151
|
Prieto-Pérez R, Ochoa D, Cabaleiro T, Román M, Sánchez-Rojas SD, Talegón M, Abad-Santos F. Evaluation of the relationship between polymorphisms inCYP2C8andCYP2C9and the pharmacokinetics of celecoxib. J Clin Pharmacol 2013; 53:1261-7. [DOI: 10.1002/jcph.169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/17/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Rocío Prieto-Pérez
- Service of Clinical Pharmacology; Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Dolores Ochoa
- Service of Clinical Pharmacology; Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Teresa Cabaleiro
- Service of Clinical Pharmacology; Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Manuel Román
- Service of Clinical Pharmacology; Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Sergio Daniel Sánchez-Rojas
- Service of Clinical Pharmacology; Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - María Talegón
- Service of Clinical Pharmacology; Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
| | - Francisco Abad-Santos
- Service of Clinical Pharmacology; Hospital Universitario de la Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria Princesa (IP); Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
152
|
Dallegri F, Ottonello L. Are there any differences among non-steroidal anti-inflammatory drugs? Focus on nimesulide. Clin Drug Investig 2013; 27 Suppl 1:15-22. [PMID: 23392786 DOI: 10.2165/00044011-200727001-00004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Although the efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) as anti-inflammatory, analgesic and antipyretic agents is well established, there is still an open question as to whether their different pharmacokinetic and pharmacodynamic characteristics do have a different clinical impact in treating rheumatology patients. The mechanism related to the anti-inflammatory activity of these drugs is mainly related to the inhibition of the cyclo-oxygenase (COX)-2 isoform, whereas inhibition of COX-1 is associated with the side effects of these drugs. However, some NSAIDs exert their anti-inflammatory and analgesic action by additional mechanisms. The NSAID nimesulide, along with its preferential activity on COX-2 and a short half-life that correlates with a rapid onset of analgesic action, acts also through a variety of COX-independent pathways that contributes to its potent antiinflammatory and analgesic activity. The pathways affected by nimesulide include inhibition of tumour necrosis factor alpha (TNF-α) release, histamine release, reactive oxygen species production and chondrocyte death. Furthermore, the use of nimesulide has been associated with reduced levels of matrix metalloproteases and other biomarkers of joint destruction, suggesting it may have a protective effect against disease progression. Due to its multifactorial mechanism as well as to rapid onset of the analgesic action, nimesulide represents an appealing therapeutic choice for the treatment of rheumatology patients.
Collapse
Affiliation(s)
- Franco Dallegri
- First Clinic of Internal Medicine, University of Genova Medical School, Genova, Italy.
| | | |
Collapse
|
153
|
Kataoka M, Yano K, Hamatsu Y, Masaoka Y, Sakuma S, Yamashita S. Assessment of absorption potential of poorly water-soluble drugs by using the dissolution/permeation system. Eur J Pharm Biopharm 2013; 85:1317-24. [PMID: 23811221 DOI: 10.1016/j.ejpb.2013.06.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 06/10/2013] [Accepted: 06/14/2013] [Indexed: 02/02/2023]
Abstract
This study aims to assess the absorption potential of oral absorption of poorly water-soluble drugs by using the dissolution/permeation system (D/P system). The D/P system can be used to perform analysis of drug permeation under dissolution process and can predict the fraction of absorbed dose in humans. When celecoxib at 1/100 of a clinical dose was applied to the D/P system, percentage of dose dissolved and permeated significantly decreased with an increase in the applied amount, resulting in the oral absorption being predicted to be 22-55%. Whereas similar dissolution and permeation profiles of montelukast sodium were observed, estimated absorption (69-85%) was slightly affected. Zafirlukast absorption (33-36%) was not significantly affected by the dose, although zafirlukast did not show complete dissolution. The relationship between clinical dose and predicted oral absorption of drugs corresponded well to clinical observations. The limiting step of the oral absorption of celecoxib and montelukast sodium was solubility, while that of zafirlukast was dissolution rate. However, due to high permeability of montelukast, oral absorption was not affected by dose. Therefore, the D/P system is a useful tool to assess the absorption potential of poorly water-soluble drugs for oral use.
Collapse
Affiliation(s)
- Makoto Kataoka
- Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
154
|
Nasr M. Influence of microcrystal formulation on in vivo absorption of celecoxib in rats. AAPS PharmSciTech 2013; 14:719-26. [PMID: 23543607 DOI: 10.1208/s12249-013-9957-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 03/14/2013] [Indexed: 11/30/2022] Open
Abstract
The objective of this study was to prepare celecoxib microcrystals using different stabilizers in order to evaluate the influence of microcrystal formulation on the in vitro dissolution rate and in vivo absorption after oral administration of celecoxib in rats. Three celecoxib microcrystals (MC1, MC2, and MC3) were prepared using solvent change method. Microcrystals were evaluated for morphology, particle size, crystallinity, solubility, in vitro dissolution, and in vivo absorption in rats. Scanning electron microscopy images showed distinct differences in the morphologies and dimensions of various celecoxib microcrystals. The particle size of all microcrystals was significantly (P<0.05) reduced relative to plain celecoxib. The DSC and XRD results revealed that MC1 retain drug crystallinity relative to control crystals, MC2, and MC3. All microcrystals showed marked increase in the drug dissolution parameters particularly MC1 that exhibited a prompt drug release and significantly (P<0.05) higher values of % dissolution efficiency as compared to control celecoxib and the other microcrystals. The influence of microcrystals on the in vivo absorption of celecoxib was studied in rats in comparison to plain drug. The results of in vivo absorption study in rats indicated that MC1 significantly improved the rate and extent of celecoxib absorption than plain celecoxib. The mean relative bioavailability of MC1 formulation to plain celecoxib was 157.55±20.18%. In conclusion, microcrystal formulation of celecoxib results not only in an enhancement of dissolution parameters but also improves the bioavailability of celecoxib in rats.
Collapse
|
155
|
Farooq F, Abadía-Molina F, MacKenzie D, Hadwen J, Shamim F, O'Reilly S, Holcik M, MacKenzie A. Celecoxib increases SMN and survival in a severe spinal muscular atrophy mouse model via p38 pathway activation. Hum Mol Genet 2013; 22:3415-24. [PMID: 23656793 DOI: 10.1093/hmg/ddt191] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The loss of functional Survival Motor Neuron (SMN) protein due to mutations or deletion in the SMN1 gene causes autosomal recessive neurodegenerative spinal muscle atrophy (SMA). A potential treatment strategy for SMA is to upregulate the amount of SMN protein originating from the highly homologous SMN2 gene, compensating in part for the absence of the functional SMN1 gene. We have previously shown that in vitro activation of the p38 pathway stabilizes and increases SMN mRNA levels leading to increased SMN protein levels. In this report, we explore the impact of the p38 activating, FDA-approved, blood brain barrier permeating compound celecoxib on SMN levels in vitro and in a mouse model of SMA. We demonstrate a significant induction of SMN protein levels in human and mouse neuronal cells upon treatment with celecoxib. We show that activation of the p38 pathway by low doses celecoxib increases SMN protein in a HuR protein-dependent manner. Furthermore, celecoxib treatment induces SMN expression in brain and spinal cord samples of wild-type mice in vivo. Critically, celecoxib treatment increased SMN levels, improved motor function and enhanced survival in a severe SMA mouse model. Our results identify low dose celecoxib as a potential new member of the SMA therapeutic armamentarium.
Collapse
|
156
|
Choose analgesics carefully in patients with hepatic impairment to avoid under-treatment of pain. DRUGS & THERAPY PERSPECTIVES 2013. [DOI: 10.1007/s40267-012-0008-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
157
|
Almaawi A, Wang HT, Ciobanu O, Rowas SAL, Rampersad S, Antoniou J, Mwale F. Effect of acetaminophen and nonsteroidal anti-inflammatory drugs on gene expression of mesenchymal stem cells. Tissue Eng Part A 2013; 19:1039-46. [PMID: 23231452 DOI: 10.1089/ten.tea.2012.0129] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have previously shown that mesenchymal stem cells (MSCs) from patients with osteoarthritis (OA) constitutively express type X collagen, a marker of late-stage chondrocyte hypertrophy, osteogenic marker genes, including alkaline phosphatase (ALP), bone sialoprotein (BSP), and osteocalcin (OC), and chondrogenesis marker gene aggrecan (ACAN). As patients with arthritis often take nonsteroidal anti-inflammatory drugs (NSAIDs) and acetaminophen (Acet), the purpose of the study was to assess whether these drugs can affect the gene expression of human MSCs. MSCs isolated from the bone marrow of patients with OA or normal donors were cultured without (control) or with Acet or NSAIDs, which include ibuprofen, diclofenac (Dic), naproxen, and celebrex. After 3 days of culture, the expression of type X collagen alpha 1 (COL10A1), ACAN, COL1A1, as well as ALP, BSP, OC, and Runt-related transcription factor 2 was analyzed by real-time reverse transcription (RT)-polymerase chain reaction. The results showed that COL10A1 and the osteogenic and chondrogenic marker genes can be regulated by NSAIDs and Acet in normal MSCs. In contrast, Acet did not significantly affect COL10A1 expression in OA MSCs, while Dic is the only drug that had no significant effect on all markers in normal MSCs. The upregulation of COL10A1 in normal MCSs by Acet and Npx may explain why stem cells from patients with OA express COL10A1 constitutively. This knowledge may help in designing better strategies for stem cell differentiation into chondrocyte-like cells, from this source, with Dic being a viable option for treating OA pain, with an eye toward preventing the potential to enhance calcification in the repair of cartilage and degenerated intervertebral discs.
Collapse
Affiliation(s)
- Abdulaziz Almaawi
- Orthopaedic Research Laboratory, Division of Orthopaedic Surgery, McGill University and Lady Davis Institute for Medical Research, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
158
|
Kim YM, Pyo H. Different cell cycle modulation by celecoxib at different concentrations. Cancer Biother Radiopharm 2012; 28:138-45. [PMID: 23268707 DOI: 10.1089/cbr.2012.1264] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract Different cyclooxygenase (COX)-2 inhibitors were known to cause different cell cycle changes. We investigated whether this different effect on cell cycle change was due to concentration-dependent effect. We investigated the effects of celecoxib, a COX-2 selective inhibitor, on cell cycle regulation in irradiated cancer cells that express high or low levels of COX-2. Four stably COX-2 knocked-down or overexpressed cell lines were treated with various concentrations of celecoxib with or without radiation. Celecoxib differentially modulated the cell cycle according to the concentrations applied. G1 arrest was induced at lower concentrations, whereas G2/M arrest was induced at higher concentrations in each cell line tested. Radiation-induced G2/M arrest was enhanced at lower concentrations but reduced at higher concentrations. The cutoff values to divide lower and higher concentrations were cell-type specific. Celecoxib treatment activated Cdc25C and inhibited p21 expression in both unirradiated and irradiated cells, regardless of COX-2 expression. Apoptosis was induced in irradiated cells 48 hours after treatment with celecoxib dependent of COX-2. These results imply that celecoxib deactivates the G2 checkpoint via both Cdc25C- and p21-dependent pathways in irradiated cells, which subsequently die by secondary apoptosis. Cell cycle modulating effects in irradiated cells resulting from treatment with celecoxib may have clinical importance with regard to the potential application of celecoxib in cancer patients undergoing radiotherapy.
Collapse
Affiliation(s)
- Young-Mee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | | |
Collapse
|
159
|
Bosilkovska M, Walder B, Besson M, Daali Y, Desmeules J. Analgesics in patients with hepatic impairment: pharmacology and clinical implications. Drugs 2012; 72:1645-69. [PMID: 22867045 DOI: 10.2165/11635500-000000000-00000] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The physiological changes that accompany hepatic impairment alter drug disposition. Porto-systemic shunting might decrease the first-pass metabolism of a drug and lead to increased oral bioavailability of highly extracted drugs. Distribution can also be altered as a result of impaired production of drug-binding proteins or changes in body composition. Furthermore, the activity and capacity of hepatic drug metabolizing enzymes might be affected to various degrees in patients with chronic liver disease. These changes would result in increased concentrations and reduced plasma clearance of drugs, which is often difficult to predict. The pharmacology of analgesics is also altered in liver disease. Pain management in hepatically impaired patients is challenging owing to a lack of evidence-based guidelines for the use of analgesics in this population. Complications such as bleeding due to antiplatelet activity, gastrointestinal irritation, and renal failure are more likely to occur with nonsteroidal anti-inflammatory drugs in patients with severe hepatic impairment. Thus, this analgesic class should be avoided in this population. The pharmacokinetic parameters of paracetamol (acetaminophen) are altered in patients with severe liver disease, but the short-term use of this drug at reduced doses (2 grams daily) appears to be safe in patients with non-alcoholic liver disease. The disposition of a large number of opioid drugs is affected in the presence of hepatic impairment. Certain opioids such as codeine or tramadol, for instance, rely on hepatic biotransformation to active metabolites. A possible reduction of their analgesic effect would be the expected pharmacodynamic consequence of hepatic impairment. Some opioids, such as pethidine (meperidine), have toxic metabolites. The slower elimination of these metabolites can result in an increased risk of toxicity in patients with liver disease, and these drugs should be avoided in this population. The drug clearance of a number of opioids, such as morphine, oxycodone, tramadol and alfentanil, might be decreased in moderate or severe hepatic impairment. For the highly excreted morphine, hydromorphone and oxycodone, an important increase in bioavailability occurs after oral administration in patients with hepatic impairment. Lower doses and/or longer administration intervals should be used when these opioids are administered to patients with liver disease to avoid the risk of accumulation and the potential increase of adverse effects. Finally, the pharmacokinetics of phenylpiperidine opioids such as fentanyl, sufentanil and remifentanil appear to be unaffected in hepatic disease. All opioid drugs can precipitate or aggravate hepatic encephalopathy in patients with severe liver disease, thus requiring cautious use and careful monitoring.
Collapse
Affiliation(s)
- Marija Bosilkovska
- Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
160
|
Ghoshal S, Loftin CD. Cyclooxygenase-2 inhibition attenuates abdominal aortic aneurysm progression in hyperlipidemic mice. PLoS One 2012; 7:e44369. [PMID: 23209546 PMCID: PMC3507882 DOI: 10.1371/journal.pone.0044369] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 08/06/2012] [Indexed: 02/01/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are a chronic inflammatory disease that increase the risk of life-threatening aortic rupture. In humans, AAAs have been characterized by increased expression of cyclooxygenase-2 and the inactivation of COX-2 prior to disease initiation reduces AAA incidence in a mouse model of the disease. The current study examined the effectiveness of selective cyclooxygenase-2 (COX-2) inhibition on reducing AAA progression when administered after the initiation of AAA formation. AAAs were induced in hyperlipidemic apolipoprotein E-deficient mice by chronic angiotensin II (AngII) infusion and the effect of treatment with the COX-2 inhibitor celecoxib was examined when initiated at different stages of the disease. Celecoxib treatment that was started 1 week after initiating AngII infusion reduced AAA incidence by 61% and significantly decreased AAA severity. Mice treated with celecoxib also showed significantly reduced aortic rupture and mortality. Treatment with celecoxib that was started at a late stage of AAA development also significantly reduced AAA incidence and severity. Celecoxib treatment significantly increased smooth muscle alpha-actin expression in the abdominal aorta and did not reduce expression of markers of macrophage-dependent inflammation. These findings indicate that COX-2 inhibitor treatment initiated after formation of AngII-induced AAAs effectively reduces progression of the disease in hyperlipidemic mice.
Collapse
Affiliation(s)
| | - Charles D. Loftin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
161
|
Cekanova M, Uddin MJ, Legendre AM, Galyon G, Bartges JW, Callens A, Martin-Jimenez T, Marnett LJ. Single-dose safety and pharmacokinetic evaluation of fluorocoxib A: pilot study of novel cyclooxygenase-2-targeted optical imaging agent in a canine model. JOURNAL OF BIOMEDICAL OPTICS 2012; 17:116002. [PMID: 23117797 PMCID: PMC3484194 DOI: 10.1117/1.jbo.17.11.116002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We evaluated preclinical single-dose safety, pharmacokinetic properties, and specific uptake of the new optical imaging agent fluorocoxib A in dogs. Fluorocoxib A, N-[(5-carboxy-X-rhodaminyl)but-4-yl]-2-[1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetamide, selectively binds and inhibits the cyclooxygenase-2 (COX-2) enzyme, which is overexpressed in many cancers. Safety pilot studies were performed in research dogs following intravenous (i.v.) administration of 0.1 and 1 mg/kg fluorocoxib A. Blood and urine samples collected three days after administration of each dose of fluorocoxib A revealed no evidence of toxicity, and no clinically relevant adverse events were noted on physical examination of exposed dogs over that time period. Pharmacokinetic parameters were assessed in additional research dogs from plasma collected at several time points after i.v. administration of fluorocoxib A using high-performance liquid chromatography analysis. The pharmacokinetic studies using 1 mg/kg showed a peak of fluorocoxib A (92±28 ng/ml) in plasma collected at 0.5 h. Tumor specific uptake of fluorocoxib A was demonstrated using a dog diagnosed with colorectal cancer expressing COX-2. Our data support the safe single-dose administration and in vivo efficacy of fluorocoxib A, suggesting a high potential for successful translation to clinical use as an imaging agent for improved tumor detection in humans.
Collapse
Affiliation(s)
- Maria Cekanova
- The University of Tennessee, College of Veterinary Medicine, Department of Small Animal Clinical Sciences, Knoxville, Tennessee 37996, USA.
| | | | | | | | | | | | | | | |
Collapse
|
162
|
Kashefi P, Honarmand A, Safavi M. Effects of preemptive analgesia with celecoxib or acetaminophen on postoperative pain relief following lower extremity orthopedic surgery. Adv Biomed Res 2012; 1:66. [PMID: 23459777 PMCID: PMC3587127 DOI: 10.4103/2277-9175.100197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/13/2012] [Indexed: 12/27/2022] Open
Abstract
Background: Efficacy of preemptive analgesia with nonsteroidal antiinflammatory drugs (NSAIDs) in comparison with acetaminophen is controversial. The present study evaluates the preemptive analgesia efficacy of celecoxib and acetaminophen in comparison with placebo for postoperative pain relief in patients who underwent orthopedic surgery under general anesthesia. Materials and Methods: Ninetypatients eligible for elective distal extremity surgery were categorized in three groups: group C includedpatients who received oral celecoxib 200 mg 2 h before surgery; group A included those who received oral acetaminophen 320 mg 2 h before surgery; and group P included those who received oral placebo 2 h before surgery. Pain scores were recorded at 4, 12, and 24 h after operation. Results: The pain scores 4 h after operation was significantly less in group C than in groups A and P (4.7±1.7 vs. 5±1.5 vs. 6.8±1.7, respectively, P = 0.015). No significant difference was noted in pain scores at 12 h (4.6±2, 4.9±1.9, 4.3±1.4 in group A, group C, group P, respectively P > 0.05) and 24 h (3.1±1.7, 3.0±1.4, 3.3±1.7 in group A, group C, group P, respectively, P > 0.05) after operation among the three groups. Conclusion: Using oral celecoxib 200 mg 2 h before operation is better thanusing oral acetaminophen 320 mg 2 h before the beginning of surgery for control of postoperative pain in patients who underwent lower extremity orthopedic surgery under general anesthesia.
Collapse
Affiliation(s)
- Parviz Kashefi
- Anesthesiology and Critical Care Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | |
Collapse
|
163
|
Krishnaswami S, Hutmacher MM, Robbins JL, Bello A, West C, Bloom BJ. Dosing celecoxib in pediatric patients with juvenile rheumatoid arthritis. J Clin Pharmacol 2012; 52:1134-49. [PMID: 21878579 DOI: 10.1177/0091270011412184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The objective was to derive dosing recommendations for the use of celecoxib in patients with juvenile rheumatoid arthritis (JRA) using pharmacokinetic (PK) and exposure-response data. PK and efficacy data from a randomized, double-blind, 12-week study of celecoxib dosed at 3 and 6 mg/kg twice a day (bid) as an investigational suspension formulation in 152 JRA patients aged 2 to 17 years, PK data from 36 adult RA patients, and relative bioavailability data in healthy adults comparing suspension or capsule sprinkles with the commercial capsule were analyzed. Typical oral clearance (L/h) values were 40% and 24% lower in patients weighing 10 and 25 kg, respectively, compared with a 70-kg patient. Longitudinal, logistic pharmacodynamic models incorporating linear effects of dose/area under the plasma concentration-time curve (AUC) over 0 to 12 hours (AUC(0-12)) suggested that the percentage of responders increased with celecoxib exposure. Systemic exposures (AUC) were similar for the suspension, capsule sprinkles, and intact capsule. Administration of a 50-mg bid capsule (or sprinkles) for patients weighing 10 to 25 kg and 100 mg bid for patients >25 kg was predicted to yield similar exposures and response rates as those observed in the JRA trial. Doses and dosage forms not studied in the JRA trial were approved based on the results of this analysis.
Collapse
|
164
|
|
165
|
Kim YM, Jeong IH, Pyo H. Celecoxib Enhances the Radiosensitizing Effect of 7-Hydroxystaurosporine (UCN-01) in Human Lung Cancer Cell Lines. Int J Radiat Oncol Biol Phys 2012; 83:e399-407. [DOI: 10.1016/j.ijrobp.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 10/31/2011] [Accepted: 01/02/2012] [Indexed: 10/28/2022]
|
166
|
Ptáček P, Klíma J, Macek J. Determination of celecoxib in human plasma by liquid chromatography–tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 899:163-6. [DOI: 10.1016/j.jchromb.2012.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 05/06/2012] [Indexed: 12/01/2022]
|
167
|
Vivaldi A, Ciampi R, Tacito A, Molinaro E, Agate L, Bottici V, Pinchera A, Collecchi P, Elisei R. Celecoxib, a cyclooxygenase-2 inhibitor, potentiates the chemotherapic effect of vinorelbine in the medullary thyroid cancer TT cell line. Mol Cell Endocrinol 2012; 355:41-8. [PMID: 22305971 DOI: 10.1016/j.mce.2012.01.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 12/15/2011] [Accepted: 01/14/2012] [Indexed: 11/29/2022]
Abstract
We analyzed the in vitro effects of celecoxib, a COX-2 inhibitor, and determined if celecoxib can sensitize a human MTC-derived cell line (TT) to chemotherapeutics. We found that celecoxib induced apoptosis in TT cells and decreased drug efflux by reducing the expression of MDR-1 mRNA, which codes for the drug efflux pump P-gp. We also observed that TT cells were 10-fold more resistant to doxorubicin than to vinorelbine, mimicking what can be observed in clinical practice. In addition, we found that the combination of celecoxib and vinorelbine, but not doxorubicin, induced a significant reduction in cell viability and a significant increase in apoptosis. In conclusion, we showed that celecoxib was able to enhance the chemotherapeutic effect of vinorelbine. A clinical trial exploring the in vivo activities of celecoxib in MTC patients who cannot benefit from available treatments would be desirable, taking into account the possible risks of cardiovascular effects of this drug.
Collapse
Affiliation(s)
- A Vivaldi
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Wang D, Sun X, Gong Y, Gawronski BE, Langaee TY, Shahin MHA, Khalifa SI, Johnson JA. CYP2C9 promoter variable number tandem repeat polymorphism regulates mRNA expression in human livers. Drug Metab Dispos 2012; 40:884-91. [PMID: 22289258 PMCID: PMC3336799 DOI: 10.1124/dmd.111.044255] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 01/30/2012] [Indexed: 12/13/2022] Open
Abstract
CYP2C9 is involved in metabolism of nearly 25% of clinically used drugs. Coding region polymorphisms CYP2C9*2 and *3 contribute to interperson variability in drug dosage and clinical outcomes, whereas the role of a regulatory polymorphism remains uncertain. Measuring allelic RNA expression in 87 human liver samples, combined with genotyping, sequencing, and reporter gene assays, we identified a promoter variable number tandem repeat polymorphism (pVNTR) that fully accounted for allelic CYP2C9 mRNA expression differences. Present in three different variant forms [short (pVNTR-S), medium (pVNTR-M), and long (pVNTR-L)], only the pVNTR-S allele reduced the CYP2C9 mRNA level compared with the pVNTR-M (reference) allele. pVNTR-S is in linkage disequilibrium with *3, with linkage disequilibrium r(2) of 0.53 to 0.75 in different populations. In patients who were taking a maintenance dose of warfarin, the mean warfarin dose was associated with the copies of pVNTR-S (p = 0.0001). However, in multivariate regression models that included the CYP2C9*3, pVNTR-S was no longer a significant predictor of the warfarin dose (p = 0.60). These results indicate that although pVNTR-S reduced CYP2C9 mRNA expression, the in vivo effects of pVNTR-S on warfarin metabolism cannot be separated from the effects of *3. Therefore, it is not necessary to consider pVNTR-S as an additional biomarker for warfarin dosing. Larger clinical studies are needed to define whether the pVNTR-S has a minimal effect in vivo, or whether the effect attributed to *3 is really a combination of effects on expression by the pVNTR-S along with effects on catalytic activity from the nonsynonymous *3 variant.
Collapse
Affiliation(s)
- Danxin Wang
- Program in Pharmacogenomics, Department of Pharmacology, School of Medicine, The Ohio State University, 333 West 10th Ave., Columbus, OH 43210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
169
|
McCormack PL. Celecoxib: a review of its use for symptomatic relief in the treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis. Drugs 2012; 71:2457-89. [PMID: 22141388 DOI: 10.2165/11208240-000000000-00000] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Celecoxib (Celebrex®) was the first cyclo-oxygenase (COX)-2 selective inhibitor (coxib) to be introduced into clinical practice. Coxibs were developed to provide anti-inflammatory/analgesic activity similar to that of nonselective NSAIDs, but without their upper gastrointestinal (GI) toxicity, which is thought to result largely from COX-1 inhibition. Celecoxib is indicated in the EU for the symptomatic treatment of osteoarthritis, rheumatoid arthritis and ankylosing spondylitis in adults. This article reviews the clinical efficacy and tolerability of celecoxib in these EU-approved indications, as well as overviewing its pharmacological properties. In randomized controlled trials, celecoxib, at the recommended dosages of 200 or 400 mg/day, was significantly more effective than placebo, at least as effective as or more effective than paracetamol (acetaminophen) and as effective as nonselective NSAIDs and the coxibs etoricoxib and lumiracoxib for the symptomatic treatment of patients with active osteoarthritis, rheumatoid arthritis or ankylosing spondylitis. Celecoxib was generally well tolerated, with mild to moderate upper GI complaints being the most common body system adverse events. In meta-analyses and large safety studies, the incidence of upper GI ulcer complications with recommended dosages of celecoxib was significantly lower than that with nonselective NSAIDs and similar to that with paracetamol and other coxibs. However, concomitant administration of celecoxib with low-dose cardioprotective aspirin often appeared to negate the GI-sparing advantages of celecoxib over NSAIDs. Although one polyp prevention trial noted a dose-related increase in cardiovascular risk with celecoxib 400 and 800 mg/day, other trials have not found any significant difference in cardiovascular risk between celecoxib and placebo or nonselective NSAIDs. Meta-analyses and database-derived analyses are inconsistent regarding cardiovascular risk. At recommended dosages, the risks of increased thrombotic cardiovascular events, or renovascular, hepatic or hypersensitivity reactions with celecoxib would appear to be small and similar to those with NSAIDs. Celecoxib would appear to be a useful option for therapy in patients at high risk for NSAID-induced GI toxicity, or in those responding suboptimally to or intolerant of NSAIDs. To minimize any risk, particularly the cardiovascular risk, celecoxib, like all coxibs and NSAIDs, should be used at the lowest effective dosage for the shortest possible duration after a careful evaluation of the GI, cardiovascular and renal risks of the individual patient.
Collapse
|
170
|
Huang KH, Kuo KL, Chen SC, Weng TI, Chuang YT, Tsai YC, Pu YS, Chiang CK, Liu SH. Down-regulation of glucose-regulated protein (GRP) 78 potentiates cytotoxic effect of celecoxib in human urothelial carcinoma cells. PLoS One 2012; 7:e33615. [PMID: 22438966 PMCID: PMC3306428 DOI: 10.1371/journal.pone.0033615] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Accepted: 02/13/2012] [Indexed: 11/30/2022] Open
Abstract
Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor that has been reported to elicit anti-proliferative response in various tumors. In this study, we aim to investigate the antitumor effect of celecoxib on urothelial carcinoma (UC) cells and the role endoplasmic reticulum (ER) stress plays in celecoxib-induced cytotoxicity. The cytotoxic effects were measured by MTT assay and flow cytometry. The cell cycle progression and ER stress-associated molecules were examined by Western blot and flow cytometry. Moreover, the cytotoxic effects of celecoxib combined with glucose-regulated protein (GRP) 78 knockdown (siRNA), (−)-epigallocatechin gallate (EGCG) or MG132 were assessed. We demonstrated that celecoxib markedly reduces the cell viability and causes apoptosis in human UC cells through cell cycle G1 arrest. Celecoxib possessed the ability to activate ER stress-related chaperones (IRE-1α and GRP78), caspase-4, and CCAAT/enhancer binding protein homologous protein (CHOP), which were involved in UC cell apoptosis. Down-regulation of GRP78 by siRNA, co-treatment with EGCG (a GRP78 inhibitor) or with MG132 (a proteasome inhibitor) could enhance celecoxib-induced apoptosis. We concluded that celecoxib induces cell cycle G1 arrest, ER stress, and eventually apoptosis in human UC cells. The down-regulation of ER chaperone GRP78 by siRNA, EGCG, or proteosome inhibitor potentiated the cytotoxicity of celecoxib in UC cells. These findings provide a new treatment strategy against UC.
Collapse
Affiliation(s)
- Kuo-How Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (KHH); (SHL)
| | - Kuan-Lin Kuo
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Shyh-Chyan Chen
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Te-I Weng
- Department of Forensic Medicine, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Yuan-Ting Chuang
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-Chieh Tsai
- Department of Oncology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Yeong-Shiau Pu
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Chih-Kang Chiang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- Department of Integrated Diagnostics and Therapeutics, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
| | - Shing-Hwa Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- Department of Urology, College of Medicine, National Taiwan University, and National Taiwan University Hospital, Taipei, Taiwan
- * E-mail: (KHH); (SHL)
| |
Collapse
|
171
|
Du XN, Zhang X, Qi JL, An HL, Li JW, Wan YM, Fu Y, Gao HX, Gao ZB, Zhan Y, Zhang HL. Characteristics and molecular basis of celecoxib modulation on K(v)7 potassium channels. Br J Pharmacol 2012; 164:1722-37. [PMID: 21564087 DOI: 10.1111/j.1476-5381.2011.01483.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Celecoxib is a selective cyclooxygenase-2 (COX-2) inhibitor used for the treatment of pain and inflammation. Emerging and accumulating evidence suggests that celecoxib can affect cellular targets other than COX, such as ion channels. In this study, we characterized the effects of celecoxib on K(v)7 K(+) channels and compared its effects with the well-established K(v)7 channel opener retigabine. EXPERIMENTAL APPROACH A perforated whole-cell patch technique was used to record K(v)7currents expressed in HEK 293 cells and M-type currents from rat superior cervical ganglion neurons. KEY RESULTS Celecoxib enhanced K(v)7.2-7.4, K(v)7.2/7.3 and K(v)7.3/7.5 currents but inhibited K(v)7.1 and K(v)7.1/KCNE1 currents and these effects were concentration dependent. The IC(50) value for inhibition of K(v)7.1 channels was approximately 4 µM and the EC(50) values for activation of K(v)7.2-7.4, K(v)7.2/K(v)7.3 and K(v)7.3/K(v)7.5 channels were approximately 2-5 µM. The effects of celecoxib were manifested by increasing current amplitudes, shifting the voltage-dependent activation curve in a more negative direction and slowing the deactivation of K(v)7 currents. 2,5-Dimethyl-celecoxib, a celecoxib analogue devoid of COX inhibition activity, has similar but greater effects on K(v)7currents. K(v)7.2(A235T) and K(v) 7.2(W236L) mutant channels, which have greatly attenuated responses to retigabine, showed a reversed response to celecoxib, from activation to inhibition. CONCLUSIONS AND IMPLICATIONS These results suggest that K(v)7 channels are targets of celecoxib action and provide new mechanistic evidence for understanding the effects of celecoxib. They also provide a new approach to developing K(v)7 modulators and for studying the structure-function relationship of K(v)7 channels.
Collapse
Affiliation(s)
- X N Du
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Department of Pharmacology, Shijiazhuang, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
van Heumen BWH, Roelofs HMJ, Te Morsche RHM, Marian B, Nagengast FM, Peters WHM. Celecoxib and tauro-ursodeoxycholic acid co-treatment inhibits cell growth in familial adenomatous polyposis derived LT97 colon adenoma cells. Exp Cell Res 2012; 318:819-27. [PMID: 22366264 DOI: 10.1016/j.yexcr.2012.02.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 01/17/2012] [Accepted: 02/07/2012] [Indexed: 02/09/2023]
Abstract
Chemoprevention would be a desirable strategy to avoid duodenectomy in patients with familial adenomatous polyposis (FAP) suffering from duodenal adenomatosis. We investigated the in vitro effects on cell proliferation, apoptosis, and COX-2 expression of the potential chemopreventives celecoxib and tauro-ursodeoxycholic acid (UDCA). HT-29 colon cancer cells and LT97 colorectal micro-adenoma cells derived from a patient with FAP, were exposed to low dose celecoxib and UDCA alone or in combination with tauro-cholic acid (CA) and tauro-chenodeoxycholic acid (CDCA), mimicking bile of FAP patients treated with UDCA. In HT-29 cells, co-treatment with low dose celecoxib and UDCA resulted in a decreased cell growth (14-17%, p<0.01). A more pronounced decrease (23-27%, p<0.01) was observed in LT97 cells. Cell growth of HT-29 cells exposed to 'artificial bile' enriched with UDCA, was decreased (p<0.001), either in the absence or presence of celecoxib. In LT97 cells incubated with 'artificial bile' enriched with UDCA, cell growth was decreased only in the presence of celecoxib (p<0.05). No clear evidence was found for involvement of proliferating cell nuclear antigen, caspase-3, or COX-2 in the cellular processes leading to the observed changes in cell growth. In conclusion, co-treatment with low dose celecoxib and UDCA has growth inhibitory effects on colorectal adenoma cells derived from a patient with FAP, and further research on this combination as promising chemopreventive strategy is desired.
Collapse
Affiliation(s)
- Bjorn W H van Heumen
- Department of Gastroenterology and Hepatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
173
|
Conaghan PG. A turbulent decade for NSAIDs: update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatol Int 2011; 32:1491-502. [PMID: 22193214 PMCID: PMC3364420 DOI: 10.1007/s00296-011-2263-6] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 12/08/2011] [Indexed: 12/16/2022]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent a diverse class of drugs and are among the most commonly used analgesics for arthritic pain worldwide, though long-term use is associated with a spectrum of adverse effects. The introduction of cyclooxygenase-2-selective NSAIDs early in the last decade offered an alternative to traditional NSAIDs with similar efficacy and improved gastrointestinal tolerability; however, emerging concerns about cardiovascular safety resulted in the withdrawal of two agents (rofecoxib and valdecoxib) in the mid-2000s and, subsequently, in an overall reduction in NSAID use. It is now understood that all NSAIDs are associated with some varying degree of gastrointestinal and cardiovascular risk. Guidelines still recommend their use, but little is known of how patients use these agents. While strategies and guidelines aimed at reducing NSAID-associated complications exist, there is a need for evidence-based algorithms combining cardiovascular and gastrointestinal factors that can be used to aid treatment decisions at an individual patient level.
Collapse
Affiliation(s)
- Philip G Conaghan
- Section of Musculoskeletal Disease, Department of Musculoskeletal Medicine, Leeds Institute of Molecular Medicine, University of Leeds, 2nd Floor Chapel Allerton Hospital, Chapeltown Road, Leeds, LS7 4SA, UK.
| |
Collapse
|
174
|
Frolov RV, Ignatova II, Singh S. Inhibition of HERG potassium channels by celecoxib and its mechanism. PLoS One 2011; 6:e26344. [PMID: 22039467 PMCID: PMC3200315 DOI: 10.1371/journal.pone.0026344] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 09/25/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Celecoxib (Celebrex), a widely prescribed selective inhibitor of cyclooxygenase-2, can modulate ion channels independently of cyclooxygenase inhibition. Clinically relevant concentrations of celecoxib can affect ionic currents and alter functioning of neurons and myocytes. In particular, inhibition of Kv2.1 channels by celecoxib leads to arrhythmic beating of Drosophila heart and of rat heart cells in culture. However, the spectrum of ion channels involved in human cardiac excitability differs from that in animal models, including mammalian models, making it difficult to evaluate the relevance of these observations to humans. Our aim was to examine the effects of celecoxib on hERG and other human channels critically involved in regulating human cardiac rhythm, and to explore the mechanisms of any observed effect on the hERG channels. METHODS AND RESULTS Celecoxib inhibited the hERG, SCN5A, KCNQ1 and KCNQ1/MinK channels expressed in HEK-293 cells with IC(50)s of 6.0 µM, 7.5 µM, 3.5 µM and 3.7 µM respectively, and the KCND3/KChiP2 channels expressed in CHO cells with an IC(50) of 10.6 µM. Analysis of celecoxib's effects on hERG channels suggested gating modification as the mechanism of drug action. CONCLUSIONS The above channels play a significant role in drug-induced long QT syndrome (LQTS) and short QT syndrome (SQTS). Regulatory guidelines require that all new drugs under development be tested for effects on the hERG channel prior to first administration in humans. Our observations raise the question of celecoxib's potential to induce cardiac arrhythmias or other channel related adverse effects, and make a case for examining such possibilities.
Collapse
Affiliation(s)
- Roman V. Frolov
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York, United States of America
- Division of Biophysics, Department of Physical Sciences, University of Oulu, Oulun Yliopisto, Finland
| | - Irina I. Ignatova
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York, United States of America
- Division of Biophysics, Department of Physical Sciences, University of Oulu, Oulun Yliopisto, Finland
| | - Satpal Singh
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
175
|
Larsen SW, Frost AB, Østergaard J, Thomsen MH, Jacobsen S, Skonberg C, Hansen SH, Jensen HE, Larsen C. In vitro and in vivo characteristics of celecoxib in situ formed suspensions for intra-articular administration. J Pharm Sci 2011; 100:4330-7. [DOI: 10.1002/jps.22630] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 07/02/2010] [Accepted: 04/27/2011] [Indexed: 11/08/2022]
|
176
|
Zerbini LF, Tamura RE, Correa RG, Czibere A, Cordeiro J, Bhasin M, Simabuco FM, Wang Y, Gu X, Li L, Sarkar D, Zhou JR, Fisher PB, Libermann TA. Combinatorial effect of non-steroidal anti-inflammatory drugs and NF-κB inhibitors in ovarian cancer therapy. PLoS One 2011; 6:e24285. [PMID: 21931671 PMCID: PMC3171406 DOI: 10.1371/journal.pone.0024285] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Accepted: 08/05/2011] [Indexed: 01/04/2023] Open
Abstract
Several epidemiological studies have correlated the use of non-steroidal anti-inflammatory drugs (NSAID) with reduced risk of ovarian cancer, the most lethal gynecological cancer, diagnosed usually in late stages of the disease. We have previously established that the pro-apoptotic cytokine melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24) is a crucial mediator of NSAID-induced apoptosis in prostate, breast, renal and stomach cancer cells. In this report we evaluated various structurally different NSAIDs for their efficacies to induce apoptosis and mda-7/IL-24 expression in ovarian cancer cells. While several NSAIDs induced apoptosis, Sulindac Sulfide and Diclofenac most potently induced apoptosis and reduced tumor growth. A combination of these agents results in a synergistic effect. Furthermore, mda-7/IL-24 induction by NSAIDs is essential for programmed cell death, since inhibition of mda-7/IL-24 by small interfering RNA abrogates apoptosis. mda-7/IL-24 activation leads to upregulation of growth arrest and DNA damage inducible (GADD) 45 α and γ and JNK activation. The NF-κB family of transcription factors has been implicated in ovarian cancer development. We previously established NF-κB/IκB signaling as an essential step for cell survival in cancer cells and hypothesized that targeting NF-κB could potentiate NSAID-mediated apoptosis induction in ovarian cancer cells. Indeed, combining NSAID treatment with NF-κB inhibitors led to enhanced apoptosis induction. Our results indicate that inhibition of NF-κB in combination with activation of mda-7/IL-24 expression may lead to a new combinatorial therapy for ovarian cancer.
Collapse
Affiliation(s)
- Luiz F Zerbini
- Medical Biochemistry Division, Faculty of Health Sciences, International Center for Genetic Engineering and Biotechnology, University of Cape Town, Cape Town, South Africa.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Kim YM, Pyo H. Cooperative enhancement of radiosensitivity after combined treatment of 17-(allylamino)-17-demethoxygeldanamycin and celecoxib in human lung and colon cancer cell lines. DNA Cell Biol 2011; 31:15-29. [PMID: 21830942 DOI: 10.1089/dna.2011.1342] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We investigated whether the combined treatment of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an inhibitor of heat-shock protein 90 (hsp90), and celecoxib, an inhibitor of cyclooxygenase-2, can cooperatively enhance the radiosensitivity of various human cancer cells. Combined treatment with 17-AAG and celecoxib, at clinically relevant concentrations, cooperatively induced radiosensitization in all tested cancer cells, but not in normal cells. Cooperative radiosensitization by the drug combination was also shown in a human tumor xenograft system. We found that ataxia-telangiectasia and rad3-related (ATR) and ataxia-telangiectasia mutated (ATM) are novel client proteins of hsp90. Combined treatment with 17-AAG and celecoxib cooperatively induced downregulation of ATR and ATM. In conclusion, combined treatment with 17-AAG and celecoxib at clinically relevant concentrations may significantly enhance the therapeutic efficacy of ionizing radiation.
Collapse
Affiliation(s)
- Young-Mee Kim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong, Gangnam-gu, Seoul, Republic of Korea
| | | |
Collapse
|
178
|
Liu B, Wen JK, Li BH, Fang XM, Wang JJ, Zhang YP, Shi CJ, Zhang DQ, Han M. Celecoxib and acetylbritannilactone interact synergistically to suppress breast cancer cell growth via COX-2-dependent and -independent mechanisms. Cell Death Dis 2011; 2:e185. [PMID: 21796157 PMCID: PMC3199716 DOI: 10.1038/cddis.2011.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of celecoxib is associated with a significant decrease in breast cancer risk. However, the long-term use of high-dose celecoxib might be limited owing to cardiovascular side effects. In this study, we found that acetylbritannilactone (ABL), extract from a Chinese medicinal herb, could reduce celecoxib dose and potentiate the growth-inhibitory effect in breast cancer cells. ABL enhanced the apoptotic effect of celecoxib in COX-2-expressing cells, but had little effect in COX-2-negative cells. The apoptosis induced by the combination treatment disappeared when COX-2 was knocked down, whereas the lack of apoptotic effects in COX-2-negative cells was reversed after COX-2 transfection. However, the combination treatment induced a G(0)/G(1) phase arrest independent of whether or not the cells expressed COX-2. The G(0)/G(1) arrest was attributed to a decreased expression of cyclinD1, cyclinE, CDK2 and CDK6, especially the upregulation of p21. In addition, inhibition of Akt and p38 signaling pathways was required by the synergism, as the constitutively active Akt and p38 protected cells against apoptosis and cell cycle arrest induced by the combination treatment. In vivo, administration of celecoxib and ABL were more effective than the individual agents against xenograft tumor growth. Thus, our data suggested that the combinatorial approach of celecoxib and ABL might be helpful for breast cancer treatment.
Collapse
Affiliation(s)
- B Liu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medicine, Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Palumbo S, Toscano CD, Parente L, Weigert R, Bosetti F. The cyclooxygenase-2 pathway via the PGE₂ EP2 receptor contributes to oligodendrocytes apoptosis in cuprizone-induced demyelination. J Neurochem 2011; 121:418-27. [PMID: 21699540 DOI: 10.1111/j.1471-4159.2011.07363.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclooxygenases (COX)-1 and -2 are key enzymes required for the conversion of arachidonic acid to eicosanoids, potent mediators of inflammation. In patients with multiple sclerosis, COX-2 derived prostaglandins (PGs) are elevated in the CSF and COX-2 is up-regulated in demyelinating plaques. However, it is not known whether COX-2 activity contributes to oligodendrocyte death. In cuprizone-induced demyelination, oligodendrocyte apoptosis and a concomitant increase in the gene expression of COX-2 and PGE₂-EP2 receptor precede histological demyelination. COX-2 and EP2 receptor were expressed by oligodendrocytes, suggesting a causative role for the COX-2/EP2 pathway in the initiation of oligodendrocyte death and demyelination. COX-2 gene deletion, chronic treatment with the COX-2 selective inhibitor celecoxib, or with the EP2 receptor antagonist AH6809 reduced cuprizone-induced oligodendrocyte apoptosis, the degree of demyelination and motor dysfunction. These data indicate that the PGE₂ EP2 receptor contributes to oligodendrocyte apoptosis and open possible new therapeutic approaches for multiple sclerosis.
Collapse
Affiliation(s)
- Sara Palumbo
- Molecular Neuroscience Unit, Brain Physiology and Metabolism Section, National Institute on Aging, Bethesda, Maryland, USA
| | | | | | | | | |
Collapse
|
180
|
Barreiro EJ, Kümmerle AE, Fraga CAM. The Methylation Effect in Medicinal Chemistry. Chem Rev 2011; 111:5215-46. [DOI: 10.1021/cr200060g] [Citation(s) in RCA: 518] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Eliezer J. Barreiro
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Arthur E. Kümmerle
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Carlos A. M. Fraga
- Laboratório de Avaliação e Síntese de Substâncias Bioativas (LASSBio), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Cidade Universitária, CP 68.006, 21941-902 Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
181
|
Zheng X, Cui XX, Gao Z, Zhao Y, Shi Y, Huang MT, Liu Y, Wagner GC, Lin Y, Shih WJ, Rao CV, Yang CS, Conney AH. Inhibitory effect of dietary atorvastatin and celecoxib together with voluntary running wheel exercise on the progression of androgen-dependent LNCaP prostate tumors to androgen independence. Exp Ther Med 2011; 2:221-228. [PMID: 21660218 DOI: 10.3892/etm.2011.203] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We determined the inhibitory effect of dietary atorvastatin, dietary celecoxib and voluntary running wheel exercise (RW) alone or in combination on the formation and growth of androgen-independent LNCaP tumors in castrated SCID mice. Male SCID mice were injected subcutaneously with androgen-dependent prostate cancer LNCaP cells. When the tumors reached a moderate size, the mice were surgically castrated and treated with atorvastatin (0.02% in the diet), celecoxib (0.05% in the diet) or RW alone or in combination for 42 days. RW or celecoxib alone had a moderate inhibitory effect on the androgen-independent growth of LNCaP tumors, but atorvastatin alone had little or no effect on tumor growth. Combinations of atorvastatin and celecoxib had a stronger inhibitory effect on the formation and growth of androgen-independent LNCaP tumors than either drug alone. A combination of RW together with atorvastatin and celecoxib had the most potent inhibitory effect on the progression of LNCaP tumors to androgen independent growth. The serum concentration of atorvastatin after two weeks of oral administration of atorvastatin was 6.1 ng/ml. The serum concentration of celecoxib after treatment with dietary celecoxib for two weeks was 1090 ng/ml. The serum concentration of atorvastatin but not that of celecoxib was substantially reduced when the two drugs were given in combination. The drug concentrations observed in our animal studies are comparable or less than those commonly found in humans treated with atorvastatin or celecoxib. Our results indicate that administration of atorvastatin and celecoxib together with voluntary exercise may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.
Collapse
Affiliation(s)
- Xi Zheng
- Susan Lehman Cullman Laboratory for Cancer Research, Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Xu K, Gao H, Shu HKG. Celecoxib Can Induce Vascular Endothelial Growth Factor Expression and Tumor Angiogenesis. Mol Cancer Ther 2011; 10:138-47. [DOI: 10.1158/1535-7163.mct-10-0415] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
183
|
Vaddady PK, Mehrotra N, Zhang X, Yates CR, Moore BM, Meibohm B. Pharmacokinetics of a combination of Δ9-tetrahydro-cannabinol and celecoxib in a porcine model of hemorrhagic shock. Biopharm Drug Dispos 2010; 32:89-98. [PMID: 21341278 DOI: 10.1002/bdd.740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/05/2010] [Accepted: 11/12/2010] [Indexed: 11/11/2022]
Abstract
Hemorrhagic shock involves loss of a substantial portion of circulating blood volume leading to diminished cardiac output and oxygen delivery to peripheral tissues. In situations where an immediate resuscitation cannot be provided, pharmacotherapy with a novel combination of Δ9-tetrahydro-cannabinol (THC) and celecoxib (CEL) is currently investigated as an alternative strategy to prevent organ damage. In the present study, 28 Yorkshire×Landrace pigs were used to study the pharmacokinetics of THC and CEL in an established porcine model of hemorrhagic shock. Pigs in hemorrhagic shock received 0.5, 1 or 4 mg/kg THC and 2 mg/kg CEL, while normotensive pigs received 1 mg/kg THC and 2 mg/kg CEL by intravenous injection. THC and CEL plasma concentrations were simultaneously determined by LC-MS/MS. Pharmacokinetic parameters and their between animal variability were obtained using standard non-compartmental analysis as well as a compartmental analysis using nonlinear mixed effects modeling. The concentration-time profiles of THC and CEL followed a multi-exponential decline and their pharmacokinetics were similar in hemorrhagic shock and normotensive conditions, despite the substantial change in hemodynamics in the animals with shock. This interesting finding might be due to the pharmacologic effect of the THC/CEL combination, which is intended to maintain adequate perfusion of vital organs in shock. Overall, this study established THC and CEL pharmacokinetics in a porcine shock model and provides the basis for dose selection in further studies of THC and CEL in this indication.
Collapse
Affiliation(s)
- Pavan K Vaddady
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | | | | | | | | | |
Collapse
|
184
|
COX-2 Inhibition and Inhibition of Cytosolic Phospholipase A2 Increase CD36 Expression and Foam Cell Formation in THP-1 Cells. Lipids 2010; 46:131-42. [DOI: 10.1007/s11745-010-3502-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
|
185
|
Macías A, Moreno C, Moral-Sanz J, Cogolludo A, David M, Alemanni M, Pérez-Vizcaíno F, Zaza A, Valenzuela C, González T. Celecoxib blocks cardiac Kv1.5, Kv4.3 and Kv7.1 (KCNQ1) channels: effects on cardiac action potentials. J Mol Cell Cardiol 2010; 49:984-92. [PMID: 20858500 DOI: 10.1016/j.yjmcc.2010.09.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 07/30/2010] [Accepted: 09/14/2010] [Indexed: 12/23/2022]
Abstract
Celecoxib is a COX-2 inhibitor that has been related to an increased cardiovascular risk and that exerts several actions on different targets. The aim of this study was to analyze the effects of this drug on human cardiac voltage-gated potassium channels (Kv) involved on cardiac repolarization Kv1.5 (I(Kur)), Kv4.3+KChIP2 (I(to1)) and Kv7.1+KCNE1 (I(Ks)) and to compare with another COX-2 inhibitor, rofecoxib. Currents were recorded in transfected mammalian cells by whole-cell patch-clamp. Celecoxib blocked all the Kv channels analyzed and rofecoxib was always less potent, except on Kv4.3+KChIP2 channels. Kv1.5 block increased in the voltage range of channel activation, decreasing at potentials positive to 0 mV. The drug modified the activation curve of the channels that became biphasic. Block was frequency-dependent, increasing at fastest frequencies. Celecoxib effects were not altered by TEA(out) in R487Y mutant Kv1.5 channels but the kinetics of block were slower and the degree of block was smaller with TEA(in), indicating that celecoxib acts from the cytosolic side. We confirmed the blocking properties of celecoxib on native Kv currents from rat vascular cells, where Kv1.5 are the main contributors (IC(50)≈ 7 μM). Finally, we demonstrate that celecoxib prolongs the action potential duration in mouse cardiac myocytes and shortens it in guinea pig cardiac myocytes, suggesting that Kv block induced by celecoxib may be of clinical relevance.
Collapse
Affiliation(s)
- Alvaro Macías
- Instituto de Investigaciones Biomédicas Alberto Sols CSIC/UAM, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Page TH, Turner JJO, Brown AC, Timms EM, Inglis JJ, Brennan FM, Foxwell BMJ, Ray KP, Feldmann M. Nonsteroidal anti-inflammatory drugs increase TNF production in rheumatoid synovial membrane cultures and whole blood. THE JOURNAL OF IMMUNOLOGY 2010; 185:3694-701. [PMID: 20713883 DOI: 10.4049/jimmunol.1000906] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit cyclooxygenase activity and hence PG production. However, the ability of NSAIDs to ameliorate pain and tenderness does not prevent disease progression in rheumatoid arthritis, a disease whose pathogenesis is linked to the presence of proinflammatory cytokines, such as TNF-alpha. To understand this observation, we have examined the effect of NSAIDs on the production of clinically validated proinflammatory cytokines. We show that a variety of NSAIDs superinduce production of TNF from human peripheral blood monocytes and rheumatoid synovial membrane cultures. A randomized, double-blinded, crossover, placebo-controlled trial in healthy human volunteers also revealed that the NSAID drug celecoxib increased LPS-induced TNF production in whole blood. NSAID-mediated increases in TNF are reversed by either the addition of exogenous PGE(2) or by a PGE(2) EP2 receptor agonist, revealing that PGE(2) signaling via its EP2 receptor provides a valuable mechanism for controlling excess TNF production. Thus, by reducing the level of PGE(2), NSAIDs can increase TNF production and may exacerbate the proinflammatory environment both within the rheumatoid arthritis joint and the systemic environment.
Collapse
Affiliation(s)
- Theresa H Page
- The Kennedy Institute of Rheumatology Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Koçkaya EA, Selmanoğlu G, Kısmet K, Akay MT. Pathological and biochemical effects of therapeutic and supratherapeutic doses of celecoxib in Wistar albino male rats. Drug Chem Toxicol 2010; 33:410-4. [DOI: 10.3109/01480540903575691] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
188
|
Ho BE, Shen DD, McCune JS, Bui T, Risler L, Yang Z, Ho RJY. Effects of Garlic on Cytochromes P450 2C9- and 3A4-Mediated Drug Metabolism in Human Hepatocytes. Sci Pharm 2010; 78:473-81. [PMID: 20936048 PMCID: PMC2951329 DOI: 10.3797/scipharm.1002-11] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2010] [Accepted: 06/09/2010] [Indexed: 11/22/2022] Open
Abstract
Several reports suggest garlic supplements may inhibit the metabolism of cytochrome P450 (CYP) 2C9 and CYP3A4 substrates, such as warfarin and saquinavir. To characterize the effects of garlic extract on CYP2C9 and CYP3A4 enzyme activity immortalized human hepatocytes (Fa2N-4 cells) were exposed to garlic extract (0-200 μg/mL). CYP2C9 and CYP3A4 enzyme activities were evaluated in parallel with enzymatic activities, expression of respective RNA transcripts was also assessed.Exposure to increasing concentrations of garlic extract led to progressive reduction in Fa2N-4 CYP2C9 activity as detected by diclofenac hydroxylation. CYP2C9 mRNA expression also revealed a concentration-dependent reduction. Greater than 90% reduction in CYP2C9 activity was observed following four days of exposure to 50 μg/mL garlic extract. In contrast, exposure to garlic extract had no effect on the CYP3A4 enzymatic activity or RNA transcript concentration in Fa2N-4. Therefore, suppression of CYP2C9 expression and activity is a heretofore unrecognized mechanism by which garlic extract may modulate CYP activity. Exposure of hepatocytes to garlic extract may reduce the expression and activity of CYP2C9 with no detectible effects on CYP3A4.
Collapse
Affiliation(s)
- Beatrice E Ho
- University of Washington Department of Pharmaceutics, 1959 Pacific Street, H-272, Box 357610, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
189
|
Celecoxib-loaded liposomes: effect of cholesterol on encapsulation and in vitro release characteristics. Biosci Rep 2010; 30:365-73. [DOI: 10.1042/bsr20090104] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CLX (celecoxib) is a highly hydrophobic non-steroidal anti-inflammatory drug with high plasma protein binding. We describe here the encapsulation of CLX in MLVs (multilamellar vesicles) composed of DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine) and variable amounts of cholesterol. The effects of cholesterol content on liposome size, percentage drug loading and in vitro drug release profiles were investigated. Differential scanning calorimetry and FTIR (Fourier-transform infrared) spectroscopy were used to determine molecular interactions between CLX, cholesterol and DSPC. The phase transition temperature (Tm) of vesicles was reduced in a synergistic manner in the presence of both CLX and cholesterol. Encapsulation efficiency, loading and release of CLX decreased with increasing cholesterol content. FTIR results indicated that this decrease was due to a competition between CLX and cholesterol for the co-operativity region of the phospholipids. In the presence of cholesterol, CLX was pushed further into the hydrophobic core of the bilayer. However, MLVs prepared with DSPC only (without cholesterol) exhibited the lowest ability for drug retention after 72 h. Our results indicated that CLX, without the requirement of modifications to enhance solubilization, can be encapsulated and released from liposomal formulations. This method of drug delivery may be used to circumvent the low bioavailability and systemic side effects of oral CLX formulations.
Collapse
|
190
|
Pillai L, Levy RM, Yimam M, Zhao Y, Jia Q, Burnett BP. Flavocoxid, an anti-inflammatory agent of botanical origin, does not affect coagulation or interact with anticoagulation therapies. Adv Ther 2010; 27:400-11. [PMID: 20556559 DOI: 10.1007/s12325-010-0040-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Indexed: 12/30/2022]
Abstract
INTRODUCTION Flavocoxid, a botanical, anti-inflammatory agent, nonspecifically inhibits the peroxidase activity of cyclooxygenase (COX-1 and COX-2) enzymes and 5-lipooxygenase (5-LOX). Due to the concomitant use of aspirin or warfarin in many osteoarthritis (OA) patients with increased cardiovascular risk, we felt it necessary to assess the anticoagulation properties of flavocoxid. METHODS Three different studies were used: 1) a mouse model to assess effects on bleeding times when combined with aspirin; 2) the effect on platelet function as evaluated by platelet aggregation and bleed times in healthy human subjects; and 3) the effect on international normalized ratio in previously warfarinized patients with OA. RESULTS Flavocoxid at a human equivalent dose (HED) of 569 mg (within the standard human dosing range of 500 mg) produced no significant increases in bleeding time in mice. There was also no inhibition or synergistic increase in bleed times when flavocoxid was combined with aspirin (370 mg HED). Flavocoxid did not significantly inhibit thromboxane production or platelet aggregation, and did not increase bleeding times in healthy volunteers. Finally, flavocoxid did not inhibit or potentiate the anticoagulant effect of warfarin. CONCLUSION These results suggest that flavocoxid does not affect the primary or extrinsic pathways of secondary hemostasis and, by not inhibiting the anticoagulation effects of aspirin, may have utility in cardiovascular patients with OA.
Collapse
|
191
|
Zheng X, Cui XX, Gao Z, Zhao Y, Lin Y, Shih WJ, Huang MT, Liu Y, Rabson A, Reddy B, Yang CS, Conney AH. Atorvastatin and celecoxib in combination inhibits the progression of androgen-dependent LNCaP xenograft prostate tumors to androgen independence. Cancer Prev Res (Phila) 2010; 3:114-24. [PMID: 20051379 DOI: 10.1158/1940-6207.capr-09-0059] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Epidemiology studies suggest that statins and nonsteroidal anti-inflammatory drugs reduce the risk of prostate cancer. In the present study, LNCaP cells were cultured in regular medium containing fetal bovine serum or in medium supplemented with charcoal-stripped fetal bovine serum to mimic androgen deprivation treatment. We found that atorvastatin (Lipitor) or celecoxib (Celebrex) treatment of LNCaP cells cultured in regular or androgen-depleted medium inhibited growth and stimulated apoptosis. A combination of atorvastatin and celecoxib was more effective than either agent alone. In animal studies, severe combined immunodeficient mice were injected s.c. with LNCaP cells in Matrigel. After 4 to 6 weeks, mice with LNCaP tumors (about 0.6 cm wide and 0.6 cm long) were surgically castrated and received daily i.p. injections of vehicle, atorvastatin (10 microg/g body weight/d), celecoxib (10 microg/g/d), or a combination of atorvastatin (5 microg/g/d) and celecoxib (5 microg/g/d) for 42 days. In all groups, the androgen-dependent LNCaP tumors regressed initially in response to castration, but the tumors eventually progressed to androgen independence and started to grow. Treatment of the mice with atorvastatin or celecoxib alone suppressed the regrowth of LNCaP tumors after castration. A combination of low doses of atorvastatin and celecoxib had a more potent effect in inhibiting the growth and progression of LNCaP tumors to androgen independence than a higher dose of either agent alone. Our results indicate that administration of a combination of atorvastatin and celecoxib may be an effective strategy for the prevention of prostate cancer progression from androgen dependence to androgen independence.
Collapse
Affiliation(s)
- Xi Zheng
- Department of Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, 08854, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Burd NA, Dickinson JM, Lemoine JK, Carroll CC, Sullivan BE, Haus JM, Jemiolo B, Trappe SW, Hughes GM, Sanders CE, Trappe TA. Effect of a cyclooxygenase-2 inhibitor on postexercise muscle protein synthesis in humans. Am J Physiol Endocrinol Metab 2010; 298:E354-61. [PMID: 19934404 PMCID: PMC2822477 DOI: 10.1152/ajpendo.00423.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nonselective blockade of the cyclooxygenase (COX) enzymes in skeletal muscle eliminates the normal increase in muscle protein synthesis following resistance exercise. The current study tested the hypothesis that this COX-mediated increase in postexercise muscle protein synthesis is regulated specifically by the COX-2 isoform. Sixteen males (23 +/- 1 yr) were randomly assigned to one of two groups that received three doses of either a selective COX-2 inhibitor (celecoxib; 200 mg/dose, 600 mg total) or a placebo in double-blind fashion during the 24 h following a single bout of knee extensor resistance exercise. At rest and 24 h postexercise, skeletal muscle protein fractional synthesis rate (FSR) was measured using a primed constant infusion of [(2)H(5)]phenylalanine coupled with muscle biopsies of the vastus lateralis, and measurements were made of mRNA and protein expression of COX-1 and COX-2. Mixed muscle protein FSR in response to exercise (P < 0.05) was not suppressed by the COX-2 inhibitor (0.056 +/- 0.004 to 0.108 +/- 0.014%/h) compared with placebo (0.074 +/- 0.004 to 0.091 +/- 0.005%/h), nor was there any difference (P > 0.05) between the placebo and COX-2 inhibitor postexercise when controlling for resting FSR. The COX-2 inhibitor did not influence COX-1 mRNA, COX-1 protein, or COX-2 protein levels, whereas it did increase (P < 0.05) COX-2 mRNA (3.0 +/- 0.9-fold) compared with placebo (1.3 +/- 0.3-fold). It appears that the elimination of the postexercise muscle protein synthesis response by nonselective COX inhibitors is not solely due to COX-2 isoform blockade. Furthermore, the current data suggest that the COX-1 enzyme is likely the main isoform responsible for the COX-mediated increase in muscle protein synthesis following resistance exercise in humans.
Collapse
Affiliation(s)
- Nicholas A Burd
- Human Performance Laboratory, Ball State University, Muncie, IN 47306, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
193
|
|
194
|
Frolov RV, Bondarenko VE, Singh S. Mechanisms of Kv2.1 channel inhibition by celecoxib--modification of gating and channel block. Br J Pharmacol 2009; 159:405-18. [PMID: 20015088 DOI: 10.1111/j.1476-5381.2009.00539.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Selective cyclooxygenase-2 (COX-2) inhibitors such as rofecoxib (Vioxx) and celecoxib (Celebrex) were developed as NSAIDs with reduced gastric side effects. Celecoxib has now been shown to affect cellular physiology via an unexpected, COX-independent, pathway - by inhibiting K(v)2.1 and other ion channels. In this study, we investigated the mechanism of the action of celecoxib on K(v)2.1 channels. EXPERIMENTAL APPROACH The mode of action of celecoxib on rat K(v)2.1 channels was studied by whole-cell patch-clamping to record currents from channels expressed in HEK-293 cells. KEY RESULTS Celecoxib reduced current through K(v)2.1 channels when applied from the extracellular side. At low concentrations (<or=3 microM), celecoxib accelerated kinetics of activation, deactivation and inactivation. Recovery of rat K(v)2.1 channels from inactivation could be characterized by two components, with celecoxib selectively accelerating the slow component of recovery at <or=10 microM. At >3 microM, celecoxib led to closed-channel block with relative slowing of activation. At 30 microM, it additionally induced open-channel block that manifested in use-dependent inhibition and slower recovery from inactivation. CONCLUSIONS AND IMPLICATIONS Celecoxib reduced current through K(v)2.1 channels by modifying gating and inducing closed- and open-channel block, with the three effects manifesting at different concentrations. These data will help to elucidate the mechanisms of action of this widely prescribed drug on ion channels and those underlying its neurological, cardiovascular and other effects.
Collapse
Affiliation(s)
- R V Frolov
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | |
Collapse
|
195
|
Abstract
SummaryThere is a high prevalence of pain in older people. Optimal assessment and management of pain in this population is challenging. The pharmacokinetics and pharmacodynamics of analgesic medications are affected by ageing and frailty, as well as by intercurrent medical conditions and their treatments. This review describes what is currently understood about the impacts of old age and frailty on the clinical pharmacology of commonly used analgesics, to provide a rational basis for the use of these medicines. In view of the wide age-related inter-individual variability in pharmacokinetics and pharmacodynamics of analgesic medications, monitoring of clinical response and adverse effects is essential to optimize pain control in older people.
Collapse
|
196
|
Zhou SF, Liu JP, Chowbay B. Polymorphism of human cytochrome P450 enzymes and its clinical impact. Drug Metab Rev 2009; 41:89-295. [PMID: 19514967 DOI: 10.1080/03602530902843483] [Citation(s) in RCA: 536] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pharmacogenetics is the study of how interindividual variations in the DNA sequence of specific genes affect drug response. This article highlights current pharmacogenetic knowledge on important human drug-metabolizing cytochrome P450s (CYPs) to understand the large interindividual variability in drug clearance and responses in clinical practice. The human CYP superfamily contains 57 functional genes and 58 pseudogenes, with members of the 1, 2, and 3 families playing an important role in the metabolism of therapeutic drugs, other xenobiotics, and some endogenous compounds. Polymorphisms in the CYP family may have had the most impact on the fate of therapeutic drugs. CYP2D6, 2C19, and 2C9 polymorphisms account for the most frequent variations in phase I metabolism of drugs, since almost 80% of drugs in use today are metabolized by these enzymes. Approximately 5-14% of Caucasians, 0-5% Africans, and 0-1% of Asians lack CYP2D6 activity, and these individuals are known as poor metabolizers. CYP2C9 is another clinically significant enzyme that demonstrates multiple genetic variants with a potentially functional impact on the efficacy and adverse effects of drugs that are mainly eliminated by this enzyme. Studies into the CYP2C9 polymorphism have highlighted the importance of the CYP2C9*2 and *3 alleles. Extensive polymorphism also occurs in other CYP genes, such as CYP1A1, 2A6, 2A13, 2C8, 3A4, and 3A5. Since several of these CYPs (e.g., CYP1A1 and 1A2) play a role in the bioactivation of many procarcinogens, polymorphisms of these enzymes may contribute to the variable susceptibility to carcinogenesis. The distribution of the common variant alleles of CYP genes varies among different ethnic populations. Pharmacogenetics has the potential to achieve optimal quality use of medicines, and to improve the efficacy and safety of both prospective and currently available drugs. Further studies are warranted to explore the gene-dose, gene-concentration, and gene-response relationships for these important drug-metabolizing CYPs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Bundoora, Victoria, Australia.
| | | | | |
Collapse
|
197
|
Antonarakis ES, Heath EI, Walczak JR, Nelson WG, Fedor H, De Marzo AM, Zahurak ML, Piantadosi S, Dannenberg AJ, Gurganus RT, Baker SD, Parnes HL, DeWeese TL, Partin AW, Carducci MA. Phase II, randomized, placebo-controlled trial of neoadjuvant celecoxib in men with clinically localized prostate cancer: evaluation of drug-specific biomarkers. J Clin Oncol 2009; 27:4986-93. [PMID: 19720908 DOI: 10.1200/jco.2009.21.9410] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Cyclooxygenase-2 (COX-2) is a potential pharmacologic target for the prevention of various malignancies, including prostate cancer. We conducted a randomized, double-blind trial to examine the effect of celecoxib on drug-specific biomarkers from prostate tissue obtained at prostatectomy. PATIENTS AND METHODS Patients with localized prostate cancer and Gleason sum > or = 7, prostate-specific antigen (PSA) > or = 15 ng/mL, clinical stage T2b or greater, or any combination with greater than 45% risk of capsular penetration were randomly assigned to celecoxib 400 mg by mouth twice daily or placebo for 4 to 6 weeks before prostatectomy. The primary end point was the difference in prostatic prostaglandin levels between the two groups. Secondary end points were differences in COX-1 and -2 expressions; oxidized DNA bases; and markers of proliferation, apoptosis and angiogenesis. Tissue celecoxib concentrations also were measured. Tertiary end points were drug safety and compliance. RESULTS Seventy-three patients consented, and 64 were randomly assigned and included in the intention-to-treat analysis. There were no treatment differences in any of the primary or secondary outcomes. Multivariable regression revealed that tumor tissue had significantly lower COX-2 expression than benign prostatic tissue (P = .01) and significantly higher levels of the proliferation marker Ki-67 (P < .0001). Celecoxib was measurable in prostate tissue of patients on treatment, demonstrating that celecoxib reached its target. Celecoxib was safe and resulted in only grade 1 toxicities. CONCLUSION Treatment with 4 to 6 weeks of celecoxib had no effect on intermediate biomarkers of prostate carcinogenesis, despite the achievement of measurable tissue levels. We caution against using celecoxib 400 mg twice daily as a preventive agent for prostate cancer in additional studies.
Collapse
Affiliation(s)
- Emmanuel S Antonarakis
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Zhou SF, Zhou ZW, Huang M. Polymorphisms of human cytochrome P450 2C9 and the functional relevance. Toxicology 2009; 278:165-88. [PMID: 19715737 DOI: 10.1016/j.tox.2009.08.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Revised: 08/18/2009] [Accepted: 08/21/2009] [Indexed: 12/19/2022]
Abstract
Human cytochrome P450 2C9 (CYP2C9) accounts for ∼20% of hepatic total CYP content and metabolizes ~15% clinical drugs such as phenytoin, S-warfarin, tolbutamide, losartan, and many nonsteroidal anti-inflammatory agents (NSAIDs). CYP2C9 is highly polymorphic, with at least 33 variants of CYP2C9 (*1B through *34) being identified so far. CYP2C9*2 is frequent among Caucasians with ~1% of the population being homozygous carriers and 22% are heterozygous. The corresponding figures for the CYP2C9*3 allele are 0.4% and 15%, respectively. There are a number of clinical studies addressing the impact of CYP2C9 polymorphisms on the clearance and/or therapeutic response of therapeutic drugs. These studies have highlighted the importance of the CYP2C9*2 and *3 alleles as a determining factor for drug clearance and drug response. The CYP2C9 polymorphisms are relevant for the efficacy and adverse effects of numerous NSAIDs, sulfonylurea antidiabetic drugs and, most critically, oral anticoagulants belonging to the class of vitamin K epoxide reductase inhibitors. Warfarin has served as a practical example of how pharmacogenetics can be utilized to achieve maximum efficacy and minimum toxicity. For many of these drugs, a clear gene-dose and gene-effect relationship has been observed in patients. In this regard, CYP2C9 alleles can be considered as a useful biomarker in monitoring drug response and adverse effects. Genetic testing of CYP2C9 is expected to play a role in predicting drug clearance and conducting individualized pharmacotherapy. However, prospective clinical studies with large samples are warranted to establish gene-dose and gene-effect relationships for CYP2C9 and its substrate drugs.
Collapse
Affiliation(s)
- Shu-Feng Zhou
- School of Health Sciences, RMIT University, Victoria 3083, Australia.
| | | | | |
Collapse
|
199
|
Rejas J, Monfort J, Campillo MA, Ruiz MA, Pardo A, Soto J. Criterion Validity of the ARthritis Treatment Satisfaction (ARTS) Questionnaire. Clin Drug Investig 2009; 29:527-38. [DOI: 10.2165/00044011-200929080-00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
200
|
Maier TJ, Schiffmann S, Wobst I, Birod K, Angioni C, Hoffmann M, Lopez JJ, Glaubitz C, Steinhilber D, Geisslinger G, Grösch S. Cellular membranes function as a storage compartment for celecoxib. J Mol Med (Berl) 2009; 87:981-93. [PMID: 19641861 DOI: 10.1007/s00109-009-0506-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 07/13/2009] [Accepted: 07/15/2009] [Indexed: 10/20/2022]
Abstract
Celecoxib is a selective cyclooxygenase-2-(COX-2)-inhibitor used to treat inflammation and pain and prevents colorectal cancer in patients at high doses by affecting several non-COX-2 proteins. However, celecoxib concentrations appropriate to inhibit proliferation or to induce apoptosis in cell culture (up to 100 microM) clearly exceed those in human plasma (up to 10 microM). Therefore, we speculated that celecoxib might accumulate in human cells, which may facilitate the drug's interaction with non-COX-2 proteins. Determination of intracellular celecoxib concentrations by liquid chromatography tandem mass spectrometry gave five- to tenfold higher levels as compared to other coxibs (etoricoxib, valdecoxib, lumiracoxib, and rofecoxib) in different tumor cell types, including human HCA-7 and HCT-116 colon carcinoma cells, BL-41 B lymphocytes, Mono Mac 6 monocytes, and in mouse NIH-3T3 non-tumor fibroblasts. This intracellular accumulation of celecoxib was due to an integration of the drug into cellular phospholipid membranes as demonstrated by nuclear Overhauser spectroscopy/nuclear magnetic resonance. Consequently, celecoxib disturbed the plasma membrane integrity of HCT-116 cells and displayed an increased COX-2-inhibitory potency in HCA-7 cells. The use of other coxibs demonstrated that intracellular accumulation is peculiar of celecoxib. Accumulation of celecoxib in human cells may provide a novel molecular basis for the ability of the drug to interact with non-COX-2 targets in vivo despite comparatively low plasma concentrations.
Collapse
Affiliation(s)
- Thorsten J Maier
- Pharmazentrum Frankfurt/ZAFES, Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|