151
|
Radzisheuskaya A, Shlyueva D, Müller I, Helin K. Optimizing sgRNA position markedly improves the efficiency of CRISPR/dCas9-mediated transcriptional repression. Nucleic Acids Res 2016; 44:e141. [PMID: 27353328 PMCID: PMC5062975 DOI: 10.1093/nar/gkw583] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 05/27/2016] [Accepted: 06/20/2016] [Indexed: 01/22/2023] Open
Abstract
CRISPR interference (CRISPRi) represents a newly developed tool for targeted gene repression. It has great application potential for studying gene function and mapping gene regulatory elements. However, the optimal parameters for efficient single guide RNA (sgRNA) design for CRISPRi are not fully defined. In this study, we systematically assessed how sgRNA position affects the efficiency of CRISPRi in human cells. We analyzed 155 sgRNAs targeting 41 genes and found that CRISPRi efficiency relies heavily on the precise recruitment of the effector complex to the target gene transcription start site (TSS). Importantly, we demonstrate that the FANTOM5/CAGE promoter atlas represents the most reliable source of TSS annotations for this purpose. We also show that the proximity to the FANTOM5/CAGE-defined TSS predicts sgRNA functionality on a genome-wide scale. Moreover, we found that once the correct TSS is identified, CRISPRi efficiency can be further improved by considering sgRNA sequence preferences. Lastly, we demonstrate that CRISPRi sgRNA functionality largely depends on the chromatin accessibility of a target site, with high efficiency focused in the regions of open chromatin. In summary, our work provides a framework for efficient CRISPRi assay design based on functionally defined TSSs and features of the target site chromatin.
Collapse
Affiliation(s)
- Aliaksandra Radzisheuskaya
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Daria Shlyueva
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Iris Müller
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| | - Kristian Helin
- Biotech Research and Innovation Centre (BRIC), Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark Centre for Epigenetics, Faculty of Health and Medical Sciences, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark The Danish Stem Cell Center (Danstem), University of Copenhagen, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
152
|
Shen-Gunther J, Wang CM, Poage GM, Lin CL, Perez L, Banks NA, Huang THM. Molecular Pap smear: HPV genotype and DNA methylation of ADCY8, CDH8, and ZNF582 as an integrated biomarker for high-grade cervical cytology. Clin Epigenetics 2016; 8:96. [PMID: 27651839 PMCID: PMC5022163 DOI: 10.1186/s13148-016-0263-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/05/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The Pap smear has remained the foundation for cervical cancer screening for over 70 years. With advancements in molecular diagnostics, primary high-risk human papillomavirus (hrHPV) screening has recently become an accepted stand-alone or co-test with conventional cytology. However, both diagnostic tests have distinct limitations. The aim of this study was to determine the association between HPV genotypes and cellular epigenetic modifications in three grades of cervical cytology for screening biomarker discovery. METHODS This prospective, cross-sectional study used residual liquid-based cytology samples for HPV genotyping and epigenetic analysis. Extracted DNA was subjected to parallel polymerase chain reactions using three primer sets (MY09/11, FAP59/64, E6-E7 F/B) for HPV DNA amplification. HPV+ samples were genotyped by DNA sequencing. Promoter methylation of four candidate tumor suppressor genes (adenylate cyclase 8 (ADCY8), cadherin 8, type 2 (CDH8), MGMT, and zinc finger protein 582 (ZNF582)) out of 48 genes screened was quantified by bisulfite-pyrosequencing of genomic DNA. Independent validation of methylation profiles was performed by analyzing data from cervical cancer cell lines and clinical samples from The Cancer Genome Atlas (TCGA). RESULTS Two hundred seventy-seven quality cytology samples were analyzed. HPV was detected in 31/100 (31 %) negative for intraepithelial lesion or malignancy (NILM), 95/100 (95 %) low-grade squamous intraepithelial lesion (LSIL), and 71/77 (92 %) high-grade squamous intraepithelial lesion (HSIL) samples. The proportion of IARC-defined carcinogenic HPV types in sequenced samples correlated with worsening grade: NILM 7/29 (24 %), LSIL 53/92 (58 %), and HSIL 65/70 (93 %). Promoter methylation of ADCY8, CDH8, and ZNF582 was measured in 170 samples: NILM (N = 33), LSIL (N = 70), and HSIL (N = 67) also correlated with worsening grade. Similar hypermethylation patterns were found in cancer cell lines and TCGA samples. The combination of four biomarkers, i.e., HPV genotype and three-gene promoter methylation, predicted HSIL (AUC 0.89) better than HPV alone (AUC 0.74) by logistic regression and probabilistic modeling. CONCLUSIONS HPV genotype and DNA methylation of ADCY8, CDH8, and ZNF582 are correlated with cytological grade. Collectively, these biomarkers may serve as a molecular classifier of Pap smears.
Collapse
Affiliation(s)
- Jane Shen-Gunther
- Gynecologic Oncology & Clinical Investigation, Department of Clinical Investigation, Brooke Army Medical Center, 3698 Chambers Pass, Fort Sam Houston, TX 78234-6315 USA
| | - Chiou-Miin Wang
- Department of Molecular Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Graham M. Poage
- Department of Clinical Investigation, Brooke Army Medical Center, Fort Sam Houston, TX 78234 USA
| | - Chun-Lin Lin
- Department of Molecular Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| | - Luis Perez
- Department of Clinical Investigation, Brooke Army Medical Center, Fort Sam Houston, TX 78234 USA
| | - Nancy A. Banks
- Department of Pathology and Area Laboratories, Brooke Army Medical Center, Fort Sam Houston, TX 78234 USA
| | - Tim Hui-Ming Huang
- Department of Molecular Medicine, Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
153
|
Watanabe K, Nakayama K, Ohta S, Tago K, Boonvisut S, Millings EJ, Fischer SG, LeDuc CA, Leibel RL, Iwamoto S. ZNF70, a novel ILDR2-interacting protein, contributes to the regulation of HES1 gene expression. Biochem Biophys Res Commun 2016; 477:712-716. [DOI: 10.1016/j.bbrc.2016.06.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/24/2016] [Indexed: 01/20/2023]
|
154
|
Wei S, Wang L, Zhang L, Li B, Li Z, Zhang Q, Wang J, Chen L, Sun G, Li Q, Xu H, Zhang D, Xu Z. ZNF143 enhances metastasis of gastric cancer by promoting the process of EMT through PI3K/AKT signaling pathway. Tumour Biol 2016; 37:12813-12821. [PMID: 27449034 DOI: 10.1007/s13277-016-5239-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 07/15/2016] [Indexed: 12/27/2022] Open
Abstract
The zinc finger protein 143 (ZNF143) is a transcription factor, which regulates many cell cycle-associated genes. ZNF143 expressed strongly in multiple solid tumors. However, the influence of ZNF143 on gastric cancer (GC) remains largely unknown. In this study, we investigated the ZNF143 mRNA level in GC tissues and cells by quantitative real-time PCR (qRT-PCR). The protein expression of ZNF143 in GC cells, and the signaling pathway proteins were detected by Western blotting. Transwell assay and wound healing assay were performed to explore the effects of ZNF143 for the migration ability of GC cells in vitro. We also performed the tail vein injection in nude mice with GC cells to explore the impact of ZNF143 on GC metastasis in vivo. ZNF143 was overexpressed in specimens of GC compared with adjacent normal tissues and increased more significantly in GC tissues of patients who had lymph node metastasis. Ectopic overexpression of ZNF143 enhanced GC migration, whereas ZNF143 knockdown suppressed this effect in vitro. In vivo, ZNF143 knockdown reduced distant metastasis of GC cells in nude mice. In addition, overexpression of ZNF143 reduced the expression of epithelial cell marker (E-cadherin) and induced the expression of mesenchymal cell marker (N-cadherin,Vimentin), Snail and Slug. We also found that ZNF143 enhanced GC cell migration by promoting the process of EMT through PI3K/AKT signaling pathway. In general, our findings show that ZNF143 expressed strongly in GC and enhanced migration of GC cells in vitro and in vivo. It is conceivable that ZNF143 could be a therapeutic genetic target for GC treatment.
Collapse
Affiliation(s)
- Song Wei
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjun Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qun Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiwei Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liang Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangli Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qing Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
155
|
Singh S, Moirangthem RD, Vaidya A, Jalnapurkar S, Limaye L, Kale V. AKT Signaling Prevailing in Mesenchymal Stromal Cells Modulates the Functionality of Hematopoietic Stem Cells via Intercellular Communication. Stem Cells 2016; 34:2354-67. [DOI: 10.1002/stem.2409] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/28/2016] [Accepted: 04/18/2016] [Indexed: 02/03/2023]
Affiliation(s)
- Shweta Singh
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
| | | | - Anuradha Vaidya
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
- Stem Cell Lab, Symbiosis School of Biomedical Sciences, Symbiosis International University; Symbiosis Knowledge Village Lavale Pune 412 115 India
| | - Sapana Jalnapurkar
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
| | - Lalita Limaye
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
| | - Vaijayanti Kale
- Stem Cell Lab, National Centre for Cell Science, Stem Cell Lab; Ganeshkhind Pune 411007 India
| |
Collapse
|
156
|
Alonso-Martin S, Rochat A, Mademtzoglou D, Morais J, de Reyniès A, Auradé F, Chang THT, Zammit PS, Relaix F. Gene Expression Profiling of Muscle Stem Cells Identifies Novel Regulators of Postnatal Myogenesis. Front Cell Dev Biol 2016; 4:58. [PMID: 27446912 PMCID: PMC4914952 DOI: 10.3389/fcell.2016.00058] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/02/2016] [Indexed: 01/02/2023] Open
Abstract
Skeletal muscle growth and regeneration require a population of muscle stem cells, the satellite cells, located in close contact to the myofiber. These cells are specified during fetal and early postnatal development in mice from a Pax3/7 population of embryonic progenitor cells. As little is known about the genetic control of their formation and maintenance, we performed a genome-wide chronological expression profile identifying the dynamic transcriptomic changes involved in establishment of muscle stem cells through life, and acquisition of muscle stem cell properties. We have identified multiple genes and pathways associated with satellite cell formation, including set of genes specifically induced (EphA1, EphA2, EfnA1, EphB1, Zbtb4, Zbtb20) or inhibited (EphA3, EphA4, EphA7, EfnA2, EfnA3, EfnA4, EfnA5, EphB2, EphB3, EphB4, EfnBs, Zfp354c, Zcchc5, Hmga2) in adult stem cells. Ephrin receptors and ephrins ligands have been implicated in cell migration and guidance in many tissues including skeletal muscle. Here we show that Ephrin receptors and ephrins ligands are also involved in regulating the adult myogenic program. Strikingly, impairment of EPHB1 function in satellite cells leads to increased differentiation at the expense of self-renewal in isolated myofiber cultures. In addition, we identified new transcription factors, including several zinc finger proteins. ZFP354C and ZCCHC5 decreased self-renewal capacity when overexpressed, whereas ZBTB4 increased it, and ZBTB20 induced myogenic progression. The architectural and transcriptional regulator HMGA2 was involved in satellite cell activation. Together, our study shows that transcriptome profiling coupled with myofiber culture analysis, provides an efficient system to identify and validate candidate genes implicated in establishment/maintenance of muscle stem cells. Furthermore, tour de force transcriptomic profiling provides a wealth of data to inform for future stem cell-based muscle therapies.
Collapse
Affiliation(s)
- Sonia Alonso-Martin
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Anne Rochat
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Despoina Mademtzoglou
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France
| | - Jessica Morais
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Aurélien de Reyniès
- Programme Cartes d'Identité des Tumeurs, Ligue Nationale Contre le Cancer Paris, France
| | - Frédéric Auradé
- Sorbonne Universités, UPMC Univ Paris 06, INSERM UMRS974, Center for Research in Myology Paris, France
| | - Ted Hung-Tse Chang
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10 Créteil, France
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London London, UK
| | - Frédéric Relaix
- Institut Mondor de Recherche Biomédicale, INSERM U955-E10Créteil, France; Université Paris Est, Faculté de MedecineCréteil, France; Ecole Nationale Veterinaire d'AlfortMaison Alfort, France; Etablissement Français du SangCréteil, France; APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy and Centre de Référence des Maladies Neuromusculaires GNMHCréteil, France
| |
Collapse
|
157
|
Hossain MA, Barrow JJ, Shen Y, Haq MI, Bungert J. Artificial zinc finger DNA binding domains: versatile tools for genome engineering and modulation of gene expression. J Cell Biochem 2016; 116:2435-44. [PMID: 25989233 DOI: 10.1002/jcb.25226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 05/11/2015] [Indexed: 02/01/2023]
Abstract
Genome editing and alteration of gene expression by synthetic DNA binding activities gained a lot of momentum over the last decade. This is due to the development of new DNA binding molecules with enhanced binding specificity. The most commonly used DNA binding modules are zinc fingers (ZFs), TALE-domains, and the RNA component of the CRISPR/Cas9 system. These binding modules are fused or linked to either nucleases that cut the DNA and induce DNA repair processes, or to protein domains that activate or repress transcription of genes close to the targeted site in the genome. This review focuses on the structure, design, and applications of ZF DNA binding domains (ZFDBDs). ZFDBDs are relatively small and have been shown to penetrate the cell membrane without additional tags suggesting that they could be delivered to cells without a DNA or RNA intermediate. Advanced algorithms that are based on extensive knowledge of the mode of ZF/DNA interactions are used to design the amino acid composition of ZFDBDs so that they bind to unique sites in the genome. Off-target binding has been a concern for all synthetic DNA binding molecules. Thus, increasing the specificity and affinity of ZFDBDs will have a significant impact on their use in analytical or therapeutic settings.
Collapse
Affiliation(s)
- Mir A Hossain
- Department of Biochemistry and Molecular Biology, College of Medicine, Cancer Center, Genetics Institute, University of Florida, Gainesville, Florida, 32610
| | - Joeva J Barrow
- Department of Biochemistry and Molecular Biology, College of Medicine, Cancer Center, Genetics Institute, University of Florida, Gainesville, Florida, 32610
| | - Yong Shen
- Department of Biochemistry and Molecular Biology, College of Medicine, Cancer Center, Genetics Institute, University of Florida, Gainesville, Florida, 32610
| | - Md Imdadul Haq
- Department of Biochemistry and Molecular Biology, College of Medicine, Cancer Center, Genetics Institute, University of Florida, Gainesville, Florida, 32610
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, College of Medicine, Cancer Center, Genetics Institute, University of Florida, Gainesville, Florida, 32610
| |
Collapse
|
158
|
Luo H, Schmidt JA, Lee YS, Oltz EM, Payton JE. Targeted epigenetic repression of a lymphoma oncogene by sequence-specific histone modifiers induces apoptosis in DLBCL. Leuk Lymphoma 2016; 58:445-456. [PMID: 27268204 DOI: 10.1080/10428194.2016.1190973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alterations to the epigenetic landscape of diffuse large B-cell lymphoma (DLBCL) play a fundamental role in deregulating genes involved in normal lymphocyte differentiation. To determine whether targeted epigenetic therapy could reverse these pathogenic chromatin changes and suppress the expression of a lymphoma oncogene, we focused on BCL6, a transcriptional repressor whose aberrant expression is tightly linked to DLBCL proliferation and survival. We fused zinc-finger (ZF) domains specific for regulatory regions in the BCL6 locus to a repressive epigenetic modifier, the Kruppel-associated box (KRAB) repressor domain. Distinct ZF-KRAB fusions repressed the local chromatin landscape, suppressed BCL6 expression, significantly impaired DLBCL growth, and caused widespread cell death in a BCL6-dependent manner. Importantly, expression of ectopic BCL6 protein rescued ZF-KRAB-induced cell death, demonstrating the modifiers' specificity. We show that sequence-specific epigenetic modifiers can alter oncogene expression and induce apoptosis in cancer cells, underscoring their potential for future development as targeted epigenetic protein therapies.
Collapse
Affiliation(s)
- Hong Luo
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jennifer A Schmidt
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Yi-Shan Lee
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Eugene M Oltz
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| | - Jacqueline E Payton
- a Department of Pathology and Immunology , Washington University School of Medicine , St. Louis , MO , USA
| |
Collapse
|
159
|
Fan Y, Zhan Q, Xu H, Li L, Li C, Xiao Q, Xiang S, Hui T, Xiang T, Ren G. Epigenetic identification of ZNF545 as a functional tumor suppressor in multiple myeloma via activation of p53 signaling pathway. Biochem Biophys Res Commun 2016; 474:660-666. [PMID: 27150632 DOI: 10.1016/j.bbrc.2016.04.146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 11/24/2022]
Abstract
The KRAB-zinc-finger protein ZNF545 was recently identified as a potential suppressor gene in several tumors. However, the regulatory mechanisms of ZNF545 in tumorigenesis remain unclear. In this study, we investigated the expression and roles of ZNF545 in multiple myeloma (MM). ZNF545 was frequently downregulated in MM tissues compared with non-tumor bone marrow tissues. ZNF545 expression was silenced by promoter methylation in MM cell lines, and could be restored by demethylation treatment. ZNF545 methylation was detected in 28.3% of MM tissues, compared with 4.3% of normal bone marrow tissues. ZNF545 transcriptionally activated the p53 signaling pathway but had no effect on Akt in MM, whereas ectopic expression of ZNF545 in silenced cells suppressed their proliferation and induced apoptosis. We therefore identified ZNF545 as a novel tumor suppressor inhibiting tumor growth through activation of the p53 pathway in MM. Moreover, tumor-specific methylation of ZNF545 may represent an epigenetic biomarker for MM diagnosis, and a potential target for specific therapy.
Collapse
Affiliation(s)
- Yu Fan
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Zhan
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongying Xu
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Chen Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Hong Kong
| | - Qian Xiao
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shili Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tianli Hui
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Guosheng Ren
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
160
|
Ho TLF, Guilbaud G, Blow JJ, Sale JE, Watson CJ. The KRAB Zinc Finger Protein Roma/Zfp157 Is a Critical Regulator of Cell-Cycle Progression and Genomic Stability. Cell Rep 2016; 15:724-734. [PMID: 27149840 PMCID: PMC4850358 DOI: 10.1016/j.celrep.2016.03.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/18/2015] [Accepted: 03/21/2016] [Indexed: 11/21/2022] Open
Abstract
Regulation of DNA replication and cell division is essential for tissue growth and maintenance of genomic integrity and is particularly important in tissues that undergo continuous regeneration such as mammary glands. We have previously shown that disruption of the KRAB-domain zinc finger protein Roma/Zfp157 results in hyperproliferation of mammary epithelial cells (MECs) during pregnancy. Here, we delineate the mechanism by which Roma engenders this phenotype. Ablation of Roma in MECs leads to unscheduled proliferation, replication stress, DNA damage, and genomic instability. Furthermore, mouse embryonic fibroblasts (MEFs) depleted for Roma exhibit downregulation of p21Cip1 and geminin and have accelerated replication fork velocities, which is accompanied by a high rate of mitotic errors and polyploidy. In contrast, overexpression of Roma in MECs halts cell-cycle progression, whereas siRNA-mediated p21Cip1 knockdown ameliorates, in part, this phenotype. Thus, Roma is an essential regulator of the cell cycle and is required to maintain genomic stability.
Collapse
Affiliation(s)
- Teresa L F Ho
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Guillaume Guilbaud
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - J Julian Blow
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Julian E Sale
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
161
|
Nishida T, Yamada Y. SUMOylation of the KRAB zinc-finger transcription factor PARIS/ZNF746 regulates its transcriptional activity. Biochem Biophys Res Commun 2016; 473:1261-1267. [PMID: 27086851 DOI: 10.1016/j.bbrc.2016.04.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/11/2016] [Indexed: 01/13/2023]
Abstract
Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms.
Collapse
Affiliation(s)
- Tamotsu Nishida
- Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan.
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Life Science Research Center, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
| |
Collapse
|
162
|
Ichida Y, Utsunomiya Y, Onodera M. Effect of the linkers between the zinc fingers in zinc finger protein 809 on gene silencing and nuclear localization. Biochem Biophys Res Commun 2016; 471:533-8. [PMID: 26879141 DOI: 10.1016/j.bbrc.2016.02.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 10/22/2022]
Abstract
Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remains unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers.
Collapse
Affiliation(s)
- Yu Ichida
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan.
| | - Yuko Utsunomiya
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo 157-8535, Japan
| |
Collapse
|
163
|
Timms RT, Tchasovnikarova IA, Lehner PJ. Position-effect variegation revisited: HUSHing up heterochromatin in human cells. Bioessays 2016; 38:333-43. [DOI: 10.1002/bies.201500184] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Richard T. Timms
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Iva A. Tchasovnikarova
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| | - Paul J. Lehner
- Department of Medicine, Cambridge Institute for Medical Research; Addenbrooke's Hospital; Cambridge UK
| |
Collapse
|
164
|
Yuki R, Aoyama K, Kubota S, Yamaguchi N, Kubota S, Hasegawa H, Morii M, Huang X, Liu K, Williams R, Fukuda MN, Yamaguchi N. Overexpression of zinc-finger protein 777 (ZNF777) inhibits proliferation at low cell density through down-regulation of FAM129A. J Cell Biochem 2016; 116:954-68. [PMID: 25560148 DOI: 10.1002/jcb.25046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/16/2014] [Indexed: 01/01/2023]
Abstract
Krüppel-associated box-containing zinc finger proteins (KRAB-ZFPs) regulate a wide range of cellular processes. KRAB-ZFPs have a KRAB domain, which binds to transcriptional corepressors, and a zinc finger domain, which binds to DNA to activate or repress gene transcription. Here, we characterize ZNF777, a member of KRAB-ZFPs. We show that ZNF777 localizes to the nucleus and inducible overexpression of ZNF777 inhibits cell proliferation in a manner dependent on its zinc finger domain but independent of its KRAB domain. Intriguingly, ZNF777 overexpression drastically inhibits cell proliferation at low cell density but slightly inhibits cell proliferation at high cell density. Furthermore, ZNF777 overexpression decreases the mRNA level of FAM129A irrespective of cell density. Importantly, the protein level of FAM129A strongly decreases at low cell density, but at high cell density the protein level of FAM129A does not decrease to that observed at low cell density. ZNF777-mediated inhibition of cell proliferation is attenuated by overexpression of FAM129A at low cell density. Furthermore, ZNF777-mediated down-regulation of FAM129A induces moderate levels of the cyclin-dependent kinase inhibitor p21. These results suggest that ZNF777 overexpression inhibits cell proliferation at low cell density and that p21 induction by ZNF777-mediated down-regulation of FAM129A plays a role in inhibition of cell proliferation.
Collapse
Affiliation(s)
- Ryuzaburo Yuki
- Department of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Ichida Y, Utsunomiya Y, Onodera M. The third to fifth zinc fingers play an essential role in the binding of ZFP809 to the MLV-derived PBS. Biochem Biophys Res Commun 2016; 469:490-4. [DOI: 10.1016/j.bbrc.2015.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 12/08/2015] [Indexed: 01/08/2023]
|
166
|
Anvar Z, Cammisa M, Riso V, Baglivo I, Kukreja H, Sparago A, Girardot M, Lad S, De Feis I, Cerrato F, Angelini C, Feil R, Pedone PV, Grimaldi G, Riccio A. ZFP57 recognizes multiple and closely spaced sequence motif variants to maintain repressive epigenetic marks in mouse embryonic stem cells. Nucleic Acids Res 2015; 44:1118-32. [PMID: 26481358 PMCID: PMC4756812 DOI: 10.1093/nar/gkv1059] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/01/2015] [Indexed: 12/15/2022] Open
Abstract
Imprinting Control Regions (ICRs) need to maintain their parental allele-specific DNA methylation during early embryogenesis despite genome-wide demethylation and subsequent de novo methylation. ZFP57 and KAP1 are both required for maintaining the repressive DNA methylation and H3-lysine-9-trimethylation (H3K9me3) at ICRs. In vitro, ZFP57 binds a specific hexanucleotide motif that is enriched at its genomic binding sites. We now demonstrate in mouse embryonic stem cells (ESCs) that SNPs disrupting closely-spaced hexanucleotide motifs are associated with lack of ZFP57 binding and H3K9me3 enrichment. Through a transgenic approach in mouse ESCs, we further demonstrate that an ICR fragment containing three ZFP57 motif sequences recapitulates the original methylated or unmethylated status when integrated into the genome at an ectopic position. Mutation of Zfp57 or the hexanucleotide motifs led to loss of ZFP57 binding and DNA methylation of the transgene. Finally, we identified a sequence variant of the hexanucleotide motif that interacts with ZFP57 both in vivo and in vitro. The presence of multiple and closely located copies of ZFP57 motif variants emerges as a distinct characteristic that is required for the faithful maintenance of repressive epigenetic marks at ICRs and other ZFP57 binding sites.
Collapse
Affiliation(s)
- Zahra Anvar
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Marco Cammisa
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Vincenzo Riso
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Ilaria Baglivo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Harpreet Kukreja
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Angela Sparago
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Michael Girardot
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Shraddha Lad
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy
| | - Italia De Feis
- Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC), CNR, 80131 Naples, Italy
| | - Flavia Cerrato
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Claudia Angelini
- Istituto per le Applicazioni del Calcolo 'Mauro Picone' (IAC), CNR, 80131 Naples, Italy
| | - Robert Feil
- Institute of Molecular Genetics (IGMM), CNRS UMR5535 and University of Montpellier, 1919 route de Mende, 34293 Montpellier, France
| | - Paolo V Pedone
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| | - Giovanna Grimaldi
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Ceinge Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Andrea Riccio
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, 80131 Naples, Italy Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, 81100 Caserta, Italy
| |
Collapse
|
167
|
Wolf G, Greenberg D, Macfarlan TS. Spotting the enemy within: Targeted silencing of foreign DNA in mammalian genomes by the Krüppel-associated box zinc finger protein family. Mob DNA 2015; 6:17. [PMID: 26435754 PMCID: PMC4592553 DOI: 10.1186/s13100-015-0050-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/24/2015] [Indexed: 12/17/2022] Open
Abstract
Tandem C2H2-type zinc finger proteins (ZFPs) constitute the largest transcription factor family in animals. Tandem-ZFPs bind DNA in a sequence-specific manner through arrays of multiple zinc finger domains that allow high flexibility and specificity in target recognition. In tetrapods, a large proportion of tandem-ZFPs contain Krüppel-associated-box (KRAB) repression domains, which are able to induce epigenetic silencing through the KAP1 corepressor. The KRAB-ZFP family continuously amplified in tetrapods through segmental gene duplications, often accompanied by deletions, duplications, and mutations of the zinc finger domains. As a result, tetrapod genomes contain unique sets of KRAB-ZFP genes, consisting of ancient and recently evolved family members. Although several hundred human and mouse KRAB-ZFPs have been identified or predicted, the biological functions of most KRAB-ZFP family members have gone unexplored. Furthermore, the evolutionary forces driving the extraordinary KRAB-ZFP expansion and diversification have remained mysterious for decades. In this review, we highlight recent studies that associate KRAB-ZFPs with the repression of parasitic DNA elements in the mammalian germ line and discuss the hypothesis that the KRAB-ZFP family primarily evolved as an adaptive genomic surveillance system against foreign DNA. Finally, we comment on the computational, genetic, and biochemical challenges of studying KRAB-ZFPs and attempt to predict how these challenges may be soon overcome.
Collapse
Affiliation(s)
- Gernot Wolf
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| | - David Greenberg
- The Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA 94158 USA ; Present address: Pacific Biosciences, 1380 Willow Road, Menlo Park, CA 94025 USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
168
|
Liu R, Hu B, Li Q, Jing X, Zhong C, Chang Y, Liao Q, Lam MF, Leung JC, Lai KN, Wang Y. Novel genes and variants associated with IgA nephropathy by co-segregating with the disease phenotypes in 10 IgAN families. Gene 2015; 571:43-51. [DOI: 10.1016/j.gene.2015.06.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 05/14/2015] [Accepted: 06/16/2015] [Indexed: 12/23/2022]
|
169
|
Puig M, Castellano D, Pantano L, Giner-Delgado C, Izquierdo D, Gayà-Vidal M, Lucas-Lledó JI, Esko T, Terao C, Matsuda F, Cáceres M. Functional Impact and Evolution of a Novel Human Polymorphic Inversion That Disrupts a Gene and Creates a Fusion Transcript. PLoS Genet 2015; 11:e1005495. [PMID: 26427027 PMCID: PMC4591017 DOI: 10.1371/journal.pgen.1005495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/12/2015] [Indexed: 11/18/2022] Open
Abstract
Despite many years of study into inversions, very little is known about their functional consequences, especially in humans. A common hypothesis is that the selective value of inversions stems in part from their effects on nearby genes, although evidence of this in natural populations is almost nonexistent. Here we present a global analysis of a new 415-kb polymorphic inversion that is among the longest ones found in humans and is the first with clear position effects. This inversion is located in chromosome 19 and has been generated by non-homologous end joining between blocks of transposable elements with low identity. PCR genotyping in 541 individuals from eight different human populations allowed the detection of tag SNPs and inversion genotyping in multiple populations worldwide, showing that the inverted allele is mainly found in East Asia with an average frequency of 4.7%. Interestingly, one of the breakpoints disrupts the transcription factor gene ZNF257, causing a significant reduction in the total expression level of this gene in lymphoblastoid cell lines. RNA-Seq analysis of the effects of this expression change in standard homozygotes and inversion heterozygotes revealed distinct expression patterns that were validated by quantitative RT-PCR. Moreover, we have found a new fusion transcript that is generated exclusively from inverted chromosomes around one of the breakpoints. Finally, by the analysis of the associated nucleotide variation, we have estimated that the inversion was generated ~40,000–50,000 years ago and, while a neutral evolution cannot be ruled out, its current frequencies are more consistent with those expected for a deleterious variant, although no significant association with phenotypic traits has been found so far. Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology.
Collapse
Affiliation(s)
- Marta Puig
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - David Castellano
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Lorena Pantano
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Carla Giner-Delgado
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - David Izquierdo
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Magdalena Gayà-Vidal
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - José Ignacio Lucas-Lledó
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Tõnu Esko
- Estonian Biobank, Estonian Genome Center, University of Tartu, Tartu, Estonia
- Boston Children's Hospital, Harvard Medical School, and Broad Institute of Harvard and MIT, Boston, Massachusetts, United States of America
| | - Chikashi Terao
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mario Cáceres
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- * E-mail:
| |
Collapse
|
170
|
Ichida Y, Utsunomiya Y, Yasuda T, Nakabayashi K, Sato T, Onodera M. Functional Domains of ZFP809 Essential for Nuclear Localization and Gene Silencing. PLoS One 2015; 10:e0139274. [PMID: 26417948 PMCID: PMC4587795 DOI: 10.1371/journal.pone.0139274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/09/2015] [Indexed: 12/02/2022] Open
Abstract
Zinc finger protein 809 (ZFP809) is a member of the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family, and is highly expressed in mouse immature cells. ZFP809 is known to inhibit the expression of transduced genes driven by Moloney murine leukemia virus (MoMLV)-typed retroviral vectors by binding to the primer binding site (PBS) located downstream of the MLV-long terminal repeat (LTR) of the vectors and recruiting protein complexes that introduce epigenetic silencing marks such as histone modifications and DNA methylation at the MLV-LTR. However, it remains undetermined what domains of ZFP809 among the KRAB domain at N-terminus and the seven zinc fingers are critical for gene silencing. In this study, we assessed subcellular localization, gene silencing ability, and binding ability to the PBS of a series of truncated and mutated ZFP809 proteins. We revealed the essential role of the KRAB A box for all functions assessed, together with the accessory roles of a subset of zinc fingers. Our data also suggest that interaction between KAP1 and the KRAB A box of ZFP809 is critical in KAP1-dependent control of gene silencing for ZFP809 targets.
Collapse
Affiliation(s)
- Yu Ichida
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Yuko Utsunomiya
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Toru Yasuda
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Keio University, Yokohama, Kanagawa, 223-8522, Japan
| | - Masafumi Onodera
- Department of Human Genetics, National Center for Child Health and Development, 2-10-1 Okura, Setagaya, Tokyo, 157-8535, Japan
| |
Collapse
|
171
|
Genome wide microarray based expression profiles associated with BmNPV resistance and susceptibility in Indian silkworm races of Bombyx mori. Genomics 2015; 106:393-403. [PMID: 26376410 DOI: 10.1016/j.ygeno.2015.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/19/2015] [Accepted: 09/09/2015] [Indexed: 11/23/2022]
Abstract
The molecular mechanism involved in BmNPV resistance was investigated using a genome wide microarray in midgut tissue of Indian silkworm Bombyx mori. In resistant race (Sarupat), 735 genes up-regulated and 589 genes down-regulated at 12 h post BmNPV infection. Similarly, in case of susceptible race (CSR-2), 2183 genes up-regulated and 2115 genes down-regulated. Among these, nine up-regulated and eight down-regulated genes were validated using real-time qPCR analysis. In Sarupat, vacuolar protein sorting associated, Xfin-like protein and carboxypeptidase E-like protein genes significantly up-regulated in infected midgut; prominently down-regulated genes were glutamate receptor ionotropic kainite 2-like, BTB/POZ domain and transferrin. Considerably up-regulated genes in the CSR-2 were peptidoglycan recognition protein S6 precursor and rapamycin while the conspicuous down-regulated genes were facilitated trehalose transporter and zinc transporter ZIP1-like gene. The up-regulation of genes in resistant race after BmNPV infection indicates their possible role in antiviral immune response.
Collapse
|
172
|
Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators. PLoS One 2015; 10:e0136423. [PMID: 26295471 PMCID: PMC4546503 DOI: 10.1371/journal.pone.0136423] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 08/03/2015] [Indexed: 12/27/2022] Open
Abstract
Estrogen receptor α (ERα), as a ligand-dependent transcription factor, mediates 17β-estradiol (E2) effects. ERα is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ERα dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ERα-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ERα. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ERα or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ERα or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue.
Collapse
|
173
|
Hirbe AC, Dahiya S, Miller CA, Li T, Fulton RS, Zhang X, McDonald S, DeSchryver K, Duncavage EJ, Walrath J, Reilly KM, Abel HJ, Pekmezci M, Perry A, Ley TJ, Gutmann DH. Whole Exome Sequencing Reveals the Order of Genetic Changes during Malignant Transformation and Metastasis in a Single Patient with NF1-plexiform Neurofibroma. Clin Cancer Res 2015; 21:4201-11. [PMID: 25925892 DOI: 10.1158/1078-0432.ccr-14-3049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 04/14/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) occur at increased frequency in individuals with neurofibromatosis type 1 (NF1), where they likely arise from benign plexiform neurofibroma precursors. While previous studies have used a variety of discovery approaches to discover genes associated with MPNST pathogenesis, it is currently unclear what molecular events are associated with the evolution of MPNST from plexiform neurofibroma. EXPERIMENTAL DESIGN Whole-exome sequencing was performed on biopsy materials representing plexiform neurofibroma (n = 3), MPNST, and metastasis from a single individual with NF1 over a 14-year period. Additional validation cases were used to assess candidate genes involved in malignant progression, while a murine MPNST model was used for functional analysis. RESULTS There was an increasing proportion of cells with a somatic NF1 gene mutation as the tumors progressed from benign to malignant, suggesting a clonal process in MPNST development. Copy number variations, including loss of one copy of the TP53 gene, were identified in the primary tumor and the metastatic lesion, but not in benign precursor lesions. A limited number of genes with nonsynonymous somatic mutations (βIII-spectrin and ZNF208) were discovered, several of which were validated in additional primary and metastatic MPNST samples. Finally, increased βIII-spectrin expression was observed in the majority of MPNSTs, and shRNA-mediated knockdown reduced murine MPNST growth in vivo. CONCLUSIONS Collectively, the ability to track the molecular evolution of MPNST in a single individual with NF1 offers new insights into the sequence of genetic events important for disease pathogenesis and progression for future mechanistic study.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Christopher A Miller
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Tiandao Li
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Robert S Fulton
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - Xiaochun Zhang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Sandra McDonald
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Katherine DeSchryver
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Eric J Duncavage
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Jessica Walrath
- Rare Tumors Initiative, National Cancer Institute, Bethesda, Maryland. Division of Statistical Genomics, St. Louis, Missouri
| | - Karlyne M Reilly
- Rare Tumors Initiative, National Cancer Institute, Bethesda, Maryland. Division of Statistical Genomics, St. Louis, Missouri
| | | | - Melike Pekmezci
- Neurological Surgery, UCSF School of Medicine, San Francisco, California
| | - Arie Perry
- Neurological Surgery, UCSF School of Medicine, San Francisco, California. Department of Neurology, Washington University, St. Louis, Missouri
| | - Timothy J Ley
- Department of Genetics, The Genome Institute at Washington University, St. Louis, Missouri
| | - David H Gutmann
- Department of Neurology, Washington University, St. Louis, Missouri.
| |
Collapse
|
174
|
Zong D, Yin L, Zhong Q, Guo WJ, Xu JH, Jiang N, Lin ZR, Li MZ, Han P, Xu L, He X, Zeng MS. ZNF488 Enhances the Invasion and Tumorigenesis in Nasopharyngeal Carcinoma Via the Wnt Signaling Pathway Involving Epithelial Mesenchymal Transition. Cancer Res Treat 2015; 48:334-44. [PMID: 25779368 PMCID: PMC4720103 DOI: 10.4143/crt.2014.311] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/05/2014] [Indexed: 02/06/2023] Open
Abstract
Purpose The purpose of this study was to investigate the function of Zinc finger protein 488 (ZNF488) in nasopharyngeal carcinoma (NPC). Materials and Methods The endogenous expression of ZNF488 in NPC tissues, normal nasopharyngeal epithelium tissues and NPC cell lines were detected by quantitative reverse transcription polymerase chain reaction. ZNF488 over-expressing and knock-down NPC cell line models were established through retroviral vector pMSCV mediated over-expression and small interfering RNA (siRNA) mediated knock-down. The invasion and migration capacities were evaluated by wound healing and transwell invasion assays in ZNF488 over-expressing and control cell lines. Soft-agar colony formation and a xenograft experiment were performed to study tumorigenic ability in vitro and in vivo. Immunofluorescence and western blotting analysis were used to examine protein changes followed by ZNF488 over-expression. Microarray analysis was performed to explore gene expression profilings, while luciferase reporter assay to evaluate the transcriptive activity of Tcf/Lef. Results ZNF488 was over-expressed in NPC tissues compared with normal tissues, especially higher in 5-8F and S18, which are well-established high metastatic NPC clones. Functional studies indicate that over-expression of ZNF488 provokes invasion, whereas knock-down of ZNF488 alleviates invasive capability. Moreover, over-expression of ZNF488 promotes NPC tumor growth both in vitro and in vivo. Our data further show that over-expression of ZNF488 induces epithelial mesenchymal transition (EMT) by activating the WNT/β-catenin signaling pathway. Conclusion Our data strongly suggest that ZNF488 acts as an oncogene, promoting invasion and tumorigenesis by activating the Wnt/β-catenin pathway to induce EMT in NPC.
Collapse
Affiliation(s)
- Dan Zong
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Li Yin
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Qian Zhong
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Wen-Jie Guo
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Jian-Hua Xu
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Ning Jiang
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Man-Zhi Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Ping Han
- Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Xu
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Xia He
- Jiangsu Cancer Hospital, Nanjing Medical University, Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Nanjing, China
| | - Mu-Sheng Zeng
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| |
Collapse
|
175
|
Thompson PJ, Dulberg V, Moon KM, Foster LJ, Chen C, Karimi MM, Lorincz MC. hnRNP K coordinates transcriptional silencing by SETDB1 in embryonic stem cells. PLoS Genet 2015; 11:e1004933. [PMID: 25611934 PMCID: PMC4303303 DOI: 10.1371/journal.pgen.1004933] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 12/02/2014] [Indexed: 01/23/2023] Open
Abstract
Retrotransposition of endogenous retroviruses (ERVs) poses a substantial threat to genome stability. Transcriptional silencing of a subset of these parasitic elements in early mouse embryonic and germ cell development is dependent upon the lysine methyltransferase SETDB1, which deposits H3K9 trimethylation (H3K9me3) and the co-repressor KAP1, which binds SETDB1 when SUMOylated. Here we identified the transcription co-factor hnRNP K as a novel binding partner of the SETDB1/KAP1 complex in mouse embryonic stem cells (mESCs) and show that hnRNP K is required for ERV silencing. RNAi-mediated knockdown of hnRNP K led to depletion of H3K9me3 at ERVs, concomitant with de-repression of proviral reporter constructs and specific ERV subfamilies, as well as a cohort of germline-specific genes directly targeted by SETDB1. While hnRNP K recruitment to ERVs is dependent upon KAP1, SETDB1 binding at these elements requires hnRNP K. Furthermore, an intact SUMO conjugation pathway is necessary for SETDB1 recruitment to proviral chromatin and depletion of hnRNP K resulted in reduced SUMOylation at ERVs. Taken together, these findings reveal a novel regulatory hierarchy governing SETDB1 recruitment and in turn, transcriptional silencing in mESCs. Retroelements, including endogenous retroviruses (ERVs), pose a significant threat to genome stability. In mouse embryonic stem (ES) cells, the enzyme SETDB1 safeguards the genome against transcription of specific ERVs by depositing a repressive mark H3K9 trimethylation (H3K9me3). Although SETDB1 is recruited to ERVs by its binding partner KAP1, the molecular basis of this silencing pathway is not clear. Using biochemical and genetic approaches, we identified hnRNP K as a novel component of this silencing pathway that facilitates the recruitment of SETDB1 to ERVs to promote their repression. HnRNP K binds to ERV sequences via KAP1 and subsequently promotes SETDB1 binding. Together, our results reveal a novel function for hnRNP K in transcriptional silencing of ERVs and demonstrate a new regulatory mechanism governing the deposition of H3K9me3 by SETDB1 in ES cells.
Collapse
Affiliation(s)
- Peter J. Thompson
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Vered Dulberg
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung-Mee Moon
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leonard J. Foster
- Centre for High-Throughput Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carol Chen
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mohammad M. Karimi
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Biomedical Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matthew C. Lorincz
- Life Sciences Institute, Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
176
|
The zinc finger protein ZNF658 regulates the transcription of genes involved in zinc homeostasis and affects ribosome biogenesis through the zinc transcriptional regulatory element. Mol Cell Biol 2015; 35:977-87. [PMID: 25582195 PMCID: PMC4333095 DOI: 10.1128/mcb.01298-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We previously identified the ZTRE (zinc transcriptional regulatory element) in genes involved in zinc homeostasis and showed that it mediates transcriptional repression in response to zinc. We now report that ZNF658 acts at the ZTRE. ZNF658 was identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry of a band excised after electrophoretic mobility shift assay using a ZTRE probe. The protein contains a KRAB domain and 21 zinc fingers. It has similarity with ZAP1 from Saccharomyces cerevisiae, which regulates the response to zinc restriction, including a conserved DNA binding region we show to be functional also in ZNF658. Small interfering RNA (siRNA) targeted to ZNF658 abrogated the zinc-induced, ZTRE-dependent reduction in SLC30A5 (ZnT5 gene), SLC30A10 (ZnT10 gene), and CBWD transcripts in human Caco-2 cells and the ability of zinc to repress reporter gene expression from corresponding promoter-reporter constructs. Microarray analysis of the effect of reducing ZNF658 expression by siRNA uncovered a large decrease in rRNA. We find that ZTREs are clustered within the 45S rRNA precursor. We also saw effects on expression of multiple ribosomal proteins. ZNF658 thus links zinc homeostasis with ribosome biogenesis, the most active transcriptional, and hence zinc-demanding, process in the cell. ZNF658 is thus a novel transcriptional regulator that plays a fundamental role in the orchestrated cellular response to zinc availability.
Collapse
|
177
|
di Caprio R, Ciano M, Montano G, Costanzo P, Cesaro E. KAP1 is a Novel Substrate for the Arginine Methyltransferase PRMT5. BIOLOGY 2015; 4:41-9. [PMID: 25585209 PMCID: PMC4381216 DOI: 10.3390/biology4010041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/04/2015] [Indexed: 11/16/2022]
Abstract
KRAB-associated protein 1 (KAP1), the transcriptional corepressor of Kruppel-associated box zinc finger proteins (KRAB-ZFPs), is subjected to multiple post-translational modifications that are involved in fine-tuning of the multiple biological functions of KAP1. In previous papers, we analyzed the KAP1-dependent molecular mechanism of transcriptional repression mediated by ZNF224, a member of the KRAB-ZFP family, and identified the protein arginine methyltransferase PRMT5 as a component of the ZNF224 repression complex. We demonstrated that PRMT5-mediated histone arginine methylation is required to elicit ZNF224 transcriptional repression. In this study, we show that KAP1 interacts with PRMT5 and is a novel substrate for PRMT5 methylation. Also, we present evidence that the methylation of KAP1 arginine residues regulate the KAP1-ZNF224 interaction, thus suggesting that this KAP1 post-translational modification could actively contribute to the regulation of ZNF224-mediated repression.
Collapse
Affiliation(s)
- Roberta di Caprio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| | - Michela Ciano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| | - Giorgia Montano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| | - Paola Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| | - Elena Cesaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, via S. Pansini 5, Naples 80131, Italy.
| |
Collapse
|
178
|
Abstract
Engineered transcription activator-like effectors, or TALEs, have emerged as a new class of designer DNA-binding proteins. Their DNA recognition sites can be specified with great flexibility. When fused to appropriate transcriptional regulatory domains, they can serve as designer transcription factors, modulating the activity of targeted promoters. We created tet operator (tetO)-specific TALEs (tetTALEs), with an identical DNA-binding site as the Tet repressor (TetR) and the TetR-based transcription factors that are extensively used in eukaryotic transcriptional control systems. Different constellations of tetTALEs and tetO modified chromosomal transcription units were analyzed for their efficacy in mammalian cells. We find that tetTALE-silencers can entirely abrogate expression from the strong human EF1α promoter when binding upstream of the transcriptional control sequence. Remarkably, the DNA-binding domain of tetTALE alone can effectively counteract trans-activation mediated by the potent tettrans-activator and also directly interfere with RNA polymerase II transcription initiation from the strong CMV promoter. Our results demonstrate that TALEs can act as highly versatile tools in genetic engineering, serving as trans-activators, trans-silencers and also competitive repressors.
Collapse
Affiliation(s)
- Jeannette Werner
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow 14513, Germany Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany
| | - Manfred Gossen
- Helmholtz-Zentrum Geesthacht (HZG), Institute of Biomaterial Science, Teltow 14513, Germany Max Delbrück Center for Molecular Medicine, Berlin 13125, Germany Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Föhrer Strasse 15, 13353 Berlin, Germany
| |
Collapse
|
179
|
Yan X, Yan L, Su Z, Zhu Q, Liu S, Jin Z, Wang Y. Zinc-finger protein X-linked is a novel predictor of prognosis in patients with colorectal cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2014; 7:3150-3157. [PMID: 25031734 PMCID: PMC4097274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 05/25/2014] [Indexed: 06/03/2023]
Abstract
Zinc-finger protein X-linked (ZFX) has been demonstrated to play an important role in the development of human malignancies. However, its prognostic significance in cancer patients remains unclear and less is known about its role in colorectal cancer (CRC). In this study, we found that the expression of ZFX in CRC tissues was significantly higher than that in corresponding normal tissues by quantitative real-time polymerase chain reaction and Western blot. Using immunohistochemistry, we explored the associations between protein expression of ZFX and clinicopathological parameters in 120 CRC cases. The results showed that ZFX expression was significantly associated with tumor differentiation (P = 0.022), tumor size (P = 0.037), tumor invasion (P = 0.027), lymph node metastasis (P = 0.042), distant metastasis (P = 0.011), and Dukes' classification (P = 0.028). Moreover, according to Kaplan-Meier model, patients with high expression of ZFX had a significantly poorer prognosis compared to those with low expression of ZFX. Multivariate analysis suggested that high expression of ZFX was an independent prognostic factor for CRC patients. In conclusion, our findings for the first time demonstrated that ZFX expression may be associated with the progress of CRC and suggested that ZFX has the potential value to be an effective prognostic predictor for CRC patients.
Collapse
Affiliation(s)
- Xuebing Yan
- Department of General Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University600 Yi-Shan Road, Shanghai 200233, China
| | - Leilei Yan
- Department of General Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University600 Yi-Shan Road, Shanghai 200233, China
| | - Zuopeng Su
- Department of Neurosurgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University600 Yi-Shan Road, Shanghai 200233, China
| | - Qingchao Zhu
- Department of General Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University600 Yi-Shan Road, Shanghai 200233, China
| | - Sihong Liu
- Department of General Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University600 Yi-Shan Road, Shanghai 200233, China
| | - Zhiming Jin
- Department of General Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University600 Yi-Shan Road, Shanghai 200233, China
| | - Yu Wang
- Department of General Surgery, The Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University600 Yi-Shan Road, Shanghai 200233, China
| |
Collapse
|
180
|
Abstract
The ability of adaptive immune system to protect higher vertebrates from pathogens resides in the ability of B and T cells to express different antigen specific receptors and to respond to different threats by activating distinct differentiation and/or activation pathways. In the past 10 years, the major role of epigenetics in controlling molecular mechanisms responsible for these peculiar features and, more in general, for lymphocyte development has become evident. KRAB-ZFPs is the widest family of mammalian transcriptional repressors, which function through the recruitment of the co-factor KRAB-Associated Protein 1 (KAP1) that in turn engages histone modifiers inducing heterochromatin formation. Although most of the studies on KRAB proteins have been performed in embryonic cells, more recent reports highlighted a relevant role for these proteins also in adult tissues. This article will review the role of KRAB-ZFP and KAP1 in the epigenetic control of mouse and human adaptive immune cells.
Collapse
|
181
|
Serra RW, Fang M, Park SM, Hutchinson L, Green MR. A KRAS-directed transcriptional silencing pathway that mediates the CpG island methylator phenotype. eLife 2014; 3:e02313. [PMID: 24623306 PMCID: PMC3949416 DOI: 10.7554/elife.02313] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Approximately 70% of KRAS-positive colorectal cancers (CRCs) have a CpG island methylator phenotype (CIMP) characterized by aberrant DNA hypermethylation and transcriptional silencing of many genes. The factors involved in, and the mechanistic basis of, CIMP is not understood. Among the CIMP genes are the tumor suppressors p14ARF, p15INK4B, and p16INK4A, encoded by the INK4-ARF locus. In this study, we perform an RNA interference screen and identify ZNF304, a zinc-finger DNA-binding protein, as the pivotal factor required for INK4-ARF silencing and CIMP in CRCs containing activated KRAS. In KRAS-positive human CRC cell lines and tumors, ZNF304 is bound at the promoters of INK4-ARF and other CIMP genes. Promoter-bound ZNF304 recruits a corepressor complex that includes the DNA methyltransferase DNMT1, resulting in DNA hypermethylation and transcriptional silencing. KRAS promotes silencing through upregulation of ZNF304, which drives DNA binding. Finally, we show that ZNF304 also directs transcriptional silencing of INK4-ARF in human embryonic stem cells. DOI:http://dx.doi.org/10.7554/eLife.02313.001 Colorectal cancer, which affects the large intestine, is a leading cause of cancer deaths worldwide, ranking fourth after cancers of the lung, stomach, and liver. Like these other cancers, this disease is caused by mutations to genes that allow cells to multiply in an out of control manner. Mutations that change the gene encoding a protein called KRAS are found in many different types of cancer. Moreover, about 70% of colorectal cancers with a KRAS mutation also have an excess of small chemical marks on other genes, some of which are known to suppress the growth of tumors. These marks ‘switch off’ these genes, and although the identities of the enzymes that typically leave these marks on DNA are known, the link between these enzymes and the KRAS protein is unknown. Now Serra, Fang et al. have identified a protein, called ZNF304, that is required by KRAS to switch off a large number of genes, including multiple tumor suppressors. In the absence of ZNF304, these tumor suppressor genes remained switched on in cancer cells with the KRAS mutation, so the growth of the tumor was slowed down. ZNF304 is a protein that binds to stretches of DNA, including regions of DNA at the start of several tumor suppressor genes, and it recruits the enzymes that add the chemical marks that switch off these genes. Serra, Fang et al. found that the levels of ZNF304 protein were elevated in colorectal cancer cells with the mutated KRAS, and showed that this was due to the combined activities of two other proteins that prevented ZNF304 from being broken down in the cell. Mutant KRAS caused an increase in the levels of these two proteins, which in turn caused the elevated ZNF304 levels and the excessive marking of the DNA in the tumor suppressor genes. Furthermore, some of these same tumor suppressor genes are switched off in the earliest cells in a human embryo—which have the potential to become any of 200 or so cell types in the human body. In these embryonic stem cells, Serra, Fang et al. showed that ZNF304, but not KRAS, was also involved in keeping these genes switched off until the stem cells started changing into specific types of cells. Since they are a crucial part of the pathway linking a cancer-causing mutation to increased tumor growth, the proteins identified by Serra, Fang et al. could represent promising targets for the development of new anti-cancer drugs. DOI:http://dx.doi.org/10.7554/eLife.02313.002
Collapse
Affiliation(s)
- Ryan W Serra
- Programs in Gene Function and Expression and Molecular Medicine, University of Massachusetts Medical School, Worcester, United States
| | | | | | | | | |
Collapse
|
182
|
The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1. PLoS One 2014; 9:e87609. [PMID: 24498343 PMCID: PMC3912051 DOI: 10.1371/journal.pone.0087609] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/23/2013] [Indexed: 12/12/2022] Open
Abstract
The Krüppel-associated box (KRAB) domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.
Collapse
|