151
|
Singh S, Datta A, Borro BC, Davoudi M, Schmidtchen A, Bhunia A, Malmsten M. Conformational Aspects of High Content Packing of Antimicrobial Peptides in Polymer Microgels. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40094-40106. [PMID: 29087182 DOI: 10.1021/acsami.7b13714] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Successful use of microgels as delivery systems of antimicrobial peptides (AMPs) requires control of factors determining peptide loading and release to/from the microgels as well as of membrane interactions of both microgel particles and released peptides. Addressing these, we here investigate effects of microgel charge density and conformationally induced peptide amphiphilicity on AMP loading and release using detailed nuclear magnetic resonance (NMR) structural studies combined with ellipsometry, isothermal titration calorimetry, circular dichroism, and light scattering. In parallel, consequences of peptide loading and release for membrane interactions and antimicrobial effects were investigated. In doing so, poly(ethyl acrylate-co-methacrylic acid) microgels were found to incorporate the cationic AMPs EFK17a (EFKRIVQRIKDFLRNLV) and its partially d-amino acid-substituted variant EFK17da (E(dF)KR(dI)VQR(dI)KD(dF)LRNLV). Peptide incorporation was found to increase with increasing with microgel charge density and peptide amphiphilicity. After microgel incorporation, which appeared to occur preferentially in the microgel core, NMR showed EFK17a to form a helix with pronounced amphiphilicity, while EFK17da displayed a folded conformation, stabilized by a hydrophobic hub consisting of aromatic/aromatic and aliphatic/aromatic interactions, resulting in much lower amphiphilicity. Under wide ranges of peptide loading, the microgels displayed net negative z-potential. Such negatively charged microgels do not bind to, nor lyse, bacteria-mimicking membranes. Instead, membrane disruption in these systems is mediated largely by peptide release, which in turn is promoted at higher ionic strength and lower peptide amphiphilicity. Analogously, antimicrobial effects against Escherichia coli were found to be dictated by peptide release. Taken together, the findings show that peptide loading, packing, and release strongly affect the performance of microgels as AMP delivery systems, effects that can be tuned by (conformationally induced) peptide amphiphilicity and by microgel charge density.
Collapse
Affiliation(s)
- Shalini Singh
- Department of Pharmacy, Uppsala University , SE-75232 Uppsala, Sweden
| | - Aritreyee Datta
- Department of Biophysics, Bose Institute , P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Bruno C Borro
- Department of Pharmacy, University of Copenhagen , DK-2100 Copenhagen, Denmark
| | - Mina Davoudi
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University , SE-221 84 Lund, Sweden
| | - Artur Schmidtchen
- Division of Dermatology and Venereology, Department of Clinical Sciences, Lund University , SE-221 84 Lund, Sweden
- Lee Kong Chian School of Medicine, Nanyang Technological University , 11 Mandalay Road, Singapore 308232, Singapore
- Wound Healing Centre, Bispebjerg University Hospital , DK-2100 Copenhagen, Denmark
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute , P-1/12 CIT Scheme VII (M), Kolkata 700054, India
| | - Martin Malmsten
- Department of Pharmacy, Uppsala University , SE-75232 Uppsala, Sweden
- Department of Pharmacy, University of Copenhagen , DK-2100 Copenhagen, Denmark
| |
Collapse
|
152
|
Mou X, Spinard EJ, Hillman SL, Nelson DR. Isocitrate dehydrogenase mutation in Vibrio anguillarum results in virulence attenuation and immunoprotection in rainbow trout (Oncorhynchus mykiss). BMC Microbiol 2017; 17:217. [PMID: 29137620 PMCID: PMC5686843 DOI: 10.1186/s12866-017-1124-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 11/02/2017] [Indexed: 11/28/2022] Open
Abstract
Background Vibrio anguillarum is an extracellular bacterial pathogen that is a causative agent of vibriosis in finfish and crustaceans with mortality rates ranging from 30% to 100%. Mutations in central metabolism (glycolysis and the TCA cycle) of intracellular pathogens often result in attenuated virulence due to depletion of required metabolic intermediates; however, it was not known whether mutations in central metabolism would affect virulence in an extracellular pathogen such as V. anguillarum. Results Seven central metabolism mutants were created and characterized with regard to growth in minimal and complex media, expression of virulence genes, and virulence in juvenile rainbow trout (Oncorhynchus mykiss). Only the isocitrate dehydrogenase (icd) mutant was attenuated in virulence against rainbow trout challenged by either intraperitoneal injection or immersion. Further, the icd mutant was shown to be immunoprotective against wild type V. anguillarum infection. There was no significant decrease in the expression of the three hemolysin genes detected by qRT-PCR. Additionally, only the icd mutant exhibited a significantly decreased growth yield in complex media. Growth yield was directly related to the abundance of glutamate. A strain with a restored wild type icd gene was created and shown to restore growth to a wild type cell density in complex media and pathogenicity in rainbow trout. Conclusions The data strongly suggest that a decreased growth yield, resulting from the inability to synthesize α-ketoglutarate, caused the attenuation despite normal levels of expression of virulence genes. Therefore, the ability of an extracellular pathogen to cause disease is dependent upon the availability of host-supplied nutrients for growth. Additionally, a live vaccine strain could be created from an icd deletion strain. Electronic supplementary material The online version of this article (10.1186/s12866-017-1124-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xiangyu Mou
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA.,Present Address: Division of Infectious Diseases, Massachusetts General Hospital, 65 Landsdowne St, Cambridge, MA, 02139, USA
| | - Edward J Spinard
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA
| | - Shelby L Hillman
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA
| | - David R Nelson
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
153
|
Lu R, Schaefer CM, Nesbitt NM, Kuper J, Kisker C, Sampson NS. Catabolism of the Cholesterol Side Chain in Mycobacterium tuberculosis Is Controlled by a Redox-Sensitive Thiol Switch. ACS Infect Dis 2017; 3:666-675. [PMID: 28786661 PMCID: PMC5595149 DOI: 10.1021/acsinfecdis.7b00072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
![]()
Mycobacterium
tuberculosis (Mtb), the causative agent
of tuberculosis (TB), is a highly successful human pathogen and has
infected approximately one-third of the world’s population.
Multiple drug resistant (MDR) and extensively drug resistant (XDR)
TB strains and coinfection with HIV have increased the challenges
of successfully treating this disease pandemic. The metabolism of
host cholesterol by Mtb is an important factor for
both its virulence and pathogenesis. In Mtb, the
cholesterol side chain is degraded through multiple cycles of β-oxidation
and FadA5 (Rv3546) catalyzes side chain thiolysis in the first two
cycles. Moreover, FadA5 is important during the chronic stage of infection
in a mouse model of Mtb infection. Here, we report
the redox control of FadA5 catalytic activity that results from reversible
disulfide bond formation between Cys59-Cys91 and Cys93-Cys377. Cys93
is the thiolytic nucleophile, and Cys377 is the general acid catalyst
for cleavage of the β-keto-acyl-CoA substrate. The disulfide
bond formed between the two catalytic residues Cys93 and Cys377 blocks
catalysis. The formation of the disulfide bonds is accompanied by
a large domain swap at the FadA5 dimer interface that serves to bring
Cys93 and Cys377 in close proximity for disulfide bond formation.
The catalytic activity of FadA5 has a midpoint potential of −220
mV, which is close to the Mtb mycothiol potential
in the activated macrophage. The redox profile of FadA5 suggests that
FadA5 is fully active when Mtb resides in the unactivated
macrophage to maximize flux into cholesterol catabolism. Upon activation
of the macrophage, the oxidative shift in the mycothiol potential
will decrease the thiolytic activity by 50%. Thus, the FadA5 midpoint
potential is poised to rapidly restrict cholesterol side chain degradation
in response to oxidative stress from the host macrophage environment.
Collapse
Affiliation(s)
- Rui Lu
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Christin M. Schaefer
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Str. 2, Würzburg, D-97080, Germany
| | - Natasha M. Nesbitt
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Jochen Kuper
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Str. 2, Würzburg, D-97080, Germany
| | - Caroline Kisker
- Rudolf Virchow Center for Experimental Biomedicine, Institute for Structural Biology, University of Würzburg, Josef-Schneider-Str. 2, Würzburg, D-97080, Germany
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, 7600, South Africa
| |
Collapse
|
154
|
Integration of Metabolomics and Transcriptomics Reveals a Complex Diet of Mycobacterium tuberculosis during Early Macrophage Infection. mSystems 2017; 2:mSystems00057-17. [PMID: 28845460 PMCID: PMC5566787 DOI: 10.1128/msystems.00057-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
The nutrients consumed by intracellular pathogens are mostly unknown. This is mainly due to the challenge of disentangling host and pathogen metabolism sharing the majority of metabolic pathways and hence metabolites. Here, we investigated the metabolic changes of Mycobacterium tuberculosis, the causative agent of tuberculosis, and its human host cell during early infection. To this aim, we combined gene expression data of both organisms and metabolite changes during the course of infection through integration into a genome-wide metabolic network. This led to the identification of infection-specific metabolic alterations, which we further exploited to model host-pathogen interactions quantitatively by flux balance analysis. These in silico data suggested that tubercle bacilli consume up to 33 different nutrients during early macrophage infection, which the bacteria utilize to generate energy and biomass to establish intracellular growth. Such multisubstrate fueling strategy renders the pathogen’s metabolism robust toward perturbations, such as innate immune responses or antibiotic treatments. Nutrient acquisition from the host environment is crucial for the survival of intracellular pathogens, but conceptual and technical challenges limit our knowledge of pathogen diets. To overcome some of these technical roadblocks, we exploited an experimentally accessible model for early infection of human macrophages by Mycobacterium tuberculosis, the etiological agent of tuberculosis, to study host-pathogen interactions with a multi-omics approach. We collected metabolomics and complete transcriptome RNA sequencing (dual RNA-seq) data of the infected macrophages, integrated them in a genome-wide reaction pair network, and identified metabolic subnetworks in host cells and M. tuberculosis that are modularly regulated during infection. Up- and downregulation of these metabolic subnetworks suggested that the pathogen utilizes a wide range of host-derived compounds, concomitant with the measured metabolic and transcriptional changes in both bacteria and host. To quantify metabolic interactions between the host and intracellular pathogen, we used a combined genome-scale model of macrophage and M. tuberculosis metabolism constrained by the dual RNA-seq data. Metabolic flux balance analysis predicted coutilization of a total of 33 different carbon sources and enabled us to distinguish between the pathogen’s substrates directly used as biomass precursors and the ones further metabolized to gain energy or to synthesize building blocks. This multiple-substrate fueling confers high robustness to interventions with the pathogen’s metabolism. The presented approach combining multi-omics data as a starting point to simulate system-wide host-pathogen metabolic interactions is a useful tool to better understand the intracellular lifestyle of pathogens and their metabolic robustness and resistance to metabolic interventions. IMPORTANCE The nutrients consumed by intracellular pathogens are mostly unknown. This is mainly due to the challenge of disentangling host and pathogen metabolism sharing the majority of metabolic pathways and hence metabolites. Here, we investigated the metabolic changes of Mycobacterium tuberculosis, the causative agent of tuberculosis, and its human host cell during early infection. To this aim, we combined gene expression data of both organisms and metabolite changes during the course of infection through integration into a genome-wide metabolic network. This led to the identification of infection-specific metabolic alterations, which we further exploited to model host-pathogen interactions quantitatively by flux balance analysis. These in silico data suggested that tubercle bacilli consume up to 33 different nutrients during early macrophage infection, which the bacteria utilize to generate energy and biomass to establish intracellular growth. Such multisubstrate fueling strategy renders the pathogen’s metabolism robust toward perturbations, such as innate immune responses or antibiotic treatments.
Collapse
|
155
|
Huang L, Russell DG. Protective immunity against tuberculosis: what does it look like and how do we find it? Curr Opin Immunol 2017; 48:44-50. [PMID: 28826036 PMCID: PMC5697896 DOI: 10.1016/j.coi.2017.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/27/2017] [Accepted: 08/01/2017] [Indexed: 12/21/2022]
Abstract
An absence of immune correlates of protection is a barrier to vaccine development. The immune mechanisms behind tuberculosis progression are not understood. Fluorescent Mtb reporter strains identify permissive and controller host cells. Bacterial burden can be impacted by the magnitude of host cell population. Bacterial reporter strains offer new insights into host immune mechanisms.
Progress towards the development of an effective vaccine against tuberculosis is hampered by the lack of correlative readouts of immune protection, coupled with our limited understanding of the immune mechanisms that determine disease progression versus containment. In this article we discuss the value of microbial readouts of bacterial fitness to probe the host immune environments and determine those host cell subsets that promote or control bacterial growth. Ultimately, we feel that these bacterial reporters will prove to be key in understanding the immune mechanisms underpinning disease outcome, and that this knowledge is critical to any program developing vaccines or immune-modulatory therapeutics as a means of controlling tuberculosis.
Collapse
Affiliation(s)
- Lu Huang
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
156
|
Mukherjee R, Chandra Pal A, Banerjee M. Enabling faster Go/No-Go decisions through secondary screens in anti-mycobacterial drug discovery. Tuberculosis (Edinb) 2017; 106:44-52. [PMID: 28802404 DOI: 10.1016/j.tube.2017.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/30/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Management of tuberculosis, already a global health emergency, is becoming increasingly challenging with extensive misuse of second line drugs and their inaccessibility to eighty percent of the eligible patients. Rising statistics of antimicrobial resistance underscores the need for a set of completely new and more effective class of compounds with novel mechanisms of action that can be administered in combination to replace and shorten the present intensive six months regimen. In this review, we stress on the importance and the successes of phenotypic screening for discovery of anti-mycobacterial compound and discuss the importance of performing secondary screens and counter screens to get early estimate on compound's potentials for a successful development. We also highlight the recent advances and the related caveats in the assays that have been developed and discuss new screening modalities that can be incorporated during hit-selection to gain a quick insight into the mechanism of action, thus enabling quicker decisions in a hit triage.
Collapse
Affiliation(s)
- Raju Mukherjee
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India.
| | - Anup Chandra Pal
- Division of Biology, Indian Institute of Science Education and Research, Karakambadi Road, Tirupati, 517507, India
| | - Mousumi Banerjee
- Indian Institute of Technology, Tirupati, Renigunta Road, Tirupati, 517506, India
| |
Collapse
|
157
|
Garcia-Morales L, Leon-Solis L, Monroy-Muñoz IE, Talavera-Paulin M, Serafin-López J, Estrada-Garcia I, Rivera-Gutierrez S, Cerna-Cortes JF, Helguera-Repetto AC, Gonzalez-Y-Merchand JA. Comparative proteomic profiles reveal characteristic Mycobacterium tuberculosis proteins induced by cholesterol during dormancy conditions. MICROBIOLOGY-SGM 2017; 163:1237-1247. [PMID: 28771131 DOI: 10.1099/mic.0.000512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cholesterol has been reported to play an important role during Mycobacterium tuberculosis infection and during its dormant state inside the host. We present the determination of proteomic profiles of M. tuberculosis H37Rv in the presence of cholesterol as the sole carbon source under exponential growth and in two in vitro dormancy phases (NRP1 and NRP2). Using 2D-PAGE, we detected that M. tuberculosis expressed a high diversity of proteins in both exponential and non-replicative phases. We also found that cholesterol was involved in the overexpression of some proteins related to sulfur metabolism (CysA2), electron transport (FixB), cell wall synthesis (Ald), iron storage (BfrB), protein synthesis (Tig and EF-Tu) and dormancy maintenance (HspX and TB 31.7). According to our results we propose that proteins Ald, BfrB, FadA5 and TB31.7 are likely to play a fundamental role during in vitro dormancy of M. tuberculosis in the presence of cholesterol, helping to counteract its intracellular hostile microenvironment.
Collapse
Affiliation(s)
- Lazaro Garcia-Morales
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Lizbel Leon-Solis
- Laboratorios de Biologicos y Reactivos de México S.A. de C.V., Birmex. Instituto Nacional de Virologia. Prolongacion Manuel Carpio No. 492, Delegacion Miguel Hidalgo 11340, Ciudad de Mexico, Mexico
| | - Irma E Monroy-Muñoz
- Departamento de Genetica y Genomica Humana, Torre de Investigacion, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, SSA. Montes Urales 800, Lomas de Chapultepec, Ciudad de Mexico, 11000, Mexico
| | - Moises Talavera-Paulin
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Jeanet Serafin-López
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Iris Estrada-Garcia
- Departamento de Inmunologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Sandra Rivera-Gutierrez
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Jorge F Cerna-Cortes
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| | - Addy C Helguera-Repetto
- Departamento de Inmunobioquimica, Torre de Investigacion, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, SSA. Montes Urales 800, Lomas de Chapultepec, Ciudad de Mexico, 11000, Mexico
| | - Jorge A Gonzalez-Y-Merchand
- Departamento de Microbiologia, Escuela Nacional de Ciencias Biologicas (ENCB), Instituto Politecnico Nacional (IPN), Prolongacion Carpio y Plan de Ayala s/n, Ciudad de Mexico, 11340, Mexico
| |
Collapse
|
158
|
2-N-Arylthiazole inhibitors of Mycobacterium tuberculosis. Bioorg Med Chem Lett 2017; 27:3987-3991. [PMID: 28778468 DOI: 10.1016/j.bmcl.2017.07.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 11/23/2022]
Abstract
To develop agents for the treatment of infections caused by Mycobacterium tuberculosis, a novel phenotypic screen was undertaken that identified a series of 2-N-aryl thiazole-based inhibitors of intracellular Mycobacterium tuberculosis. Analogs were optimized to improve potency against an attenuated BSL2 H37Ra laboratory strain cultivated in human macrophage cells in vitro. The insertion of a carboxylic acid functionality resulted in compounds that retained potency and greatly improved microsomal stability. However, the strong potency trends we observed in the attenuated H37Ra strain were inconsistent with the potency observed for virulent strains in vitro and in vivo.
Collapse
|
159
|
Selective Killing of Dormant Mycobacterium tuberculosis by Marine Natural Products. Antimicrob Agents Chemother 2017; 61:AAC.00743-17. [PMID: 28607021 DOI: 10.1128/aac.00743-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/02/2017] [Indexed: 12/17/2022] Open
Abstract
The dormant phenotype acquired by Mycobacterium tuberculosis during infection poses a major challenge in disease treatment, since these bacilli show tolerance to front-line drugs. Therefore, it is imperative to find novel compounds that effectively kill dormant bacteria. By screening 4,400 marine natural product samples against dual-fluorescent M. tuberculosis under both replicating and nonreplicating conditions, we have identified compounds that are selectively active against dormant M. tuberculosis This validates our strategy of screening all compounds in both assays as opposed to using the dormancy model as a secondary screen. Bioassay-guided deconvolution enabled the identification of unique pharmacophores active in each screening model. To confirm the activity of samples against dormant M. tuberculosis, we used a luciferase reporter assay and enumerated CFU. The structures of five purified active compounds were defined by nuclear magnetic resonance (NMR) and mass spectrometry. We identified two lipid compounds with potent activity toward dormant and actively growing M. tuberculosis strains. One of these was commercially obtained and showed similar activity against M. tuberculosis in both screening models. Furthermore, puupehenone-like molecules were purified with potent and selective activity against dormant M. tuberculosis In conclusion, we have identified and characterized antimycobacterial compounds from marine organisms with novel activity profiles which appear to target M. tuberculosis pathways that are conditionally essential for dormancy survival.
Collapse
|
160
|
Abstract
The interaction between Mycobacterium tuberculosis and its host cell is highly complex and extremely intimate. Were it not for the disease, one might regard this interaction at the cellular level as an almost symbiotic one. The metabolic activity and physiology of both cells are shaped by this coexistence. We believe that where this appreciation has greatest significance is in the field of drug discovery. Evolution rewards efficiency, and recent data from many groups discussed in this review indicate that M. tuberculosis has evolved to utilize the environmental cues within its host to control large genetic programs or regulons. But these regulons may represent chinks in the bacterium's armor because they include off-target effects, such as the constraint of the metabolic plasticity of M. tuberculosis. A prime example is how the presence of cholesterol within the host cell appears to limit the ability of M. tuberculosis to fully utilize or assimilate other carbon sources. And that is the reason for the title of this review. We believe firmly that, to understand the physiology of M. tuberculosis and to identify new drug targets, it is imperative that the bacterium be interrogated within the context of its host cell. The constraints induced by the environmental cues present within the host cell need to be preserved and exploited. The M. tuberculosis-infected macrophage truly is the "minimal unit of infection."
Collapse
|
161
|
Ryan A, Polycarpou E, Lack NA, Evangelopoulos D, Sieg C, Halman A, Bhakta S, Eleftheriadou O, McHugh TD, Keany S, Lowe ED, Ballet R, Abuhammad A, Jacobs WR, Ciulli A, Sim E. Investigation of the mycobacterial enzyme HsaD as a potential novel target for anti-tubercular agents using a fragment-based drug design approach. Br J Pharmacol 2017; 174:2209-2224. [PMID: 28380256 PMCID: PMC5481647 DOI: 10.1111/bph.13810] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Ali Ryan
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Elena Polycarpou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Nathan A Lack
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of MedicineKoç UniversityIstanbulTurkey
| | - Dimitrios Evangelopoulos
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
- Mycobacterial Metabolism and Antibiotic Research LaboratoryThe Francis Crick Institute, Mill Hill LaboratoryLondonUK
| | - Christian Sieg
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Alice Halman
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Institute of Structural and Molecular Biology, Department of Biological SciencesBirkbeck, University of LondonLondonUK
| | - Olga Eleftheriadou
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
| | - Timothy D McHugh
- Centre for Clinical MicrobiologyUniversity College London, Royal Free CampusLondonUK
| | | | - Edward D Lowe
- Department of BiochemistryUniversity of OxfordOxfordUK
| | - Romain Ballet
- Department of PharmacologyUniversity of OxfordOxfordUK
| | | | - William R Jacobs
- Department of Microbiology and ImmunologyHoward Hughes Medical Institute, Albert Einstein College of MedicineBronxNew YorkUSA
| | - Alessio Ciulli
- Department of ChemistryUniversity of CambridgeCambridgeUK
- Division of Biological Chemistry & Drug Discovery, School of Life SciencesUniversity of Dundee, James Black CentreDundeeUK
| | - Edith Sim
- Faculty of Science, Engineering and ComputingKingston University LondonKingston upon ThamesUK
- Department of PharmacologyUniversity of OxfordOxfordUK
| |
Collapse
|
162
|
Nazarova EV, Montague CR, La T, Wilburn KM, Sukumar N, Lee W, Caldwell S, Russell DG, VanderVen BC. Rv3723/LucA coordinates fatty acid and cholesterol uptake in Mycobacterium tuberculosis. eLife 2017; 6:e26969. [PMID: 28708968 PMCID: PMC5487216 DOI: 10.7554/elife.26969] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023] Open
Abstract
Pathogenic bacteria have evolved highly specialized systems to extract essential nutrients from their hosts. Mycobacterium tuberculosis (Mtb) scavenges lipids (cholesterol and fatty acids) to maintain infections in mammals but mechanisms and proteins responsible for the import of fatty acids in Mtb were previously unknown. Here, we identify and determine that the previously uncharacterized protein Rv3723/LucA, functions to integrate cholesterol and fatty acid uptake in Mtb. Rv3723/LucA interacts with subunits of the Mce1 and Mce4 complexes to coordinate the activities of these nutrient transporters by maintaining their stability. We also demonstrate that Mce1 functions as a fatty acid transporter in Mtb and determine that facilitating cholesterol and fatty acid import via Rv3723/LucA is required for full bacterial virulence in vivo. These data establish that fatty acid and cholesterol assimilation are inexorably linked in Mtb and reveals a key function for Rv3723/LucA in in coordinating thetransport of both these substrates.
Collapse
Affiliation(s)
- Evgeniya V Nazarova
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Christine R Montague
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Thuy La
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Neelima Sukumar
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Wonsik Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Shannon Caldwell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, United States
| |
Collapse
|
163
|
Johnson RM, Bai G, DeMott CM, Banavali NK, Montague CR, Moon C, Shekhtman A, VanderVen B, McDonough KA. Chemical activation of adenylyl cyclase Rv1625c inhibits growth of Mycobacterium tuberculosis on cholesterol and modulates intramacrophage signaling. Mol Microbiol 2017; 105:294-308. [PMID: 28464471 DOI: 10.1111/mmi.13701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 12/31/2022]
Abstract
Mycobacterium tuberculosis (Mtb) uses a complex 3', 5'-cyclic AMP (cAMP) signaling network to sense and respond to changing environments encountered during infection, so perturbation of cAMP signaling might be leveraged to disrupt Mtb pathogenesis. However, understanding of cAMP signaling pathways is hindered by the presence of at least 15 distinct adenylyl cyclases (ACs). Recently, the small molecule V-58 was shown to inhibit Mtb replication within macrophages and stimulate cAMP production in Mtb. Here we determined that V-58 rapidly and directly activates Mtb AC Rv1625c to produce high levels of cAMP regardless of the bacterial environment or growth medium. Metabolic inhibition by V-58 was carbon source dependent in Mtb and did not occur in Mycobacterium smegmatis, suggesting that V-58-mediated growth inhibition is due to interference with specific Mtb metabolic pathways rather than a generalized cAMP toxicity. Chemical stimulation of cAMP production by Mtb within macrophages also caused down regulation of TNF-α production by the macrophages, indicating a complex role for cAMP in Mtb pathogenesis. Together these studies describe a novel approach for targeted stimulation of cAMP production in Mtb, and provide new insights into the myriad roles of cAMP signaling in Mtb, particularly during Mtb's interactions with macrophages.
Collapse
Affiliation(s)
- Richard M Johnson
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, USA
| | | | - Nilesh K Banavali
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY, USA.,New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | - Caroline Moon
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | | | - Brian VanderVen
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Kathleen A McDonough
- Department of Biomedical Sciences, School of Public Health, University at Albany, SUNY, Albany, NY, USA.,New York State Department of Health, Wadsworth Center, Albany, NY, USA
| |
Collapse
|
164
|
Abstract
Most mycolic acid-containing actinobacteria and some proteobacteria use steroids as growth substrates, but the catabolism of the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants and has been proposed to be encoded by the KstR2-regulated genes, which include a predicted coenzyme A (CoA) transferase gene (ipdAB) and an acyl-CoA reductase gene (ipdC). In the presence of cholesterol, ΔipdC and ΔipdAB mutants of either M. tuberculosis or Rhodococcus jostii strain RHA1 accumulated previously undescribed metabolites: 3aα-H-4α(carboxyl-CoA)-5-hydroxy-7aβ-methylhexahydro-1-indanone (5-OH HIC-CoA) and (R)-2-(2-carboxyethyl)-3-methyl-6-oxocyclohex-1-ene-1-carboxyl-CoA (COCHEA-CoA), respectively. A ΔfadE32 mutant of Mycobacterium smegmatis accumulated 4-methyl-5-oxo-octanedioic acid (MOODA). Incubation of synthetic 5-OH HIC-CoA with purified IpdF, IpdC, and enoyl-CoA hydratase 20 (EchA20), a crotonase superfamily member, yielded COCHEA-CoA and, upon further incubation with IpdAB and a CoA thiolase, yielded MOODA-CoA. Based on these studies, we propose a pathway for the final steps of steroid catabolism in which the 5-member ring is hydrolyzed by EchA20, followed by hydrolysis of the 6-member ring by IpdAB. Metabolites accumulated by ΔipdF and ΔechA20 mutants support the model. The conservation of these genes in known steroid-degrading bacteria suggests that the pathway is shared. This pathway further predicts that cholesterol catabolism yields four propionyl-CoAs, four acetyl-CoAs, one pyruvate, and one succinyl-CoA. Finally, a ΔipdAB M. tuberculosis mutant did not survive in macrophages and displayed severely depleted CoASH levels that correlated with a cholesterol-dependent toxicity. Our results together with the developed tools provide a basis for further elucidating bacterial steroid catabolism and virulence determinants in M. tuberculosis. Bacteria are the only known steroid degraders, but the pathway responsible for degrading the last two steroid rings has yet to be elucidated. In Mycobacterium tuberculosis, this pathway includes virulence determinants. Using a series of mutants in M. tuberculosis and related bacteria, we identified a number of novel CoA thioesters as pathway intermediates. Analysis of the metabolites combined with enzymological studies establishes how the last two steroid rings are hydrolytically opened by enzymes encoded by the KstR2 regulon. Our results provide experimental evidence for novel ring-degrading enzymes, significantly advance our understanding of bacterial steroid catabolism, and identify a previously uncharacterized cholesterol-dependent toxicity that may facilitate the development of novel tuberculosis therapeutics.
Collapse
|
165
|
Pharmacokinetic-Pharmacodynamic modelling of intracellular Mycobacterium tuberculosis growth and kill rates is predictive of clinical treatment duration. Sci Rep 2017; 7:502. [PMID: 28356552 PMCID: PMC5428680 DOI: 10.1038/s41598-017-00529-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 03/01/2017] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) treatment is long and complex, typically involving a combination of drugs taken for 6 months. Improved drug regimens to shorten and simplify treatment are urgently required, however a major challenge to TB drug development is the lack of predictive pre-clinical tools. To address this deficiency, we have adopted a new high-content imaging-based approach capable of defining the killing kinetics of first line anti-TB drugs against intracellular Mycobacterium tuberculosis (Mtb) residing inside macrophages. Through use of this pharmacokinetic-pharmacodynamic (PK-PD) approach we demonstrate that the killing dynamics of the intracellular Mtb sub-population is critical to predicting clinical TB treatment duration. Integrated modelling of intracellular Mtb killing alongside conventional extracellular Mtb killing data, generates the biphasic responses typical of those described clinically. Our model supports the hypothesis that the use of higher doses of rifampicin (35 mg/kg) will significantly reduce treatment duration. Our described PK-PD approach offers a much needed decision making tool for the identification and prioritisation of new therapies which have the potential to reduce TB treatment duration.
Collapse
|
166
|
Fernández-Cabezón L, García-Fernández E, Galán B, García JL. Molecular characterization of a new gene cluster for steroid degradation in Mycobacterium smegmatis. Environ Microbiol 2017; 19:2546-2563. [PMID: 28217856 DOI: 10.1111/1462-2920.13704] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/14/2017] [Indexed: 11/27/2022]
Abstract
The C-19 steroids 4-androstene-3,17-dione (AD), 1,4-androstadiene-3,17-dione (ADD) or 9α-hydroxy-4-androstene-3,17-dione (9OH-AD), which have been postulated as intermediates of the cholesterol catabolic pathway in Mycobacterium smegmatis, cannot be used as sole carbon and energy sources by this bacterium. Only the ΔkstR mutant which constitutively expresses the genes repressed by the KstR regulator can metabolize AD and ADD with severe difficulties but still cannot metabolize 9OH-AD, suggesting that these compounds are not true intermediates but side products of the cholesterol pathway. However, we have found that some M. smegmatis spontaneous mutants mapped in the PadR-like regulator (MSMEG_2868) can efficiently metabolize all C-19 steroids. We have demonstrated that the PadR mutants allow the expression of a gene cluster named C-19+ (MSMEG_2851 to MSMEG_2901) encoding steroid degrading enzymes, that are not expressed under standard culture conditions. The C-19+ cluster has apparently evolved independently from the upper cholesterol kstR-regulon, but both clusters converge on the lower cholesterol kstR2-regulon responsible for the metabolism of C and D steroid rings. Homologous C-19+ clusters have been found only in other actinobacteria that metabolize steroids, but remarkably it is absent in Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Lorena Fernández-Cabezón
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - Esther García-Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología. Consejo Superior de Investigaciones Científicas, Darwin 3, Madrid, 28049, Spain
| | - Beatriz Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| | - José L García
- Department of Environmental Biology, Centro de Investigaciones Biológicas. Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu 9, Madrid, 28040, Spain
| |
Collapse
|
167
|
Lee W, VanderVen BC, Walker S, Russell DG. Novel protein acetyltransferase, Rv2170, modulates carbon and energy metabolism in Mycobacterium tuberculosis. Sci Rep 2017; 7:72. [PMID: 28250431 PMCID: PMC5428333 DOI: 10.1038/s41598-017-00067-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 01/30/2017] [Indexed: 11/20/2022] Open
Abstract
Recent data indicate that the metabolism of Mycobacterium tuberculosis (Mtb) inside its host cell is heavily dependent on cholesterol and fatty acids. Mtb exhibits a unique capacity to co-metabolize different carbon sources and the products from these substrates are compartmentalized metabolically. Isocitrate lies at one of the key nodes of carbon metabolism and can feed into either the glyoxylate shunt (via isocitrate lyase) or the TCA cycle (via isocitrate dehydrogenase (ICDH) activity) and we sought to better understand the regulation at this junction. An isocitrate lyase-deficient mutant of Mtb (Δicl1) exhibited a delayed growth phenotype in stearic acid (C18 fatty acid) media and we isolated rescue mutants that had lost this growth delay. We found that mutations in the gene rv2170 promoted Mtb replication under these conditions and rescued the growth delay in a Δicl1 background. The Mtb Rv2170 protein shows lysine acetyltransferase activity, which is capable of post-translationally modifying lysine residues of the ICDH protein leading to a reduction in its enzymatic activity. Our data show that contrary to most bacteria that regulate ICDH activity through phosphorylation, Mtb is capable of regulating ICDH activity by acetylation. This mechanism of regulation is similar to that utilized for mammalian mitochondrial ICDH.
Collapse
Affiliation(s)
- Wonsik Lee
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.,Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02115, United States
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States
| | - Suzanne Walker
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, 02115, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
168
|
Small Molecules That Sabotage Bacterial Virulence. Trends Pharmacol Sci 2017; 38:339-362. [PMID: 28209403 DOI: 10.1016/j.tips.2017.01.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 02/08/2023]
Abstract
The continued rise of antibiotic-resistant bacterial infections has motivated alternative strategies for target discovery and treatment of infections. Antivirulence therapies function through inhibition of in vivo required virulence factors to disarm the pathogen instead of directly targeting viability or growth. This approach to treating bacteria-mediated diseases may have advantages over traditional antibiotics because it targets factors specific for pathogenesis, potentially reducing selection for resistance and limiting collateral damage to the resident microbiota. This review examines vulnerable molecular mechanisms used by bacteria to cause disease and the antivirulence compounds that sabotage these virulence pathways. By expanding the study of antimicrobial targets beyond those that are essential for growth, antivirulence strategies offer new and innovative opportunities to combat infectious diseases.
Collapse
|
169
|
Konstantakou EG, Velentzas AD, Anagnostopoulos AK, Litou ZI, Konstandi OA, Giannopoulou AF, Anastasiadou E, Voutsinas GE, Tsangaris GT, Stravopodis DJ. Deep-proteome mapping of WM-266-4 human metastatic melanoma cells: From oncogenic addiction to druggable targets. PLoS One 2017; 12:e0171512. [PMID: 28158294 PMCID: PMC5291375 DOI: 10.1371/journal.pone.0171512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 12/22/2022] Open
Abstract
Cutaneous melanoma is a malignant tumor of skin melanocytes that are pigment-producing cells located in the basal layer (stratum basale) of epidermis. Accumulation of genetic mutations within their oncogenes or tumor-suppressor genes compels melanocytes to aberrant proliferation and spread to distant organs of the body, thereby resulting in severe and/or lethal malignancy. Metastatic melanoma's heavy mutational load, molecular heterogeneity and resistance to therapy necessitate the development of novel biomarkers and drug-based protocols that target key proteins involved in perpetuation of the disease. To this direction, we have herein employed a nano liquid chromatography-tandem mass spectrometry (nLC-MS/MS) proteomics technology to profile the deep-proteome landscape of WM-266-4 human metastatic melanoma cells. Our advanced melanoma-specific catalogue proved to contain 6,681 unique proteins, which likely constitute the hitherto largest single cell-line-derived proteomic collection of the disease. Through engagement of UNIPROT, DAVID, KEGG, PANTHER, INTACT, CYTOSCAPE, dbEMT and GAD bioinformatics resources, WM-266-4 melanoma proteins were categorized according to their sub-cellular compartmentalization, function and tumorigenicity, and successfully reassembled in molecular networks and interactomes. The obtained data dictate the presence of plastically inter-converted sub-populations of non-cancer and cancer stem cells, and also indicate the oncoproteomic resemblance of melanoma to glioma and lung cancer. Intriguingly, WM-266-4 cells seem to be subjected to both epithelial-to-mesenchymal (EMT) and mesenchymal-to-epithelial (MET) programs, with 1433G and ADT3 proteins being identified in the EMT/MET molecular interface. Oncogenic addiction of WM-266-4 cells to autocrine/paracrine signaling of IL17-, DLL3-, FGF(2/13)- and OSTP-dependent sub-routines suggests their critical contribution to the metastatic melanoma chemotherapeutic refractoriness. Interestingly, the 1433G family member that is shared between the BRAF- and EMT/MET-specific interactomes likely emerges as a novel and promising druggable target for the malignancy. Derailed proliferation and metastatic capacity of WM-266-4 cells could also derive from their metabolic addiction to pathways associated with glutamate/ammonia, propanoate and sulfur homeostasis, whose successful targeting may prove beneficial for advanced melanoma-affected patients.
Collapse
Affiliation(s)
- Eumorphia G. Konstantakou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanassios D. Velentzas
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios K. Anagnostopoulos
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Zoi I. Litou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ourania A. Konstandi
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Aikaterini F. Giannopoulou
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Ema Anastasiadou
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Gerassimos E. Voutsinas
- Laboratory of Environmental Mutagenesis and Carcinogenesis, Institute of Biosciences and Applications, National Center for Scientific Research “Demokritos”, Athens, Greece
| | - George Th. Tsangaris
- Proteomics Core Facility, Systems Biology Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Dimitrios J. Stravopodis
- Section of Cell Biology and Biophysics, Department of Biology, School of Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
170
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
171
|
Boshoff HI. Caught between two proteins: a mycobacterial inhibitor challenges the mold. Mol Microbiol 2017; 103:2-6. [PMID: 27802567 PMCID: PMC5182166 DOI: 10.1111/mmi.13570] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2016] [Indexed: 11/30/2022]
Abstract
Elucidating the target or mechanism of action of potential drugs in the discovery pipeline is an integral component of most programs. For antibacterial compounds, generation of resistant mutants followed by whole genome sequencing has often been successful in uncovering the proteins involved in regulating compound activation, uptake, efflux and importantly, target processes. When this process succeeds, we are quick to declare a target. In a study reported by Sing and Dhar et al. (in press), the combination of resistant mutant generation, whole genome sequencing and recombineering to identify the target of a Mycobacterium tuberculosis growth inhibitor, pointed to a mechanism involving a scaffolding protein, Wag31, involved in polar elongation of mycobacterial cells. Time-lapse microscopy and electron microscopy confirmed the view that this inhibitor resulted in interruption of nascent cell wall biosynthesis. However, co-expression as well as regulated titration of the putative Wag31 target demonstrated that the wild-type allele was dominant and showed no synergy with the inhibitor. The most plausible explanation from their results was that this inhibitor interfered with the interaction of Wag31 with one of its interacting partners in the elongation complex.
Collapse
Affiliation(s)
- Helena I. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Disease, National Institutes of Health, Bethesda, MD20892-3206;
| |
Collapse
|
172
|
Nazarova EV, Russell DG. Growing and Handling of Mycobacterium tuberculosis for Macrophage Infection Assays. Methods Mol Biol 2017; 1519:325-331. [PMID: 27815890 DOI: 10.1007/978-1-4939-6581-6_22] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophage survival assays are a critical component of any Mycobacterium tuberculosis research program. Here we describe the methods that we use routinely for infection of macrophages of various origins. The protocols are efficient, relatively simple and are accepted widely. We provide users with methods for the infection of small numbers of macrophages-more suitable for microscopy; and for larger numbers of macrophages-for flow cytometry analysis or extraction for biochemical characterization.
Collapse
Affiliation(s)
- Evgeniya V Nazarova
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
173
|
Faletrov Y, Brzostek A, Plocinska R, Dziadek J, Rudaya E, Edimecheva I, Shkumatov V. Uptake and metabolism of fluorescent steroids by mycobacterial cells. Steroids 2017; 117:29-37. [PMID: 27718364 DOI: 10.1016/j.steroids.2016.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 11/26/2022]
Abstract
Fluorescent steroids BODIPY-cholesterol (BPCh) and 7-nitrobenzoxadiazole-4-amino-(NBD)-labeled 22-NBD-chelesterol (22NC) as well as synthesized 20-(NBD)-pregn-5-en-3β-ol (20NP) were found to undergo bioconversions by Mycobacterium tuberculosis H37Rv and M. smegmatis mc2 155. The major fluorescent products were determined to be 4-en-3-one derivatives of the compounds. Degradation of NBD fluorophore was also detected in the cases of 22NC and 20NP, but neither NBD degradation nor steroidal part modification were observed for the synthesized 3-(NBD)-cholestane. Mycobacterial 3β-hydroxysteroid dehydrogenases were concluded to be responsible for the formation of the 4-en-3-one derivatives. All the compounds tested were found to cause staining both membrane lipids and cytosolic lipid droplets when incubated with mycobacteria in different manner, demonstrating ability of the steroids to reside in the compartments. The findings reveal a potential of the compounds for monitoring of steroid interactions with mycobacteria and provide information for design of new probes for this purpose.
Collapse
Affiliation(s)
- Yaroslav Faletrov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Renata Plocinska
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Elena Rudaya
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Irina Edimecheva
- Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| | - Vladimir Shkumatov
- Research Institute for Physical Chemical Problems, Belarusian State University, Minsk, Belarus; Faculty of Chemistry, Belarusian State University, Minsk, Belarus.
| |
Collapse
|
174
|
Zheng H, Colvin CJ, Johnson BK, Kirchhoff PD, Wilson M, Jorgensen-Muga K, Larsen SD, Abramovitch RB. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat Chem Biol 2016; 13:218-225. [PMID: 27992879 DOI: 10.1038/nchembio.2259] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 09/30/2016] [Indexed: 11/09/2022]
Abstract
The Mycobacterium tuberculosis (Mtb) DosRST two-component regulatory system promotes the survival of Mtb during non-replicating persistence (NRP). NRP bacteria help drive the long course of tuberculosis therapy; therefore, chemical inhibition of DosRST may inhibit the ability of Mtb to establish persistence and thus shorten treatment. Using a DosRST-dependent fluorescent Mtb reporter strain, a whole-cell phenotypic high-throughput screen of a ∼540,000 compound small-molecule library was conducted. The screen discovered novel inhibitors of the DosRST regulon, including three compounds that were subject to follow-up studies: artemisinin, HC102A and HC103A. Under hypoxia, all three compounds inhibit Mtb-persistence-associated physiological processes, including triacylglycerol synthesis, survival and antibiotic tolerance. Artemisinin functions by disabling the heme-based DosS and DosT sensor kinases by oxidizing ferrous heme and generating heme-artemisinin adducts. In contrast, HC103A inhibits DosS and DosT autophosphorylation activity without targeting the sensor kinase heme.
Collapse
Affiliation(s)
- Huiqing Zheng
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Christopher J Colvin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Benjamin K Johnson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| | - Paul D Kirchhoff
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Wilson
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Scott D Larsen
- Vahlteich Medicinal Chemistry Core, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
175
|
Abstract
Mycobacterium tuberculosis (M. tuberculosis), the causative agent of tuberculosis, uses various tactics to resist on antibiotics and evade host immunity. To control tuberculosis, antibiotics with novel mechanisms of action are urgently needed. Emerging new antibiotics and underlying novel drug targets are summarized in this paper.
Collapse
Affiliation(s)
- Nzungize Lambert
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Abualgasim Elgaili Abdalla
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China.,b Department of Clinical Microbiology, College of Medical Laboratory Sciences, Omdurman , Islamic University , Omdurman , Sudan
| | - Xiangke Duan
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| | - Jianping Xie
- a Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University , Chongqing , China
| |
Collapse
|
176
|
Tsai IF, Kuo CP, Lin AB, Chien MN, Ho HT, Wei TY, Wu CL, Lu YT. Potential effect of ezetimibe against Mycobacterium tuberculosis infection in type II diabetes. Respirology 2016; 22:559-566. [PMID: 27879023 DOI: 10.1111/resp.12948] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/11/2016] [Accepted: 08/25/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVE Tuberculosis (TB) risk might be increased in patients with diabetes by factors other than hyperglycaemia, such as dyslipidaemia. Host lipids are essential energy sources used by mycobacteria to persist in a latent TB state. A potential therapy targeting cholesterol catabolism of mycobacteria has been proposed, but the potential of cholesterol-lowering drugs as anti-TB therapy is unclear. The purpose of this study was to determine the effects of ezetimibe, a 2-azetidinone cholesterol absorption inhibitor, on intracellular mycobacteria survival and dormancy. METHODS Intracellular mycobacteria survival was determined by measurements of ATP activity and colony-formation units (CFUs). Gene expression profiles of hypoxia-induced dormant Mycobacterium tuberculosis (Mtb) were analysed by real-time PCR. Flow cytometry and microscopy analysis were used to measure the lipid loads of human macrophages with or without ezetimibe treatment. QuantiFERON-TB Gold In-Tube (QFT-G-IT) assays were performed to diagnose latent TB infection. The levels of intracellular cholesterol/ triglyceride were measured by an enzymatic fluorometric method. RESULTS Ezetimibe was capable of effectively lowering intracellular growth of Mtb and hypoxia-induced dormant Mtb. There was a significant decrease in Mtb growth in leucocytes from ezetimibe-treated patients with diabetes in terms of ATP levels of intracellular mycobacteria and CFU formation. Also, patients receiving ezetimibe therapy had a lower prevalence of latent TB and had lower intracellular lipid contents. CONCLUSION Ezetimibe, which is a currently marketed drug, could hold promise as an adjunctive, host-directed therapy for TB.
Collapse
Affiliation(s)
- I-Fang Tsai
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chiu-Ping Kuo
- Division of Chest Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan
| | - Andrew B Lin
- Biology Department, Case Western Reserve University, Cleveland, Ohio, USA
| | - Ming-Nan Chien
- Department of Endocrinology and Metabolism, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsin-Tsung Ho
- Department of Laboratory Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| | - Tsai-Yin Wei
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chien-Liang Wu
- Division of Chest Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan
| | - Yen-Ta Lu
- Division of Chest Medicine, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
| |
Collapse
|
177
|
Dodd CE, Pyle CJ, Glowinski R, Rajaram MVS, Schlesinger LS. CD36-Mediated Uptake of Surfactant Lipids by Human Macrophages Promotes Intracellular Growth of Mycobacterium tuberculosis. THE JOURNAL OF IMMUNOLOGY 2016; 197:4727-4735. [PMID: 27913648 DOI: 10.4049/jimmunol.1600856] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/19/2016] [Indexed: 12/22/2022]
Abstract
Mycobacterium tuberculosis imposes a large global health burden as the airborne agent of tuberculosis. Mycobacterium tuberculosis has been flourishing in human populations for millennia and is therefore highly adapted to the lung environment. Alveolar macrophages, a major host cell niche for M. tuberculosis, are not only phagocytose inhaled microbes and particulate matter but are also crucial in catabolizing lung surfactant, a lipid-protein complex that lines the alveolar spaces. Because macrophage host defense properties can be regulated by surfactant and M. tuberculosis can use host lipids as a carbon source during infection, we sought to determine the receptor(s) involved in surfactant lipid uptake by human macrophages and whether the presence of those lipids within macrophages prior to infection with M. tuberculosis enhances bacterial growth. We show that preformed scavenger receptor CD36 is redistributed to the cell membrane following exposure to surfactant lipids and surfactant protein A. Subsequently, surfactant lipids and/or surfactant protein A enhance CD36 transcript and protein levels. We show that CD36 participates in surfactant lipid uptake by human macrophages, as CD36 knockdown reduces uptake of dipalmitoylphosphatidylcholine, the most prevalent surfactant lipid species. Finally, exposing human macrophages to surfactant lipids prior to infection augments M. tuberculosis growth in a CD36-dependent manner. Thus, we provide evidence that CD36 mediates surfactant lipid uptake by human macrophages and that M. tuberculosis exploits this function for growth.
Collapse
Affiliation(s)
- Claire E Dodd
- Department of Microbiology, The Ohio State University, Columbus, OH 43210; and.,The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Charlie J Pyle
- The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Rebecca Glowinski
- The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Murugesan V S Rajaram
- The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| | - Larry S Schlesinger
- Department of Microbiology, The Ohio State University, Columbus, OH 43210; and .,The Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
178
|
Zheng X, Av-Gay Y. New Era of TB Drug Discovery and Its Impact on Disease Management. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2016. [DOI: 10.1007/s40506-016-0098-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
179
|
Zhang Y, Deng CP, Shen B, Yang JS, Wang ET, Yuan HL. Syntrophic Interactions Within a Butane-Oxidizing Bacterial Consortium Isolated from Puguang Gas Field in China. MICROBIAL ECOLOGY 2016; 72:538-548. [PMID: 27324653 DOI: 10.1007/s00248-016-0799-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Butane oxidation by the hydrocarbon degradation bacteria has long been described, but little is known about the microbial interaction in this process. To investigate this interaction, the efficiency of butane oxidation was estimated in monocultures and co-cultures of six strains of butane-oxidizing bacteria (BOB) and a butanol-oxidizing strain. Results showed that the butane degradation velocity was at least 26 times higher in the co-culture of the seven strains (228.50 nmol h(-1)) than in the six individual monocultures (8.71 nmol h(-1)). Gas chromatographic analysis of metabolites in the cultures revealed the accumulation of butanol in the monocultures of BOB strains but not in the co-culture with the butanol-oxidizing strain. These results evidenced a novel syntrophic association between BOB and butanol-oxidizing bacteria in the butane oxidation. The BOB strains oxidized butane into butanol, but this activity was inhibited by the accumulated butanol in monocultures, whereas the removal of butanol by the butanol-oxidizing strain in co-culture could eliminate the suppression and improve the butane degradation efficiency. In the co-culture, both BOB and butanol-oxidizing bacteria could grow and the time needed for butane complete removal was shortened from more than 192 h to less than 4 h. The unsuppressed effect of the co-culture was also consistent with the results of reverse transcription quantitative real-time PCR (RT-qPCR) of bmoX gene because increased expression of this gene was detected during the syntrophic growth compared with that in monoculture, pointing to the upregulation of bmoX in the syntrophic interaction.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chun-Ping Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Bin Shen
- National Research Center for Geoanalysis, Beijing, 100037, China
| | - Jin-Shui Yang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - En-Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico, D.F., Mexico
| | - Hong-Li Yuan
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
180
|
Association of pellicle growth morphological characteristics and clinical presentation of Mycobacterium tuberculosis isolates. Tuberculosis (Edinb) 2016; 101S:S63-S68. [PMID: 27742461 DOI: 10.1016/j.tube.2016.09.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Trehalose 6,6'dimycolate (TDM) is a glycolipid found in nearly pure form on the surface of virulent Mycobacterium tuberculosis (MTB). This manuscript investigated the production of TDM, growth rate and colony morphology of multiple strains of MTB, each of which had been isolated from both pulmonary (sputum) and extrapulmonary sites of multiple patients. Since sputum contains MTB primarily from cavities and extrapulmonary biopsies are typically granulomas, this provided an opportunity to compare the behavior of single strains of MTB that had been isolated from cavities and granulomas. The results demonstrated that MTB isolated from pulmonary sites produced more TDM (3.23 ± 1.75 μg TDM/mg MTB), grew more rapidly as thin spreading pellicles, demonstrated early cording, and climbed culture well walls. In contrast, extrapulmonary isolates produced less TDM (1.42 ± 0.58 μg TDM/mg MTB) (p < 0.001) and grew as discrete patches with little tendency to spread or climb. Both Beijing pulmonary isolates and the non-Beijing pulmonary isolates produced significantly more TDM (1.64 ± 0.46 μg TDM/mg MTB) and grew faster than the Beijing and non-Beijing extrapulmonary isolates (1.14 ± 0.63 μg TDM/mg MTB) (p < 0.001 and p < 0.005 respectively). These results indicate that MTB from pulmonary sites (cavities) grows faster and produces more TDM than strains isolated from extrapulmonary sites (granulomas). This report suggests a critical role for TDM in cavitary TB.
Collapse
|
181
|
Abstract
Mycobacterium tuberculosis uses sophisticated secretion systems, named 6 kDa early secretory antigenic target (ESAT6) protein family secretion (ESX) systems (also known as type VII secretion systems), to export a set of effector proteins that helps the pathogen to resist or evade the host immune response. Since the discovery of the esx loci during the M. tuberculosis H37Rv genome project, structural biology, cell biology and evolutionary analyses have advanced our knowledge of the function of these systems. In this Review, we highlight the intriguing roles that these studies have revealed for ESX systems in bacterial survival and pathogenicity during infection with M. tuberculosis. Furthermore, we discuss the diversity of ESX systems that has been described among mycobacteria and selected non-mycobacterial species. Finally, we consider how our knowledge of ESX systems might be applied to the development of novel strategies for the treatment and prevention of disease.
Collapse
|
182
|
Singh V, Mizrahi V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug Discov Today 2016; 22:503-509. [PMID: 27649943 DOI: 10.1016/j.drudis.2016.09.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/28/2016] [Accepted: 09/12/2016] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) is a global epidemic associated increasingly with resistance to first- and second-line antitubercular drugs. The magnitude of this global health threat underscores the urgent need to discover new antimycobacterial agents that have novel mechanisms of action (MOA). In this review, we highlight some of the key advances that have enabled the strengths of target-led and phenotypic approaches to TB drug discovery to be harnessed both independently and in combination. Critically, these promise to fuel the front-end of the TB drug pipeline with new, pharmacologically validated drug targets together with lead compounds that act on these targets.
Collapse
Affiliation(s)
- Vinayak Singh
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, South Africa.
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Institute of Infectious Disease and Molecular Medicine & Department of Pathology, University of Cape Town, Anzio Road, Observatory 7925, South Africa
| |
Collapse
|
183
|
Bis-biguanide dihydrochloride inhibits intracellular replication of M. tuberculosis and controls infection in mice. Sci Rep 2016; 6:32725. [PMID: 27601302 PMCID: PMC5013693 DOI: 10.1038/srep32725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 08/15/2016] [Indexed: 12/18/2022] Open
Abstract
While there is an urgent need to develop new and effective drugs for treatment of tuberculosis (TB) and multi-drug resistant TB (MDR-TB), repurposing FDA (U.S. Food and Drug Administration) -approved drugs for development of anti-TB agents may decrease time and effort from bench to bedside. Here, we employed host cell-based high throughput screening (HTS) assay to screen and characterize FDA-approved, off-patent library drugs for anti-Mycobacterium tuberculosis (MTB) activities. The cell-based HTS allowed us to identify an anti-cancer drug of bis-biguanide dihydrochloride (BBD) as potent anti-mycobacteria agent. Further characterization showed that BBD could inhibit intracellular and extracellular growth of M. smegmatis and slow-growing M. bovis BCG. BBD also potently inhibited replication of clinically-isolated MTB and MDR-TB strains. The proof-of-concept study showed that BBD treatment of MTB-infected mice could significantly decrease CFU counts in the lung and spleen. Notably, comparative evaluation showed that MTB CFU counts in BBD-treated mice were lower than those in rifampicin-treated mice. No apparent BBD side effects were found in BBD-treated mice. Thus, our findings support further studies to develop BBD as a new and effective drug against TB and MDR-TB.
Collapse
|
184
|
Chingwaru W, Glashoff RH, Vidmar J, Kapewangolo P, Sampson SL. Mammalian cell cultures as models for Mycobacterium tuberculosis-human immunodeficiency virus (HIV) interaction studies: A review. ASIAN PAC J TROP MED 2016; 9:832-838. [PMID: 27633294 DOI: 10.1016/j.apjtm.2016.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/16/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022] Open
Abstract
Mycobacterium tuberculosis and human immunodeficiency virus (HIV) co-infections have remained a major public health concern worldwide, particularly in Southern Africa. Yet our understanding of the molecular interactions between the pathogens has remained poor due to lack of suitable preclinical models for such studies. We reviewed the use, this far, of mammalian cell culture models in HIV-MTB interaction studies. Studies have described the use of primary human cell cultures, including (1) monocyte-derived macrophage (MDM) fractions of peripheral blood mononuclear cell (PBMC), alveolar macrophages (AM), (2) cell lines such as the monocyte-derived macrophage cell line (U937), T lymphocyte cell lines (CEMx174, ESAT-6-specific CD4(+) T-cells) and an alveolar epithelial cell line (A549) and (3) special models such as stem cells, three dimensional (3D) or organoid cell models (including a blood-brain barrier cell model) in HIV-MTB interaction studies. The use of cell cultures from other mammals, including: mouse cell lines [macrophage cell lines RAW 264.7 and J774.2, fibroblast cell lines (NIH 3T3, C3H clones), embryonic fibroblast cell lines and T-lymphoma cell lines (S1A.TB, TIMI.4 and R1.1)]; rat (T cells: Rat2, RGE, XC and HH16, and alveolar cells: NR8383) and primary guinea pigs derived AMs, in HIV-MTB studies is also described. Given the spectrum of the models available, cell cultures offer great potential for host-HIV-MTB interactions studies.
Collapse
Affiliation(s)
- Walter Chingwaru
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Institute Ceres/Zavod Ceres, Lahovna 16, 3000 Celje, Slovenia; Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe.
| | - Richard H Glashoff
- Division of Medical Virology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000 Celje, Slovenia; Department of Biological Sciences, Faculty of Science, Bindura University Science Education, P. Bag 1020, Bindura, Zimbabwe; Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Petrina Kapewangolo
- Department of Chemistry and Biochemistry, Faculty of Science, University of Namibia, Windhoek, Namibia
| | - Samantha L Sampson
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
185
|
Long J, Basu Roy R, Zhang YJ, Antrobus R, Du Y, Smith DL, Weekes MP, Javid B. Plasma Membrane Profiling Reveals Upregulation of ABCA1 by Infected Macrophages Leading to Restriction of Mycobacterial Growth. Front Microbiol 2016; 7:1086. [PMID: 27462310 PMCID: PMC4940386 DOI: 10.3389/fmicb.2016.01086] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 01/01/2023] Open
Abstract
The plasma membrane represents a critical interface between the internal and extracellular environments, and harbors multiple proteins key receptors and transporters that play important roles in restriction of intracellular infection. We applied plasma membrane profiling, a technique that combines quantitative mass spectrometry with selective cell surface aminooxy-biotinylation, to Bacille Calmette–Guérin (BCG)-infected THP-1 macrophages. We quantified 559 PM proteins in BCG-infected THP-1 cells. One significantly upregulated cell-surface protein was the cholesterol transporter ABCA1. We showed that ABCA1 was upregulated on the macrophage cell-surface following infection with pathogenic mycobacteria and knockdown of ABCA1 resulted in increased mycobacterial survival within macrophages, suggesting that it may be a novel mycobacterial host-restriction factor.
Collapse
Affiliation(s)
- Jing Long
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | | | | | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge Cambridge, UK
| | - Yuxian Du
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University Beijing, China
| | - Duncan L Smith
- Cancer Research UK Manchester Institute, University of Manchester Manchester, UK
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge Cambridge, UK
| | - Babak Javid
- Collaboration Innovation Centre for the Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua UniversityBeijing, China; Harvard TH Chan School of Public Health, BostonMA, USA
| |
Collapse
|
186
|
Hoagland DT, Liu J, Lee RB, Lee RE. New agents for the treatment of drug-resistant Mycobacterium tuberculosis. Adv Drug Deliv Rev 2016; 102:55-72. [PMID: 27151308 PMCID: PMC4903924 DOI: 10.1016/j.addr.2016.04.026] [Citation(s) in RCA: 236] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/20/2016] [Accepted: 04/22/2016] [Indexed: 02/06/2023]
Abstract
Inadequate dosing and incomplete treatment regimens, coupled with the ability of the tuberculosis bacilli to cause latent infections that are tolerant of currently used drugs, have fueled the rise of multidrug-resistant tuberculosis (MDR-TB). Treatment of MDR-TB infections is a major clinical challenge that has few viable or effective solutions; therefore patients face a poor prognosis and years of treatment. This review focuses on emerging drug classes that have the potential for treating MDR-TB and highlights their particular strengths as leads including their mode of action, in vivo efficacy, and key medicinal chemistry properties. Examples include the newly approved drugs bedaquiline and delaminid, and other agents in clinical and late preclinical development pipeline for the treatment of MDR-TB. Herein, we discuss the challenges to developing drugs to treat tuberculosis and how the field has adapted to these difficulties, with an emphasis on drug discovery approaches that might produce more effective agents and treatment regimens.
Collapse
Affiliation(s)
- Daniel T Hoagland
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Pharmaceutical Sciences Graduate Program, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
187
|
Russell DG. The ins and outs of the Mycobacterium tuberculosis-containing vacuole. Cell Microbiol 2016; 18:1065-9. [PMID: 27247149 DOI: 10.1111/cmi.12623] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
Abstract
The past few years have seen publication of reports from several groups documenting the escape of Mycobacterium tuberculosis (Mtb) from its intracellular vacuole to access the cytosol. The major questions addressed in these publications are the mechanism(s) underlying this process, the frequency of its occurrence and, most importantly, the biological significance of this phenomenon to bacterial survival, growth and virulence. I believe that the first two questions are moving towards resolution, but questions relating to biological context have yet to be answered fully. In this viewpoint article, I will try to convince the readers why escape from the vacuole in no way diminishes the significance of Mtb's intravacuolar survival mechanisms and why, as a lab, we continue to focus the majority of our efforts on the 'bug in the bag'.
Collapse
Affiliation(s)
- David G Russell
- Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
188
|
Aussel L, Beuzón CR, Cascales E. Meeting report: Adaptation and communication of bacterial pathogens. Virulence 2016; 7:481-90. [PMID: 26890494 DOI: 10.1080/21505594.2016.1152441] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bacteria usually live in complex environments, sharing niche and resources with other bacterial species, unicellular eukaryotic cells or complex organisms. Thus, they have evolved mechanisms to communicate, to compete and to adapt to changing environment as diverse as human tissues, animals or plants. Understanding the molecular mechanisms underlying these adaptation processes is therefore of primary importance for epidemiology and human health protection, and was the focus of a Current Trends in Biomedicine workshop organized by the International University of Andalucia in late October 2015 in Baeza (Spain). The topic was covered by complementary sessions: (i) interbacterial communication and competition that enable a better access to nutrients or a more efficient colonization of the ecological niche, (ii) adaptation of intracellular pathogens to their host, focusing on metabolic pathways, adaptive mechanisms and populational heterogeneity, and (iii) adaptation of animal and plant pathogens as well as plant-associated bacteria to a plant niche. This workshop emphasized the broad repertoire of mechanisms and factors bacteria have evolved to become efficient pathogens.
Collapse
Affiliation(s)
- Laurent Aussel
- a Laboratoire de Chimie Bactérienne, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université , CNRS - UMR 7257, Marseille Cedex , France
| | - Carmen R Beuzón
- b Departamento de Biología Celular , Genética y Fisiología, Instituto de Hortofruticultura Subtropical y Mediterránea, Universidad de Málaga-Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC) , Málaga , Spain
| | - Eric Cascales
- c Laboratoire d'Ingénierie des Systèmes Macromoléculaires, Institut de Microbiologie de la Méditerranée, Aix-Marseille Université , CNRS - UMR 7255, Marseille Cedex , France
| |
Collapse
|
189
|
Wrońska N, Brzostek A, Szewczyk R, Soboń A, Dziadek J, Lisowska K. The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis. Molecules 2016; 21:molecules21050598. [PMID: 27164074 PMCID: PMC6273163 DOI: 10.3390/molecules21050598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/20/2016] [Accepted: 05/02/2016] [Indexed: 11/23/2022] Open
Abstract
Mycobacteria are able to degrade natural sterols and use them as a source of carbon and energy. Several genes which play an important role in cholesterol ring degradation have been described in Mycobacterium smegmatis. However, there are limited data describing the molecular mechanism of the aliphatic side chain degradation by Mycobacterium spp. In this paper, we analyzed the role of the echA19 and fadD19 genes in the degradation process of the side chain of cholesterol and β-sitosterol. We demonstrated that the M. smegmatis fadD19 and echA19 genes are not essential for viability. FadD19 is required in the initial step of the biodegradation of C-24 branched sterol side chains in Mycobacterium smegmatis mc2155, but not those carrying a straight chain like cholesterol. Additionally, we have shown that echA19 is not essential in the degradation of either substrate. This is the first report, to our knowledge, on the molecular characterization of the genes playing an essential role in C-24 branched side chain sterol degradation in M. smegmatis mc2155.
Collapse
Affiliation(s)
- Natalia Wrońska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Anna Brzostek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland.
| | - Rafał Szewczyk
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Adrian Soboń
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| | - Jarosław Dziadek
- Institute of Medical Biology, Polish Academy of Sciences, 106 Lodowa Street, 93-232 Lodz, Poland.
| | - Katarzyna Lisowska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland.
| |
Collapse
|
190
|
Abstract
In this issue of Virulence, Ramon-Garcia et al. demonstrate the requirement of a mycobacterial efflux pump during growth on cholesterol. In this editorial I replace the study in the context of nutrient acquisition by Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Gerald Larrouy-Maumus
- a MRC Center for Molecular Bacteriology and Infection; Department of Life Sciences; Faculty of Natural Sciences; Imperial College London ; London , UK
| |
Collapse
|
191
|
Liu Y, Tan S, Huang L, Abramovitch RB, Rohde KH, Zimmerman MD, Chen C, Dartois V, VanderVen BC, Russell DG. Immune activation of the host cell induces drug tolerance in Mycobacterium tuberculosis both in vitro and in vivo. J Exp Med 2016; 213:809-25. [PMID: 27114608 PMCID: PMC4854729 DOI: 10.1084/jem.20151248] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 03/03/2016] [Indexed: 11/04/2022] Open
Abstract
Successful chemotherapy against Mycobacterium tuberculosis (Mtb) must eradicate the bacterium within the context of its host cell. However, our understanding of the impact of this environment on antimycobacterial drug action remains incomplete. Intriguingly, we find that Mtb in myeloid cells isolated from the lungs of experimentally infected mice exhibit tolerance to both isoniazid and rifampin to a degree proportional to the activation status of the host cells. These data are confirmed by in vitro infections of resting versus activated macrophages where cytokine-mediated activation renders Mtb tolerant to four frontline drugs. Transcriptional analysis of intracellular Mtb exposed to drugs identified a set of genes common to all four drugs. The data imply a causal linkage between a loss of fitness caused by drug action and Mtb's sensitivity to host-derived stresses. Interestingly, the environmental context exerts a more dominant impact on Mtb gene expression than the pressure on the drugs' primary targets. Mtb's stress responses to drugs resemble those mobilized after cytokine activation of the host cell. Although host-derived stresses are antimicrobial in nature, they negatively affect drug efficacy. Together, our findings demonstrate that the macrophage environment dominates Mtb's response to drug pressure and suggest novel routes for future drug discovery programs.
Collapse
Affiliation(s)
- Yancheng Liu
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Shumin Tan
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Lu Huang
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
| | - Kyle H Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827
| | | | - Chao Chen
- Public Health Research Institute, Newark, NJ 07103
| | | | - Brian C VanderVen
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| | - David G Russell
- Department of Microbiology and Immunology, Veterinary Medical Center, Cornell University, Ithaca, NY 14853
| |
Collapse
|
192
|
Abstract
Steroids are ubiquitous in natural environments and are a significant growth substrate for microorganisms. Microbial steroid metabolism is also important for some pathogens and for biotechnical applications. This study delineated the distribution of aerobic steroid catabolism pathways among over 8,000 microorganisms whose genomes are available in the NCBI RefSeq database. Combined analysis of bacterial, archaeal, and fungal genomes with both hidden Markov models and reciprocal BLAST identified 265 putative steroid degraders within only Actinobacteria and Proteobacteria, which mainly originated from soil, eukaryotic host, and aquatic environments. These bacteria include members of 17 genera not previously known to contain steroid degraders. A pathway for cholesterol degradation was conserved in many actinobacterial genera, particularly in members of the Corynebacterineae, and a pathway for cholate degradation was conserved in members of the genus Rhodococcus. A pathway for testosterone and, sometimes, cholate degradation had a patchy distribution among Proteobacteria. The steroid degradation genes tended to occur within large gene clusters. Growth experiments confirmed bioinformatic predictions of steroid metabolism capacity in nine bacterial strains. The results indicate there was a single ancestral 9,10-seco-steroid degradation pathway. Gene duplication, likely in a progenitor of Rhodococcus, later gave rise to a cholate degradation pathway. Proteobacteria and additional Actinobacteria subsequently obtained a cholate degradation pathway via horizontal gene transfer, in some cases facilitated by plasmids. Catabolism of steroids appears to be an important component of the ecological niches of broad groups of Actinobacteria and individual species of Proteobacteria. Steroids are ubiquitous growth substrates for environmental and pathogenic bacteria, and bacterial steroid metabolism has important pharmaceutical and health applications. To date, the genetics and biochemistry of microbial steroid degradation have mainly been studied in a few model bacteria, and the diversity of this metabolism remains largely unexplored. Here, we provide a bioinformatically derived perspective of the taxonomic distribution of aerobic microbial steroid catabolism pathways. We identified several novel steroid-degrading bacterial groups, including ones from marine environments. In several cases, we confirmed bioinformatic predictions of metabolism in cultures. We found that cholesterol and cholate catabolism pathways are highly conserved among certain actinobacterial taxa. We found evidence for horizontal transfer of a pathway to several proteobacterial genera, conferring testosterone and, sometimes, cholate catabolism. The results of this study greatly expand our ecological and evolutionary understanding of microbial steroid metabolism and provide a basis for better exploiting this metabolism for biotechnology.
Collapse
|
193
|
Ho NAT, Dawes SS, Crowe AM, Casabon I, Gao C, Kendall SL, Baker EN, Eltis LD, Lott JS. The Structure of the Transcriptional Repressor KstR in Complex with CoA Thioester Cholesterol Metabolites Sheds Light on the Regulation of Cholesterol Catabolism in Mycobacterium tuberculosis. J Biol Chem 2016; 291:7256-66. [PMID: 26858250 DOI: 10.1074/jbc.m115.707760] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Indexed: 12/19/2022] Open
Abstract
Cholesterol can be a major carbon source forMycobacterium tuberculosisduring infection, both at an early stage in the macrophage phagosome and later within the necrotic granuloma. KstR is a highly conserved TetR family transcriptional repressor that regulates a large set of genes responsible for cholesterol catabolism. Many genes in this regulon, includingkstR, are either induced during infection or are essential for survival ofM. tuberculosis in vivo In this study, we identified two ligands for KstR, both of which are CoA thioester cholesterol metabolites with four intact steroid rings. A metabolite in which one of the rings was cleaved was not a ligand. We confirmed the ligand-protein interactions using intrinsic tryptophan fluorescence and showed that ligand binding strongly inhibited KstR-DNA binding using surface plasmon resonance (IC50for ligand = 25 nm). Crystal structures of the ligand-free form of KstR show variability in the position of the DNA-binding domain. In contrast, structures of KstR·ligand complexes are highly similar to each other and demonstrate a position of the DNA-binding domain that is unfavorable for DNA binding. Comparison of ligand-bound and ligand-free structures identifies residues involved in ligand specificity and reveals a distinctive mechanism by which the ligand-induced conformational change mediates DNA release.
Collapse
Affiliation(s)
- Ngoc Anh Thu Ho
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Stephanie S Dawes
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Adam M Crowe
- the Departments of Biochemistry and Molecular Biology and
| | - Israël Casabon
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand, Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - Chen Gao
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Sharon L Kendall
- the Department of Pathology and Pathogen Biology The Royal Veterinary College, Royal College Street, London NW1 0TU, United Kingdom, and
| | - Edward N Baker
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand
| | - Lindsay D Eltis
- the Departments of Biochemistry and Molecular Biology and Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver V6T 1Z3, Canada
| | - J Shaun Lott
- From the School of Biological Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3a Symonds Street, Auckland 1142, New Zealand,
| |
Collapse
|
194
|
Lovewell RR, Sassetti CM, VanderVen BC. Chewing the fat: lipid metabolism and homeostasis during M. tuberculosis infection. Curr Opin Microbiol 2016; 29:30-6. [DOI: 10.1016/j.mib.2015.10.002] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/15/2015] [Indexed: 02/07/2023]
|
195
|
Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis. PLoS Pathog 2016; 12:e1005351. [PMID: 26751071 PMCID: PMC4709180 DOI: 10.1371/journal.ppat.1005351] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/30/2015] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) mutants lacking rv1411c, which encodes the lipoprotein LprG, and rv1410c, which encodes a putative efflux pump, are dramatically attenuated for growth in mice. Here we show that loss of LprG-Rv1410 in Mtb leads to intracellular triacylglyceride (TAG) accumulation, and overexpression of the locus increases the levels of TAG in the culture medium, demonstrating a role of this locus in TAG transport. LprG binds TAG within a large hydrophobic cleft and is sufficient to transfer TAG from donor to acceptor membranes. Further, LprG-Rv1410 is critical for broadly regulating bacterial growth and metabolism in vitro during carbon restriction and in vivo during infection of mice. The growth defect in mice is due to disrupted bacterial metabolism and occurs independently of key immune regulators. The in vivo essentiality of this locus suggests that this export system and other regulators of metabolism should be considered as targets for novel therapeutics. Of the estimated 2 billion people worldwide currently infected with Mycobacterium tuberculosis (Mtb), surprisingly few go on to develop active tuberculosis (TB) disease. The vast majority, 95 percent, of infected individuals develop latent TB, remaining infected but without disease. Despite its importance in global health, the question of what determines whether an infected individual will develop active or latent TB remains largely unanswered. Changes in how Mtb grows in response to stressors presented by the host environment likely play an important role in this process. In particular, the manifold ways in which Mtb synthesizes, degrades, and transports lipids dictates its growth in an infected host. Here, we show that lipid transport is an important function of two TB genes known to be required for Mtb’s ability to cause disease in the mouse model of infection. Using a variety of genetic and biochemical techniques, we found that the products of these genes prevent the cytosolic accumulation of a lipid associated with non-growing Mtb under the metabolic conditions it encounters during infection. Our results indicate an important role for the metabolism of Mtb in its ability to orchestrate a productive infection and cause disease.
Collapse
|
196
|
Barry CE. The Death of the "Three Ms". ACS Infect Dis 2015; 1:578-9. [PMID: 27623054 DOI: 10.1021/acsinfecdis.5b00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Clifton E. Barry
- 33 North Drive Building, , Bethesda, Maryland 20892, United States
- Tuberculosis Research Section, National Institute of
Allergy and Infectious Disease and Institute for Infectious Disease
and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
197
|
Development of an Intracellular Screen for New Compounds Able To Inhibit Mycobacterium tuberculosis Growth in Human Macrophages. Antimicrob Agents Chemother 2015; 60:640-5. [PMID: 26503663 DOI: 10.1128/aac.01920-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/23/2015] [Indexed: 12/19/2022] Open
Abstract
Here we describe the development and validation of an intracellular high-throughput screening assay for finding new antituberculosis compounds active in human macrophages. The assay consists of a luciferase-based primary identification assay, followed by a green fluorescent protein-based secondary profiling assay. Standard tuberculosis drugs and 158 previously recognized active antimycobacterial compounds were used to evaluate assay robustness. Data show that the assay developed is a short and valuable tool for the discovery of new antimycobacterial compounds.
Collapse
|
198
|
Stubbing LA, Lott JS, Dawes SS, Furkert DP, Brimble MA. Synthesis of DOHNAA, aMycobacterium tuberculosisCholesterol CD Ring Catabolite and FadD3 Substrate. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
199
|
Ang MLT, Murima P, Pethe K. Next-generation antimicrobials: from chemical biology to first-in-class drugs. Arch Pharm Res 2015; 38:1702-17. [PMID: 26259630 PMCID: PMC4567591 DOI: 10.1007/s12272-015-0645-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 07/29/2015] [Indexed: 01/11/2023]
Abstract
The global emergence of multi-drug resistant bacteria invokes an urgent and imperative necessity for the identification of novel antimicrobials. The general lack of success in progressing novel chemical entities from target-based drug screens have prompted calls for radical and innovative approaches for drug discovery. Recent developments in chemical biology and target deconvolution strategies have revived interests in the utilization of whole-cell phenotypic screens and resulted in several success stories for the discovery and development novel drug candidates and target pathways. In this review, we present and discuss recent chemical biology approaches focusing on the discovery of novel targets and new lead molecules for the treatment of human bacterial and protozoan infections.
Collapse
Affiliation(s)
- Michelle Lay Teng Ang
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, 30 Biopolis Street, #B2-15a, Singapore, 138671, Singapore.
| | - Paul Murima
- Global Health Institute, Swiss Federal Institute of Technology in Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kevin Pethe
- Lee Kong Chian School of Medicine and School of Biological Sciences, Nanyang Technological University, 30 Biopolis Street, #B2-15a, Singapore, 138671, Singapore.
| |
Collapse
|
200
|
Maitra A, Danquah CA, Scotti F, Howard TK, Kamil TK, Bhakta S. Tackling tuberculosis: Insights from an international TB Summit in London. Virulence 2015; 6:661-72. [PMID: 26151309 PMCID: PMC4720247 DOI: 10.1080/21505594.2015.1060396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tuberculosis (TB) poses a grave predicament to the world as it is not merely a scientific challenge but a socio-economic burden as well. A prime cause of mortality in human due to an infectious disease; the malady and its cause, Mycobacterium tuberculosis have remained an enigma with many questions that remain unanswered. The ability of the pathogen to survive and switch between varied physiological states necessitates a protracted therapeutic regimen that exerts an excessive strain on low-resource countries. To complicate things further, there has been a significant rise of antimicrobial resistance. Existing control measures, including treatment regimens have remained fairly uniform globally for at least half a century and require reinvention. Overcoming the societal and scientific challenges requires an increase in dialog to identify key regions that need attention and effective partners with whom successful collaborations can be fostered. In this report, we explore the discussions held at the International TB Summit 2015 hosted by EuroSciCon, which served as an excellent platform for researchers to share their recent findings. Ground-breaking results require outreach to affect policy design, governance and control of the disease. Hence, we feel it is important that meetings such as these reach a wider, global audience.
Collapse
Affiliation(s)
- Arundhati Maitra
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Cynthia A Danquah
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Francesca Scotti
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Tracey K Howard
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Tengku K Kamil
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| | - Sanjib Bhakta
- a Mycobacteria Research Laboratory ; Institute of Structural and Molecular Biology; Birkbeck ; University of London , Malet Street, Bloomsbury, London WC1E 7HX , United Kingdom
| |
Collapse
|