEDEA; CSIC-UIB), 07190 Illes Balears, Spain
| | - Ana Cifuentes
- Institut Mediterrani d'Estudis Avançats (IMEDEA; CSIC-UIB), 07190 Illes Balears, Spain
| | - Alejandro Orfila
- Institut Mediterrani d'Estudis Avançats (IMEDEA; CSIC-UIB), 07190 Illes Balears, Spain
| | - Ramon Rosselló-Móra
- Institut Mediterrani d'Estudis Avançats (IMEDEA; CSIC-UIB), 07190 Illes Balears, Spain.
| |
Collapse
|
163
|
Alteration of the Microbiota and Virulence Gene Expression in E. coli O157:H7 in Pig Ligated Intestine with and without AE Lesions. PLoS One 2015; 10:e0130272. [PMID: 26090813 PMCID: PMC4474639 DOI: 10.1371/journal.pone.0130272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 05/19/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Previously we found that E. coli O157:H7 inoculated into ligated pig intestine formed attaching and effacing (AE) lesions in some pigs but not in others. The present study evaluated changes in the microbial community and in virulence gene expression in E. coli O157:H7 in ligated pig intestine in which the bacteria formed AE lesions or failed to form AE lesions. METHODOLOGY/PRINCIPAL FINDINGS The intestinal microbiota was assessed by RNA-based denaturing gradient gel electrophoresis (DGGE) analysis. The DGGE banding patterns showed distinct differences involving two bands which had increased intensity specifically in AE-negative pigs (AE- bands) and several bands which were more abundant in AE-positive pigs. Sequence analysis revealed that the two AE- bands belonged to Veillonella caviae, a species with probiotic properties, and Bacteroides sp. Concurrent with the differences in microbiota, gene expression analysis by quantitative PCR showed that, compared with AE negative pigs, E. coli O157:H7 in AE positive pigs had upregulated genes for putative adhesins, non-LEE encoded nleA and quorum sensing qseF, acid resistance gene ureD, and genes from the locus of enterocyte effacement (LEE). CONCLUSIONS/SIGNIFICANCE The present study demonstrated that AE-positive pigs had reduced activities or populations of Veillonella caviae and Bacterioides sp. compared with AE-negative pigs. Further studies are required to understand how the microbiota was changed and the role of these organisms in the control of E. coli O157:H7.
Collapse
|
164
|
Potgieter M, Bester J, Kell DB, Pretorius E. The dormant blood microbiome in chronic, inflammatory diseases. FEMS Microbiol Rev 2015; 39:567-91. [PMID: 25940667 PMCID: PMC4487407 DOI: 10.1093/femsre/fuv013] [Citation(s) in RCA: 288] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2015] [Indexed: 02/07/2023] Open
Abstract
Blood in healthy organisms is seen as a ‘sterile’ environment: it lacks proliferating microbes. Dormant or not-immediately-culturable forms are not absent, however, as intracellular dormancy is well established. We highlight here that a great many pathogens can survive in blood and inside erythrocytes. ‘Non-culturability’, reflected by discrepancies between plate counts and total counts, is commonplace in environmental microbiology. It is overcome by improved culturing methods, and we asked how common this would be in blood. A number of recent, sequence-based and ultramicroscopic studies have uncovered an authentic blood microbiome in a number of non-communicable diseases. The chief origin of these microbes is the gut microbiome (especially when it shifts composition to a pathogenic state, known as ‘dysbiosis’). Another source is microbes translocated from the oral cavity. ‘Dysbiosis’ is also used to describe translocation of cells into blood or other tissues. To avoid ambiguity, we here use the term ‘atopobiosis’ for microbes that appear in places other than their normal location. Atopobiosis may contribute to the dynamics of a variety of inflammatory diseases. Overall, it seems that many more chronic, non-communicable, inflammatory diseases may have a microbial component than are presently considered, and may be treatable using bactericidal antibiotics or vaccines. Atopobiosis of microbes (the term describing microbes that appear in places other than where they should be), as well as the products of their metabolism, seems to correlate with, and may contribute to, the dynamics of a variety of inflammatory diseases.
Collapse
Affiliation(s)
- Marnie Potgieter
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Janette Bester
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| | - Douglas B Kell
- School of Chemistry and The Manchester Institute of Biotechnology, The University of Manchester, 131, Princess St, Manchester M1 7DN, Lancs, UK
| | - Etheresia Pretorius
- Department of Physiology, Faculty of Health Sciences, University of Pretoria, Arcadia 0007, South Africa
| |
Collapse
|
165
|
Federici S, Miragoli F, Pisacane V, Rebecchi A, Morelli L, Callegari ML. Archaeal microbiota population in piglet feces shifts in response to weaning: Methanobrevibacter smithii is replaced with Methanobrevibacter boviskoreani. FEMS Microbiol Lett 2015; 362:fnv064. [PMID: 25903267 DOI: 10.1093/femsle/fnv064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2015] [Indexed: 12/26/2022] Open
Abstract
Methanogens commonly inhabit swine intestine. We analyzed the gut archaeal population by extracting DNA from the feces of nine piglets. We performed PCR to target the V6-V8 region of the 16S rRNA gene. Subsequent denaturing gradient gel electrophoresis (DGGE) revealed the presence of Methanobrevibacter boviskoreani, which has not previously been identified in pigs. We confirmed these data with a PCR-DGGE analysis of the mcrA gene, and subsequent sequencing. At 63 days old, the only band in fecal samples corresponded to M. boviskoreani. The DGGE analysis also showed that Methanobrevibacter smithii, which was abundant at 28 days, was dramatically reduced at 42 days, and it completely disappeared at 63 days. To confirm these data, we quantified M. smithii and the total archaeal population by quantitative PCR (qPCR); moreover, we designed a new set of species-specific primers based on the 16S rRNA gene of M. boviskoreani. The qPCR results confirmed the reduction in M. smithii over time and a simultaneous increase in M. boviskoreani. At 63 days, the total numbers of archaea and M. boviskoreani genomes were comparable, which suggested that M. boviskoreani represented the dominant archaea. This work showed that the archaeal population shifted during weaning, and M. boviskoreani replaced M. smithii.
Collapse
Affiliation(s)
- Sara Federici
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Via Milano 24, 26100 Cremona, Italy
| | - Francesco Miragoli
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Via Milano 24, 26100 Cremona, Italy
| | - Vincenza Pisacane
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Via Milano 24, 26100 Cremona, Italy
| | - Annalisa Rebecchi
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Via Milano 24, 26100 Cremona, Italy
| | - Lorenzo Morelli
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via E. Parmense 84, 29122 Piacenza, Italy
| | - Maria Luisa Callegari
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Via Milano 24, 26100 Cremona, Italy
| |
Collapse
|
166
|
Dhaliwal J, Leach S, Katz T, Nahidi L, Pang T, Lee JM, Strachan R, Day AS, Jaffe A, Ooi CY. Intestinal inflammation and impact on growth in children with cystic fibrosis. J Pediatr Gastroenterol Nutr 2015; 60:521-526. [PMID: 25539196 DOI: 10.1097/mpg.0000000000000683] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The aim of the study was to evaluate and compare faecal markers of intestinal inflammation in children with cystic fibrosis (CF), and determine whether intestinal inflammation adversely affects the nutritional phenotype. METHODS Faecal samples for markers of intestinal inflammation, calprotectin, S100A12, and osteoprotegerin, were collected from children with CF, healthy controls (HCs), and Crohn disease (CD). Associations between inflammatory markers and clinical and nutritional indices were determined in subjects with CF. RESULTS Twenty-eight children with CF (mean [standard deviation (SD)] 8.4 [3.3] years old, 22 pancreatic insufficient [PI]), 47 HC, and 30 CD were recruited. Mean (SD) faecal calprotectin in CF (94.3 [100.6] mg/kg) was greater than HC (26.7 [15.4] mg/kg, P < 0.0001), but lower than CD (2133 [2781] mg/kg, P = 0.0003). Abnormal faecal calprotectin was found in subjects only with PI (17/22 (77%), P = 0.001). There was no difference in faecal mean (SD) S100A12 (0.8 [0.9] vs 1.5 [2.2] mg/kg, P = 0.14) and osteoprotegerin concentrations (72.7 [52.2] vs 62.5 [0.0] pg/mL, P = 0.2) between CF and HC. Patients with CD had significantly elevated S100A12 and osteoprotegerin compared with CF and HC. Faecal calprotectin inversely correlated with both weight (r = -0.5, P = 0.003) and height z scores (r = -0.6, P = 0.002) in CF. CONCLUSIONS The pattern of intestinal inflammation in CF is unique and distinct from inflammatory bowel disease, with elevated faecal calprotectin but normal faecal S100A12 and osteoprotegerin concentrations. The severity of intestinal inflammation, based on faecal calprotectin, significantly correlates with poor growth.
Collapse
Affiliation(s)
- Jasbir Dhaliwal
- *Department of Pediatric Gastroenterology, Sydney Children's Hospital Randwick †Discipline of Pediatrics, School of Women's and Children's Health, Medicine, University of New South Wales ‡Department of Nutrition and Dietetics §Clinical Trials Centre ||Department of Pediatric Respiratory, Sydney Children's Hospital Randwick, Sydney, Australia ¶Department of Pediatrics, University of Otago, Christchurch, New Zealand
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Bodewes FAJA, Verkade HJ, Taminiau JAJM, Borowitz D, Wilschanski M. Cystic fibrosis and the role of gastrointestinal outcome measures in the new era of therapeutic CFTR modulation. J Cyst Fibros 2015; 14:169-77. [PMID: 25677689 DOI: 10.1016/j.jcf.2015.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/20/2015] [Accepted: 01/20/2015] [Indexed: 01/01/2023]
Abstract
With the development of new drugs that directly affect CFTR protein function, clinical trials are being designed or initiated for a growing number of patients with cystic fibrosis. The currently available and accepted clinical endpoints, FEV1 and BMI, have limitations. The aim of this report is to draw attention to the need and the ample possibilities for the development and validation of relevant gastrointestinal clinical endpoints for scientific evaluation of CFTR modulation treatment, particularly in young children and infants. The gastrointestinal tract offers very good opportunities to measure CFTR protein function and systematically evaluate CF related clinical outcomes based on the principal clinical gastrointestinal manifestations of CF: intestinal pH, intestinal transit time, intestinal bile salt malabsorption, intestinal inflammation, exocrine pancreatic function and intestinal fat malabsorption. We present a descriptive analysis of a variety of gastrointestinal outcome measures for clinical relevance, reliability, validity, responsiveness to interventions, feasibility in particular in young children and the availability of reference values.
Collapse
Affiliation(s)
- Frank A J A Bodewes
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands.
| | - Henkjan J Verkade
- Pediatric Gastroenterology and Hepatology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | | | - Drucy Borowitz
- Department of Pediatrics, State University of New York at Buffalo School of Medicine and Biomedical Sciences, Women and Children's Hospital of Buffalo, Buffalo, NY, United States
| | - Michael Wilschanski
- Pediatric Gastroenterology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | | |
Collapse
|
168
|
Marie I, Leroi AM, Menard JF, Levesque H, Quillard M, Ducrotte P. Fecal calprotectin in systemic sclerosis and review of the literature. Autoimmun Rev 2015; 14:547-54. [PMID: 25661980 DOI: 10.1016/j.autrev.2015.01.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/14/2022]
Abstract
Fecal calprotectin (FC) is a simple, non-invasive and reproducible test, which has been described to be highly elevated in patients with active inflammatory bowel diseases. Recently, few authors have reported increased levels of FC in SSc patients, although the relationship between FC levels and the degree of gastrointestinal involvement has not yet been determined in patients with SSc. Thus, this prospective study aimed to: 1) determine the prevalence of increased fecal calprotectin (FC) levels in unselected patients with systemic sclerosis (SSc); 2) make prediction about which SSc patients exhibit increased levels of FC; and 3) evaluate the correlation between increased levels of FC and digestive symptoms, and gastrointestinal involvement, including the presence of small intestinal bacterial overgrowth (SIBO) using glucose H2/CH4 breath test. 125 consecutive patients with SSc underwent FC levels and glucose H2/CH4 breath test. All of the patients with SSc also completed a questionnaire on digestive symptoms, and a global symptom score (GSS) was calculated. 93 (74.4%) patients had abnormal levels of FC (>50 μg/g); 68 patients (54.4%) exhibited highly elevated levels of FC (>200 μg/g). A marked correlation was found between abnormal FC levels and GSS score of digestive symptoms, esophageal involvement and delayed gastric emptying. Moreover, we found a strong association between abnormal levels of FC and the presence of SIBO on glucose H2/CH4 breath test, with the higher correlation between the presence of SIBO and the level of FC ≥275 μg/g with an area under the receiver operating characteristic curve of 0.97 ± 0.001 (CI: 0.93-0.99; p<10(-6)); the sensitivity of FC level ≥275 μg/g for predicting SIBO was as high as 0.93, while the specificity was 0.95. Finally, eradication of SIBO was obtained in 52.4% of the SSc patients with a significant improvement of intestinal symptoms. Finally, after 3 months of rotating courses of alternative antibiotic therapy, eradication of SIBO was associated with significant decrease of FC levels in SSc patients. The current study underscores that abnormal FC levels were correlated with gastrointestinal impairment, especially SIBO. Because FC levels ≥275 μg/g were markedly associated with the presence of SIBO, our findings suggest that FC may be a helpful test in identifying the group of SSc patients at high risk for SIBO requiring glucose breath test to detect SIBO. Finally, we also suggest that FC levels may be helpful in SSc patients to assess SIBO eradication, as long-term antibiotic therapy is costly and carries risks such as the onset of pseudo-membranous colitis and SIBO-related antibiotic resistance.
Collapse
Affiliation(s)
- I Marie
- Department of Internal Medicine, CHU Rouen, INSERM U 905, University of Rouen IFRMP, Institute for Biochemical Research, Rouen, France.
| | - A-M Leroi
- Department of Digestive Physiology, CHU Rouen, INSERM UMR 1073, University of Rouen IFRMP, Institute for Biochemical Research, Rouen, France
| | - J-F Menard
- Department of Biostatistics, CHU Rouen, Rouen, France
| | - H Levesque
- Department of Internal Medicine, CHU Rouen, INSERM U 905, University of Rouen IFRMP, Institute for Biochemical Research, Rouen, France
| | - M Quillard
- Laboratory of Biochemistry, CHU Rouen, Rouen, France
| | - P Ducrotte
- Department of Gastroenterology, CHU Rouen, INSERM UMR 1073, University of Rouen IFRMP, Institute for Biochemical Research, Rouen, France
| |
Collapse
|
169
|
Digestive system dysfunction in cystic fibrosis: challenges for nutrition therapy. Dig Liver Dis 2014; 46:865-74. [PMID: 25053610 DOI: 10.1016/j.dld.2014.06.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/10/2014] [Accepted: 06/28/2014] [Indexed: 02/08/2023]
Abstract
Cystic fibrosis can affect food digestion and nutrient absorption. The underlying mutation of the cystic fibrosis trans-membrane regulator gene depletes functional cystic fibrosis trans-membrane regulator on the surface of epithelial cells lining the digestive tract and associated organs, where Cl(-) secretion and subsequently secretion of water and other ions are impaired. This alters pH and dehydrates secretions that precipitate and obstruct the lumen, causing inflammation and the eventual degradation of the pancreas, liver, gallbladder and intestine. Associated conditions include exocrine pancreatic insufficiency, impaired bicarbonate and bile acid secretion and aberrant mucus formation, commonly leading to maldigestion and malabsorption, particularly of fat and fat-soluble vitamins. Pancreatic enzyme replacement therapy is used to address this insufficiency. The susceptibility of pancreatic lipase to acidic and enzymatic inactivation and decreased bile availability often impedes its efficacy. Brush border digestive enzyme activity and intestinal uptake of certain disaccharides and amino acids await clarification. Other complications that may contribute to maldigestion/malabsorption include small intestine bacterial overgrowth, enteric circular muscle dysfunction, abnormal intestinal mucus, and intestinal inflammation. However, there is some evidence that gastric digestive enzymes, colonic microflora, correction of fatty acid abnormalities using dietary n-3 polyunsaturated fatty acid supplementation and emerging intestinal biomarkers can complement nutrition management in cystic fibrosis.
Collapse
|