151
|
Xiao X, Chen W, Wei ZW, Chu WW, Lu XF, Li B, Chen H, Meng SJ, Hao TF, Wei JT, He YL, Zhang CH. The Anti-Tumor Effect of Nab-Paclitaxel Proven by Patient-Derived Organoids. Onco Targets Ther 2020; 13:6017-6025. [PMID: 32612367 PMCID: PMC7322144 DOI: 10.2147/ott.s237431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 05/27/2020] [Indexed: 12/24/2022] Open
Abstract
Background Nab-paclitaxel has been widely used in treating breast cancer and pancreatic patients for its low toxicity and high efficiency. However, its role in gastric cancer (GC) remains ambiguous. The aim of our study was to test the anti-tumor activity of nab-paclitaxel using GC patient-derived organoids. Methods By using the organoid culture system, we describe the establishment of human gastric cancer organoid lines from surgical samples of three patients with gastric cancer. The consistency of these organoids with original cancer tissues was evaluated by histopathological examination. The characteristics of the cancer organoids were tested using immunofluorescence (IF) staining. Using organoids, the anti-tumor efficiencies of nab-paclitaxel, 5-Fu and epirubicin were compared by CCK8 assay and Annexin V-FITC/PI staining. Results Three organoids were successfully established and passaged. The morphology of the established GC organoids was consistent with original cancer tissues. The IC50 of nab-paclitaxel was 3.68 μmol/L in hGCO1, 2.41 μmol/L in hGCO2 and 2.91 μmol/L in hGCO3, which was significantly lower than those of 5-FU (72.99 μmol/L in hGCO1, 28.32 μmol/L in hGCO2 and 2.91 μmol/L in hGCO3) and epirubicin (25.85μmol/L in hGCO1, 15.15 μmol/L in hGCO2 and 7.60 μmol/L in hGCO3). When each organoid lines were treated with nab-paclitaxel for increasing period of time, the percentage of the apoptotic cells in each organoid increased accordingly. Conclusion Nab-paclitaxel showed strong anti-tumor activity and had the potential to become front-line drug for treating GC patients. Gastric cancer organoid may be a good tool to predict in vivo response to drugs.
Collapse
Affiliation(s)
- Xing Xiao
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China.,Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Wei Chen
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Zhe-Wei Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, People's Republic of China
| | - Wei-Wei Chu
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Xiao-Fang Lu
- Department of Pathology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Bo Li
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China.,Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Hong Chen
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Si-Jun Meng
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Teng-Fei Hao
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Ji-Tao Wei
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China.,Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Yu-Long He
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| | - Chang-Hua Zhang
- Center of Digestive Disease, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, Guangdong 518107, People's Republic of China
| |
Collapse
|
152
|
Hirata K, Hamamoto Y, Ando M, Imamura CK, Yoshimura K, Yamazaki K, Hironaka S, Muro K. Weekly paclitaxel plus ramucirumab versus weekly nab-paclitaxel plus ramucirumab for unresectable advanced or recurrent gastric cancer with peritoneal dissemination refractory to first-line therapy-the P-SELECT trial (WJOG10617G)-a randomised phase II trial by the West Japan Oncology Group. BMC Cancer 2020; 20:548. [PMID: 32532230 PMCID: PMC7291575 DOI: 10.1186/s12885-020-07047-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Ramucirumab (RAM) with weekly paclitaxel (wPTX) is a standard second-line therapy for advanced or recurrent gastric cancer. Nanoparticle albumin-bound paclitaxel (nab-PTX), an albumin-bound form of PTX, was developed to improve the therapeutic index of taxane treatment. However, the ABSOLUTE trial showed the non-inferiority of weekly nab-PTX (w-nab-PTX) to wPTX with respect to overall survival (OS) as second-line therapy for advanced or recurrent gastric cancer, and subgroup analysis of patients with peritoneal dissemination showed favourable OS and progression-free survival (PFS) in the w-nab-PTX arm compared to those in the wPTX arm. This study evaluated whether w-nab-PTX plus RAM is more effective than wPTX plus RAM for patients with peritoneal dissemination. METHODS The P-SELECT trial (WJOG10617G) is a prospective, open-label, multicentre, randomised phase II study evaluating wPTX plus RAM (arm A) versus w-nab-PTX plus RAM (arm B). Key eligibility criteria include the following: 1) histologically proven adenocarcinoma, 2) unresectable or recurrent gastric cancer, 3) peritoneal dissemination, 4) intolerance or refractory to first-line therapy including fluoropyrimidines, and 5) ECOG Performance Status (PS) 0-2. Patients are randomised to either arm at a 1:1 ratio stratified by institution, PS, and severity of ascites. PTX (80 mg/m2; days 1, 8, and 15) and RAM (8 mg/kg; days 1 and 15) are administered every 4 weeks in arm A, while nab-PTX (100 mg/m2; days 1, 8, and 15) instead of PTX is administered in arm B. The primary endpoint is OS, and the main secondary endpoints are PFS, objective response rate, safety, neuropathy-specific quality of life, and biomarkers. To maintain a probability of ≥70% to ensure the hazard ratio for OS in arm B is lower than 0.90, 105 subjects are required. The study was initiated in October 2018 and is being conducted in 58 centres of the West Japan Oncology Group. DISCUSSION The results of this study will determine whether w-nab-PTX plus RAM has the potential to be a preferred therapeutic option for advanced and recurrent gastric cancer with peritoneal dissemination, compared to wPTX plus RAM. TRIAL REGISTRATION This study was prospectively registered in the Japan Registry of Clinical Trials (jRCTs031180022, October 1, 2018).
Collapse
Affiliation(s)
- Kenro Hirata
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Yasuo Hamamoto
- Keio Cancer Center, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Masahiko Ando
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550 Japan
| | - Chiyo K. Imamura
- Department of Clinical Pharmacokinetics and Pharmacodynamics, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582 Japan
| | - Kenichi Yoshimura
- Center for Integrated Medical Research, Hiroshima University Hospital, Hiroshima University, 1–2-3, Kasumi, Minami-ku, Hiroshima, 734-8551 Japan
| | - Kentaro Yamazaki
- Department of Gastrointestinal Oncology, Shizuoka Cancer Center, 1007 Shimonagakubo, Nagaizumi-cho, Sunto-gun, Shizuoka, 411-8777 Japan
| | - Shuichi Hironaka
- Department of Medical Oncology and Hematology, Oita University Faculty of Medicine, 1–1 Idaigaoka, Hasama-machi, Yufu-shi, Oita 879-5593 Japan
| | - Kei Muro
- Department of Clinical Oncology, Aichi Cancer Center Hospital, 1–1, Kanokoden, Chikusa-ku, Nagoya-shi, Aichi Japan
| |
Collapse
|
153
|
Gahoual R, Bolbach G, Ould-Melha I, Clodic G, François YN, Scherman D, Mignet N, Houzé P. Kinetic and structural characterization of therapeutic albumin chemical functionalization using complementary mass spectrometry techniques. J Pharm Biomed Anal 2020; 185:113242. [DOI: 10.1016/j.jpba.2020.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/06/2023]
|
154
|
Gillson J, Ramaswamy Y, Singh G, Gorfe AA, Pavlakis N, Samra J, Mittal A, Sahni S. Small Molecule KRAS Inhibitors: The Future for Targeted Pancreatic Cancer Therapy? Cancers (Basel) 2020; 12:cancers12051341. [PMID: 32456277 PMCID: PMC7281596 DOI: 10.3390/cancers12051341] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest solid tumors in the world. Currently, there are no approved targeted therapies for PDAC. Mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) are known to be a major driver of PDAC progression, but it was considered an undruggable target until recently. Moreover, PDAC also suffers from drug delivery issues due to the highly fibrotic tumor microenvironment. In this perspective, we provide an overview of recent developments in targeting mutant KRAS and strategies to overcome drug delivery issues (e.g., nanoparticle delivery). Overall, we propose that the antitumor effects from novel KRAS inhibitors along with strategies to overcome drug delivery issues could be a new therapeutic way forward in PDAC.
Collapse
Affiliation(s)
- Josef Gillson
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney 2006, Sydney, Australia; (Y.R.); (G.S.)
| | - Gurvinder Singh
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney 2006, Sydney, Australia; (Y.R.); (G.S.)
| | - Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center Houston, Houston, TX 77030, USA;
| | - Nick Pavlakis
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Northern Sydney Cancer Center, Royal North Shore Hospital, St Leonards 2065, NSW, Australia
- Genesis Care, St Leonards and Frenchs Forest 2065, NSW, Australia
| | - Jaswinder Samra
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards 2065, NSW, Australia
| | - Anubhav Mittal
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Upper GI Surgical Unit, Royal North Shore Hospital and North Shore Private Hospital, St Leonards 2065, NSW, Australia
| | - Sumit Sahni
- Northern Clinical School, Faculty of Medicine and Health, University of Sydney, St Leonards 2065, NSW, Australia; (J.G.); (N.P.); (J.S.); (A.M.)
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute of Medical Research, University of Sydney, St Leonards 2065, NSW, Australia
- Australian Pancreatic Centre, St Leonards 2065, NSW, Australia
- Correspondence: ; Tel.: +61-2-9926-7829
| |
Collapse
|
155
|
Suh MS, Patil SM, Kozak D, Pang E, Choi S, Jiang X, Rodriguez JD, Keire DA, Chen K. An NMR Protocol for In Vitro Paclitaxel Release from an Albumin-Bound Nanoparticle Formulation. AAPS PharmSciTech 2020; 21:136. [PMID: 32419122 DOI: 10.1208/s12249-020-01669-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/26/2020] [Indexed: 01/24/2023] Open
Abstract
The paclitaxel protein-bound particles for injectable suspension (marketed under the brand name Abraxane®) contains nanosized complexes of paclitaxel and albumin. The molecular interaction between paclitaxel and albumin within the higher-order nanostructure is analytically challenging to assess, as is any correlation of differences to differences in therapeutic effect. However, because the higher-order nanostructures may affect the paclitaxel release, a suitable in vitro assay to detect potential differences in paclitaxel release between comparator lots and products is desirable. Herein, solution NMR spectroscopy with a T2-filtering technique was developed to detect paclitaxel signal while suppressing albumin signals to follow the released paclitaxel in the NMR tube upon dilution. The non-invasive nature of NMR allows for precise measurement of a full range of dilution-induced drug release percentage from 14 to 92% without any sample extraction. The critical concentration of the drug product (DP) at 50% of release was 0.63 ± 0.04 mg/mL in PBS buffer. In addition, 2D diffusion ordered NMR spectroscopy (DOSY) results revealed that the released paclitaxel experiencing slightly slowed diffusion rates than free paclitaxel, which was attributed to paclitaxel in equilibrium with albumin-bound states. Collectively, the dilution-based NMR method offered an analytical approach to investigate physicochemical attributes of complex injectable products with minimal needed sample preparation and perturbation to nanoparticle formulation.
Collapse
|
156
|
Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic Nanoparticles and Their Targeted Delivery Applications. Molecules 2020; 25:E2193. [PMID: 32397080 PMCID: PMC7248934 DOI: 10.3390/molecules25092193] [Citation(s) in RCA: 428] [Impact Index Per Article: 85.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/24/2020] [Accepted: 04/26/2020] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology offers many advantages in various fields of science. In this regard, nanoparticles are the essential building blocks of nanotechnology. Recent advances in nanotechnology have proven that nanoparticles acquire a great potential in medical applications. Formation of stable interactions with ligands, variability in size and shape, high carrier capacity, and convenience of binding of both hydrophilic and hydrophobic substances make nanoparticles favorable platforms for the target-specific and controlled delivery of micro- and macromolecules in disease therapy. Nanoparticles combined with the therapeutic agents overcome problems associated with conventional therapy; however, some issues like side effects and toxicity are still debated and should be well concerned before their utilization in biological systems. It is therefore important to understand the specific properties of therapeutic nanoparticles and their delivery strategies. Here, we provide an overview on the unique features of nanoparticles in the biological systems. We emphasize on the type of clinically used nanoparticles and their specificity for therapeutic applications, as well as on their current delivery strategies for specific diseases such as cancer, infectious, autoimmune, cardiovascular, neurodegenerative, ocular, and pulmonary diseases. Understanding of the characteristics of nanoparticles and their interactions with the biological environment will enable us to establish novel strategies for the treatment, prevention, and diagnosis in many diseases, particularly untreatable ones.
Collapse
Affiliation(s)
- Abuzer Alp Yetisgin
- Materials Science and Nano-Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey;
| | - Sibel Cetinel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
| | - Merve Zuvin
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
| | - Ali Kosar
- Mechatronics Engineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (M.Z.); (A.K.)
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| | - Ozlem Kutlu
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey;
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
157
|
Fazolin GN, Varca GH, Kadlubowski S, Sowinski S, Lugão AB. The effects of radiation and experimental conditions over papain nanoparticle formation: Towards a new generation synthesis. Radiat Phys Chem Oxf Engl 1993 2020. [DOI: 10.1016/j.radphyschem.2018.08.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
158
|
Zou Q, Chang R, Yan X. Self-Assembling Proteins for Design of Anticancer Nanodrugs. Chem Asian J 2020; 15:1405-1419. [PMID: 32147947 DOI: 10.1002/asia.202000135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/06/2020] [Indexed: 12/13/2022]
Abstract
Inspired by the diverse protein-based structures and materials in organisms, proteins have been expected as promising biological components for constructing nanomaterials toward various applications. In numerous studies protein-based nanomaterials have been constructed with the merits of abundant bioactivity and good biocompatibility. However, self-assembly of proteins as a dominant approach in constructing anticancer nanodrugs has not been reviewed. Here, we provide a comprehensive account of the role of protein self-assembly in fabrication, regulation, and application of anticancer nanodrugs. The supramolecular strategies, building blocks, and molecular interactions of protein self-assembly as well as the properties, functions, and applications of the resulting nanodrugs are discussed. The applications in chemotherapy, radiotherapy, photodynamic therapy, photothermal therapy, gene therapy, and combination therapy are included. Especially, manipulation of molecular interactions for realizing cancer-specific response and cancer theranostics are emphasized. By expounding the impact of molecular interactions on therapeutic activity, rational design of highly efficient protein-based nanodrugs for precision anticancer therapy can be envisioned. Also, the challenges and perspectives in constructing nanodrugs based on protein self-assembly are presented to advance clinical translation of protein-based nanodrugs and next-generation nanomedicine.
Collapse
Affiliation(s)
- Qianli Zou
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Rui Chang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
159
|
Sultan Erkan. Theoretical and Experimental Spectroscopic Properties and Molecular Docking of F8BT p-Type Semiconducting Polymer. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420020314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
160
|
Ali I, Alsehli M, Scotti L, Tullius Scotti M, Tsai ST, Yu RS, Hsieh MF, Chen JC. Progress in Polymeric Nano-Medicines for Theranostic Cancer Treatment. Polymers (Basel) 2020; 12:E598. [PMID: 32155695 PMCID: PMC7182942 DOI: 10.3390/polym12030598] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a life-threatening disease killing millions of people globally. Among various medical treatments, nano-medicines are gaining importance continuously. Many nanocarriers have been developed for treatment, but polymerically-based ones are acquiring importance due to their targeting capabilities, biodegradability, biocompatibility, capacity for drug loading and long blood circulation time. The present article describes progress in polymeric nano-medicines for theranostic cancer treatment, which includes cancer diagnosis and treatment in a single dosage form. The article covers the applications of natural and synthetic polymers in cancer diagnosis and treatment. Efforts were also made to discuss the merits and demerits of such polymers; the status of approved nano-medicines; and future perspectives.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Mosa Alsehli
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
| | - Luciana Scotti
- Cheminformatics Laboratory—Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, João Pessoa 58051-970, PB, Brazil; (L.S.); (M.T.S.)
| | - Marcus Tullius Scotti
- Cheminformatics Laboratory—Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, João Pessoa 58051-970, PB, Brazil; (L.S.); (M.T.S.)
| | - Shang-Ting Tsai
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| | - Ruei-Siang Yu
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, No.2, Zhongzheng 1st Rd., Lingya Dist., Kaohsiung 80284, Taiwan
| | - Ming Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Rd., Hsinchu 300, Taiwan;
| |
Collapse
|
161
|
Vigata M, Meinert C, Pahoff S, Bock N, Hutmacher DW. Gelatin Methacryloyl Hydrogels Control the Localized Delivery of Albumin-Bound Paclitaxel. Polymers (Basel) 2020; 12:E501. [PMID: 32102478 PMCID: PMC7077643 DOI: 10.3390/polym12020501] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/16/2020] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogels are excellent candidates for the sustained local delivery of anticancer drugs, as they possess tunable physicochemical characteristics that enable to control drug release kinetics and potentially tackle the problem of systemic side effects in traditional chemotherapeutic delivery. Yet, current systems often involve complicated manufacturing or covalent bonding processes that are not compatible with regulatory or market reality. Here, we developed a novel gelatin methacryloyl (GelMA)-based drug delivery system (GelMA-DDS) for the sustained local delivery of paclitaxel-based Abraxane®, for the prevention of local breast cancer recurrence following mastectomy. GelMA-DDS readily encapsulated Abraxane® with a maximum of 96% encapsulation efficiency. The mechanical properties of the hydrogel system were not affected by drug loading. Tuning of the physical properties, by varying GelMA concentration, allowed tailoring of GelMA-DDS mesh size, where decreasing the GelMA concentration provided overall more sustained cumulative release (significant differences between 5%, 10%, and 15%) with a maximum of 75% over three months of release, identified to be released by diffusion. Additionally, enzymatic degradation, which more readily mimics the in vivo situation, followed a near zero-order rate, with a total release of the cargo at various rates (2-14 h) depending on GelMA concentration. Finally, the results demonstrated that Abraxane® delivery from the hydrogel system led to a dose-dependent reduction of viability, metabolic activity, and live-cell density of triple-negative breast cancer cells in vitro. The GelMA-DDS provides a novel and simple approach for the sustained local administration of anti-cancer drugs for breast cancer recurrence.
Collapse
Affiliation(s)
- Margaux Vigata
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Christoph Meinert
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Stephen Pahoff
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Nathalie Bock
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- Translational Research Institute, Woolloongabba, QLD 4102, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Dietmar W. Hutmacher
- Institute of Health and Biomedical Innovation (IHBI), Queensland University of Technology (QUT), Kelvin Grove, QLD 4059, Australia; (M.V.); (S.P.)
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Australian Research Council Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
162
|
Wall A, Nicholls K, Caspersen MB, Skrivergaard S, Howard KA, Karu K, Chudasama V, Baker JR. Optimised approach to albumin-drug conjugates using monobromomaleimide-C-2 linkers. Org Biomol Chem 2020; 17:7870-7873. [PMID: 31410415 DOI: 10.1039/c9ob00721k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Conjugation of therapeutics to human serum albumin (HSA) using bromomaleimides represents a promising platform for half-life extension. We show here that the Cys-34 crevice substantially reduces the rate of serum stabilising maleimide hydrolysis in these conjugates, necessitating reagent optimisation. This improved reagent design is applied to the construction of an HSA-paclitaxel conjugate, preventing drug loss during maleimide hydrolysis.
Collapse
Affiliation(s)
- Archie Wall
- Department of Chemistry, UCL, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Karl Nicholls
- Albumedix Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, UK
| | - Mikael B Caspersen
- Albumedix Ltd, Castle Court, 59 Castle Boulevard, Nottingham NG7 1FD, UK
| | - Stig Skrivergaard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kenneth A Howard
- Interdisciplinary Nanoscience Center (iNANO), Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark
| | - Kersti Karu
- Department of Chemistry, UCL, 20 Gordon St, London, WC1H 0AJ, UK.
| | - Vijay Chudasama
- Department of Chemistry, UCL, 20 Gordon St, London, WC1H 0AJ, UK. and Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - James R Baker
- Department of Chemistry, UCL, 20 Gordon St, London, WC1H 0AJ, UK.
| |
Collapse
|
163
|
Affiliation(s)
- Gian L. Russo
- National Research Council, Institute of Food Sciences, Avellino 83100, Italy
| |
Collapse
|
164
|
Zhang F, Zhang Y, Da J, Jia Z, Wu H, Gu K. Downregulation of SPARC Expression Decreases Cell Migration and Invasion Involving Epithelial-Mesenchymal Transition through the p-FAK/p-ERK Pathway in Esophageal Squamous Cell Carcinoma. J Cancer 2020; 11:414-420. [PMID: 31897236 PMCID: PMC6930426 DOI: 10.7150/jca.31427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose: Secreted protein acidic and rich in cysteine (SPARC) is an extracellular glycoprotein overexpressed in various malignancies, including esophageal squamous cell carcinoma (ESCC), and is involved in tumor development and progression. This study was initially designed to investigate the biological roles of SPARC in ESCC cell lines by silencing SPARC expression. Methods: The expression of SPARC was examined in eight human ESCC cell lines. Eca109 and HKESC cell lines with high SPARC expression were selected and transiently transfected with SPARC-targeted small interfering RNAs (siRNAs) and subsequently evaluated its impact on cell proliferation, migration and invasion in vitro, as well as the underlying mechanism. Results: Knockdown of SPARC by the specified siRNAs in Eca109 and HKESC cell lines resulted in dramatically downregulation of SPARC expression, and significantly decreased cell migration and invasion involving epithelial-mesenchymal transition (EMT) in vitro. Moreover, SPARC-targeted siRNA reduced the activation of phosphorylated focal adhesion kinase (p-FAK) and extracellular regulated protein kinase (p-ERK). Furthermore, downregulation of either FAK or SPARC expression with specified siRNAs inhibited the phosphorylation of ERK and inhibited cell migration and invasion. However, decreased SPARC expression showed no impact on cell proliferation, survival or apoptosis of Eca109 and HKESC cells when comparing to control transfected groups. Conclusions: These results demonstrated that downregulation of SPARC could decrease cell migration and invasion involving EMT via the p-FAK/p-ERK pathway that might serve as a novel therapeutic target against ESCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Kangsheng Gu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, P. R. China
| |
Collapse
|
165
|
Zhang DY, Dmello C, Chen L, Arrieta VA, Gonzalez-Buendia E, Kane JR, Magnusson LP, Baran A, James CD, Horbinski C, Carpentier A, Desseaux C, Canney M, Muzzio M, Stupp R, Sonabend AM. Ultrasound-mediated Delivery of Paclitaxel for Glioma: A Comparative Study of Distribution, Toxicity, and Efficacy of Albumin-bound Versus Cremophor Formulations. Clin Cancer Res 2019; 26:477-486. [PMID: 31831565 DOI: 10.1158/1078-0432.ccr-19-2182] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/25/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
PURPOSE Paclitaxel shows little benefit in the treatment of glioma due to poor penetration across the blood-brain barrier (BBB). Low-intensity pulsed ultrasound (LIPU) with microbubble injection transiently disrupts the BBB allowing for improved drug delivery to the brain. We investigated the distribution, toxicity, and efficacy of LIPU delivery of two different formulations of paclitaxel, albumin-bound paclitaxel (ABX) and paclitaxel dissolved in cremophor (CrEL-PTX), in preclinical glioma models. EXPERIMENTAL DESIGN The efficacy and biodistribution of ABX and CrEL-PTX were compared with and without LIPU delivery. Antiglioma activity was evaluated in nude mice bearing intracranial patient-derived glioma xenografts (PDX). Paclitaxel biodistribution was determined in sonicated and nonsonicated nude mice. Sonications were performed using a 1 MHz LIPU device (SonoCloud), and fluorescein was used to confirm and map BBB disruption. Toxicity of LIPU-delivered paclitaxel was assessed through clinical and histologic examination of treated mice. RESULTS Despite similar antiglioma activity in vitro, ABX extended survival over CrEL-PTX and untreated control mice with orthotropic PDX. Ultrasound-mediated BBB disruption enhanced paclitaxel brain concentration by 3- to 5-fold for both formulations and further augmented the therapeutic benefit of ABX. Repeated courses of LIPU-delivered CrEL-PTX and CrEL alone were lethal in 42% and 37.5% of mice, respectively, whereas similar delivery of ABX at an equivalent dose was well tolerated. CONCLUSIONS Ultrasound delivery of paclitaxel across the BBB is a feasible and effective treatment for glioma. ABX is the preferred formulation for further investigation in the clinical setting due to its superior brain penetration and tolerability compared with CrEL-PTX.
Collapse
Affiliation(s)
- Daniel Y Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Crismita Dmello
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Li Chen
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Victor A Arrieta
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,PECEM, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Edgar Gonzalez-Buendia
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - J Robert Kane
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lisa P Magnusson
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Aneta Baran
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - C David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Alexandre Carpentier
- Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpitaux Universitaires La Pitié-Salpêtrière, Service de Neurochirurgie, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Paris, France
| | - Carole Desseaux
- CarThera, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Michael Canney
- CarThera, Institut du Cerveau et de la Moelle épinière (ICM), Paris, France
| | - Miguel Muzzio
- Life Sciences Group, IIT Research Institute, Chicago, Illinois
| | - Roger Stupp
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois.,Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Adam M Sonabend
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois. .,Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| |
Collapse
|
166
|
Du Y, Wang Z, Wang T, He W, Zhou W, Li M, Yao C, Li X. Improved Antitumor Activity of Novel Redox-Responsive Paclitaxel-Encapsulated Liposomes Based on Disulfide Phosphatidylcholine. Mol Pharm 2019; 17:262-273. [PMID: 31747284 DOI: 10.1021/acs.molpharmaceut.9b00988] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The microtubule inhibitor paclitaxel (PTX) is used to treat a wide range of solid tumors. Due to the poor aqueous solubility of PTX, a continuous demand for safe, efficient PTX formulations with improved antitumor activity exists. Here, we report a novel form of redox-sensitive paclitaxel (PTX)-encapsulated liposomes based on the previously developed disulfide phosphatidylcholine (SS-PC). PTX-loaded stealth liposomes (PTX/SS-LP) composed of SS-PC, 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-PEG2000 (DSPE-PEG2000), and cholesterol were prepared using the reverse-phase evaporation method. The characterization of the PTX/SS-LP liposomes using dynamic light scattering and transmission electron microscopy confirmed their uniform particle size and typical unilamellar vesicle structure with an average bilayer thickness of approximately 4 nm. Changes in the size and morphology as well as the rapid release of PTX triggered by the addition of dithiothreitol revealed the redox sensitivity of PTX/SS-LP. Finally, evaluations in MCF-7 and A549 cells in vitro and in BALB/c mice in vivo revealed the improved anticancer efficiency, biodistribution, and safety of PTX/SS-LP compared with those of Taxol and nonredox-sensitive PTX/LP. In conclusion, PTX/SS-LP displays a redox-responsive release of paclitaxel with improved antitumor activity and has great potential as a next-generation stealth liposomal PTX delivery system.
Collapse
Affiliation(s)
- Yawei Du
- Department of Plastic Surgery , Peking Union Medical College Hospital , Beijing 100730 , P. R. China.,School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , P. R. China
| | - Zhi Wang
- Department of Plastic Surgery , Peking Union Medical College Hospital , Beijing 100730 , P. R. China
| | - Tao Wang
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , P. R. China
| | - Wei He
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , P. R. China
| | - Wenya Zhou
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , P. R. China
| | - Man Li
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , P. R. China
| | - Chen Yao
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , P. R. China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering , Southeast University , Nanjing , Jiangsu 211189 , P. R. China
| |
Collapse
|
167
|
Alfranca G, Beola L, Liu Y, Gutiérrez L, Zhang A, Artiga A, Cui D, de la Fuente JM. In vivo comparison of the biodistribution and long-term fate of colloids – gold nanoprisms and nanorods – with minimum surface modification. Nanomedicine (Lond) 2019; 14:3035-3055. [DOI: 10.2217/nnm-2019-0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aim: To study the difference in biodistribution of gold nanoprisms (NPr) and nanorods (NR), PEGylated to ensure colloidal stability. Materials & methods: Surface changes were studied for nanoparticles in different media, while the biodistribution was quantified and imaged in vivo. Results: Upon interaction with the mouse serum, NR showed more abrupt changes in surface properties than NPr. In the in vivo tests, while NPr accumulated similarly in the spleen and liver, NR showed much higher gold presence in the spleen than in liver; together with some accumulation in kidneys, which was nonexistent in NPr. NPr were cleared from the tissues 2 months after administration, while NR were more persistent. Conclusion: The results suggest that the differential biodistribution is caused by size-/shape-dependent interactions with the serum.
Collapse
Affiliation(s)
- Gabriel Alfranca
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Lilianne Beola
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Yanlei Liu
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Lucía Gutiérrez
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Madrid, Spain
- Department of Analytical Chemistry, Instituto Universitario de Nanociencia de Aragón (INA), Universidad de Zaragoza, Edificio I+D, Mariano Esquillor Gómez, 50018 Zaragoza, Spain
| | - Amin Zhang
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Alvaro Artiga
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Madrid, Spain
| | - Daxiang Cui
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
| | - Jesús M de la Fuente
- Department of Instrument Science & Engineering, School of Electronic Information & Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis & Treatment Instrument, Institute of Nano Biomedicine & Engineering, Shanghai Jiao Tong University, 800 Dongchuan Rd, Shanghai 200240, China
- Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC/Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 50018 Madrid, Spain
| |
Collapse
|
168
|
Jeon M, Lin G, Stephen ZR, Kato FL, Zhang M. Paclitaxel‐Loaded Iron Oxide Nanoparticles for Targeted Breast Cancer Therapy. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Mike Jeon
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Guanyou Lin
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Zachary R. Stephen
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Frances L. Kato
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| | - Miqin Zhang
- Department of Materials Science and Engineering University of Washington Seattle WA 98195 USA
| |
Collapse
|
169
|
Madamsetty VS, Mukherjee A, Mukherjee S. Recent Trends of the Bio-Inspired Nanoparticles in Cancer Theranostics. Front Pharmacol 2019; 10:1264. [PMID: 31708785 PMCID: PMC6823240 DOI: 10.3389/fphar.2019.01264] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/30/2019] [Indexed: 12/26/2022] Open
Abstract
In recent years, various nanomaterials have emerged as an exciting tool in cancer theranostic applications due to their multifunctional property and intrinsic molecular property aiding effective diagnosis, imaging, and successful therapy. However, chemically synthesized nanoparticles have several issues related to the cost, toxicity and effectiveness. In this context, bio-inspired nanoparticles (NPs) held edges over conventionally synthesized nanoparticles due to their low cost, easy synthesis and low toxicity. In this present review article, a detailed overview of the cancer theranostics applications of various bio-inspired has been provided. This includes the recent examples of liposomes, lipid nanoparticles, protein nanoparticles, inorganic nanoparticles, and viral nanoparticles. Finally, challenges and the future scopes of these NPs in cancer therapy and diagnostics applications are highlighted.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL, United States
| | - Anubhab Mukherjee
- Department of Formulation, Sealink Pharmaceuticals, Hyderabad, India
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX, United States
| |
Collapse
|
170
|
Meng F, Sun Y, Lee RJ, Wang G, Zheng X, Zhang H, Fu Y, Yan G, Wang Y, Deng W, Parks E, Kim BYS, Yang Z, Jiang W, Teng L. Folate Receptor-Targeted Albumin Nanoparticles Based on Microfluidic Technology to Deliver Cabazitaxel. Cancers (Basel) 2019; 11:E1571. [PMID: 31623082 PMCID: PMC6827099 DOI: 10.3390/cancers11101571] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 01/07/2023] Open
Abstract
Microfluidic technology (MF) has improved the formulation of nanoparticles (NPs) by achieving uniform particle size distribution, controllable particle size, and consistency. Moreover, because liquid mixing can be precisely controlled in the pores of the microfluidic chip, maintaining high mixing efficiency, MF exerts higher of NP encapsulation efficiency (EE) than conventional methods. MF-NPs-cabazitaxel (CTX) particles (MF-NPs-CTX) were first prepared by encapsulating CTX according to MF. Folate (FA)- Polyethylene glycol (PEG)-NPs-CTX particles (FA-PEG-NPs-CTX) were formulated by connecting FA to MF-NPs-CTX to endow NPs with targeted delivery capability. Accordingly, the mean particle size of FA-PEG-NPs-CTX increased by approximately 25 nm, as compared with MF-NPs-CTX. Upon morphological observation of FA-PEG-NPs-CTX and MF-NPs-CTX by transmission electron microscopy (TEM), all NPs were spherical and particle size distribution was uniform. Moreover, the increased delivery efficiency of CTX in vitro and its strong tumor inhibition in vivo indicated that FA-PEG-NPs-CTX had a powerful tumor-suppressive effect both in vitro and in vivo. In vivo imaging and pharmacokinetic data confirmed that FA-PEG-NPs-CTX had good drug delivery efficiency. Taken together, FA-PEG-NPs-CTX particles prepared using MF showed high efficient and targeted drug delivery and may have a considerable driving effect on the clinical application of targeting albumin NPs.
Collapse
Affiliation(s)
- Fanchao Meng
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Yating Sun
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Robert J Lee
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
- Department of Pharmaceutics, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA.
| | - Guiyuan Wang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Xiaolong Zheng
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Huan Zhang
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| | - Yige Fu
- Department of Pharmaceutical Sciences, St. John's University, Queens, NY 11439, USA.
| | - Guojun Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China.
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Weiye Deng
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Emily Parks
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhaogang Yang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| | - Lesheng Teng
- School of Life Sciences, Jilin University, Changchun, Jilin 130012, China.
| |
Collapse
|
171
|
Park CR, Jo JH, Song MG, Park JY, Kim YH, Youn H, Paek SH, Chung JK, Jeong JM, Lee YS, Kang KW. Secreted protein acidic and rich in cysteine mediates active targeting of human serum albumin in U87MG xenograft mouse models. Am J Cancer Res 2019; 9:7447-7457. [PMID: 31695779 PMCID: PMC6831305 DOI: 10.7150/thno.34883] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 09/04/2019] [Indexed: 12/30/2022] Open
Abstract
Human serum albumin (HSA) is the most abundant plasma protein. The main reason for using HSA as a versatile tool for drug delivery is based on its ability to accumulate in tumors. However, the mechanism of albumin accumulation in tumors is not yet clear. Many researchers using HSA as a drug-carrier have focused on the passive tumor targeting by enhanced permeability and retention (EPR) effect, while other investigators proposed that albumin binding proteins mediate albumin accumulation in tumors. We investigated whether HSA accumulation in tumors is mediated by the EPR effect or by secreted protein acidic and rich in cysteine (SPARC), which is known to be an albumin-binding protein. Methods: To investigate the role of SPARC on HSA accumulation in tumors, we compared HSA uptake in U87MG glioblastoma cells with different SPARC expression. U87MG cells generally express high levels of SPARC and were, therefore, used as SPARC-rich cells. SPARC-less U87MG (U87MG-shSPARC) cells were established by viral-shSPARC transduction. We detected cellular uptake of fluorescence-labeled HSA by confocal microscopy in U87MG and U87MG-shSPARC cells. To demonstrate the mechanism of HSA accumulation in tumors, we injected FNR648-labeled HSA and FITC-labeled dextran in U87MG and U87MG-shSPARC tumor-bearing mice and observed their micro-distribution in tumor tissues. Results: HSA was internalized in cells by binding with SPARC in vitro. HSA accumulation in U87MG glioma was associated with SPARC expression in vivo. FITC-dextran was distributed in U87MG tumors in the vicinity of blood vessels. The distribution of HSA, on the other hand, was observed in the regions remote from blood vessels of U87MG tumor tissues but not in U87MG-shSPARC tumor tissues. Conclusion: Our results demonstrate that the tumor-distribution of HSA is affected not only by the EPR-effect but also by SPARC expression. SPARC enhances HSA accumulation in U87MG glioma and mediates active targeting of HSA in tumors.
Collapse
|
172
|
Huang J, Wu B, Zhou Z, Hu S, Xu H, Piao Y, Zheng H, Tang J, Liu X, Shen Y. Drug-binding albumins forming stabilized nanoparticles for efficient anticancer therapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102058. [DOI: 10.1016/j.nano.2019.102058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 05/14/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022]
|
173
|
Sikder S, Gote V, Alshamrani M, Sicotte J, Pal D. Long-term delivery of protein and peptide therapeutics for cancer therapies. Expert Opin Drug Deliv 2019; 16:1113-1131. [DOI: 10.1080/17425247.2019.1662785] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sadia Sikder
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Vrinda Gote
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Meshal Alshamrani
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Jeff Sicotte
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| | - Dhananjay Pal
- Division of Pharmacological & Pharmaceutical Sciences, University of Missouri Kansas City, Kansas, MO, USA
| |
Collapse
|
174
|
Chung HJ, Kim HJ, Hong ST. Tumor-specific delivery of a paclitaxel-loading HSA-haemin nanoparticle for cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 23:102089. [PMID: 31487550 DOI: 10.1016/j.nano.2019.102089] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 06/27/2019] [Accepted: 08/24/2019] [Indexed: 12/19/2022]
Abstract
A cancer-targeted chemotherapy could potentially eradicate cancers if anticancer drugs are delivered precisely to the cancers. Although various types of nanoparticles have been developed for cancer-specific delivery of anticancer drugs, the drug delivery capabilities of these nanoparticles were not specific enough to eradicate cancer. Here, we developed a targeting-enhancing nanoparticle of paclitaxel, in which paclitaxel was encapsulated with a human serum albumin-haemin complex through non-covalent bonding. The average diameter of TENPA was approximately 140 nm with a zeta potential of +29 mV. TENPA maintained its structural integrity and stability without forming protein coronas in the blood for optimal passive targeting. These characteristics of TENPA resulted in paclitaxel accumulation that was 4.1 times greater than that of Abraxane, an albumin-bound paclitaxel, in cancer tissue. The dramatic improvement in cancer targeting of TENPA led to reduced systemic toxicity of paclitaxel and eradication of end-stage cancer in a xenografted mouse experiment.
Collapse
Affiliation(s)
- Hea-Jong Chung
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, South Korea
| | - Hyeon-Jin Kim
- JINIS BDRD institute, JINIS Biopharmaceuticals Co., Wanju, Chonbuk, South Korea.
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, Chonbuk, South Korea.
| |
Collapse
|
175
|
Untch M, Jackisch C, Schneeweiss A, Schmatloch S, Aktas B, Denkert C, Schem C, Wiebringhaus H, Kümmel S, Warm M, Fasching PA, Just M, Hanusch C, Hackmann J, Blohmer JU, Rhiem K, Schmitt WD, Furlanetto J, Gerber B, Huober J, Nekljudova V, von Minckwitz G, Loibl S. NAB-Paclitaxel Improves Disease-Free Survival in Early Breast Cancer: GBG 69–GeparSepto. J Clin Oncol 2019; 37:2226-2234. [DOI: 10.1200/jco.18.01842] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The GeparSepto trial demonstrated that weekly nanoparticle albumin-bound (NAB)–paclitaxel significantly improves the pathologic complete remission rate compared with weekly solvent-based (sb) paclitaxel followed by epirubicin plus cyclophosphamide as neoadjuvant treatment in patients with primary breast cancer (BC). Here, we report data on long-term outcomes. METHODS Patients with histologically confirmed primary BC were randomly assigned in a 1:1 ratio to 12 times weekly NAB-paclitaxel 150 mg/m2 (after study amendment, 125 mg/m2) or weekly sb-paclitaxel 80 mg/m2 followed in both arms by four times epirubicin 90 mg/m2 plus cyclophosphamide 600 mg/m2 every 3 weeks. Patients with human epidermal growth factor receptor 2 (HER2)-positive BC received dual antibody treatment with trastuzumab (8 mg/kg loading dose followed by 6 mg/kg every 3 weeks) and pertuzumab (840 mg loading dose followed by 420 mg every 3 weeks) concurrently to chemotherapy and continued for 1 year. RESULTS A total of 1,206 patients started treatment, 606 with NAB-paclitaxel and 600 with sb-paclitaxel. After a median follow-up of 49.6 months (range, 0.5 to 64.0 months), 243 invasive disease–free survival (iDFS) events were reported (143 in the sb-paclitaxel and 100 in the NAB-paclitaxel arm). At 4 years, overall patients treated with NAB-paclitaxel had a significantly better iDFS compared with sb-paclitaxel (84.0% v 76.3%; hazard ratio, 0.66; 95% CI, 0.51 to 0.86; P = .002), whereas overall survival did not significantly differ between the two treatment arms (89.7% v 87.2%, respectively; hazard ratio, 0.82; 95% CI, 0.59 to 1.16; P = .260). Long-term follow-up of the treatment-related peripheral sensory neuropathy (PSN) showed a significant decrease of the median time to resolve PSN after NAB-paclitaxel 125 mg/m2 compared with NAB-paclitaxel 150 mg/m2. CONCLUSION The significantly higher pathologic complete response rate with NAB-paclitaxel translated into a significantly improved iDFS in patients with early BC as compared with sb-paclitaxel. PSN improved much faster under NAB-paclitaxel 125 mg/m2 compared with NAB-paclitaxel 150 mg/m2.
Collapse
Affiliation(s)
| | | | | | | | - Bahriye Aktas
- Klinik und Poliklinik für Frauenheilkunde Leipzig, Leipzig, Germany
| | | | | | | | - Sherko Kümmel
- Interdisziplinäres Brustzentrum an den Kliniken Essen-Mitte, Essen, Germany
| | - Mathias Warm
- Brustzentrum im Krankenhaus Köln-Holweide, Cologne, Germany
| | | | - Marianne Just
- Onkologische Schwerpunktpraxis Bielefeld, Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Lu C, Li X, Liang X, Zhang X, Yin T, Gou J, He H, Zhang Y, Tang X. Liver Targeting Albumin-Coated Silybin-Phospholipid Particles Prepared by Nab™ Technology for Improving Treatment Effect of Acute Liver Damage in Intravenous Administration. AAPS PharmSciTech 2019; 20:293. [PMID: 31432294 DOI: 10.1208/s12249-019-1504-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/05/2019] [Indexed: 01/29/2023] Open
Abstract
In this study, a novel human serum albumin nanoparticle loading silybin-phospholipid complex (SLNPs) was developed for liver targeting after intravenous administration. The preparation of the drug delivery system consisted of two steps; initially, a silybin-phospholipid complex (SLC) was produced to improve the lipophilicity of SLB to then achieve enhanced encapsulation of SLB in albumin nanoparticles. FT-IR and XRD analysis confirmed the successful formation of SLC. The complex ratio of SLC in the first step was 99.6%. The encapsulation efficiency and drug loading of SLNPs in the second step were 96.2% and 5.6%, respectively. SLNPs were spherical and well-dispersed, with a zeta potential of approximately - 10 mV, and a mean particle size around 200 nm. An in vivo tissue distribution experiment and a pharmacodynamic experiment showed that, compared with SLB solution, SLNPs had an improved SLB accumulation in the liver. The hepatoprotective effect of SLNPs on CCl4-induced acute liver damage was evaluated. CCl4-damaged mice showed an increased enzymatic activity of ALT and AST; however, enzyme levels returned to near-normal levels in high-dose SLNP-treated mice. As SLNPs combine the enhanced oil solubility of SLC and the passive targeting of albumin nanoparticles, they possess great potential for the treatment of acute liver damage.
Collapse
|
177
|
Hu H, Wang B, Lai C, Xu X, Zhen Z, Zhou H, Xu D. iRGD-paclitaxel conjugate nanoparticles for targeted paclitaxel delivery. Drug Dev Res 2019; 80:1080-1088. [PMID: 31411346 DOI: 10.1002/ddr.21589] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/10/2019] [Accepted: 07/31/2019] [Indexed: 12/13/2022]
Abstract
Paclitaxel (PTX) is a chemotherapeutic agent which shows antitumor activities against a broad spectrum of cancers. Yet, the current formulation of PTX used in clinic may cause a number of adverse reactions, which significantly limit its application. To obtain better clinical use of PTX, we report, for the first time, iRGD-PTX conjugate nanoparticles (NPs) for targeted PTX delivery. iRGD-PTX conjugate was synthesized from thiolated iRGD and 6-maleimidocaproic acid-PTX through Michael addition reaction. iRGD-PTX NPs with hydrodynamic diameter of ~110 nm were self-assembled from iRGD-PTX conjugate in deionized water. The as-prepared iRGD-PTX NPs exhibit good stability in phosphate buffered saline (PBS) buffer and fetal bovine serum containing PBS buffer. iRGD-PTX NPs exhibit sustained drug release behaviors. The in vitro studies show that iRGD-PTX NPs can be internalized by 4T1 cells by integrin αV-mediated endocytosis, resulting in better in vitro antitumor activity as compared to free PTX. The in vivo studies demonstrate that iRGD-PTX NPs exhibit enhanced tumor accumulation. The iRGD-PTX NPs reported here represent a novel PTX nanoplatform to achieve targeted PTX delivery.
Collapse
Affiliation(s)
- Hang Hu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Bin Wang
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Chao Lai
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Xiangjian Xu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Zihan Zhen
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| | - Huan Zhou
- Center for Health Science and Engineering, Hebei University of Technology, Tianjin, People's Republic of China.,School of Mechanical Engineering, Jiangsu University of Technology, Changzhou, Jiangsu, People's Republic of China
| | - Defeng Xu
- School of Pharmaceutical Engineering and Life Science, Changzhou University, Changzhou, People's Republic of China
| |
Collapse
|
178
|
Fang C, Yang L, Zeng G, Huang R, Fang W, Chen Y, Guan J, Li P, Huang X, Lin L. Treatment of syncope in tongue cancer with palliative chemotherapy in the intensive care unit: A case report. Medicine (Baltimore) 2019; 98:e16998. [PMID: 31464952 PMCID: PMC6736034 DOI: 10.1097/md.0000000000016998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
RATIONALE Syncope caused by head and neck cancer (HNC) is rare. However, syncope caused by tongue cancer (TC) is even rarer. In TC, syncope is caused by tumor-mediated compression of the carotid sinus and stimulation of the glossopharyngeal nerve. PATIENT CONCERNS In this study, we report the case of a 48-year-old male patient who was diagnosed with advanced TC and bilateral cervical lymph node metastasis. On the third day of admission, the patient experienced recurrent syncope with hypotension and bradycardia. DIAGNOSES The patient was diagnosed with a well-differentiated squamous cell carcinoma of the tongue along with massive cervical lymph node metastasis and carotid sinus syndrome. INTERVENTIONS Initially, symptomatic treatment of syncope boosted the blood pressure and increased the heart rate. Thereafter, a temporary pacemaker was implanted. Finally, chemotherapy was used to control the tumor and relieve syncope. OUTCOMES After chemotherapy, the tongue ulcers and cervical lymph node reduced in size; syncope did not recur. LESSONS This case shows that chemotherapy may be a valid treatment option in patients with cancer-related syncope; however, the choice of chemotherapeutic drugs is critical. Intensive care provides life support to patients and creates opportunities for further treatment.
Collapse
Affiliation(s)
- Chongkai Fang
- First Clinical Medical College, Guangzhou University of Chinese Medicine
| | - Liting Yang
- First Clinical Medical College, Guangzhou University of Chinese Medicine
| | - Guangbi Zeng
- First Clinical Medical College, Guangzhou University of Chinese Medicine
| | - Ruilin Huang
- First Clinical Medical College, Guangzhou University of Chinese Medicine
| | - Wei Fang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University
| | - Yao Chen
- Cancer center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jieshan Guan
- Cancer center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peng Li
- Cancer center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xuewu Huang
- Cancer center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lizhu Lin
- Cancer center, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
179
|
Wong CW, Zhilenkov AV, Kraevaya OA, Mischenko DV, Troshin PA, Hsu SH. Toward Understanding the Antitumor Effects of Water-Soluble Fullerene Derivatives on Lung Cancer Cells: Apoptosis or Autophagy Pathways? J Med Chem 2019; 62:7111-7125. [DOI: 10.1021/acs.jmedchem.9b00652] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Alexander V. Zhilenkov
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Olga A. Kraevaya
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow 143026, Russian Federation
| | - Denis V. Mischenko
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
| | - Pavel A. Troshin
- Institute for Problems of Chemical Physics of Russian Academy of Sciences, Chernogolovka 142432, Russian Federation
- Skolkovo Institute of Science and Technology, Moscow 143026, Russian Federation
| | - Shan-hui Hsu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli 35053, Taiwan
| |
Collapse
|
180
|
Mehta A, Dalle Vedove E, Isert L, Merkel OM. Targeting KRAS Mutant Lung Cancer Cells with siRNA-Loaded Bovine Serum Albumin Nanoparticles. Pharm Res 2019; 36:133. [PMID: 31289919 DOI: 10.1007/s11095-019-2665-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/25/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE KRAS is the most frequently mutated gene in human cancers. Despite its direct involvement in malignancy and intensive effort, direct inhibition of KRAS via pharmacological inhibitors has been challenging. RNAi induced knockdown using siRNAs against mutant KRAS alleles offers a promising tool for selective therapeutic silencing in KRAS-mutant lung cancers. However, the major bottleneck for clinical translation is the lack of efficient biocompatible siRNA carrier systems. METHODS Bovine serum albumin (BSA) nanoparticles were prepared by desolvation method to deliver siRNA targeting the KRAS G12S mutation. The BSA nanoparticles were characterized with respect to their size, zeta potential, encapsulation efficiency and nucleic acid release. Nanoparticle uptake, cellular distribution of nucleic acids, cytotoxicity and gene knock down to interfere with cancer hallmarks, uncontrolled proliferation and migration, were evaluated in KRAS G12S mutant A459 cells, a lung adenocarcinoma cell line. RESULTS BSA nanoparticles loaded with siRNA resulted in nanoparticles smaller than 200 nm in diameter and negative zeta potentials, displaying optimal characteristics for in vivo application. Encapsulating and protecting the siRNA payload well, the nanoparticles enabled transport to A549 cells in vitro, could evade endosomal entrapment and mediated significant sequence-specific KRAS knockdown, resulting in reduced cell growth of siRNA transfected lung cancer cells. CONCLUSIONS BSA nanoparticles loaded with mutant specific siRNA are a promising therapeutic approach for KRAS-mutant cancers.
Collapse
Affiliation(s)
- Aditi Mehta
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| | - Elena Dalle Vedove
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Lorenz Isert
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Olivia M Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
181
|
Chowdhury MR, Moshikur RM, Wakabayashi R, Tahara Y, Kamiya N, Moniruzzaman M, Goto M. In vivo biocompatibility, pharmacokinetics, antitumor efficacy, and hypersensitivity evaluation of ionic liquid-mediated paclitaxel formulations. Int J Pharm 2019; 565:219-226. [DOI: 10.1016/j.ijpharm.2019.05.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/22/2019] [Accepted: 05/08/2019] [Indexed: 01/26/2023]
|
182
|
Li J, Li W, Dai X, Zhong D, Ding Y, Chen X. Bioequivalence of paclitaxel protein-bound particles in patients with breast cancer: determining total and unbound paclitaxel in plasma by rapid equilibrium dialysis and liquid chromatography-tandem mass spectrometry. Drug Des Devel Ther 2019; 13:1739-1749. [PMID: 31190752 PMCID: PMC6535670 DOI: 10.2147/dddt.s200679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/23/2019] [Indexed: 12/16/2022] Open
Abstract
Background and objective: Paclitaxel protein-bound particles for injectable suspension (nab-paclitaxel) showed many advantages in safety, effectiveness, and convenience. Different from conventional formulations, the bioequivalence evaluation of nab-paclitaxel formulations requires to determine the total amount of paclitaxel in plasma and the unbound paclitaxel to reflect their in vivo disposition. This study aimed to develop an analytical method to quantify the total and unbound paclitaxel in plasma and evaluate the bioequivalence of two formulations of nab-paclitaxel in patients with breast cancer. Materials and methods: An open-label, randomized, two-period crossover study was completed among 24 Chinese patients with breast cancer. The patients were randomized to receive either the test formulation on cycle 1 day 1 and after 21 days in cycle 2 day 1 by the reference formulation (Abraxane®), or vice versa. Rapid equilibrium dialysis was adopted to separate the unbound paclitaxel in human plasma. Total and unbound paclitaxel concentrations were measured by the validated liquid chromatography-tandem mass spectrometry methods over the range of 5.00-15,000 and 0.200-200 ng/mL, respectively. The bioequivalence of the test formulation to the reference formulation was assessed using the Food and Drug Administration and European Medicines Agency guidelines. Results: All the 90% confidence intervals (CIs) of the geometric mean ratios fell within the predetermined acceptance range. The 90% CIs for the area under the concentration-time curve (AUC) from 0 h to 72 h (AUC0-t), AUC from time zero to infinity (AUC0-∞), and peak plasma concentrations (Cmax) for total paclitaxel were 92.03%-98.05%, 91.98%-99.37%, and 91.37%-99.36%, respectively. The 90% CIs of AUC0-t, AUC0-∞, and Cmax for unbound paclitaxel were 86.77%-97.88%, 86.81%-97.88%, and 87.70%-98.86%, respectively. Conclusion: Bioequivalence between the two nab-paclitaxel formulations was confirmed for total and unbound paclitaxel at the studied dose regimen.
Collapse
Affiliation(s)
- Junling Li
- College of Sciences, Shanghai University, Shanghai, People’s Republic of China
| | - Wei Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Xiaojian Dai
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Dafang Zhong
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Yaping Ding
- College of Sciences, Shanghai University, Shanghai, People’s Republic of China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
183
|
Choudhury H, Gorain B, Pandey M, Khurana RK, Kesharwani P. Strategizing biodegradable polymeric nanoparticles to cross the biological barriers for cancer targeting. Int J Pharm 2019; 565:509-522. [PMID: 31102804 DOI: 10.1016/j.ijpharm.2019.05.042] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023]
Abstract
The biological barriers in the body have been fabricated by nature to protect the body from foreign molecules. The successful delivery of drugs is limited and being challenged by these biological barriers including the gastrointestinal tract, brain, skin, lungs, nose, mouth mucosa, and immune system. In this review article, we envisage to understand the functionalities of these barriers and revealing various drug-loaded biodegradable polymeric nanoparticles to overcome these barriers and deliver the entrapped drugs to cancer targeted site. Apart from it, tissue-specific multifunctional ligands, linkers and transporters when employed imparts an effective active delivery strategy by receptor-mediated transcytosis. Together, these strategies enable to deliver various drugs across the biological membranes for the treatment of solid tumors and malignant cancer.
Collapse
Affiliation(s)
- Hira Choudhury
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Science, Taylor's University, Subang Jaya, 47500 Selangor, Malaysia.
| | - Manisha Pandey
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Prashant Kesharwani
- School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India.
| |
Collapse
|
184
|
Serna N, Sánchez JM, Unzueta U, Sánchez-García L, Sánchez-Chardi A, Mangues R, Vázquez E, Villaverde A. Recruiting potent membrane penetrability in tumor cell-targeted protein-only nanoparticles. NANOTECHNOLOGY 2019; 30:115101. [PMID: 30561375 DOI: 10.1088/1361-6528/aaf959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The membrane pore-forming activities of the antimicrobial peptide GWH1 have been evaluated in combination with the CXCR4-binding properties of the peptide T22, in self-assembling protein nanoparticles with high clinical potential. The resulting materials, of 25 nm in size and with regular morphologies, show a dramatically improved cell penetrability into CXCR4+ cells (more than 10-fold) and enhanced endosomal escape (the lysosomal degradation dropping from 90% to 50%), when compared with equivalent protein nanoparticles lacking GWH1. These data reveal that GWH1 retains its potent membrane activity in form of nanostructured protein complexes. On the other hand, the specificity of T22 in the CXCR4 receptor binding is subsequently minimized but, unexpectedly, not abolished by the presence of the antimicrobial peptide. The functional combination T22-GWH1 results in 30% of the nanoparticles entering cells via CXCR4 while also exploiting pore-based uptake. Such functional materials are capable to selectively deliver highly potent cytotoxic drugs upon chemical conjugation, promoting CXCR4-dependent cell death. These data support the further development of GWH1-empowered cell-targeted proteins as nanoscale drug carriers for precision medicines. This is a very promising approach to overcome lysosomal degradation of protein nanostructured materials with therapeutic value.
Collapse
Affiliation(s)
- Naroa Serna
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain. Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, E-08193 Barcelona, Spain. CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Bellaterra, E-08193 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Zhao Z, Ukidve A, Krishnan V, Mitragotri S. Effect of physicochemical and surface properties on in vivo fate of drug nanocarriers. Adv Drug Deliv Rev 2019; 143:3-21. [PMID: 30639257 DOI: 10.1016/j.addr.2019.01.002] [Citation(s) in RCA: 267] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 12/07/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023]
Abstract
Over the years, a plethora of materials - natural and synthetic - have been engineered at a nanoscopic level and explored for drug delivery. Nanocarriers based on such materials could improve the payload's pharmacokinetics and achieve the desired pharmacological response at the target tissue. Despite the development of rationally designed drug nanocarriers, only a handful of such formulations have been successfully translated into the clinic. The physicochemical properties (size, shape, surface chemistry, porosity, elasticity, and many others) of these nanocarriers influence its biological identity, which in presence of biological barriers in vivo, could significantly modulate the therapeutic index of its cargo and alter the desired outcome. Further, complexities associated with developing effective drug nanocarriers have led to conflicting views of its safety, permeation of biological barriers and cellular uptake. Here, in this review, we emphasize the effect of physicochemical properties of nanocarriers on their interactions with the biological milieu. The review will discuss in depth, how modulating the physicochemical properties would influence a drug nanocarrier's behavior in vivo and the mechanisms underlying these effects. The goal of this review is to summarize the design considerations based on these properties and to provide a conceptual template for achieving improved therapeutic efficacy with enhanced patient compliance.
Collapse
|
186
|
De Luca R, Profita G, Cicero G. Nab-paclitaxel in pretreated metastatic breast cancer: evaluation of activity, safety, and quality of life. Onco Targets Ther 2019; 12:1621-1627. [PMID: 30881017 PMCID: PMC6396668 DOI: 10.2147/ott.s191519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Objective Metastatic breast cancer (MBC) is an incurable disease; the treatment of this disease prolongs survival, improving the quality of life (QoL) with a balance between efficacy and toxicity of the treatment. In recent years, treatment with nab-paclitaxel has improved the already known antitumor activity of conventional paclitaxel, in terms of increased efficacy and better tolerability. The aim of this study was to evaluate nab-paclitaxel in Italian patients with MBC. Methods We conducted a retrospective analysis of 90 patients with histologically confirmed diagnosis of MBC. To evaluate the efficacy of nab-paclitaxel, overall survival (OS), progression-free survival (PFS), and overall response rate were the primary endpoints, whereas carbohydrate antigen 15.3 (Ca15.3) reduction, QoL, and tolerability were secondary endpoints. Results The median OS was 10.4 months, the median PFS was 6.8 months. A considerable difference Ca15.3 before and after treatment was observed. Descriptive and regression analyses were done to examine the associations between Ca15.3 response and OS, demonstrating good correlation, revealing that Ca15.3 reduction is an important predictor of OS. Conclusion Nab-paclitaxel is an effective and well-tolerated treatment of patients affected by MBC. The drug showed an improved tolerability profile. With all the limitations of the observational nature of our results, nab-paclitaxel has proven to be an effective and safe therapeutic option in patients with MBC.
Collapse
Affiliation(s)
- Rossella De Luca
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy,
| | - Giuseppe Profita
- Department of Surgical, Oncological and Oral Sciences, Section of Surgical, University of Palermo, Palermo, Italy
| | - Giuseppe Cicero
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy,
| |
Collapse
|
187
|
Jain D, Aronow W. Cardiotoxicity of cancer chemotherapy in clinical practice. Hosp Pract (1995) 2019; 47:6-15. [PMID: 30270693 DOI: 10.1080/21548331.2018.1530831] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/27/2018] [Indexed: 12/25/2022]
Abstract
Several anticancer agents are associated with significant cardiotoxicity. The list of cardiotoxic cancer therapeutic agents includes anthracyclines, trastuzumab, alkylating agents, antimetabolites, which have been in use for decades; and recently introduced anticancer therapies such as tyrosine kinase inhibitors, angiogenesis inhibitors, checkpoint inhibitors and proteasome inhibitors. Cardiac imaging using echocardiography, nuclear imaging techniques, and magnetic resonance (MR) imaging can help in the early detection of chemotherapy-related cardiotoxicity. This can prevent the morbidity and mortality resulting from the cardiotoxicity of these agents. Further research is needed to improve our understanding of the underlying mechanism of their cardiotoxicity and to develop newer preventive and therapeutic strategies for chemotherapy related cardiotoxicity.
Collapse
Affiliation(s)
- Diwakar Jain
- a Section of Cardiovascular Medicine, Department of Medicine , Westchester Medical Center, New York Medical College , Valhalla , NY , USA
| | - Wilbert Aronow
- a Section of Cardiovascular Medicine, Department of Medicine , Westchester Medical Center, New York Medical College , Valhalla , NY , USA
| |
Collapse
|
188
|
Wang HH, Fu ZG, Li W, Li YX, Zhao LS, Wen L, Zhang JJ, Wen N. The synthesis and application of nano doxorubicin- indocyanine green matrix metalloproteinase-responsive hydrogel in chemophototherapy for head and neck squamous cell carcinoma. Int J Nanomedicine 2019; 14:623-638. [PMID: 30697046 PMCID: PMC6339648 DOI: 10.2147/ijn.s191069] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies, with high rates of mortality and morbidity worldwide. Owing to the special anatomical location of this tumor, an effective, minimally invasive treatment with low systemic toxicity is highly desirable. Hydrogels have shown great potential for tumor-targeting therapy, with excellent performance. However, there have been few reports on co-loading photosensitizers and chemotherapeutic drugs into hydrogels. In this study, we synthesized a nano doxorubicin-indocyanine green matrix metalloproteinase (MMP)-responsive hydrogel (denoted as NDIMH), combining chemotherapy and phototherapy, to achieve superior antitumor efficacy. Methods First, NDIMH was synthesized and characterized by scanning electron microscopy and drug-release assays. Second, the photosensitivity properties and antitumor efficiency of this drug delivery system were studied in vivo and in vitro. Last, the imaging and biodistribution of NDIMH were monitored using the Maestro EX in vivo imaging system. Results The nanodrugs loaded into the smart hydrogel exhibited uniform size distribution, excellent size stability, and a sustained release in the presence of MMP-2. NDIMH showed ideal photosensitivity characteristics under light. NDIMH with 808 nm near-infrared (NIR) irradiation effectively inhibited the viability, invasion, and metastasis of SCC-15 in vitro. After intratumoral injection of NDIMH with 808 nm NIR illumination, the hydrogels exhibited favorable synergistic antitumor efficacy and acceptable biosafety. Additionally, fluorescence imaging showed that NDIMH could significantly improve the retention of nanodrugs at the tumor site. Conclusion The intratumoral injection of NDIMH with 808 nm NIR irradiation could be a promising chemophototherapy alternative for HNSCC.
Collapse
Affiliation(s)
- Huan-Huan Wang
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China,
| | - Zhi-Guang Fu
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China,
| | - Wei Li
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China,
| | - Yun-Xia Li
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China,
| | - Li-Sheng Zhao
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China,
| | - Li Wen
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China,
| | - Jian-Jun Zhang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China,
| | - Ning Wen
- Department of Stomatology, Chinese PLA General Hospital, Beijing 100853, China,
| |
Collapse
|
189
|
Xiong K, Wu J, Liu Y, Wu N, Ruan J. Drug Carrier-Oriented Polygeline for Preparing Novel Polygeline-Bound Paclitaxel Nanoparticles. J Pharm Sci 2019; 108:2012-2021. [PMID: 30639741 DOI: 10.1016/j.xphs.2019.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 12/15/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
Abstract
Polygeline is a highly promising drug carrier-oriented material for important applications in pharmacy field due to its low-cost and unique properties similar to albumin. In this study, polygeline-bound paclitaxel nanoparticles (Npb-PTXS) were fabricated through a combination of low-pressure emulsification and high-pressure homogenization. The effects of a series of production parameters on mean particle size, particle size distribution and drug loading of Npb-PTXS were systematically evaluated. The characteristics of Npb-PTXS, such as surface morphology, physical status of paclitaxel (PTX) in Npb-PTXS, redispersibility of Npb-PTXS in purified water and bioavailability in vivo were also investigated. It is revealed that the optimal preparation conditions included an aqueous phase pH value of about 6.5, protein mass concentration of 0.33%, with mass ratio of PTX to protein of 30%, high pressure of 1200 bar, high-pressure passes of 25 times and low-pressure emulsifying passes of 20 times. Obtained Npb-PTXS shows good resolubility compared to commercially available Abraxane®, containing round or oval shaped particles with mean particle size of around 188.3 nm, polydispersity index of 0.163 and zeta potential of -31.1 mV. PTX in Npb-PTX is amorphous, and its content is approximately 12.04%. Encapsulation efficiency of Npb-PTXS reaches 81.2%. Moreover, in vivo pharmacokinetic studies showed that the intravenous relative bioavailability of Npb-PTXS to Abraxane was 83.89%.
Collapse
Affiliation(s)
- Kaibin Xiong
- School of Life Science, Wuchang University of Technology, Wuhan 430223, PR China
| | - Jianyang Wu
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Jiujiang Research, Institute and Fujian Provincial Key Laboratory for Soft Functional Materials Research, Xiamen University, Xiamen 361005, PR China.
| | - Yang Liu
- School of Life Science, Wuchang University of Technology, Wuhan 430223, PR China
| | - Na Wu
- School of Life Science, Wuchang University of Technology, Wuhan 430223, PR China
| | - Jinlan Ruan
- School of Life Science, Wuchang University of Technology, Wuhan 430223, PR China.
| |
Collapse
|
190
|
Nasrollahzadeh M, Sajjadi M, Sajadi SM, Issaabadi Z. Green Nanotechnology. INTERFACE SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1016/b978-0-12-813586-0.00005-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
191
|
Rossignoli F, Spano C, Grisendi G, Foppiani EM, Golinelli G, Mastrolia I, Bestagno M, Candini O, Petrachi T, Recchia A, Miselli F, Rovesti G, Orsi G, Veronesi E, Medici G, Petocchi B, Pinelli M, Horwitz EM, Conte P, Dominici M. MSC-Delivered Soluble TRAIL and Paclitaxel as Novel Combinatory Treatment for Pancreatic Adenocarcinoma. Theranostics 2019; 9:436-448. [PMID: 30809285 PMCID: PMC6376176 DOI: 10.7150/thno.27576] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in western countries with more than 100,000 new cases per year in Europe and a mortality rate higher than 90%. In this scenario, advanced therapies based on gene therapies are emerging, thanks to a better understanding of tumour architecture and cancer cell alterations. We have demonstrated the efficacy of an innovative approach for pancreatic cancer based on mesenchymal stromal cells (MSC) genetically engineered to produce TNF-related Apoptosis Inducing Ligand (TRAIL). Here we investigated the combination of this MSC-based approach with the administration of a paclitaxel (PTX)-based chemotherapy to improve the potential of the treatment, also accounting for a possible resistance onset. Methods: Starting from the BXPC3 cell line, we generated and profiled a TRAIL-resistant model of pancreatic cancer, testing the impact of the combined treatment in vitro with specific cytotoxicity and metabolic assays. We then challenged the rationale in a subcutaneous mouse model of pancreatic cancer, assessing its effect on tumour size accounting stromal and parenchymal organization. Results: PTX was able to restore pancreatic cancer sensitivity to MSC-delivered TRAIL by reverting its pro-survival gene expression profile. The two compounds cooperate both in vitro and in vivo and the combined treatment resulted in an improved cytotoxicity on tumour cells. Conclusion: In summary, this study uncovers the potential of a combinatory approach between MSC-delivered TRAIL and PTX, supporting the combination of cell-based products and conventional chemotherapeutics as a tool to improve the efficacy of the treatments, also addressing possible mechanisms of resistance.
Collapse
|
192
|
Yogi V, Mandloi V, Singh O, Ahirwar M, Yadav S, Ghori HU. A comparative study of nab-paclitaxel versus cisplatin concurrent chemoradiotherapy in locally advanced cervical cancer. CLINICAL CANCER INVESTIGATION JOURNAL 2019. [DOI: 10.4103/ccij.ccij_59_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
193
|
Severino P, da Silva CF, Andrade LN, de Lima Oliveira D, Campos J, Souto EB. Alginate Nanoparticles for Drug Delivery and Targeting. Curr Pharm Des 2019; 25:1312-1334. [PMID: 31465282 DOI: 10.2174/1381612825666190425163424] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 04/15/2019] [Indexed: 12/31/2022]
Abstract
Nanotechnology refers to the control, manipulation, study and manufacture of structures and devices at the nanometer size range. The small size, customized surface, improved solubility and multi-functionality of nanoparticles will continue to create new biomedical applications, as nanoparticles allow to dominate stability, solubility and bioavailability, as well controlled release of drugs. The type of a nanoparticle, and its related chemical, physical and morphological properties influence its interaction with living cells, as well as determine the route of clearance and possible toxic effects. This field requires cross-disciplinary research and gives opportunities to design and develop multifunctional devices, which allow the diagnosis and treatment of devastating diseases. Over the past few decades, biodegradable polymers have been studied for the fabrication of drug delivery systems. There was extensive development of biodegradable polymeric nanoparticles for drug delivery and tissue engineering, in view of their applications in controlling the release of drugs, stabilizing labile molecules from degradation and site-specific drug targeting. The primary aim is to reduce dosing frequency and prolong the therapeutic outcomes. For this purpose, inert excipients should be selected, being biopolymers, e.g. sodium alginate, commonly used in controlled drug delivery. Nanoparticles composed of alginate (known as anionic polysaccharide widely distributed in the cell walls of brown algae which, when in contact with water, forms a viscous gum) have emerged as one of the most extensively characterized biomaterials used for drug delivery and targeting a set of administration routes. Their advantages include not only the versatile physicochemical properties, which allow chemical modifications for site-specific targeting but also their biocompatibility and biodegradation profiles, as well as mucoadhesiveness. Furthermore, mechanical strength, gelation, and cell affinity can be modulated by combining alginate nanoparticles with other polymers, surface tailoring using specific targeting moieties and by chemical or physical cross-linking. However, for every physicochemical modification in the macromolecule/ nanoparticles, a new toxicological profile may be obtained. In this paper, the different aspects related to the use of alginate nanoparticles for drug delivery and targeting have been revised, as well as how their toxicological profile will determine the therapeutic outcome of the drug delivery system.
Collapse
Affiliation(s)
- Patricia Severino
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Classius F da Silva
- Universidade Federal de Sao Paulo, Instituto de Ciências Ambientais, Quimicas e Farmaceuticas, Departamento de Engenharia Quimica, Rua Sao Nicolau, 210, Diadema - SP, CEP 09.913-030, Brazil
| | - Luciana N Andrade
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Daniele de Lima Oliveira
- Universidade Tiradentes (Unit), Av. Murilo Dantas, 300, Farolandia, Aracaju-SE, CEP 49.032-490, Brazil
- Instituto de Tecnologia e Pesquisa, Laboratório de Nanotecnologia e Nanomedicina (LNMed) Av. Murilo Dantas, 300, Aracaju - SE, CEP 49.032-490, Brazil
| | - Joana Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Polo das Ciencias da Saude, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
194
|
Lugert S, Unterweger H, Mühlberger M, Janko C, Draack S, Ludwig F, Eberbeck D, Alexiou C, Friedrich RP. Cellular effects of paclitaxel-loaded iron oxide nanoparticles on breast cancer using different 2D and 3D cell culture models. Int J Nanomedicine 2018; 14:161-180. [PMID: 30613144 PMCID: PMC6306067 DOI: 10.2147/ijn.s187886] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Magnetic drug targeting (MDT) is an effective alternative for common drug applications, which reduces the systemic drug load and maximizes the effect of, eg, chemotherapeutics at the site of interest. After the conjugation of a magnetic carrier to a chemotherapeutic agent, the intra-arterial injection into a tumor-afferent artery in the presence of an external magnetic field ensures the accumulation of the drug within the tumor tissue. MATERIALS AND METHODS In this study, we used superparamagnetic iron oxide nanoparticles (SPIONs) coated with lauric acid and human serum albumin as carriers for paclitaxel (SPIONLA-HSA-Ptx). To investigate whether this particle system is suitable for a potential treatment of cancer, we investigated its physicochemical properties by dynamic light scattering, ζ potential measurements, isoelectric point titration, infrared spectroscopy, drug release quantification, and magnetic susceptibility measurements. The cytotoxic effects were evaluated using extensive toxicological methods using flow cytometry, IncuCyte® live-cell imaging, and growth experiments on different human breast cancer cell lines in two- and three-dimensional cell cultures. CONCLUSION The data showed that next to their high magnetization capability, SPIONLA-HSA-Ptx have similar cytostatic effects on human breast cancer cells as pure paclitaxel, suggesting their usage for future MDT-based cancer therapy.
Collapse
Affiliation(s)
- Stephan Lugert
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany,
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Harald Unterweger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany,
| | - Marina Mühlberger
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany,
| | - Christina Janko
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany,
| | - Sebastian Draack
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig, Germany
| | - Frank Ludwig
- Institut für Elektrische Messtechnik und Grundlagen der Elektrotechnik, TU Braunschweig, Braunschweig, Germany
| | - Dietmar Eberbeck
- Physikalisch-Technische Bundesanstalt Braunschweig und Berlin, Berlin, Germany
| | - Christoph Alexiou
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany,
| | - Ralf P Friedrich
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung-Professorship, Universitätsklinikum Erlangen, Erlangen, Germany,
| |
Collapse
|
195
|
Watson S, de la Fouchardière C, Kim S, Cohen R, Bachet JB, Tournigand C, Ferraz JM, Lefevre M, Colin D, Svrcek M, Meurisse A, Louvet C. Oxaliplatin, 5-Fluorouracil and Nab-paclitaxel as perioperative regimen in patients with resectable gastric adenocarcinoma: A GERCOR phase II study (FOXAGAST). Eur J Cancer 2018; 107:46-52. [PMID: 30529902 DOI: 10.1016/j.ejca.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/23/2018] [Accepted: 11/01/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND 5-Fluorouracil (5-FU) and platinum-based perioperative chemotherapy is standard of care for resectable gastric adenocarcinoma (RGA). Nanoparticle albumin-bound (Nab-) paclitaxel is active in advanced disease but has never been evaluated in the perioperative setting. The objective was to evaluate the efficacy of Nab-paclitaxel in combination with FOLFOX for RGA patients. METHODS We performed a non-randomised, open-label, phase II study. RGA patients were assigned to receive neoadjuvant Nab-paclitaxel (150 mg/m2) and FOLFOX q2w for six cycles. Six additional post-operative cycles were kept at the investigator's discretion. The primary end-point was complete pathological response (tumour regression grade [TRG1]) rate. According to Fleming design, 49 patients were required to test H0 (10% TRG1) and H1 (25% TRG1). To reject H0, TRG1 had to be achieved in 8 patients. RESULTS Forty-nine patients were included. Median number of neoadjuvant chemotherapy cycles was 6 (range, 3-6). Median dose intensity for Nab-paclitaxel, oxaliplatin and 5-FU was 96% (38-103%), 97% (47-103%) and 99% (50-112%), respectively. Surgery could not be performed in 5 (10.2%) patients. Tumour resection was R0 for 42 of 44 (95.5%) patients. Pathological review classified tumours as TRG1 to TRG5 for 8 (16.3%), 11 (22.5%), 4 (8.2%), 18 (36.7%) and 3 (6.1%) patients, respectively. Grade 3 or worse toxicities during neoadjuvant chemotherapy were non-febrile neutropenia (20.4%), nausea (8.2%), diarrhoea (8.2%) and neuropathy (6.1%). Of 44 patients, 14 (31.8%) experienced surgery-related complications and three (6.8%) died of surgical complications. CONCLUSION This regimen shows promising activity. Toxicity is manageable but a meaningful rate of surgical complications was observed. This strategy deserves investigation in phase III studies.
Collapse
Affiliation(s)
- S Watson
- Medical Oncology Department, Institut Mutualiste Montsouris, Paris, France
| | | | - S Kim
- Medical Oncology Department, Centre Hospitalier Régional Universitaire, Besançon, France
| | - R Cohen
- Sorbonne Université, Medical Oncology Department, AP-HP, hôpital Saint-Antoine, F-75012 Paris, France
| | - J B Bachet
- Sorbonne Universités, UPMC, Gastro-enterology Department, Hôpital de la Pitié-Salpêtrière, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - C Tournigand
- Medical Oncology Department, Hôpital Henri Mondor, Assistance Publique - Hôpitaux de Paris, UPEC, Créteil, France
| | - J M Ferraz
- Surgical Department, Institut Mutualiste Montsouris, Paris, France
| | - M Lefevre
- Pathology Department, Institut Mutualiste Montsouris, Paris, France
| | - D Colin
- Pathology Department, Institut Mutualiste Montsouris, Paris, France
| | - M Svrcek
- Sorbonne Université, UPMC, Pathology Department, Hôpital Saint-Antoine, Assistance Publique - Hôpitaux de Paris, Paris, France
| | - A Meurisse
- Methodological and Quality of Life in Oncology Unit, Centre Hospitalier Régional Universitaire, Besançon, France
| | - C Louvet
- Medical Oncology Department, Institut Mutualiste Montsouris, Paris, France.
| |
Collapse
|
196
|
Wang Y, Zheng K, Xuan G, Huang M, Xue J. Novel pH-sensitive zinc phthalocyanine assembled with albumin for tumor targeting and treatment. Int J Nanomedicine 2018; 13:7681-7695. [PMID: 30538452 PMCID: PMC6251464 DOI: 10.2147/ijn.s181199] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Purpose Zinc phthalocyanine (ZnPc) has been applied widely in photodynamic therapy (PDT) with high ROS-production capacity and intense absorption in the near-infrared region. However, weak tumor targeting and the aggregation tendency of ZnPc seriously affect the therapeutic effect of PDT. Therefore, overcoming the aggregation of ZnPc and enhancing its antitumor effect were the purpose of this study. Methods In this study, we first found that the aggregation behaviors of the photosensitizer ZnPc(TAP)4, ZnPc substituted by tertiary amine groups, were regulated finely by pH and that ZnPc(TAP)4 could be disaggregated gradually as the pH descended. ZnPc(TAP)4 and human serum albumin (HSA) molecules were assembled into nanoparticles (NPs) for tumor targeting. Meanwhile, the chemotherapy drug paclitaxel (Ptx) was loaded into HSA NPs together with ZnPc(TAP)4 for dual antitumor effects. HSA NPs loading both ZnPc(TAP)4 and Ptx (NP–ZnPc[TAP]4–Ptx) were characterized by particle size and in vitro release. Cytotoxicity, subcellular localization, tumor targeting, and anticancer effect in vivo were investigated respectively. Results We found that NP–ZnPc(TAP)4–Ptx had good stability with qualifying particle size. Interestingly, ZnPc(TAP)4 was released from the NPs and the photodynamic activity enhanced in the acidic environment of tumor. In addition, NP–ZnPc(TAP)4–Ptx had prominent cytotoxicity and time-dependent subcellular localization characteristics. Through a three-dimensional animal imaging system, NP–ZnPc(TAP)4–Ptx showed much-enhanced tumor targeting in tumor-bearing mice. Above all, NP–ZnPc(TAP)4–Ptx was demonstrated to have the synergistic anticancer effect of PDT and chemotherapy. Conclusion NP–ZnPc(TAP)4–Ptx had enhanced tumor targeting for the pH-sensitive property of ZnPc(TAP)4 and the transport function of HSA. NP–ZnPc(TAP)4–Ptx possessed a double-anticancer effect through the combination of ZnPc(TAP)4 and Ptx. This drug-delivery system may also be used to carry chemotherapy drugs other than Ptx for improving antitumor effects.
Collapse
Affiliation(s)
- Ying Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China, .,Key Lab of Inorganic Synthetic and Applied Chemistry, State Key Lab Base of Eco-Chemical Engineering, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China
| | - Ke Zheng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China,
| | - Guangshan Xuan
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, China,
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| | - Jinping Xue
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, China
| |
Collapse
|
197
|
Adrianzen Herrera D, Ashai N, Perez-Soler R, Cheng H. Nanoparticle albumin bound-paclitaxel for treatment of advanced non-small cell lung cancer: an evaluation of the clinical evidence. Expert Opin Pharmacother 2018; 20:95-102. [DOI: 10.1080/14656566.2018.1546290] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Diego Adrianzen Herrera
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Nadia Ashai
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Roman Perez-Soler
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| | - Haiying Cheng
- Department of Medical Oncology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA
| |
Collapse
|
198
|
Muniswamy VJ, Raval N, Gondaliya P, Tambe V, Kalia K, Tekade RK. 'Dendrimer-Cationized-Albumin' encrusted polymeric nanoparticle improves BBB penetration and anticancer activity of doxorubicin. Int J Pharm 2018; 555:77-99. [PMID: 30448308 DOI: 10.1016/j.ijpharm.2018.11.035] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 11/24/2022]
Abstract
Glioblastoma is one of the most rapaciously growing cancer within the brain with an average lifespan of 12-15 months (5-year survival <3-4%). Doxorubicin (DOX) is clinically utilized as a first line drug in the treatment of Glioblastoma, however, its restricted entry into the brain via the blood-brain barrier (BBB), limited blood-tumor barrier (BTB) permeability, hemotoxicity, short mean half-life of 1-3 hr as well as rapid body clearance results in tremendously diminished bioactivity in glioblastoma. Dendrimer-Cationized-Albumin (dCatAlb) was synthesized following the carboxyl activation technique and the synthesized biopolymer was characterized by FTIR, MALDI-TOF and zeta potential. The prepared dCatAlb was encrusted on DOX-loaded PLGA nanoparticle core to develop a novel hybrid DOX nanoformulation (dCatAlb-pDNP; particle size: 156 ± 10.85 nm; ƺ: -10.0 ± 2.1 mV surface charge). The formulated dCatAlb-pDNP showed a unique pH-dependent DOX release profile, diminished hemolytic toxicity, higher drug uptake (<0.001) and cytotoxicity in U87MG glioblastoma cells, increase levels of caspase-3 gene in U87MG cells (approximately 5.35-fold higher) inferred that anticancer activity is primarily taking place through caspase-mediated apoptosis mechanism. The developed novel DOX nanoformulation also showed superior trans-epithelial permeation transport across monolayer bEnd.3 cells as well as notable biocompatibility and stability. The dCatAlb-pDNP showed enhanced BBB permeation efficacy as confirmed permeation assay in bEnd.3 cell-based model. The long-term formulation stability of developed nanoformulations was studied by storing them at 5 ± 2 °C and 30 ± 2 °C/60 ± 5% Relative Humidity (% RH) in the stability chamber for a period of 60 days (ICHQ1A (R2)). The outcomes of this investigation evidently indicate that dCatAlb-pDNP offers superior anticancer activity of DOX in glioblastoma cells while significantly improving its BBB permeation. The developed formulation is a biocompatible, safer and commercially viable approach to delivering DOX selectively in sustained manner glioblastoma while countering its hemolytic toxic effect, which is a major ongoing issue with conventional DOX injectable available in the market today.
Collapse
Affiliation(s)
- Vimalkumar Johnson Muniswamy
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Nidhi Raval
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Piyush Gondaliya
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Vishakha Tambe
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) - Ahmedabad, Opposite Air Force Station Palaj, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
199
|
Jain A, Singh SK, Arya SK, Kundu SC, Kapoor S. Protein Nanoparticles: Promising Platforms for Drug Delivery Applications. ACS Biomater Sci Eng 2018; 4:3939-3961. [DOI: 10.1021/acsbiomaterials.8b01098] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Annish Jain
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Sumit K. Singh
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Shailendra K. Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
| | - Subhas C. Kundu
- 3B’s Research Group, I3Bs − Biomaterials, Biodegradables and Biomimetics, University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Sonia Kapoor
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh 160 014, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida 201 313, Uttar Pradesh, India
| |
Collapse
|
200
|
Nanda B, Manjappa AS, Chuttani K, Balasinor NH, Mishra AK, Ramachandra Murthy RS. Acylated chitosan anchored paclitaxel loaded liposomes: Pharmacokinetic and biodistribution study in Ehrlich ascites tumor bearing mice. Int J Biol Macromol 2018; 122:367-379. [PMID: 30342146 DOI: 10.1016/j.ijbiomac.2018.10.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 10/04/2018] [Accepted: 10/14/2018] [Indexed: 10/28/2022]
Abstract
Acylated chitosan (Myristoyl and Octanoyl) coated paclitaxel-loaded liposomal formulation was developed with an aim to overcome the cremophor EL related toxicities. They were evaluated for drug entrapment, in vitro drug release, and cytotoxicity and cell uptake behavior using A549 cells. The 99mTc radio-labeled formulations were also evaluated in vivo in Ehrlich Ascites Tumor (EAT) bearing mice for biodistribution and tumor uptake. The mean particle size of both coated and uncoated liposomal formulations was found to be in the range of 180-200 nm with high drug entrapment efficiency (>90% in case of uncoated liposomes and 80 ± 5% in case of coated liposomes). The uncoated liposomes displayed negative zeta potential (-10.5 ± 4.9 mV) whereas coated liposomes displayed positive zeta potential in the range of +21 to +27 mV. Slower drug release was observed in case of liposomes coated with acylated chitosans as compared to uncoated and native chitosan coated liposomes. All liposomal formulations were found less cytotoxic than paclitaxel injection (Celtax™, Celon Labs, India). In vitro cell uptake and intracellular distribution studies confirmed the cytosolic delivery of uncoated and coated liposomes. The myristoyl chitosan coated liposomal system (LMC) exhibited improved pharmacokinetic, biodistribution and tumor uptake characteristics over other formulations. These obtained results confirmed the potential application of acylated chitosn coated liposomal delivery systems (LMC) in tumor targeting of paclitaxel and other drugs.
Collapse
Affiliation(s)
- Biswarup Nanda
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India.
| | - A S Manjappa
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India; Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist: Kolhapur, Maharashtra, India
| | - Krishna Chuttani
- Division of Radiopharmaceuticals & Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - N H Balasinor
- Neuroendocrinology Department, National Institute for Research in Reproductive Health (ICMR), Mumbai, India
| | - Anil K Mishra
- Division of Radiopharmaceuticals & Radiation Biology, Institute of Nuclear Medicine and Allied Sciences, DRDO, New Delhi, India
| | - Rayasa S Ramachandra Murthy
- TIFAC Centre of Relevance and Excellence in NDDS, Pharmacy Department, Faculty of Technology & Engineering, The M.S. University of Baroda, Vadodara, India; Nanomedicine Centre, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|