151
|
Strumillo ST, Kartavykh D, de Carvalho FF, Cruz NC, de Souza Teodoro AC, Sobhie Diaz R, Curcio MF. Host-virus interaction and viral evasion. Cell Biol Int 2021; 45:1124-1147. [PMID: 33533523 PMCID: PMC8014853 DOI: 10.1002/cbin.11565] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
With each infectious pandemic or outbreak, the medical community feels the need to revisit basic concepts of immunology to understand and overcome the difficult times brought about by these infections. Regarding viruses, they have historically been responsible for many deaths, and such a peculiarity occurs because they are known to be obligate intracellular parasites that depend upon the host's cell machinery for their replication. Successful infection with the production of essential viral components requires constant viral evolution as a strategy to manipulate the cellular environment, including host internal factors, the host's nonspecific and adaptive immune responses to viruses, the metabolic and energetic state of the infected cell, and changes in the intracellular redox environment during the viral infection cycle. Based on this knowledge, it is fundamental to develop new therapeutic strategies for controlling viral dissemination, by means of antiviral therapies, vaccines, or antioxidants, or by targeting the inhibition or activation of cell signaling pathways or metabolic pathways that are altered during infection. The rapid recovery of altered cellular homeostasis during viral infection is still a major challenge. Here, we review the strategies by which viruses evade the host's immune response and potential tools used to develop more specific antiviral therapies to cure, control, or prevent viral diseases.
Collapse
Affiliation(s)
- Scheilla T Strumillo
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Denis Kartavykh
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Fábio F de Carvalho
- Departament of Educational Development, Getulio Vargas Foundation, São Paulo, Brazil
| | - Nicolly C Cruz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Ana C de Souza Teodoro
- Department of Biochemistry, Laboratory of Cell Signaling, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| | - Marli F Curcio
- Department of Medicine, Laboratory of Retrovirology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
152
|
Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten J, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. A multi-pronged approach targeting SARS-CoV-2 proteins using ultra-large virtual screening. iScience 2021; 24:102021. [PMID: 33426509 PMCID: PMC7783459 DOI: 10.1016/j.isci.2020.102021] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/28/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
The unparalleled global effort to combat the continuing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic over the last year has resulted in promising prophylactic measures. However, a need still exists for cheap, effective therapeutics, and targeting multiple points in the viral life cycle could help tackle the current, as well as future, coronaviruses. Here, we leverage our recently developed, ultra-large-scale in silico screening platform, VirtualFlow, to search for inhibitors that target SARS-CoV-2. In this unprecedented structure-based virtual campaign, we screened roughly 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets. In addition to targeting the active sites of viral enzymes, we also targeted critical auxiliary sites such as functionally important protein-protein interactions.
Collapse
Affiliation(s)
- Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Krishna M. Padmanabha Das
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kendra E. Leigh
- Max Planck Institute of Biophysics, Frankfurt am Main, Hessen 60438, Germany
| | | | - Patrick D. Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Saarland 66123, Germany
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | | | | | | | - Anthony Calderaio
- VirtualFlow Organization, https://virtual-flow.org/, Boston, MA 02115, USA
| | | | - Alexander Rose
- Mol∗ Consortium, https://molstar.org, San Diego, CA 92109, USA
| | | | | | | | | | - Henry D. Herce
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | | | - Konstantin Fackeldey
- Zuse Institute Berlin (ZIB), Berlin 14195, Germany
- Institute of Mathematics, Technical University Berlin, Berlin 10587, Germany
| | - J.J. Patten
- Department of Microbiology, Boston University Medical School, Boston University, Boston, MA 02118, USA
| | | | | | | | - Yurii Moroz
- Chemspace, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | - Dmytro Radchenko
- Enamine, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, Kyiv 01601, Ukraine
| | | | | | - Christian Gruber
- Innophore GmbH, Graz 8010, Austria
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Ryan Yust
- Google, Mountain View, CA 94043, USA
| | | | - Anders M. Näär
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | - Robert A. Davey
- Department of Microbiology, Boston University Medical School, Boston University, Boston, MA 02118, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
| | | | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, MA 02115, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| |
Collapse
|
153
|
Zhang C, Li L, He J, Chen C, Su D. Nonstructural protein 7 and 8 complexes of SARS-CoV-2. Protein Sci 2021; 30:873-881. [PMID: 33594727 PMCID: PMC7980517 DOI: 10.1002/pro.4046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/05/2023]
Abstract
The pandemic outbreak of coronavirus disease 2019 (COVID‐19) across the world has led to millions of infection cases and caused a global public health crisis. Current research suggests that SARS‐CoV‐2 is a highly contagious coronavirus that spreads rapidly through communities. To understand the mechanisms of viral replication, it is imperative to investigate coronavirus viral replicase, a huge protein complex comprising up to 16 viral nonstructural and associated host proteins, which is the most promising antiviral target for inhibiting viral genome replication and transcription. Recently, several components of the viral replicase complex in SARS‐CoV‐2 have been solved to provide a basis for the design of new antiviral therapeutics. Here, we report the crystal structure of the SARS‐CoV‐2 nsp7+8 tetramer, which comprises two copies of each protein representing nsp7's full‐length and the C‐terminus of nsp8 owing to N‐terminus proteolysis during the process of crystallization. We also identified a long helical extension and highly flexible N‐terminal domain of nsp8, which is preferred for interacting with single‐stranded nucleic acids. PDB Code(s): 7DCD;
Collapse
Affiliation(s)
- Changhui Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Li Li
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jun He
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Dan Su
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China.,West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
154
|
Chandra A, Chaudhary M, Qamar I, Singh N, Nain V. In silico identification and validation of natural antiviral compounds as potential inhibitors of SARS-CoV-2 methyltransferase. J Biomol Struct Dyn 2021; 40:6534-6544. [PMID: 33583328 PMCID: PMC7885726 DOI: 10.1080/07391102.2021.1886174] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The novel Coronavirus disease 2019 (COVID-19) is potentially fatal and caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Due to the unavailability of any proven treatment or vaccination, the outbreak of COVID-19 is wreaking havoc worldwide. Hence, there is an urgent need for therapeutics targeting SARS-CoV-2. Since, botanicals are an important resource for several efficacious antiviral agents, natural compounds gaining significant attention for COVID-19 treatment. In the present study, methyltranferase (MTase) of the SARS-CoV-2 is targeted using computational approach. The compounds were identified using molecular docking, virtual screening and molecular dynamics simulation studies. The binding mechanism of each compound was analyzed considering the stability and energetic parameter using in silico methods. We have found four natural antiviral compounds Amentoflavone, Baicalin, Daidzin and Luteoloside as strong inhibitors of methyltranferase of SARS-CoV-2. ADMET prediction and target analysis of the selected compounds showed favorable results. MD simulation was performed for four top-scored molecules to analyze the stability, binding mechanism and energy requirements. MD simulation studies indicated energetically favorable complex formation between MTase and the selected antiviral compounds. Furthermore, the structural effects on these substitutions were analyzed using the principles of each trajectories, which validated the interaction studies. Our analysis suggests that there is a very high probability that these compounds may have a good potential to inhibit Methyltransferase (MTase) of SARS-CoV-2 and to be used in the treatment of COVID-19. Further studies on these natural compounds may offer a quick therapeutic choice to treat COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Anshuman Chandra
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Meenakshi Chaudhary
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida, India
| | - Imteyaz Qamar
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Nagendra Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| | - Vikrant Nain
- School of Biotechnology, Gautam Buddha University, Greater Noida, India
| |
Collapse
|
155
|
Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci 2021; 78:1655-1688. [PMID: 32712910 DOI: 10.1101/2020.03.13.990598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein-protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Meenakshi Shegane
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
156
|
Alshiraihi IM, Klein GL, Brown MA. Targeting NSP16 Methyltransferase for the Broad-Spectrum Clinical Management of Coronaviruses: Managing the Next Pandemic. Diseases 2021; 9:diseases9010012. [PMID: 33535388 PMCID: PMC7930934 DOI: 10.3390/diseases9010012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/24/2022] Open
Abstract
With the approval and distribution of demonstrably safe COVID-19 vaccines bearing exceptionally high efficacy profiles, it may be tempting to envision a return to “normal” in the coming months. However, if there is one lesson to be learned from the ongoing pandemic, it is that, in a world of evolving zoonotic viruses, we must be better prepared for the next deadly outbreak. While the acute nature of the COVID-19 pandemic demanded a highly specific approach, it is advisable to consider the breadth of seemingly endless possibilities in our approach to managing the next inevitable occurrence of an outbreak. Though there is little chance of discovering a “magic pill” to combat all future pathogens, the highly conserved nature of non-surface viral proteins exposes an “Achilles’ heel” in the structural genome of viral pathogens. Herein, we consider the potential of targeting such proteins to develop broad-spectrum therapeutics for the future. To illustrate this point, we outline the therapeutic potential of targeting the nonstructural protein 16 methyltransferase, which is conserved across most coronaviruses.
Collapse
Affiliation(s)
- Ilham M. Alshiraihi
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Biology, University of Tabuk, Tabuk 47713, Saudi Arabia
| | | | - Mark A. Brown
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Epidemiology Section, Colorado School of Public Health, Fort Collins, CO 80523, USA
- Department of Ethnic Studies, Colorado State University, Fort Collins, CO 80523, USA
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523, USA
- Correspondence: ; Tel.: +1-970-491-5782
| |
Collapse
|
157
|
Peng Q, Peng R, Yuan B, Wang M, Zhao J, Fu L, Qi J, Shi Y. Structural Basis of SARS-CoV-2 Polymerase Inhibition by Favipiravir. ACTA ACUST UNITED AC 2021; 2:100080. [PMID: 33521757 PMCID: PMC7834001 DOI: 10.1016/j.xinn.2021.100080] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/11/2021] [Indexed: 01/18/2023]
Abstract
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into an unprecedented global pandemic. Nucleoside analogs, such as Remdesivir and Favipiravir, can serve as the first-line broad-spectrum antiviral drugs by targeting the viral polymerases. However, the underlying mechanisms for the antiviral efficacies of these drugs are far from well understood. Here, we reveal that Favipiravir, as a pyrazine derivative, could be incorporated into the viral RNA products by mimicking both adenine and guanine nucleotides. This drug thus inhibits viral replication mainly by inducing mutations in progeny RNAs, different from Remdesivir or other RNA-terminating nucleoside analogs that impair the elongation of RNA products. We further determined the cryo-EM structure of Favipiravir bound to the replicating polymerase complex of SARS-CoV-2 in the pre-catalytic state. This structure provides a missing snapshot for visualizing the catalysis dynamics of coronavirus polymerase, and reveals an unexpected base-pairing pattern between Favipiravir and pyrimidine residues that may explain its capacity for mimicking both adenine and guanine nucleotides. These findings shed light on the mechanism of coronavirus polymerase catalysis and provide a rational basis for developing antiviral drugs to combat the SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
- Qi Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Bin Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Min Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingru Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, Beijing, China
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, China
- College of Basic Medicine, Jilin University, Changchun, China
- Corresponding author
| |
Collapse
|
158
|
Cavasotto CN, Lamas MS, Maggini J. Functional and druggability analysis of the SARS-CoV-2 proteome. Eur J Pharmacol 2021; 890:173705. [PMID: 33137330 PMCID: PMC7604074 DOI: 10.1016/j.ejphar.2020.173705] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/21/2020] [Accepted: 10/29/2020] [Indexed: 02/08/2023]
Abstract
The infectious coronavirus disease (COVID-19) pandemic, caused by the coronavirus SARS-CoV-2, appeared in December 2019 in Wuhan, China, and has spread worldwide. As of today, more than 46 million people have been infected and over 1.2 million fatalities. With the purpose of contributing to the development of effective therapeutics, we performed an in silico determination of binding hot-spots and an assessment of their druggability within the complete SARS-CoV-2 proteome. All structural, non-structural, and accessory proteins have been studied, and whenever experimental structural data of SARS-CoV-2 proteins were not available, homology models were built based on solved SARS-CoV structures. Several potential allosteric or protein-protein interaction druggable sites on different viral targets were identified, knowledge that could be used to expand current drug discovery endeavors beyond the currently explored cysteine proteases and the polymerase complex. It is our hope that this study will support the efforts of the scientific community both in understanding the molecular determinants of this disease and in widening the repertoire of viral targets in the quest for repurposed or novel drugs against COVID-19.
Collapse
Affiliation(s)
- Claudio N Cavasotto
- Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina; Facultad de Ciencias Biomédicas, Facultad de Ingeniería, Universidad Austral, Pilar, Buenos Aires, Argentina; Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina.
| | - Maximiliano Sánchez Lamas
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Meton AI, Inc., Wilmington, DE, 19801, USA
| | - Julián Maggini
- Austral Institute for Applied Artificial Intelligence, Universidad Austral, Pilar, Buenos Aires, Argentina; Technology Transfer Office, Universidad Austral, Pilar, Buenos Aires, Argentina
| |
Collapse
|
159
|
Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Chen S, Coates L, Cooper C, Demerdash O, Daidone I, Eblen J, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Kneller D, Kovalevsky A, Larkin J, Lawrence T, LeGrand S, Liu SH, Mitchell J, Park G, Parks J, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen Y, Smith J, Smith M, Soto C, Tsaris A, Thavappiragasam M, Tillack A, Vermaas J, Vuong V, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. J Chem Inf Model 2020; 60:5832-5852. [PMID: 33326239 PMCID: PMC7754786 DOI: 10.1021/acs.jcim.0c01010] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 01/18/2023]
Abstract
We present a supercomputer-driven pipeline for in silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. Ensemble docking makes use of MD results by docking compound databases into representative protein binding-site conformations, thus taking into account the dynamic properties of the binding sites. We also describe preliminary results obtained for 24 systems involving eight proteins of the proteome of SARS-CoV-2. The MD involves temperature replica exchange enhanced sampling, making use of massively parallel supercomputing to quickly sample the configurational space of protein drug targets. Using the Summit supercomputer at the Oak Ridge National Laboratory, more than 1 ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to 10 configurations of each of the 24 SARS-CoV-2 systems using AutoDock Vina. Comparison to experiment demonstrates remarkably high hit rates for the top scoring tranches of compounds identified by our ensemble approach. We also demonstrate that, using Autodock-GPU on Summit, it is possible to perform exhaustive docking of one billion compounds in under 24 h. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and artificial intelligence (AI) methods to cluster MD trajectories and rescore docking poses.
Collapse
Affiliation(s)
- A. Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - R. Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - M. Baker
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - J. Baudry
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - D. Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - S. Boehm
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - K. G. Byler
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899, USA
| | - S.Y. Chen
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - L. Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - C.J. Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - O. Demerdash
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - I. Daidone
- Department of Physical and Chemical Sciences, University of L’Aquila, I-67010 L’Aquila, Italy
| | - J.D. Eblen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - S. Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Medicine, UK Medical Center MN 150, Lexington KY, 40536, USA
| | - S. Forli
- Scripps Research, La Jolla, CA, 92037, USA
| | - J. Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - J. C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - J. Gunnels
- HPC Engineering, Amazon Web Services, Seattle, WA 98121, USA
| | - O. Hernandez
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - S. Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - D.W. Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - A. Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - J. Larkin
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - T.J. Lawrence
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - S. LeGrand
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - S.-H. Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - J.C. Mitchell
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - G. Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - J.M. Parks
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - A. Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - L. Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - D. Poole
- NVIDIA Corporation, Santa Clara, CA 95051, USA
| | - L. Pouchard
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Ramanathan
- Data Science and Learning Division, Argonne National Lab, Lemont, IL 60439, USA
| | - D. Rogers
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - A. Sedova
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830, USA
| | - Y. Shen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - J.C. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - M.D. Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830, USA
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996, USA
| | - C. Soto
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - A. Tsaris
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - J.V. Vermaas
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - V.Q. Vuong
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - J. Yin
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - S. Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - M. Zahran
- Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, NY 11201, USA
| | | |
Collapse
|
160
|
Littler DR, MacLachlan BJ, Watson GM, Vivian JP, Gully BS. A pocket guide on how to structure SARS-CoV-2 drugs and therapies. Biochem Soc Trans 2020; 48:2625-2641. [PMID: 33258925 PMCID: PMC7752054 DOI: 10.1042/bst20200396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 01/18/2023]
Abstract
The race to identify a successful treatment for COVID19 will be defined by fundamental research into the replication cycle of the SARS-CoV-2 virus. This has identified five distinct stages from which numerous vaccination and clinical trials have emerged alongside an innumerable number of drug discovery studies currently in development for disease intervention. Informing every step of the viral replication cycle has been an unprecedented 'call-to-arms' by the global structural biology community. Of the 20 main SARS-CoV-2 proteins, 13 have been resolved structurally for SARS-CoV-2 with most having a related SARS-CoV and MERS-CoV structural homologue totalling some 300 structures currently available in public repositories. Herein, we review the contribution of structural studies to our understanding of the virus and their role in structure-based development of therapeutics.
Collapse
Affiliation(s)
- Dene R. Littler
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Bruce J. MacLachlan
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Gabrielle M. Watson
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Julian P. Vivian
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Benjamin S. Gully
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| |
Collapse
|
161
|
Mariano G, Farthing RJ, Lale-Farjat SLM, Bergeron JRC. Structural Characterization of SARS-CoV-2: Where We Are, and Where We Need to Be. Front Mol Biosci 2020; 7:605236. [PMID: 33392262 PMCID: PMC7773825 DOI: 10.3389/fmolb.2020.605236] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/22/2020] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread in humans in almost every country, causing the disease COVID-19. Since the start of the COVID-19 pandemic, research efforts have been strongly directed towards obtaining a full understanding of the biology of the viral infection, in order to develop a vaccine and therapeutic approaches. In particular, structural studies have allowed to comprehend the molecular basis underlying the role of many of the SARS-CoV-2 proteins, and to make rapid progress towards treatment and preventive therapeutics. Despite the great advances that have been provided by these studies, many knowledge gaps on the biology and molecular basis of SARS-CoV-2 infection still remain. Filling these gaps will be the key to tackle this pandemic, through development of effective treatments and specific vaccination strategies.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Rebecca J. Farthing
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| | | | - Julien R. C. Bergeron
- Randall Centre for Cell and Molecular Biophysics, King’s College London, London, United Kingdom
| |
Collapse
|
162
|
Vithani N, Ward MD, Zimmerman MI, Novak B, Borowsky JH, Singh S, Bowman GR. SARS-CoV-2 Nsp16 activation mechanism and a cryptic pocket with pan-coronavirus antiviral potential. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.12.10.420109. [PMID: 33330873 PMCID: PMC7743098 DOI: 10.1101/2020.12.10.420109] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coronaviruses have caused multiple epidemics in the past two decades, in addition to the current COVID-19 pandemic that is severely damaging global health and the economy. Coronaviruses employ between twenty and thirty proteins to carry out their viral replication cycle including infection, immune evasion, and replication. Among these, nonstructural protein 16 (Nsp16), a 2'-O-methyltransferase, plays an essential role in immune evasion. Nsp16 achieves this by mimicking its human homolog, CMTr1, which methylates mRNA to enhance translation efficiency and distinguish self from other. Unlike human CMTr1, Nsp16 requires a binding partner, Nsp10, to activate its enzymatic activity. The requirement of this binding partner presents two questions that we investigate in this manuscript. First, how does Nsp10 activate Nsp16? While experimentally-derived structures of the active Nsp16/Nsp10 complex exist, structures of inactive, monomeric Nsp16 have yet to be solved. Therefore, it is unclear how Nsp10 activates Nsp16. Using over one millisecond of molecular dynamics simulations of both Nsp16 and its complex with Nsp10, we investigate how the presence of Nsp10 shifts Nsp16's conformational ensemble in order to activate it. Second, guided by this activation mechanism and Markov state models (MSMs), we investigate if Nsp16 adopts inactive structures with cryptic pockets that, if targeted with a small molecule, could inhibit Nsp16 by stabilizing its inactive state. After identifying such a pocket in SARS-CoV-2 Nsp16, we show that this cryptic pocket also opens in SARS-CoV-1 and MERS, but not in human CMTr1. Therefore, it may be possible to develop pan-coronavirus antivirals that target this cryptic pocket. STATEMENT OF SIGNIFICANCE Coronaviruses are a major threat to human health. These viruses employ molecular machines, called proteins, to infect host cells and replicate. Characterizing the structure and dynamics of these proteins could provide a basis for designing small molecule antivirals. In this work, we use computer simulations to understand the moving parts of an essential SARS-CoV-2 protein, understand how a binding partner turns it on and off, and identify a novel pocket that antivirals could target to shut this protein off. The pocket is also present in other coronaviruses but not in the related human protein, so it could be a valuable target for pan-coronavirus antivirals.
Collapse
Affiliation(s)
- Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Michael D. Ward
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Maxwell I. Zimmerman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Borna Novak
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110, United States
| | - Jonathan H. Borowsky
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Gregory R. Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Center for Science and Engineering of Living Systems (CSELS), Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
163
|
Lubin JH, Zardecki C, Dolan EM, Lu C, Shen Z, Dutta S, Westbrook JD, Hudson BP, Goodsell DS, Williams JK, Voigt M, Sarma V, Xie L, Venkatachalam T, Arnold S, Alvarado LHA, Catalfano K, Khan A, McCarthy E, Staggers S, Tinsley B, Trudeau A, Singh J, Whitmore L, Zheng H, Benedek M, Currier J, Dresel M, Duvvuru A, Dyszel B, Fingar E, Hennen EM, Kirsch M, Khan AA, Labrie-Cleary C, Laporte S, Lenkeit E, Martin K, Orellana M, de la Campa MOA, Paredes I, Wheeler B, Rupert A, Sam A, See K, Zapata SS, Craig PA, Hall BL, Jiang J, Koeppe JR, Mills SA, Pikaart MJ, Roberts R, Bromberg Y, Hoyer JS, Duffy S, Tischfield J, Ruiz FX, Arnold E, Baum J, Sandberg J, Brannigan G, Khare SD, Burley SK. Evolution of the SARS-CoV-2 proteome in three dimensions (3D) during the first six months of the COVID-19 pandemic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 33299989 DOI: 10.1101/2020.12.01.406637] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Three-dimensional structures of SARS-CoV-2 and other coronaviral proteins archived in the Protein Data Bank were used to analyze viral proteome evolution during the first six months of the COVID-19 pandemic. Analyses of spatial locations, chemical properties, and structural and energetic impacts of the observed amino acid changes in >48,000 viral proteome sequences showed how each one of the 29 viral study proteins have undergone amino acid changes. Structural models computed for every unique sequence variant revealed that most substitutions map to protein surfaces and boundary layers with a minority affecting hydrophobic cores. Conservative changes were observed more frequently in cores versus boundary layers/surfaces. Active sites and protein-protein interfaces showed modest numbers of substitutions. Energetics calculations showed that the impact of substitutions on the thermodynamic stability of the proteome follows a universal bi-Gaussian distribution. Detailed results are presented for six drug discovery targets and four structural proteins comprising the virion, highlighting substitutions with the potential to impact protein structure, enzyme activity, and functional interfaces. Characterizing the evolution of the virus in three dimensions provides testable insights into viral protein function and should aid in structure-based drug discovery efforts as well as the prospective identification of amino acid substitutions with potential for drug resistance.
Collapse
|
164
|
Sk MF, Jonniya NA, Roy R, Poddar S, Kar P. Computational Investigation of Structural Dynamics of SARS-CoV-2 Methyltransferase-Stimulatory Factor Heterodimer nsp16/nsp10 Bound to the Cofactor SAM. Front Mol Biosci 2020; 7:590165. [PMID: 33330626 PMCID: PMC7732651 DOI: 10.3389/fmolb.2020.590165] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/23/2020] [Indexed: 01/08/2023] Open
Abstract
Recently, a highly contagious novel coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, has emerged, posing a global threat to public health. Identifying a potential target and developing vaccines or antiviral drugs is an urgent demand in the absence of approved therapeutic agents. The 5'-capping mechanism of eukaryotic mRNA and some viruses such as coronaviruses (CoVs) are essential for maintaining the RNA stability and protein translation in the virus. SARS-CoV-2 encodes S-adenosyl-L-methionine (SAM) dependent methyltransferase (MTase) enzyme characterized by nsp16 (2'-O-MTase) for generating the capped structure. The present study highlights the binding mechanism of nsp16 and nsp10 to identify the role of nsp10 in MTase activity. Furthermore, we investigated the conformational dynamics and energetics behind the binding of SAM to nsp16 and nsp16/nsp10 heterodimer by employing molecular dynamics simulations in conjunction with the Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) method. We observed from our simulations that the presence of nsp10 increases the favorable van der Waals and electrostatic interactions between SAM and nsp16. Thus, nsp10 acts as a stimulator for the strong binding of SAM to nsp16. The hydrophobic interactions were predominately identified for the nsp16-nsp10 interactions. Also, the stable hydrogen bonds between Ala83 (nsp16) and Tyr96 (nsp10), and between Gln87 (nsp16) and Leu45 (nsp10) play a vital role in the dimerization of nsp16 and nsp10. Besides, Computational Alanine Scanning (CAS) mutagenesis was performed, which revealed hotspot mutants, namely I40A, V104A, and R86A for the dimer association. Hence, the dimer interface of nsp16/nsp10 could also be a potential target in retarding the 2'-O-MTase activity in SARS-CoV-2. Overall, our study provides a comprehensive understanding of the dynamic and thermodynamic process of binding nsp16 and nsp10 that will contribute to the novel design of peptide inhibitors based on nsp16.
Collapse
Affiliation(s)
| | | | | | | | - Parimal Kar
- Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Khandwa, India
| |
Collapse
|
165
|
Silva LR, da Silva Santos-Júnior PF, de Andrade Brandão J, Anderson L, Bassi ÊJ, Xavier de Araújo-Júnior J, Cardoso SH, da Silva-Júnior EF. Druggable targets from coronaviruses for designing new antiviral drugs. Bioorg Med Chem 2020; 28:115745. [PMID: 33007557 PMCID: PMC7836322 DOI: 10.1016/j.bmc.2020.115745] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/26/2020] [Accepted: 08/29/2020] [Indexed: 01/18/2023]
Abstract
Severe respiratory infections were highlighted in the SARS-CoV outbreak in 2002, as well as MERS-CoV, in 2012. Recently, the novel CoV (COVID-19) has led to severe respiratory damage to humans and deaths in Asia, Europe, and Americas, which allowed the WHO to declare the pandemic state. Notwithstanding all impacts caused by Coronaviruses, it is evident that the development of new antiviral agents is an unmet need. In this review, we provide a complete compilation of all potential antiviral agents targeting macromolecular structures from these Coronaviruses (Coronaviridae), providing a medicinal chemistry viewpoint that could be useful for designing new therapeutic agents.
Collapse
Affiliation(s)
- Leandro Rocha Silva
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | | | - Júlia de Andrade Brandão
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Letícia Anderson
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; CESMAC University Center, Cônego Machado Street, Maceió 57051-160, Brazil
| | - Ênio José Bassi
- IMUNOREG - Immunoregulation Research Group, Laboratory of Research in Virology and Immunology, Institute of Biological Sciences and Health, Federal University of Alagoas, Campus AC. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - João Xavier de Araújo-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil
| | - Sílvia Helena Cardoso
- Laboratory of Organic and Medicinal Synthesis, Federal University of Alagoas, Campus Arapiraca, Manoel Severino Barbosa Avenue, Arapiraca 57309-005, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Chemistry and Biotechnology Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil; Laboratory of Medicinal Chemistry, Pharmaceutical Sciences Institute, Federal University of Alagoas, Campus A.C. Simões, Lourival Melo Mota Avenue, Maceió 57072-970, Brazil.
| |
Collapse
|
166
|
Ogando NS, Zevenhoven-Dobbe JC, van der Meer Y, Bredenbeek PJ, Posthuma CC, Snijder EJ. The Enzymatic Activity of the nsp14 Exoribonuclease Is Critical for Replication of MERS-CoV and SARS-CoV-2. J Virol 2020; 94:e01246-20. [PMID: 32938769 PMCID: PMC7654266 DOI: 10.1128/jvi.01246-20] [Citation(s) in RCA: 180] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/09/2020] [Indexed: 02/08/2023] Open
Abstract
Coronaviruses (CoVs) stand out for their large RNA genome and complex RNA-synthesizing machinery comprising 16 nonstructural proteins (nsps). The bifunctional nsp14 contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase (N7-MTase) domains. While the latter presumably supports mRNA capping, ExoN is thought to mediate proofreading during genome replication. In line with such a role, ExoN knockout mutants of mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) were previously reported to have crippled but viable hypermutation phenotypes. Remarkably, using reverse genetics, a large set of corresponding ExoN knockout mutations has now been found to be lethal for another betacoronavirus, Middle East respiratory syndrome coronavirus (MERS-CoV). For 13 mutants, viral progeny could not be recovered, unless-as happened occasionally-reversion had first occurred. Only a single mutant was viable, likely because its E191D substitution is highly conservative. Remarkably, a SARS-CoV-2 ExoN knockout mutant was found to be unable to replicate, resembling observations previously made for alpha- and gammacoronaviruses, but starkly contrasting with the documented phenotype of ExoN knockout mutants of the closely related SARS-CoV. Subsequently, we established in vitro assays with purified recombinant MERS-CoV nsp14 to monitor its ExoN and N7-MTase activities. All ExoN knockout mutations that proved lethal in reverse genetics were found to severely decrease ExoN activity while not affecting N7-MTase activity. Our study strongly suggests that CoV nsp14 ExoN has an additional function, which apparently is critical for primary viral RNA synthesis and thus differs from the proofreading function that, based on previous MHV and SARS-CoV studies, was proposed to boost longer-term replication fidelity.IMPORTANCE The bifunctional nsp14 subunit of the coronavirus replicase contains 3'-to-5' exoribonuclease (ExoN) and guanine-N7-methyltransferase domains. For the betacoronaviruses MHV and SARS-CoV, ExoN was reported to promote the fidelity of genome replication, presumably by mediating a form of proofreading. For these viruses, ExoN knockout mutants are viable while displaying an increased mutation frequency. Strikingly, we have now established that the equivalent ExoN knockout mutants of two other betacoronaviruses, MERS-CoV and SARS-CoV-2, are nonviable, suggesting an additional and critical ExoN function in their replication. This is remarkable in light of the very limited genetic distance between SARS-CoV and SARS-CoV-2, which is highlighted, for example, by 95% amino acid sequence identity in their nsp14 sequences. For (recombinant) MERS-CoV nsp14, both its enzymatic activities were evaluated using newly developed in vitro assays that can be used to characterize these key replicative enzymes in more detail and explore their potential as target for antiviral drug development.
Collapse
Affiliation(s)
- Natacha S Ogando
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jessika C Zevenhoven-Dobbe
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yvonne van der Meer
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter J Bredenbeek
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Clara C Posthuma
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric J Snijder
- Molecular Virology Laboratory, Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
167
|
Galanopoulos M, Doukatas A, Gazouli M. Origin and genomic characteristics of SARS-CoV-2 and its interaction with angiotensin converting enzyme type 2 receptors, focusing on the gastrointestinal tract. World J Gastroenterol 2020; 26:6335-6345. [PMID: 33244196 PMCID: PMC7656204 DOI: 10.3748/wjg.v26.i41.6335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/10/2020] [Accepted: 09/25/2020] [Indexed: 02/06/2023] Open
Abstract
The emergence of coronavirus disease-2019 induced by a newly identified b-coronavirus, namely severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has constituted a public health emergency. Even though it was considered a zoonotic disease, the virus has also spread among humans via respiratory secretions. The expression and distribution of angiotensin converting enzyme type 2 (ACE2) in various human organs might also show other possible infection routes. High ACE2 ribonucleic acid expression has been identified in the gastrointestinal tract (GI) indicating its importance as a possible infection pathway of SARS-CoV-2. ACE2 induces viral entry into the host and most importantly has been found to be associated with the function of the gut. Its deficiency has been implicated in several pathologies such as colorectal inflammation. The renin-angiotensin system (RAS) is an essential regulatory cascade operating both at a local tissue level and at the systemic or circulatory level. The RAS may be important in the pathogenesis of chronic liver disease and is associated with the up-regulation of ACE2. Thus, the aim of this review is firstly, the analysis of some important general and genome characteristics of SARS-CoV-2 and secondly, and most importantly, to focus on the utility of ACE2 receptors in both SARS-CoV-2 replication and pathogenesis, especially in the GI tract.
Collapse
Affiliation(s)
- Michail Galanopoulos
- Department of Gastroenterology, 401 General Military Hospital of Athens, Athens 11525, Attiki, Greece
| | - Aris Doukatas
- Medical Office of Hellenic Army General Staff, 401 General Military Hospital of Athens, Athens 11525, Attiki, Greece
| | - Maria Gazouli
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Attiki, Greece
| |
Collapse
|
168
|
Bresson S, Robertson N, Sani E, Turowski TW, Shchepachev V, Kompauerova M, Spanos C, Helwak A, Tollervey D. Integrative vectors for regulated expression of SARS-CoV-2 proteins implicated in RNA metabolism. Wellcome Open Res 2020; 5:261. [PMID: 33313418 PMCID: PMC7721065 DOI: 10.12688/wellcomeopenres.16322.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2020] [Indexed: 11/20/2022] Open
Abstract
Infection with SARS-CoV-2 is expected to result in substantial reorganization of host cell RNA metabolism. We identified 14 proteins that were predicted to interact with host RNAs or RNA binding proteins, based on published data for SARS-CoV and SARS-CoV-2. Here, we describe a series of affinity-tagged and codon-optimized expression constructs for each of these 14 proteins. Each viral gene was separately tagged at the N-terminus with Flag-His 8, the C-terminus with His 8-Flag, or left untagged. The resulting constructs were stably integrated into the HEK293 Flp-In T-REx genome. Each viral gene was expressed under the control of an inducible Tet-On promoter, allowing expression levels to be tuned to match physiological conditions during infection. Expression time courses were successfully generated for most of the fusion proteins and quantified by western blot. A few fusion proteins were poorly expressed, whereas others, including Nsp1, Nsp12, and N protein, were toxic unless care was taken to minimize background expression. All plasmids can be obtained from Addgene and cell lines are available. We anticipate that availability of these resources will facilitate a more detailed understanding of coronavirus molecular biology.
Collapse
Affiliation(s)
- Stefan Bresson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Nic Robertson
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Emanuela Sani
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Tomasz W Turowski
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Vadim Shchepachev
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Michaela Kompauerova
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Christos Spanos
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - Aleksandra Helwak
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| | - David Tollervey
- Wellcome Centre for Cell Biology, University of Edinburgh, Michael Swann Building, Kings Buildings, Mayfield Road, Edinburgh, EH9 3BF, UK
| |
Collapse
|
169
|
Viral pathogen-induced mechanisms to antagonize mammalian interferon (IFN) signaling pathway. Cell Mol Life Sci 2020; 78:1423-1444. [PMID: 33084946 PMCID: PMC7576986 DOI: 10.1007/s00018-020-03671-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/14/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Antiviral responses of interferons (IFNs) are crucial in the host immune response, playing a relevant role in controlling viralw infections. Three types of IFNs, type I (IFN-α, IFN-β), II (IFN-γ) and III (IFN-λ), are classified according to their receptor usage, mode of induction, biological activity and amino acid sequence. Here, we provide a comprehensive review of type I IFN responses and different mechanisms that viruses employ to circumvent this response. In the first part, we will give an overview of the different induction and signaling cascades induced in the cell by IFN-I after virus encounter. Next, highlights of some of the mechanisms used by viruses to counteract the IFN induction will be described. And finally, we will address different mechanism used by viruses to interference with the IFN signaling cascade and the blockade of IFN induced antiviral activities.
Collapse
|
170
|
Dong Y, Dai T, Liu J, Zhang L, Zhou F. Coronavirus in Continuous Flux: From SARS-CoV to SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001474. [PMID: 32837848 PMCID: PMC7361144 DOI: 10.1002/advs.202001474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/25/2020] [Indexed: 05/07/2023]
Abstract
The world is currently experiencing a global pandemic caused by a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes severe respiratory disease similar to SARS. Previous studies have suggested that SARS-CoV-2 shares 79% and 96% sequence identity to SARS-CoV and to bat coronavirus RaTG13, respectively, at the whole-genome level. Furthermore, a series of studies have shown that SARS-CoV-2 induces clusters of severe respiratory illnesses (i.e., pneumonia, acute lung injury, acute respiratory distress syndrome) resembling SARS-CoV. Moreover, the pathological syndrome may, in part, be caused by cytokine storms and dysregulated immune responses. Thus, in this work the recent literature surrounding the biology, clinical manifestations, and immunology of SARS-CoV-2 is summarized, with the aim of aiding prevention, diagnosis, and treatment for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yetian Dong
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123P. R. China
- Life Sciences Institute and Innovation Center for Cell Signaling NetworkHangzhouZhejiang310058P. R. China
| | - Tong Dai
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123P. R. China
| | - Jun Liu
- Pinghu Food and Drug Inspection CenterPinghuZhejiang314200P. R. China
| | - Long Zhang
- Life Sciences Institute and Innovation Center for Cell Signaling NetworkHangzhouZhejiang310058P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical SciencesSoochow UniversitySuzhou215123P. R. China
| |
Collapse
|
171
|
Mahalapbutr P, Kongtaworn N, Rungrotmongkol T. Structural insight into the recognition of S-adenosyl-L-homocysteine and sinefungin in SARS-CoV-2 Nsp16/Nsp10 RNA cap 2'-O-Methyltransferase. Comput Struct Biotechnol J 2020; 18:2757-2765. [PMID: 33020707 PMCID: PMC7527316 DOI: 10.1016/j.csbj.2020.09.032] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 01/07/2023] Open
Abstract
The binding affinity towards SARS-CoV-2 nsp16 of SFG is higher than that of SAH. Asp99 is a key binding residue for SAH and SFG via charge-charge attraction. SFG could electrostatically interact with the 2′-OH and N3 groups of adenosine moiety of RNA substrate. The distance between 2′-OH of RNA and –NH3+ (at 6′ position) of SFG mimics the methyl transfer reaction.
The recent ongoing coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to rapidly spread across the world. To date, neither a specific antiviral drug nor a clinically effective vaccine is available. Among the 15 viral non-structural proteins (nsps), nsp16 methyltransferase has been considered as a potential target due to its crucial role in RNA cap 2′-O-methylation process, preventing the virus detection by cell innate immunity mechanisms. In the present study, molecular recognition between the two natural nucleoside analogs (S-adenosyl-l-homocysteine (SAH) and sinefungin (SFG)) and the SARS-CoV-2 nsp16/nsp10/m7GpppAC5 was studied using all-atom molecular dynamics simulations and free energy calculations based on MM/GBSA and WaterSwap approaches. The binding affinity and the number of hot-spot residues, atomic contacts, and H-bond formations of SFG/nsp16 complex were distinctly higher than those of SAH/nsp16 system, consistent with the lower water accessibility at the enzyme active site. Notably, only SFG could electrostatically interact with the 2′-OH and N3 of RNA’s adenosine moiety, mimicking the methyl transfer reaction of S-adenosyl-l-methionine substrate. The atomistic binding mechanism obtained from this work paves the way for further optimizations and designs of more specific SARS-CoV-2 nsp16 inhibitors in the fight against COVID-19.
Collapse
Affiliation(s)
- Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Napat Kongtaworn
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
- Biocatalyst and Environmental Biotechnology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Corresponding author at: Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
172
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
173
|
Rosas-Lemus M, Minasov G, Shuvalova L, Inniss NL, Kiryukhina O, Brunzelle J, Satchell KJF. High-resolution structures of the SARS-CoV-2 2'- O-methyltransferase reveal strategies for structure-based inhibitor design. Sci Signal 2020; 13:eabe1202. [PMID: 32994211 PMCID: PMC8028745 DOI: 10.1126/scisignal.abe1202] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
There are currently no antiviral therapies specific for SARS-CoV-2, the virus responsible for the global pandemic disease COVID-19. To facilitate structure-based drug design, we conducted an x-ray crystallographic study of the SARS-CoV-2 nsp16-nsp10 2'-O-methyltransferase complex, which methylates Cap-0 viral mRNAs to improve viral protein translation and to avoid host immune detection. We determined the structures for nsp16-nsp10 heterodimers bound to the methyl donor S-adenosylmethionine (SAM), the reaction product S-adenosylhomocysteine (SAH), or the SAH analog sinefungin (SFG). We also solved structures for nsp16-nsp10 in complex with the methylated Cap-0 analog m7GpppA and either SAM or SAH. Comparative analyses between these structures and published structures for nsp16 from other betacoronaviruses revealed flexible loops in open and closed conformations at the m7GpppA-binding pocket. Bound sulfates in several of the structures suggested the location of the ribonucleic acid backbone phosphates in the ribonucleotide-binding groove. Additional nucleotide-binding sites were found on the face of the protein opposite the active site. These various sites and the conserved dimer interface could be exploited for the development of antiviral inhibitors.
Collapse
Affiliation(s)
- Monica Rosas-Lemus
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ludmilla Shuvalova
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicole L Inniss
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Olga Kiryukhina
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Joseph Brunzelle
- Northwestern Synchrotron Research Center, Life Sciences Collaborative Access Team, Northwestern University, Argonne, IL 60439, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA.
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
174
|
Hartenian E, Nandakumar D, Lari A, Ly M, Tucker JM, Glaunsinger BA. The molecular virology of coronaviruses. J Biol Chem 2020; 295:12910-12934. [PMID: 32661197 PMCID: PMC7489918 DOI: 10.1074/jbc.rev120.013930] [Citation(s) in RCA: 337] [Impact Index Per Article: 67.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Few human pathogens have been the focus of as much concentrated worldwide attention as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of COVID-19. Its emergence into the human population and ensuing pandemic came on the heels of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), two other highly pathogenic coronavirus spillovers, which collectively have reshaped our view of a virus family previously associated primarily with the common cold. It has placed intense pressure on the collective scientific community to develop therapeutics and vaccines, whose engineering relies on a detailed understanding of coronavirus biology. Here, we present the molecular virology of coronavirus infection, including its entry into cells, its remarkably sophisticated gene expression and replication mechanisms, its extensive remodeling of the intracellular environment, and its multifaceted immune evasion strategies. We highlight aspects of the viral life cycle that may be amenable to antiviral targeting as well as key features of its biology that await discovery.
Collapse
Affiliation(s)
- Ella Hartenian
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Nandakumar
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Azra Lari
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Michael Ly
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Jessica M Tucker
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA
| | - Britt A Glaunsinger
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA; Department of Plant and Microbial Biology, University of California, Berkeley, California, USA; Howard Hughes Medical Institute, University of California, Berkeley, California, USA.
| |
Collapse
|
175
|
Witkowska D. Mass Spectrometry and Structural Biology Techniques in the Studies on the Coronavirus-Receptor Interaction. Molecules 2020; 25:E4133. [PMID: 32927621 PMCID: PMC7571139 DOI: 10.3390/molecules25184133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/01/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mass spectrometry and some other biophysical methods, have made substantial contributions to the studies on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and human proteins interactions. The most interesting feature of SARS-CoV-2 seems to be the structure of its spike (S) protein and its interaction with the human cell receptor. Mass spectrometry of spike S protein revealed how the glycoforms are distributed across the S protein surface. X-ray crystallography and cryo-electron microscopy made huge impact on the studies on the S protein and ACE2 receptor protein interaction, by elucidating the three-dimensional structures of these proteins and their conformational changes. The findings of the most recent studies in the scope of SARS-CoV-2-Human protein-protein interactions are described here.
Collapse
MESH Headings
- Amino Acid Sequence
- Angiotensin-Converting Enzyme 2
- Betacoronavirus/chemistry
- Betacoronavirus/pathogenicity
- Binding Sites
- COVID-19
- Coronavirus Infections/epidemiology
- Coronavirus Infections/virology
- Gene Expression
- Host-Pathogen Interactions
- Humans
- Models, Molecular
- Pandemics
- Peptidyl-Dipeptidase A/chemistry
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Pneumonia, Viral/epidemiology
- Pneumonia, Viral/virology
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Receptors, Virus/chemistry
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
- Severe acute respiratory syndrome-related coronavirus/chemistry
- Severe acute respiratory syndrome-related coronavirus/pathogenicity
- SARS-CoV-2
- Sequence Alignment
- Severe Acute Respiratory Syndrome/epidemiology
- Severe Acute Respiratory Syndrome/virology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/metabolism
Collapse
Affiliation(s)
- Danuta Witkowska
- Institute of Health Sciences, Opole University, Katowicka 68, 45-060 Opole, Poland
| |
Collapse
|
176
|
Shibabaw T, Molla MD, Teferi B, Ayelign B. Role of IFN and Complements System: Innate Immunity in SARS-CoV-2. J Inflamm Res 2020; 13:507-518. [PMID: 32982366 PMCID: PMC7490109 DOI: 10.2147/jir.s267280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/31/2020] [Indexed: 12/23/2022] Open
Abstract
The critical role of the innate immune system has been confirmed in driving local and systemic inflammation and the cytokine release storm in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This dysregulated immune response is focused on interferon (IFN) and complement activation, which are crucial for the development of metabolic inflammation, local lung tissue damage, and systemic multi-organ failure. IFNs control viral infections by inducing expression of IFN-stimulated genes (ISGs) that restrict distinct steps of viral replication. Therefore, in this review article, we propose the mechanism of SARS-CoV-2-associated acute respiratory disease syndrome, and assess treatment options by considering IFNs and by targeting IFN-antagonist SARS-CoV-2 virulent gene products. Furthermore, we elaborate on the mechanism of the amplified complement-mediated inflammatory cytokine storm, and propose an antiviral and immunotherapeutic strategy against coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Banchamlak Teferi
- Department of Clinical Pharmacy, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
177
|
Interfering with mRNA Methylation by the 2′O-Methyltransferase (NSP16) from SARS-CoV-2 to Tackle the COVID-19 Disease. Catalysts 2020. [DOI: 10.3390/catal10091023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pandemic associated to Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2) has resulted in a huge number of deaths and infected people. Although several vaccine programmes are currently underway and have reached phase 3, and a few small size drugs repurposed to aid treatment of severe cases of COVID-19 infections, effective therapeutic options for this disease do not currently exist. NSP16 is a S-adenosyl-L-Methionine (SAM) dependent 2′O-Methyltransferase that converts mRNA cap-0 into cap-1 structure to prevent virus detection by cell innate immunity mechanisms. NSP16 methylates the ribose 2′O-position of the first nucleotide of the mRNA only in the presence of an interacting partner, the protein NSP10. This feature suggests that inhibition of the NSP16 may represent a therapeutic window to treat COVID-19. To test this idea, we performed comparative structural analyses of the NSP16 present in human coronaviruses and developed a sinefungin (SFG) similarity-based virtual screening campaign to assess the druggability of the SARS-CoV-2 NSP16 enzyme. Through these studies, we identified the SFG analogue 44601604 as a promising more potent inhibitor of NSP16 to limit viral replication in infected cells, favouring viral clearance.
Collapse
|
178
|
Haque SKM, Ashwaq O, Sarief A, Azad John Mohamed AK. A comprehensive review about SARS-CoV-2. Future Virol 2020; 15:625-648. [PMID: 33224265 PMCID: PMC7664148 DOI: 10.2217/fvl-2020-0124] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
The coronavirus disease (COVID-19) was first identified in China, December 2019. Since then, it has spread the length and breadth of the world at an unprecedented, alarming rate. Severe acute respiratory syndrome coronavirus (SARS-CoV)-2, which causes COVID-19, has much in common with its closest homologs, SARS-CoV and Middle East respiratory syndrome-CoV. The virus-host interaction of SARS-CoV-2 uses the same receptor, ACE2, which is similar to that of SARS-CoV, which spreads through the respiratory tract. Patients with COVID-19 report symptoms including mild-to-severe fever, cough and fatigue; very few patients report gastrointestinal infections. There are no specific antiviral strategies. A few strong medications are under investigation, so we have to focus on proposals which ought to be taken to forestall this infection in a living host.
Collapse
Affiliation(s)
- SK Manirul Haque
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Omar Ashwaq
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Abdulla Sarief
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| | - Abdul Kalam Azad John Mohamed
- Department of Chemical & Process Engineering Technology, Jubail Industrial College, P. O. Box 10099, Jubail Industrial City 31961, Saudi Arabia
| |
Collapse
|
179
|
Maranon DG, Anderson JR, Maranon AG, Wilusz J. The interface between coronaviruses and host cell RNA biology: Novel potential insights for future therapeutic intervention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1614. [PMID: 32638509 PMCID: PMC7361139 DOI: 10.1002/wrna.1614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
Coronaviruses, including SARS-Cov-2, are RNA-based pathogens that interface with a large variety of RNA-related cellular processes during infection. These processes include capping, polyadenylation, localization, RNA stability, translation, and regulation by RNA binding proteins or noncoding RNA effectors. The goal of this article is to provide an in-depth perspective on the current state of knowledge of how various coronaviruses interact with, usurp, and/or avoid aspects of these cellular RNA biology machineries. A thorough understanding of how coronaviruses interact with RNA-related posttranscriptional processes in the cell should allow for new insights into aspects of viral pathogenesis as well as identify new potential avenues for the development of anti-coronaviral therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- David G. Maranon
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - John R. Anderson
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Abril G. Maranon
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
180
|
Porcine Epidemic Diarrhea Virus Deficient in RNA Cap Guanine-N-7 Methylation Is Attenuated and Induces Higher Type I and III Interferon Responses. J Virol 2020; 94:JVI.00447-20. [PMID: 32461321 DOI: 10.1128/jvi.00447-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/16/2020] [Indexed: 12/23/2022] Open
Abstract
The 5' cap methylation of viral RNA plays important roles in RNA stability, efficient translation, and immune evasion. Thus, RNA cap methylation is an attractive target for antiviral discovery and development of new live attenuated vaccines. For coronaviruses, RNA cap structure is first methylated at the guanine-N-7 (G-N-7) position by nonstructural protein 14 (nsp14), which facilitates and precedes the subsequent ribose 2'-O methylation by the nsp16-nsp10 complex. Using porcine epidemic diarrhea virus (PEDV), an Alphacoronavirus, as a model, we showed that G-N-7 methyltransferase (G-N-7 MTase) of PEDV nsp14 methylated RNA substrates in a sequence-unspecific manner. PEDV nsp14 can efficiently methylate RNA substrates with various lengths in both neutral and alkaline pH environments and can methylate cap analogs (GpppA and GpppG) and single-nucleotide GTP but not ATP, CTP, or UTP. Mutations to the S-adenosyl-l-methionine (SAM) binding motif in the nsp14 abolished the G-N-7 MTase activity and were lethal to PEDV. However, recombinant rPEDV-D350A with a single mutation (D350A) in nsp14, which retained 29.0% of G-N-7 MTase activity, was viable. Recombinant rPEDV-D350A formed a significantly smaller plaque and had significant defects in viral protein synthesis and viral replication in Vero CCL-81 cells and intestinal porcine epithelial cells (IPEC-DQ). Notably, rPEDV-D350A induced significantly higher expression of both type I and III interferons in IPEC-DQ cells than the parental rPEDV. Collectively, our results demonstrate that G-N-7 MTase activity of PEDV modulates viral replication, gene expression, and innate immune responses.IMPORTANCE Coronaviruses (CoVs) include a wide range of important human and animal pathogens. Examples of human CoVs include severe acute respiratory syndrome coronavirus (SARS-CoV-1), Middle East respiratory syndrome coronavirus (MERS-CoV), and the most recently emerged SARS-CoV-2. Examples of pig CoVs include porcine epidemic diarrhea virus (PEDV), porcine deltacoronavirus (PDCoV), and swine enteric alphacoronavirus (SeACoV). There are no vaccines or antiviral drugs for most of these viruses. All known CoVs encode a bifunctional nsp14 protein which possesses ExoN and guanine-N-7 methyltransferase (G-N-7 MTase) activities, responsible for replication fidelity and RNA cap G-N-7 methylation, respectively. Here, we biochemically characterized G-N-7 MTase of PEDV nsp14 and found that G-N-7 MTase-deficient PEDV was defective in replication and induced greater responses of type I and III interferons. These findings highlight that CoV G-N-7 MTase may be a novel target for rational design of live attenuated vaccines and antiviral drugs.
Collapse
|
181
|
Crystal structure of SARS-CoV-2 nsp10/nsp16 2'-O-methylase and its implication on antiviral drug design. Signal Transduct Target Ther 2020; 5:131. [PMID: 32728018 PMCID: PMC7388121 DOI: 10.1038/s41392-020-00241-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/05/2023] Open
|
182
|
Sharma K, Morla S, Goyal A, Kumar S. Computational guided drug repurposing for targeting 2'-O-ribose methyltransferase of SARS-CoV-2. Life Sci 2020; 259:118169. [PMID: 32738360 PMCID: PMC7387922 DOI: 10.1016/j.lfs.2020.118169] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/19/2020] [Accepted: 07/25/2020] [Indexed: 01/20/2023]
Abstract
Aims The recent outbreak of pandemic severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has led the world towards a global health emergency. Currently, no proper medicine or effective treatment strategies are available; therefore, repurposing of FDA approved drugs may play an important role in overcoming the situation. Materials and methods The SARS-CoV-2 genome encodes for 2-O-methyltransferase (2′OMTase), which plays a key role in methylation of viral RNA for evading host immune system. In the present study, the protein sequence of 2′OMTase of SARS-CoV-2 was analyzed, and its structure was modeled by a comparative modeling approach and validated. The library of 3000 drugs was screened against the active site of 2′OMTase followed by re-docking analysis. The apo and ligand-bound 2′OMTase were further validated and analyzed by using molecular dynamics simulation. Key findings The modeled structure displayed the conserved characteristic fold of class I MTase family. The quality assessment analysis by SAVES server reveals that the modeled structure follows protein folding rules and of excellent quality. The docking analysis displayed that the active site of 2′OMTase accommodates an array of drugs, which includes alkaloids, antivirals, cardiac glycosides, anticancer, steroids, and other drugs. The redocking and MD simulation analysis of the best 5 FDA approved drugs reveals that these drugs form a stable conformation with the 2′OMTase. Significance The results suggested that these drugs may be used as potential inhibitors for 2′OMTase for combating the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kedar Sharma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sudhir Morla
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
183
|
Acharya A, Agarwal R, Baker M, Baudry J, Bhowmik D, Boehm S, Byler KG, Coates L, Chen SY, Cooper CJ, Demerdash O, Daidone I, Eblen JD, Ellingson S, Forli S, Glaser J, Gumbart JC, Gunnels J, Hernandez O, Irle S, Larkin J, Lawrence TJ, LeGrand S, Liu SH, Mitchell JC, Park G, Parks JM, Pavlova A, Petridis L, Poole D, Pouchard L, Ramanathan A, Rogers D, Santos-Martins D, Scheinberg A, Sedova A, Shen S, Smith JC, Smith MD, Soto C, Tsaris A, Thavappiragasam M, Tillack AF, Vermaas JV, Vuong VQ, Yin J, Yoo S, Zahran M, Zanetti-Polzi L. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12725465. [PMID: 33200117 PMCID: PMC7668744 DOI: 10.26434/chemrxiv.12725465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/29/2020] [Indexed: 01/18/2023]
Abstract
We present a supercomputer-driven pipeline for in-silico drug discovery using enhanced sampling molecular dynamics (MD) and ensemble docking. We also describe preliminary results obtained for 23 systems involving eight protein targets of the proteome of SARS CoV-2. THe MD performed is temperature replica-exchange enhanced sampling, making use of the massively parallel supercomputing on the SUMMIT supercomputer at Oak Ridge National Laboratory, with which more than 1ms of enhanced sampling MD can be generated per day. We have ensemble docked repurposing databases to ten configurations of each of the 23 SARS CoV-2 systems using AutoDock Vina. We also demonstrate that using Autodock-GPU on SUMMIT, it is possible to perform exhaustive docking of one billion compounds in under 24 hours. Finally, we discuss preliminary results and planned improvements to the pipeline, including the use of quantum mechanical (QM), machine learning, and AI methods to cluster MD trajectories and rescore docking poses.
Collapse
Affiliation(s)
- A Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - R Agarwal
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - M Baker
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - J Baudry
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899
| | - D Bhowmik
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S Boehm
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - K G Byler
- The University of Alabama in Huntsville, Department of Biological Sciences. 301 Sparkman Drive, Huntsville, AL 35899
| | - L Coates
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
| | - S Y Chen
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - C J Cooper
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - O Demerdash
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - I Daidone
- Department of Physical and Chemical Sciences, University of L'Aquila, I-67010 L'Aquila, Italy
| | - J D Eblen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - S Ellingson
- University of Kentucky, Division of Biomedical Informatics, College of Medicine, UK Medical Center MN 150, Lexington KY, 40536
| | - S Forli
- Scripps Research, La Jolla, CA, 92037
| | - J Glaser
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - J C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - J Gunnels
- HPC Engineering, Amazon Web Services, Seattle, WA 98121
| | - O Hernandez
- Computer Science and Mathematics Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996
| | - J Larkin
- NVIDIA Corporation, Santa Clara, CA 95051
| | - T J Lawrence
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S LeGrand
- NVIDIA Corporation, Santa Clara, CA 95051
| | - S-H Liu
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - J C Mitchell
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - G Park
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - J M Parks
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - A Pavlova
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332
| | - L Petridis
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - D Poole
- NVIDIA Corporation, Santa Clara, CA 95051
| | - L Pouchard
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - A Ramanathan
- Data Science and Learning Division, Argonne National Lab, Lemont, IL 60439
| | - D Rogers
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | | | | | - A Sedova
- Biosciences Division, Oak Ridge National Lab, Oak Ridge, TN 37830
| | - S Shen
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996
| | - J C Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - M D Smith
- UT/ORNL Center for Molecular Biophysics, Oak Ridge National Laboratory, TN, 37830
- The University of Tennessee, Knoxville. Department of Biochemistry & Cellular and Molecular Biology, 309 Ken and Blaire Mossman Bldg. 1311 Cumberland Avenue Knoxville, TN, 37996
| | - C Soto
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - A Tsaris
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | | | | | - J V Vermaas
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - V Q Vuong
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996
| | - J Yin
- National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37830
| | - S Yoo
- Computational Science Initiative, Brookhaven National Laboratory, Upton, NY 11973
| | - M Zahran
- Department of Biological Sciences, New York City College of Technology, The City University of New York (CUNY), Brooklyn, NY 11201
| | | |
Collapse
|
184
|
Giri R, Bhardwaj T, Shegane M, Gehi BR, Kumar P, Gadhave K, Oldfield CJ, Uversky VN. Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses. Cell Mol Life Sci 2020; 78:1655-1688. [PMID: 32712910 PMCID: PMC7382329 DOI: 10.1007/s00018-020-03603-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/03/2020] [Accepted: 07/17/2020] [Indexed: 01/08/2023]
Abstract
The recently emerged coronavirus designated as SARS-CoV-2 (also known as 2019 novel coronavirus (2019-nCoV) or Wuhan coronavirus) is a causative agent of coronavirus disease 2019 (COVID-19), which is rapidly spreading throughout the world now. More than 1.21 million cases of SARS-CoV-2 infection and more than 67,000 COVID-19-associated mortalities have been reported worldwide till the writing of this article, and these numbers are increasing every passing hour. The World Health Organization (WHO) has declared the SARS-CoV-2 spread as a global public health emergency and admitted COVID-19 as a pandemic now. Multiple sequence alignment data correlated with the already published reports on SARS-CoV-2 evolution indicated that this virus is closely related to the bat severe acute respiratory syndrome-like coronavirus (bat SARS-like CoV) and the well-studied human SARS coronavirus (SARS-CoV). The disordered regions in viral proteins are associated with the viral infectivity and pathogenicity. Therefore, in this study, we have exploited a set of complementary computational approaches to examine the dark proteomes of SARS-CoV-2, bat SARS-like, and human SARS CoVs by analysing the prevalence of intrinsic disorder in their proteins. According to our findings, SARS-CoV-2 proteome contains very significant levels of structural order. In fact, except for nucleocapsid, Nsp8, and ORF6, the vast majority of SARS-CoV-2 proteins are mostly ordered proteins containing less intrinsically disordered protein regions (IDPRs). However, IDPRs found in SARS-CoV-2 proteins are functionally important. For example, cleavage sites in its replicase 1ab polyprotein are found to be highly disordered, and almost all SARS-CoV-2 proteins contains molecular recognition features (MoRFs), which are intrinsic disorder-based protein–protein interaction sites that are commonly utilized by proteins for interaction with specific partners. The results of our extensive investigation of the dark side of SARS-CoV-2 proteome will have important implications in understanding the structural and non-structural biology of SARS or SARS-like coronaviruses.
Collapse
Affiliation(s)
- Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India.
| | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Meenakshi Shegane
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Bhuvaneshwari R Gehi
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | - Kundlik Gadhave
- School of Basic Sciences, Indian Institute of Technology Mandi, VPO Kamand, Mandi, Himachal Pradesh, 175005, India
| | | | - Vladimir N Uversky
- Department of Molecular Medicine, Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Moscow region, Pushchino, 142290, Russia
| |
Collapse
|
185
|
Structural analysis of the SARS-CoV-2 methyltransferase complex involved in RNA cap creation bound to sinefungin. Nat Commun 2020; 11:3717. [PMID: 32709887 PMCID: PMC7381658 DOI: 10.1038/s41467-020-17495-9] [Citation(s) in RCA: 203] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/01/2020] [Indexed: 11/17/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. 2′-O-RNA methyltransferase (MTase) is one of the enzymes of this virus that is a potential target for antiviral therapy as it is crucial for RNA cap formation; an essential process for viral RNA stability. This MTase function is associated with the nsp16 protein, which requires a cofactor, nsp10, for its proper activity. Here we show the crystal structure of the nsp10-nsp16 complex bound to the pan-MTase inhibitor sinefungin in the active site. Our structural comparisons reveal low conservation of the MTase catalytic site between Zika and SARS-CoV-2 viruses, but high conservation of the MTase active site between SARS-CoV-2 and SARS-CoV viruses; these data suggest that the preparation of MTase inhibitors targeting several coronaviruses - but not flaviviruses - should be feasible. Together, our data add to important information for structure-based drug discovery. SARS-CoV-2 expresses a 2′-O RNA methyltransferase (MTase) that is involved in the viral RNA cap formation and therefore a target for antiviral therapy. Here the authors provide the structure of nsp10-nsp16 with the panMTase inhibitor sinefungin and report that the development of MTase inhibitor therapies that target multiple coronoaviruses is feasible.
Collapse
|
186
|
Gorgulla C, Padmanabha Das KM, Leigh KE, Cespugli M, Fischer PD, Wang ZF, Tesseyre G, Pandita S, Shnapir A, Calderaio A, Gechev M, Rose A, Lewis N, Hutcheson C, Yaffe E, Luxenburg R, Herce HD, Durmaz V, Halazonetis TD, Fackeldey K, Patten JJ, Chuprina A, Dziuba I, Plekhova A, Moroz Y, Radchenko D, Tarkhanova O, Yavnyuk I, Gruber C, Yust R, Payne D, Näär AM, Namchuk MN, Davey RA, Wagner G, Kinney J, Arthanari H. A Multi-Pronged Approach Targeting SARS-CoV-2 Proteins Using Ultra-Large Virtual Screening. CHEMRXIV : THE PREPRINT SERVER FOR CHEMISTRY 2020:12682316. [PMID: 33200116 PMCID: PMC7668741 DOI: 10.26434/chemrxiv.12682316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Revised: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously known as 2019 novel coronavirus (2019-nCoV), has spread rapidly across the globe, creating an unparalleled global health burden and spurring a deepening economic crisis. As of July 7th, 2020, almost seven months into the outbreak, there are no approved vaccines and few treatments available. Developing drugs that target multiple points in the viral life cycle could serve as a strategy to tackle the current as well as future coronavirus pandemics. Here we leverage the power of our recently developed in silico screening platform, VirtualFlow, to identify inhibitors that target SARS-CoV-2. VirtualFlow is able to efficiently harness the power of computing clusters and cloud-based computing platforms to carry out ultra-large scale virtual screens. In this unprecedented structure-based multi-target virtual screening campaign, we have used VirtualFlow to screen an average of approximately 1 billion molecules against each of 40 different target sites on 17 different potential viral and host targets in the cloud. In addition to targeting the active sites of viral enzymes, we also target critical auxiliary sites such as functionally important protein-protein interaction interfaces. This multi-target approach not only increases the likelihood of finding a potent inhibitor, but could also help identify a collection of anti-coronavirus drugs that would retain efficacy in the face of viral mutation. Drugs belonging to different regimen classes could be combined to develop possible combination therapies, and top hits that bind at highly conserved sites would be potential candidates for further development as coronavirus drugs. Here, we present the top 200 in silico hits for each target site. While in-house experimental validation of some of these compounds is currently underway, we want to make this array of potential inhibitor candidates available to researchers worldwide in consideration of the pressing need for fast-tracked drug development.
Collapse
Affiliation(s)
- Christoph Gorgulla
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | - Krishna M. Padmanabha Das
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | | | | | - Patrick D. Fischer
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Saarbrücken, Germany
| | - Zi-Fu Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
| | | | | | | | | | | | | | | | | | | | | | - Henry D. Herce
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| | | | | | - Konstantin Fackeldey
- Zuse Institute Berlin (ZIB), Berlin, Germany
- Institute of Mathematics, Technical University Berlin, Berlin, Germany
| | - Justin J. Patten
- Department of Microbiology, Boston University Medical School, Boston University, Boston, USA
| | | | | | | | - Yurii Moroz
- Chemspace, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Ukraine
| | - Dmytro Radchenko
- Enamine, Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, Ukraine
| | | | | | - Christian Gruber
- Innophore GmbH, Graz, Austria
- Institute of Molecular Biosciences, University of Graz, Austria
| | | | | | - Anders M. Näär
- Department of Nutritional Sciences & Toxicology, University of California Berkeley, USA
| | - Mark N. Namchuk
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
| | - Robert A. Davey
- Department of Microbiology, Boston University Medical School, Boston University, Boston, USA
| | - Gerhard Wagner
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
| | | | - Haribabu Arthanari
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Harvard University, Boston, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, USA
| |
Collapse
|
187
|
Viswanathan T, Arya S, Chan SH, Qi S, Dai N, Misra A, Park JG, Oladunni F, Kovalskyy D, Hromas RA, Martinez-Sobrido L, Gupta YK. Structural basis of RNA cap modification by SARS-CoV-2. Nat Commun 2020; 11:3718. [PMID: 32709886 PMCID: PMC7381649 DOI: 10.1038/s41467-020-17496-8] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/04/2020] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19 illness, has caused millions of infections worldwide. In SARS coronaviruses, the non-structural protein 16 (nsp16), in conjunction with nsp10, methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs, thus protecting the virus from host innate immune restriction. We report here the high-resolution structure of a ternary complex of SARS-CoV-2 nsp16 and nsp10 in the presence of cognate RNA substrate analogue and methyl donor, S-adenosyl methionine (SAM). The nsp16/nsp10 heterodimer is captured in the act of 2'-O methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We observe large conformational changes associated with substrate binding as the enzyme transitions from a binary to a ternary state. This induced fit model provides mechanistic insights into the 2'-O methylation of the viral mRNA cap. We also discover a distant (25 Å) ligand-binding site unique to SARS-CoV-2, which can alternatively be targeted, in addition to RNA cap and SAM pockets, for antiviral development.
Collapse
Affiliation(s)
- Thiruselvam Viswanathan
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Shailee Arya
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Siu-Hong Chan
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Shan Qi
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Nan Dai
- New England Biolabs, 240 County Road, Ipswich, MA, 01938, USA
| | - Anurag Misra
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Fatai Oladunni
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | - Robert A Hromas
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA
| | | | - Yogesh K Gupta
- Greehey Children's Cancer Research Institute, University of Texas Health at San Antonio, 8403 Floyd Curl Drive, San Antonio, TX, 78229, USA.
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229, USA.
| |
Collapse
|
188
|
Parlikar A, Kalia K, Sinha S, Patnaik S, Sharma N, Vemuri SG, Sharma G. Understanding genomic diversity, pan-genome, and evolution of SARS-CoV-2. PeerJ 2020; 8:e9576. [PMID: 32742815 PMCID: PMC7370936 DOI: 10.7717/peerj.9576] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 01/10/2023] Open
Abstract
Coronovirus disease 2019 (COVID-19) infection, which originated from Wuhan, China, has seized the whole world in its grasp and created a huge pandemic situation before humanity. Since December 2019, genomes of numerous isolates have been sequenced and analyzed for testing confirmation, epidemiology, and evolutionary studies. In the first half of this article, we provide a detailed review of the history and origin of COVID-19, followed by the taxonomy, nomenclature and genome organization of its causative agent Severe Acute Respiratory Syndrome-related Coronavirus-2 (SARS-CoV-2). In the latter half, we analyze subgenus Sarbecovirus (167 SARS-CoV-2, 312 SARS-CoV, and 5 Pangolin CoV) genomes to understand their diversity, origin, and evolution, along with pan-genome analysis of genus Betacoronavirus members. Whole-genome sequence-based phylogeny of subgenus Sarbecovirus genomes reasserted the fact that SARS-CoV-2 strains evolved from their common ancestors putatively residing in bat or pangolin hosts. We predicted a few country-specific patterns of relatedness and identified mutational hotspots with high, medium and low probability based on genome alignment of 167 SARS-CoV-2 strains. A total of 100-nucleotide segment-based homology studies revealed that the majority of the SARS-CoV-2 genome segments are close to Bat CoV, followed by some to Pangolin CoV, and some are unique ones. Open pan-genome of genus Betacoronavirus members indicates the diversity contributed by the novel viruses emerging in this group. Overall, the exploration of the diversity of these isolates, mutational hotspots and pan-genome will shed light on the evolution and pathogenicity of SARS-CoV-2 and help in developing putative methods of diagnosis and treatment.
Collapse
Affiliation(s)
- Arohi Parlikar
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Kishan Kalia
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Shruti Sinha
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Sucheta Patnaik
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Neeraj Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Sai Gayatri Vemuri
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| |
Collapse
|
189
|
Colarusso C, Terlizzi M, Pinto A, Sorrentino R. A lesson from a saboteur: High-MW kininogen impact in coronavirus-induced disease 2019. Br J Pharmacol 2020; 177:4866-4872. [PMID: 32497257 PMCID: PMC7300552 DOI: 10.1111/bph.15154] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023] Open
Abstract
The newly identified coronavirus SARS-CoV-2 that spread from China is causing the pandemic COVID-19 with a fatality rate from 5-15%. It causes fever, cough, myalgia, fatigue up to dyspnoea, responsible for hospitalization and artificial oxygenation. SARS-CoV-2 infects human cells using ACE2, the transmembrane protease serine 2 (TMPRSS2) and the SARS-CoV-2 main protease (Mpro ). Once bound to ACE2 and the other two proteases in concert they allow the virus replication and spread throughout the body. Our attention has been focused on the role of ACE2 as its binding to by the virus increases bradykinin and its metabolites, which facilitate inflammation in the lung (causing cough and fever), coagulation and the complement system. These three systems are involved in angioedema, cardiovascular dysfunction and sepsis, pathologies which occur in COVID-19 patients. Thus, we propose that blocking the kallikrein-kinin system with lanadelumab, approved for hereditary angioedema, will prevent facilitation of these 3 systems. LINKED ARTICLES: This article is part of a themed issue on The Pharmacology of COVID-19. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v177.21/issuetoc.
Collapse
Affiliation(s)
- Chiara Colarusso
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy
| | - Michela Terlizzi
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy.,ImmunePharma S.r.l., University of Salerno, Fisciano, Italy
| | - Aldo Pinto
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy.,ImmunePharma S.r.l., University of Salerno, Fisciano, Italy
| | - Rosalinda Sorrentino
- Department of Pharmacy (DIFARMA), University of Salerno, Fisciano, Italy.,ImmunePharma S.r.l., University of Salerno, Fisciano, Italy
| |
Collapse
|
190
|
Yuen CK, Lam JY, Wong WM, Mak LF, Wang X, Chu H, Cai JP, Jin DY, To KKW, Chan JFW, Yuen KY, Kok KH. SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect 2020; 9:1418-1428. [PMID: 32529952 PMCID: PMC7473193 DOI: 10.1080/22221751.2020.1780953] [Citation(s) in RCA: 388] [Impact Index Per Article: 77.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Coronavirus disease 2019 (COVID-19), which is caused by the novel SARS-CoV-2 virus, is now causing a tremendous global health concern. Since its first appearance in December 2019, the outbreak has already caused over 5.8 million infections worldwide (till 29 May 2020), with more than 0.35 million deaths. Early virus-mediated immune suppression is believed to be one of the unique characteristics of SARS-CoV-2 infection and contributes at least partially to the viral pathogenesis. In this study, we identified the key viral interferon antagonists of SARS-CoV-2 and compared them with two well-characterized SARS-CoV interferon antagonists, PLpro and orf6. Here we demonstrated that the SARS-CoV-2 nsp13, nsp14, nsp15 and orf6, but not the unique orf8, could potently suppress primary interferon production and interferon signalling. Although SARS-CoV PLpro has been well-characterized for its potent interferon-antagonizing, deubiquitinase and protease activities, SARS-CoV-2 PLpro, despite sharing high amino acid sequence similarity with SARS-CoV, loses both interferon-antagonising and deubiquitinase activities. Among the 27 viral proteins, SARS-CoV-2 orf6 demonstrated the strongest suppression on both primary interferon production and interferon signalling. Orf6-deleted SARS-CoV-2 may be considered for the development of intranasal live-but-attenuated vaccine against COVID-19.
Collapse
Affiliation(s)
- Chun-Kit Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Joy-Yan Lam
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Wan-Man Wong
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Long-Fung Mak
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Xiaohui Wang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jian-Piao Cai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Kelvin Kai-Wang To
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,Department of Microbiology, Queen Mary Hospital, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Kin-Hang Kok
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
191
|
Hoffman RM, Han Q. Oral Methioninase for Covid-19 Methionine-restriction Therapy. In Vivo 2020; 34:1593-1596. [PMID: 32503816 PMCID: PMC8378026 DOI: 10.21873/invivo.11948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/21/2020] [Accepted: 05/23/2020] [Indexed: 11/10/2022]
Abstract
The Covid-19 pandemic is a world-wide crisis without an effective therapy. While most approaches to therapy are using repurposed drugs that were developed for other diseases, it is thought that targeting the biology of the SARS-CoV-2 virus, which causes Covid-19, can result in an effective therapeutic treatment. The coronavirus RNA cap structure is methylated by two viral methyltransferases that transfer methyl groups from S-adenosylmethionine (SAM). The proper methylation of the virus depends on the level of methionine in the host to form SAM. Herein, we propose to restrict methionine availability by treating the patient with oral recombinant methioninase, aiming to treat Covid-19. By restricting methionine we not only interdict viral replication, which depends on the viral RNA cap methyaltion, but also inhibit the proliferation of the infected cells, which have an increased requirement for methionine. Most importantly, the virally-induced T-cell- and macrophage-mediated cytokine storm, which seems to be a significant cause for Covid-19 deaths, can also be inhibited by restricting methionine, since T-cell and macrophrage activation greatly increases the methionine requirement for these cells. The evidence reviewed here suggests that oral recombinant methioninase could be a promising treatment for coronavirus patients.
Collapse
|
192
|
The C-Terminal Domain of the Sudan Ebolavirus L Protein Is Essential for RNA Binding and Methylation. J Virol 2020; 94:JVI.00520-20. [PMID: 32269120 DOI: 10.1128/jvi.00520-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/29/2020] [Indexed: 12/20/2022] Open
Abstract
The large (L) protein of Ebola virus is a key protein for virus replication. Its N-terminal region harbors the RNA-dependent RNA polymerase activity, and its C terminus contains a cap assembling line composed of a capping domain and a methyltransferase domain (MTase) followed by a C-terminal domain (CTD) of unknown function. The L protein MTase catalyzes methylation at the 2'-O and N-7 positions of the cap structures. In addition, the MTase of Ebola virus can induce cap-independent internal adenosine 2'-O-methylation. In this work, we investigated the CTD role in the regulation of the cap-dependent and cap-independent MTase activities of the L protein. We found that the CTD, which is enriched in basic amino acids, plays a key role in RNA binding and in turn regulates the different MTase activities. We demonstrated that the mutation of CTD residues modulates specifically the different MTase activities. Altogether, our results highlight the pivotal role of the L protein CTD in the control of viral RNA methylation, which is critical for Ebola virus replication and escape from the innate response in infected cells.IMPORTANCE Ebola virus infects human and nonhuman primates, causing severe infections that are often fatal. The epidemics, in West and Central Africa, emphasize the urgent need to develop antiviral therapies. The Ebola virus large protein (L), which is the central protein for viral RNA replication/transcription, harbors a methyltransferase domain followed by a C-terminal domain of unknown function. We show that the C-terminal domain regulates the L protein methyltransferase activities and consequently participates in viral replication and escape of the host innate immunity.
Collapse
|
193
|
Peng Q, Peng R, Yuan B, Zhao J, Wang M, Wang X, Wang Q, Sun Y, Fan Z, Qi J, Gao GF, Shi Y. Structural and Biochemical Characterization of the nsp12-nsp7-nsp8 Core Polymerase Complex from SARS-CoV-2. Cell Rep 2020; 31:107774. [PMID: 32531208 PMCID: PMC7260489 DOI: 10.1016/j.celrep.2020.107774] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/23/2020] [Accepted: 05/26/2020] [Indexed: 01/18/2023] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19) has caused a huge number of human deaths. Currently, there are no specific drugs or vaccines available for this virus (SARS-CoV-2). The viral polymerase is a promising antiviral target. Here, we describe the near-atomic-resolution structure of the SARS-CoV-2 polymerase complex consisting of the nsp12 catalytic subunit and nsp7-nsp8 cofactors. This structure highly resembles the counterpart of SARS-CoV with conserved motifs for all viral RNA-dependent RNA polymerases and suggests a mechanism of activation by cofactors. Biochemical studies reveal reduced activity of the core polymerase complex and lower thermostability of individual subunits of SARS-CoV-2 compared with SARS-CoV. These findings provide important insights into RNA synthesis by coronavirus polymerase and indicate adaptation of SARS-CoV-2 toward humans with a relatively lower body temperature than the natural bat hosts. Cryo-EM structure of SARS-CoV-2 nsp12-nsp7-nsp8 core polymerase complex The core complex of SARS-CoV-2 has lower enzymatic activity than SARS-CoV SARS-CoV-2 nsp7-8-12 subunits are less thermostable than the SARS-CoV counterpart
Collapse
Affiliation(s)
- Qi Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruchao Peng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Yuan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jingru Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Min Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xixi Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qian Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Sun
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Fan
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of the Chinese Academy of Sciences, Beijing 100049, China; Center for Influenza Research and Early Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing General Hospital, University of the Chinese Academy of Sciences, Chongqing 400013, China; College of Basic Medicine, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
194
|
Hijikata A, Shionyu-Mitsuyama C, Nakae S, Shionyu M, Ota M, Kanaya S, Shirai T. Knowledge-based structural models of SARS-CoV-2 proteins and their complexes with potential drugs. FEBS Lett 2020; 594:1960-1973. [PMID: 32379896 PMCID: PMC7267562 DOI: 10.1002/1873-3468.13806] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/28/2022]
Abstract
The World Health Organization (WHO) has declared the coronavirus disease 2019 (COVID‐19) caused by the novel coronavirus SARS‐CoV‐2 a pandemic. There is, however, no confirmed anti‐COVID‐19 therapeutic currently. In order to assist structure‐based discovery efforts for repurposing drugs against this disease, we constructed knowledge‐based models of SARS‐CoV‐2 proteins and compared the ligand molecules in the template structures with approved/experimental drugs and components of natural medicines. Our theoretical models suggest several drugs, such as carfilzomib, sinefungin, tecadenoson, and trabodenoson, that could be further investigated for their potential for treating COVID‐19.
Collapse
Affiliation(s)
- Atsushi Hijikata
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | | | - Setsu Nakae
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | - Masafumi Shionyu
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| | - Motonori Ota
- Department of Complex Systems Science, Graduate School of Informatics, Nagoya University, Japan
| | - Shigehiko Kanaya
- Computational Biology Laboratory, Division of Information Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Tsuyoshi Shirai
- Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Japan
| |
Collapse
|
195
|
Romano M, Ruggiero A, Squeglia F, Maga G, Berisio R. A Structural View of SARS-CoV-2 RNA Replication Machinery: RNA Synthesis, Proofreading and Final Capping. Cells 2020; 9:E1267. [PMID: 32443810 PMCID: PMC7291026 DOI: 10.3390/cells9051267] [Citation(s) in RCA: 322] [Impact Index Per Article: 64.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 01/18/2023] Open
Abstract
The current coronavirus disease-2019 (COVID-19) pandemic is due to the novel coronavirus SARS-CoV-2. The scientific community has mounted a strong response by accelerating research and innovation, and has quickly set the foundation for understanding the molecular determinants of the disease for the development of targeted therapeutic interventions. The replication of the viral genome within the infected cells is a key stage of the SARS-CoV-2 life cycle. It is a complex process involving the action of several viral and host proteins in order to perform RNA polymerization, proofreading and final capping. This review provides an update of the structural and functional data on the key actors of the replicatory machinery of SARS-CoV-2, to fill the gaps in the currently available structural data, which is mainly obtained through homology modeling. Moreover, learning from similar viruses, we collect data from the literature to reconstruct the pattern of interactions among the protein actors of the SARS-CoV-2 RNA polymerase machinery. Here, an important role is played by co-factors such as Nsp8 and Nsp10, not only as allosteric activators but also as molecular connectors that hold the entire machinery together to enhance the efficiency of RNA replication.
Collapse
Affiliation(s)
- Maria Romano
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Alessia Ruggiero
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| | - Giovanni Maga
- Institute of Molecular Genetics, IGM, CNR, 27100 Pavia, Italy;
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, IBB, CNR, 80134 Naples, Italy; (M.R.); (A.R.); (F.S.)
| |
Collapse
|
196
|
Porcine Epidemic Diarrhea Virus and the Host Innate Immune Response. Pathogens 2020; 9:pathogens9050367. [PMID: 32403318 PMCID: PMC7281546 DOI: 10.3390/pathogens9050367] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a swine enteropathogenic coronavirus (CoV), is the causative agent of porcine epidemic diarrhea (PED). PED causes lethal watery diarrhea in piglets, which has led to substantial economic losses in many countries and is a great threat to the global swine industry. Interferons (IFNs) are major cytokines involved in host innate immune defense, which induce the expression of a broad range of antiviral effectors that help host to control and antagonize viral infections. PEDV infection does not elicit a robust IFN response, and some of the mechanisms used by the virus to counteract the host innate immune response have been unraveled. PEDV evades the host innate immune response by two main strategies including: (1) encoding IFN antagonists to disrupt innate immune pathway, and (2) hiding its viral RNA to avoid the exposure of viral RNA to immune sensors. This review highlights the immune evasion mechanisms employed by PEDV, which provides insights for the better understanding of PEDV-host interactions and developing effective vaccines and antivirals against CoVs.
Collapse
|
197
|
Encinar JA, Menendez JA. Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2'-O-Methylation of Viral RNA. Viruses 2020; 12:E525. [PMID: 32397643 PMCID: PMC7291090 DOI: 10.3390/v12050525] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing the COVID-19 respiratory disease pandemic utilizes unique 2'-O-methyltransferase (2'-O-MTase) capping machinery to camouflage its RNA from innate immune recognition. The nsp16 catalytic subunit of the 2'-O-MTase is unusual in its requirement for a stimulatory subunit (nsp10) to catalyze the ribose 2'-O-methylation of the viral RNA cap. Here we provide a computational basis for drug repositioning or de novo drug development based on three differential traits of the intermolecular interactions of the SARS-CoV-2-specific nsp16/nsp10 heterodimer, namely: (1) the S-adenosyl-l-methionine-binding pocket of nsp16, (2) the unique "activating surface" between nsp16 and nsp10, and (3) the RNA-binding groove of nsp16. We employed ≈9000 U.S. Food and Drug Administration (FDA)-approved investigational and experimental drugs from the DrugBank repository for docking virtual screening. After molecular dynamics calculations of the stability of the binding modes of high-scoring nsp16/nsp10-drug complexes, we considered their pharmacological overlapping with functional modules of the virus-host interactome that is relevant to the viral lifecycle, and to the clinical features of COVID-19. Some of the predicted drugs (e.g., tegobuvir, sonidegib, siramesine, antrafenine, bemcentinib, itacitinib, or phthalocyanine) might be suitable for repurposing to pharmacologically reactivate innate immune restriction and antagonism of SARS-CoV-2 RNAs lacking 2'-O-methylation.
Collapse
Affiliation(s)
- José Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC), Miguel Hernández University (UMH), 03202 Alicante, Spain
| | - Javier A. Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Metabolism and Cancer Group, Catalan Institute of Oncology, 17005 Girona, Spain
- Girona Biomedical Research Institute, 17007 Girona, Spain
| |
Collapse
|
198
|
Rosas-Lemus M, Minasov G, Shuvalova L, Inniss NL, Kiryukhina O, Wiersum G, Kim Y, Jedrzejczak R, Maltseva NI, Endres M, Jaroszewski L, Godzik A, Joachimiak A, Satchell KJF. The crystal structure of nsp10-nsp16 heterodimer from SARS-CoV-2 in complex with S-adenosylmethionine. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.17.047498. [PMID: 32511376 PMCID: PMC7263505 DOI: 10.1101/2020.04.17.047498] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 is a member of the coronaviridae family and is the etiological agent of the respiratory Coronavirus Disease 2019. The virus has spread rapidly around the world resulting in over two million cases and nearly 150,000 deaths as of April 17, 2020. Since no treatments or vaccines are available to treat COVID-19 and SARS-CoV-2, respiratory complications derived from the infections have overwhelmed healthcare systems around the world. This virus is related to SARS-CoV-1, the virus that caused the 2002-2004 outbreak of Severe Acute Respiratory Syndrome. In January 2020, the Center for Structural Genomics of Infectious Diseases implemented a structural genomics pipeline to solve the structures of proteins essential for coronavirus replication-transcription. Here we show the first structure of the SARS-CoV-2 nsp10-nsp16 2'-O-methyltransferase complex with S-adenosylmethionine at a resolution of 1.80 Å. This heterodimer complex is essential for capping viral mRNA transcripts for efficient translation and to evade immune surveillance.
Collapse
Affiliation(s)
- Monica Rosas-Lemus
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - George Minasov
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ludmilla Shuvalova
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nicole L. Inniss
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Olga Kiryukhina
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Grant Wiersum
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Natalia I. Maltseva
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Michael Endres
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
| | - Lukasz Jaroszewski
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA
| | - Adam Godzik
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Department of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60667, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Karla J. F. Satchell
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Center for Structural Genomics of Infectious Diseases, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
199
|
Viswanathan T, Arya S, Chan SH, Qi S, Dai N, Hromas RA, Park JG, Oladunni F, Martinez-Sobrido L, Gupta YK. Structural Basis of RNA Cap Modification by SARS-CoV-2 Coronavirus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.04.26.061705. [PMID: 32511383 PMCID: PMC7263512 DOI: 10.1101/2020.04.26.061705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The novel severe acute respiratory syndrome coronoavirus-2 (SARS-CoV-2), the causative agent of COVID-19 illness, has caused over 2 million infections worldwide in four months. In SARS coronaviruses, the non-structural protein 16 (nsp16) methylates the 5'-end of virally encoded mRNAs to mimic cellular mRNAs, thus protecting the virus from host innate immune restriction. We report here the high-resolution structure of a ternary complex of full-length nsp16 and nsp10 of SARS-CoV-2 in the presence of cognate RNA substrate and a methyl donor, S-adenosyl methionine. The nsp16/nsp10 heterodimer was captured in the act of 2'-O methylation of the ribose sugar of the first nucleotide of SARS-CoV-2 mRNA. We reveal large conformational changes associated with substrate binding as the enzyme transitions from a binary to a ternary state. This structure provides new mechanistic insights into the 2'-O methylation of the viral mRNA cap. We also discovered a distantly located ligand-binding site unique to SARS-CoV-2 that may serve as an alternative target site for antiviral development.
Collapse
Affiliation(s)
- Thiruselvam Viswanathan
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Shailee Arya
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | | | - Shan Qi
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Nan Dai
- New England Biolabs, Ipswich, MA
| | - Robert A. Hromas
- Division of Hematology and Oncology, Department of Medicine, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
| | - Jun-Gyu Park
- Texas Biomedical Research Institute, San Antonio, TX
| | | | | | - Yogesh K. Gupta
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, 8403 Floyd Curl Drive, San Antonio, TX 78229, USA
- Lead contact
| |
Collapse
|
200
|
Chen Y, Liu Q, Guo D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J Med Virol 2020; 92:418-423. [PMID: 31967327 PMCID: PMC7167049 DOI: 10.1002/jmv.25681] [Citation(s) in RCA: 1861] [Impact Index Per Article: 372.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
The recent emergence of a novel coronavirus (2019-nCoV), which is causing an outbreak of unusual viral pneumonia in patients in Wuhan, a central city in China, is another warning of the risk of CoVs posed to public health. In this minireview, we provide a brief introduction of the general features of CoVs and describe diseases caused by different CoVs in humans and animals. This review will help understand the biology and potential risk of CoVs that exist in richness in wildlife such as bats.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life SciencesWuhan UniversityWuhanChina
| | - Qianyun Liu
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life SciencesWuhan UniversityWuhanChina
| | - Deyin Guo
- Center for Infection and Immunity Study, School of MedicineSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|