151
|
Li N, Wu H, Ding Q, Li H, Li Z, Ding J, Li Y. The heterologous expression of Arabidopsis PAP2 induces anthocyanin accumulation and inhibits plant growth in tomato. Funct Integr Genomics 2018; 18:341-353. [PMID: 29372433 DOI: 10.1007/s10142-018-0590-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 12/31/2017] [Accepted: 01/08/2018] [Indexed: 12/24/2022]
Abstract
Anthocyanins are naturally occurring secondary metabolites, responsible for the color of many plants. The Arabidopsis thaliana MYB90/PAP2 (production of anthocyanin pigment 2) was introduced into tomato to study its effect on anthocyanin accumulation. The transgenic tomato displayed much greater anthocyanin accumulation than wild type in all plant organs, but the organs were not fully purple in color except for the stamen. The expression of anthocyanin biosynthetic genes and an anthocyanin-related basic helix-loop-helix (bHLH) gene SlAN1 was significantly increased in the transgenic line, suggesting that ectopic expression of AtPAP2 increases the expression of anthocyanin-related structural and regulatory genes to enhance anthocyanin content. Yeast two-hybrid assays revealed that the endogenous MYB protein SlAN2 interacted with two putative bHLH partners, SlAN1 and SlJAF13, while AtPAP2 only interacted with SlJAF13, which may be why AtPAP2 transgenic plants showed limited anthocyanin accumulation in fruits. In addition to anthocyanin accumulation, the transgenic tomato plants were significantly smaller in size, and the length of primary roots and number of lateral roots were obviously decreased. The expression of lignin biosynthetic genes was downregulated in transgenic tomato plants, which may be the reason for the inhibited growth. The lateral organ boundaries-domain (LBD) genes, which regulate lateral root organogenesis in the auxin signaling pathway, were downregulated in transgenic tomato roots, which may partly account for the disturbed lateral root formation in the transformants. Taken together, the results demonstrate that heterologous expression of transcription factor AtPAP2 not only resulted in anthocyanin accumulation but also inhibited plant growth in tomato.
Collapse
Affiliation(s)
- Nan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Han Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Qiangqiang Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huihui Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhifei Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
152
|
Li Y, Luo X, Wu C, Cao S, Zhou Y, Jie B, Cao Y, Meng H, Wu G. Comparative Transcriptome Analysis of Genes Involved in Anthocyanin Biosynthesis in Red and Green Walnut (Juglans regia L.). Molecules 2017; 23:E25. [PMID: 29271948 PMCID: PMC5943948 DOI: 10.3390/molecules23010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 12/03/2022] Open
Abstract
Fruit color is an important economic trait. The color of red walnut cultivars is mainly attributed to anthocyanins. The aim of this study was to explore the differences in the molecular mechanism of leaf and peel color change between red and green walnut. A reference transcriptome of walnut was sequenced and annotated to identify genes related to fruit color at the ripening stage. More than 290 million high-quality reads were assembled into 39,411 genes using a combined assembly strategy. Using Illumina digital gene expression profiling, we identified 4568 differentially expressed genes (DEGs) between red and green walnut leaf and 3038 DEGs between red and green walnut peel at the ripening stage. We also identified some transcription factor families (MYB, bHLH, and WD40) involved in the control of anthocyanin biosynthesis. The trends in the expression levels of several genes encoding anthocyanin biosynthetic enzymes and transcription factors in the leaf and peel of red and green walnut were verified by quantitative real-time PCR. Together, our results identified the genes involved in anthocyanin accumulation in red walnut. These data provide a valuable resource for understanding the coloration of red walnut.
Collapse
Affiliation(s)
- Yongzhou Li
- College of Horticultural Science, Henan Agricultural University, Zhengzhou 450002, China.
- Institute of Fruit Science, China Academy of Agricultural Science, Zhengzhou 450009, China.
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China.
| | - Xiang Luo
- Institute of Fruit Science, China Academy of Agricultural Science, Zhengzhou 450009, China.
| | - Cuiyun Wu
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China.
| | - Shangyin Cao
- Institute of Fruit Science, China Academy of Agricultural Science, Zhengzhou 450009, China.
| | - Yifei Zhou
- College of Horticultural Science, Henan Agricultural University, Zhengzhou 450002, China.
| | - Bo Jie
- College of Horticultural Science, Henan Agricultural University, Zhengzhou 450002, China.
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China.
- Henan Key Laboratory of fruit and Cucurbit Biology, Zhengzhou 450002, China.
| | - Yalong Cao
- College of Horticultural Science, Henan Agricultural University, Zhengzhou 450002, China.
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China.
- Henan Key Laboratory of fruit and Cucurbit Biology, Zhengzhou 450002, China.
| | - Haijun Meng
- College of Horticultural Science, Henan Agricultural University, Zhengzhou 450002, China.
- Henan Key Laboratory of fruit and Cucurbit Biology, Zhengzhou 450002, China.
| | - Guoliang Wu
- College of Horticultural Science, Henan Agricultural University, Zhengzhou 450002, China.
- Xinjiang Production & Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar 843300, China.
- Henan Key Laboratory of fruit and Cucurbit Biology, Zhengzhou 450002, China.
| |
Collapse
|
153
|
Shiah YJ, Hsieh HL, Chen HJ, Radin DI. Effects of Intentionally Treated Water on Growth of Arabidopsis thaliana Seeds with Cryptochrome Mutations. Explore (NY) 2017; 13:371-378. [DOI: 10.1016/j.explore.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/03/2017] [Accepted: 05/22/2017] [Indexed: 01/23/2023]
|
154
|
Zha J, Koffas MAG. Production of anthocyanins in metabolically engineered microorganisms: Current status and perspectives. Synth Syst Biotechnol 2017; 2:259-266. [PMID: 29552650 PMCID: PMC5851914 DOI: 10.1016/j.synbio.2017.10.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/24/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Microbial production of plant-derived natural products by engineered microorganisms has achieved great success thanks to large extend to metabolic engineering and synthetic biology. Anthocyanins, the water-soluble colored pigments found in terrestrial plants that are responsible for the red, blue and purple coloration of many flowers and fruits, are extensively used in food and cosmetics industry; however, their current supply heavily relies on complex extraction from plant-based materials. A promising alternative is their sustainable production in metabolically engineered microbes. Here, we review the recent progress on anthocyanin biosynthesis in engineered bacteria, with a special focus on the systematic engineering modifications such as selection and engineering of biosynthetic enzymes, engineering of transportation, regulation of UDP-glucose supply, as well as process optimization. These promising engineering strategies will facilitate successful microbial production of anthocyanins in industry in the near future.
Collapse
Key Words
- 4CL, 4-coumaroyl-CoA ligase
- ANS, anthocyanidin synthase
- Anthocyanin
- CHI, chalcone isomerase
- CHS, chalcone synthase
- DFR, dihydroflavonol 4-reductase
- DSSC, dye-sensitized solar cell
- Enzyme engineering
- F3GT, flavonoid 3-O-glucosyltransferase
- F3H, flavanone 3-hydroxylase
- F3′5′H, flavonoid 3′, 5′-hydroxylase
- F3′H, flavonoid 3′-hydroxylase
- FGT, flavonoid glucosyltransferase
- Metabolic engineering
- Microbial production
- UV, ultraviolet
Collapse
Affiliation(s)
- Jian Zha
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos A G Koffas
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Department of Biological Sciences, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
155
|
Xu Z, Mahmood K, Rothstein SJ. ROS Induces Anthocyanin Production Via Late Biosynthetic Genes and Anthocyanin Deficiency Confers the Hypersensitivity to ROS-Generating Stresses in Arabidopsis. PLANT & CELL PHYSIOLOGY 2017; 58:1364-1377. [PMID: 28586465 DOI: 10.1093/pcp/pcx073] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/10/2017] [Indexed: 05/21/2023]
Abstract
Anthocyanins are known to have antioxidant activities. Their accumulation can be triggered by many chemical and environmental factors, including reactive oxygen species (ROS). However, the mechanism of ROS-induced anthocyanin accumulation and the role of anthocyanins in the response of Arabidopsis (Arabidopsis thaliana) to different stresses are largely unknown. Here, we study the cross-regulation between ROS and anthocyanin production. Ten Arabidopsis mutants covering the main anthocyanin regulatory and biosynthetic genes are systematically analyzed under ROS-generating stresses. We find that ROS triggers anthocyanin accumulation by up-regulating the anthocyanin late biosynthetic and the corresponding regulatory genes. The anthocyanin-deficient mutants have more endogenous ROS and are more sensitive to ROS-generating stresses while having decreased antioxidant capacity. Supplementation with cyanidin makes them less susceptible to ROS, with increased anthocyanin and reduced ROS accumulation. In contrast, pap1-D, which overaccumulates anthocyanins, shows the opposite responses. Gene expression analysis reveals that photosynthetic capacity is more impaired in anthocyanin-deficient mutants under high-light stress. Expression levels of ROS-scavenging enzyme genes are not correlated with the radical-scavenging activity in different mutants. We conclude that ROS are an important source signal to induce anthocyanin accumulation by up-regulating late biosynthetic and the corresponding regulatory genes and, as a feed-back regulation, anthocyanins modulate the ROS level and the sensitivity to ROS-generating stresses in maintaining photosynthetic capacity.
Collapse
Affiliation(s)
- Zhenhua Xu
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kashif Mahmood
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Steven J Rothstein
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
156
|
Perea-Resa C, Rodríguez-Milla MA, Iniesto E, Rubio V, Salinas J. Prefoldins Negatively Regulate Cold Acclimation in Arabidopsis thaliana by Promoting Nuclear Proteasome-Mediated HY5 Degradation. MOLECULAR PLANT 2017; 10:791-804. [PMID: 28412546 DOI: 10.1016/j.molp.2017.03.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/27/2017] [Accepted: 03/31/2017] [Indexed: 05/25/2023]
Abstract
The process of cold acclimation is an important adaptive response whereby many plants from temperate regions increase their freezing tolerance after being exposed to low non-freezing temperatures. The correct development of this response relies on proper accumulation of a number of transcription factors that regulate expression patterns of cold-responsive genes. Multiple studies have revealed a variety of molecular mechanisms involved in promoting the accumulation of these transcription factors. Interestingly, however, the mechanisms implicated in controlling such accumulation to ensure their adequate levels remain largely unknown. In this work, we demonstrate that prefoldins (PFDs) control the levels of HY5, an Arabidopsis transcription factor with a key role in cold acclimation by activating anthocyanin biosynthesis, in response to low temperature. Our results show that, under cold conditions, PFDs accumulate into the nucleus through a DELLA-dependent mechanism, where they interact with HY5, triggering its ubiquitination and subsequent degradation. The degradation of HY5 would result, in turn, in anthocyanin biosynthesis attenuation, ensuring the accurate development of cold acclimation. These findings uncover an unanticipated nuclear function for PFDs in plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Carlos Perea-Resa
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Miguel A Rodríguez-Milla
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain
| | - Elisa Iniesto
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Vicente Rubio
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain
| | - Julio Salinas
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas, CSIC, 28040 Madrid, Spain.
| |
Collapse
|
157
|
Zhang L, Xu B, Wu T, Yang Y, Fan L, Wen M, Sui J. Transcriptomic profiling of two Pak Choi varieties with contrasting anthocyanin contents provides an insight into structural and regulatory genes in anthocyanin biosynthetic pathway. BMC Genomics 2017; 18:288. [PMID: 28399809 PMCID: PMC5387373 DOI: 10.1186/s12864-017-3677-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/31/2017] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The accumulation of anthocyanin in horticultural crops not only improves their stress tolerances but also their nutritional values. Many key regulatory and structural genes in anthocyanin biosynthesis have been identified in model plants, but limited information is available for non-model plant species featured with colored leaves. In this study, two Pak Choi varieties with green or purple leaves were selected to analyze the anthocyanin biosynthesis through RNA-Seq. RESULTS A total of 2475 unigenes were differentially expressed between these tested varieties, including 1303 down-regulated and 1172 up-regulated genes in the purple-leafed one. The reliability of the RNA-Seq was further confirmed by using real-time quantitative PCR. Kyoto Encyclopedia of Genes and Genomes enrichment analysis of the differentially expressed genes revealed 'flavonoid biosynthesis' was the only enriched pathway in the purple-leafed variety: In the pathway of phenylpropanoid metabolism, Bra017210, Bra039777, and Bra021637 were expressed at higher levels in the purple-leafed variety; among the early anthocyanin biosynthetic genes, Bra037747 transcripts were only detected in the purple-leafed variety but not in the green-leafed one; among the late anthocyanin biosynthetic genes, Bra027457, Bra013652, Bra019350, Bra003021, Bra035004, and Bra038445 were all up-regulated in purple-leafed variety; and genes encoding anthocyanin-related transcription factors, such as Bra016164, and genes encoding anthocyanin transportation, such as GST F12, were also identified as up-regulated ones in the purple-leafed variety. CONCLUSIONS The current result provided a valuable insight into the anthocyanin accumulation in the purple-leafed variety of Pak Choi and a bioinformatic resource for further functional identification of key allelic genes determining the difference of anthocyanin content between Pak Choi varieties.
Collapse
Affiliation(s)
- Lu Zhang
- College of Horticulture, Northeast Agricultural University, 59 Mucai street, 150030 Harbin, People’s Republic of China
| | - Bin Xu
- College of Agro-grassland Science, Nanjing Agricultural University, 1 Weigang, 210095 Nanjing, People’s Republic of China
| | - Tao Wu
- College of Horticulture, Northeast Agricultural University, 59 Mucai street, 150030 Harbin, People’s Republic of China
| | - Yanfang Yang
- State Key Laboratory of Tree Genetics and Breeding, The Research Institute of Forestry, Chinese Academy of Forestry Sciences, 100091 Beijing, People’s Republic of China
| | - Lianxue Fan
- College of Horticulture, Northeast Agricultural University, 59 Mucai street, 150030 Harbin, People’s Republic of China
| | - Muxuan Wen
- College of Horticulture, Northeast Agricultural University, 59 Mucai street, 150030 Harbin, People’s Republic of China
| | - Jiaxin Sui
- College of Horticulture, Northeast Agricultural University, 59 Mucai street, 150030 Harbin, People’s Republic of China
| |
Collapse
|
158
|
Tak H, Negi S, Ganapathi TR. Overexpression of MusaMYB31, a R2R3 type MYB transcription factor gene indicate its role as a negative regulator of lignin biosynthesis in banana. PLoS One 2017; 12:e0172695. [PMID: 28234982 PMCID: PMC5325293 DOI: 10.1371/journal.pone.0172695] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/08/2017] [Indexed: 12/03/2022] Open
Abstract
Lignin and polyphenols are important cellular components biosynthesized through phenylpropanoid pathway. Phenylpropanoid pathway in plants is regulated by some important transcription factors including R2R3 MYB transcription factors. In this study, we report the cloning and functional characterization of a banana R2R3-MYB transcription factor (MusaMYB31) by overexpression in transgenic banana plants and evaluated its potential role in regulating biosynthesis of lignin and polyphenols. Sequence analysis of MusaMYB31 indicated its clustering with members of subgroup 4 (Sg4) of R2R3MYB family which are well known for their role as repressors of lignin biosynthesis. Expression analysis indicated higher expression of MusaMYB31 in corm and root tissue, known for presence of highly lignified tissue than other organs of banana. Overexpression of MusaMYB31 in banana cultivar Rasthali was carried out and four transgenic lines were confirmed by GUS histochemical staining, PCR analysis and Southern blot. Histological and biochemical analysis suggested reduction of cell wall lignin in vascular elements of banana. Transgenic lines showed alteration in transcript levels of general phenylpropanoid pathway genes including lignin biosynthesis pathway genes. Reduction of total polyphenols content in transgenic lines was in line with the observation related to repression of general phenylpropanoid pathway genes. This study suggested the potential role of MusaMYB31 as repressor of lignin and polyphenols biosynthesis in banana.
Collapse
Affiliation(s)
- Himanshu Tak
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - Sanjana Negi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
- Homi Bhabha National Institute, Anushakti Nagar, Mumbai, India
| | - T. R. Ganapathi
- Plant Cell Culture Technology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India
| |
Collapse
|
159
|
Lu Y, Bu Y, Hao S, Wang Y, Zhang J, Tian J, Yao Y. MYBs affect the variation in the ratio of anthocyanin and flavanol in fruit peel and flesh in response to shade. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:40-49. [PMID: 28167273 DOI: 10.1016/j.jphotobiol.2017.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 01/14/2017] [Accepted: 01/19/2017] [Indexed: 12/20/2022]
Abstract
Fruit pigment accumulation, which represents an important indicator of nutrient quality and appearance value, is often affected by low light under rain, cloud, fog and haze conditions during the veraison period. It is not known whether continuous low light interferes with the production and accumulation of secondary metabolites in veraison fruit. In this paper, we measured pigments and the transcriptional level of genes related to secondary metabolites, i.e., flavonoid biosynthesis in the peel and flesh of Malus crabapple 'Radiant' fruit in response to normal light and shade from 10th July to 30th August. The results showed crosstalk between the flavonoid biosynthetic genes and the involvement of key transcription factors such as McMYB4, McMYB7, McMYB10, and McMYB16 in the regulation of the ratio of anthocyanins and flavanols, which accounted for the different colouration of the fruit peel and flesh under shade conditions. A model is proposed for the regulation of the flavonoid pathway in the peel and flesh of 'Radiant' fruit based on our study results. Moreover, the molecular mechanism for 'Radiant' fruit colouration provides reference information for understanding the light regulatory mechanism involved in the biosynthesis of flavonoids and for designing the next generation of apple breeding.
Collapse
Affiliation(s)
- Yanfen Lu
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yufen Bu
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Suxiao Hao
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yaru Wang
- Department of Ornamental Horticulture, China Agricultural University, Beijing 100193,China
| | - Jie Zhang
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Ji Tian
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China
| | - Yuncong Yao
- College of Plant Science and Technology, Beijing Key Laboratory for Agricultural Application and New Technique, Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture, Beijing 102206, China.
| |
Collapse
|
160
|
He X, Li Y, Lawson D, Xie DY. Metabolic engineering of anthocyanins in dark tobacco varieties. PHYSIOLOGIA PLANTARUM 2017; 159:2-12. [PMID: 27229540 DOI: 10.1111/ppl.12475] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 05/16/2016] [Indexed: 06/05/2023]
Abstract
In this study, we investigate the metabolic engineering of anthocyanins in two dark tobacco crops (Narrow Leaf Madole and KY171) and evaluate the effects on physiological features of plant photosynthesis. Arabidopsis PAP1 (production of anthocyanin pigment 1) gene (AtPAP1) encodes a R2R3-type MYB transcript factor that is a master component of regulatory complexes controlling anthocyanin biosynthesis. AtPAP1 was introduced to Narrow Leaf Madole and KY171 plants. Multiple transgenic plants developed red/purple pigmentation in different tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression levels of six pathway genes were increased two- to eight-fold in AtPAP1 transgenic plants compared with vector control plants. Dihydroflavonol reductase and anthocyanidin synthase genes that were not expressed in wild-type plants were activated. Spectrophotometric measurement showed that the amount of anthocyanins in AtPAP1 transgenic plants were 400-800 µg g-1 fresh weight (FW). High-performance liquid chromatography (HPLC) analysis showed that one main anthocyanin molecule accounted for approximately 98% of the total anthocyanins. Tandem MS/MS analysis using HPLC coupled to electrospray ionization and quadrupole time-of-flight mass spectrometry identified the main anthocyanin as cyanidin 3-O-rutinoside, an important medicinal anthocyanin. Analysis of photosynthesis rate, chlorophylls and carotenoids contents showed no differences between red/purple transgenic and control plants, indicating that this metabolic engineering did not alter photosynthetic physiological traits. This study shows that AtPAP1 is of significance for metabolic engineering of anthocyanins in crop plants for value-added traits.
Collapse
Affiliation(s)
- Xianzhi He
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yong Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Darlene Lawson
- Department of Research and Development, R. J. Reynolds Tobacco Company, Winston-Salem, NC, 27102, USA
| | - De-Yu Xie
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
161
|
Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:85-103. [PMID: 27599367 DOI: 10.1111/tpj.13324] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 05/18/2023]
Abstract
The plant family 1 UDP-glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR-Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE-binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP-rhamnose to cyanidin and cyanidin 3-O-glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation.
Collapse
Affiliation(s)
- Pan Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Yan-Jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Feng-Ju Zhang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Gui-Zhi Zhang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiao-Yi Jiang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Hui-Min Yu
- School of Life Sciences, QiLu Normal University, Jinan, Shandong, 250013, China
| | - Bing-Kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
162
|
Nanda S, Mohanty JN, Mishra R, Joshi RK. Metabolic Engineering of Phenylpropanoids in Plants. REFERENCE SERIES IN PHYTOCHEMISTRY 2017. [DOI: 10.1007/978-3-319-28669-3_30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
163
|
Li M, Li Y, Guo L, Gong N, Pang Y, Jiang W, Liu Y, Jiang X, Zhao L, Wang Y, Xie DY, Gao L, Xia T. Functional Characterization of Tea ( Camellia sinensis) MYB4a Transcription Factor Using an Integrative Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:943. [PMID: 28659938 PMCID: PMC5467005 DOI: 10.3389/fpls.2017.00943] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/22/2017] [Indexed: 05/18/2023]
Abstract
Green tea (Camellia sinensis, Cs) abundantly produces a diverse array of phenylpropanoid compounds benefiting human health. To date, the regulation of the phenylpropanoid biosynthesis in tea remains to be investigated. Here, we report a cDNA isolated from leaf tissues, which encodes a R2R3-MYB transcription factor. Amino acid sequence alignment and phylogenetic analysis indicate that it is a member of the MYB4-subgroup and named as CsMYB4a. Transcriptional and metabolic analyses show that the expression profile of CsMYB4a is negatively correlated to the accumulation of six flavan-3-ols and other phenolic acids. GFP fusion analysis shows CsMYB4a's localization in the nucleus. Promoters of five tea phenylpropanoid pathway genes are isolated and characterized to contain four types of AC-elements, which are targets of MYB4 members. Interaction of CsMYB4a and five promoters shows that CsMYB4a decreases all five promoters' activity. To further characterize its function, CsMYB4a is overexpressed in tobacco plants. The resulting transgenic plants show dwarf, shrinking and yellowish leaf, and early senescence phenotypes. A further genome-wide transcriptomic analysis reveals that the expression levels of 20 tobacco genes involved in the shikimate and the phenylpropanoid pathways are significantly downregulated in transgenic tobacco plants. UPLC-MS and HPLC based metabolic profiling reveals significant reduction of total lignin content, rutin, chlorogenic acid, and phenylalanine in CsMYB4a transgenic tobacco plants. Promoter sequence analysis of the 20 tobacco genes characterizes four types of AC-elements. Further CsMYB4a-AC element and CsMYB4a-promoter interaction analyses indicate that the negative regulation of CsMYB4a on the shikimate and phenylpropanoid pathways in tobacco is via reducing promoter activity. Taken together, all data indicate that CsMYB4a negatively regulates the phenylpropanoid and shikimate pathways. Highlight: A tea (Camellia sinensis) MYB4a is characterized to encode a R2R3-MYB transcription factor. It is shown to repressively control the phenylpropanoid and shikimate pathway.
Collapse
Affiliation(s)
- Mingzhuo Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
| | - Yanzhi Li
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
| | - Lili Guo
- School of Life Science, Anhui Agricultural UniversityHefei, China
| | - Niandi Gong
- School of Life Science, Anhui Agricultural UniversityHefei, China
| | - Yongzheng Pang
- Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Wenbo Jiang
- Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural UniversityHefei, China
| | - Xiaolan Jiang
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
| | - Lei Zhao
- College of Horticulture, Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticultural Plants, Qingdao Agricultural UniversityQingdao, China
| | - Yunsheng Wang
- School of Life Science, Anhui Agricultural UniversityHefei, China
| | - De-Yu Xie
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
- Department of Plant and Microbial Biology, North Carolina State University, RaleighNC, United States
- *Correspondence: Tao Xia, Liping Gao, De-Yu Xie,
| | - Liping Gao
- School of Life Science, Anhui Agricultural UniversityHefei, China
- *Correspondence: Tao Xia, Liping Gao, De-Yu Xie,
| | - Tao Xia
- State Key Laboratory of Tea Plant Biochemistry and Utilization, Anhui Agricultural UniversityHefei, China
- *Correspondence: Tao Xia, Liping Gao, De-Yu Xie,
| |
Collapse
|
164
|
Li B, Xia Y, Wang Y, Qin G, Tian S. Characterization of Genes Encoding Key Enzymes Involved in Anthocyanin Metabolism of Kiwifruit during Storage Period. FRONTIERS IN PLANT SCIENCE 2017; 8:341. [PMID: 28344589 PMCID: PMC5344892 DOI: 10.3389/fpls.2017.00341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/27/2017] [Indexed: 05/04/2023]
Abstract
'Hongyang' is a red fleshed kiwifruit with high anthocyanin content. In this study, we mainly investigated effects of different temperatures (25 and 0°C) on anthocyanin biosynthesis in harvested kiwifruit, and characterized the genes encoding key enzymes involved in anthocyanin metabolism, as well as evaluated the mode of the action, by which low temperature regulates anthocyanin accumulation in 'Hongyang' kiwifruit during storage period. The results showed that low temperature could effectively enhance the anthocyanin accumulation of kiwifruit in the end of storage period (90 days), which related to the increase in mRNA levels of ANS1, ANS2, DRF1, DRF2, and UGFT2. Moreover, the transcript abundance of MYBA1-1 and MYB5-1, the genes encoding an important component of MYB-bHLH-WD40 (MBW) complex, was up-regulated, possibly contributing to the induction of specific anthocyanin biosynthesis genes under the low temperature. To further investigate the roles of AcMYB5-1/5-2/A1-1 in regulation of anthocyanin biosynthesis, genes encoding the three transcription factors were transiently transformed in Nicotiana benthamiana leaves. Overexpression of AcMYB5-1/5-2/A1-1 activated the gene expression of NtANS and NtDFR in tobacco. Our results suggested that low temperature storage could stimulate the anthocyanin accumulation in harvested kiwifruit via regulating several structural and regulatory genes involved in anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yongxiu Xia
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Yuying Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
- *Correspondence: Shiping Tian,
| |
Collapse
|
165
|
Lu Y, Chen Q, Bu Y, Luo R, Hao S, Zhang J, Tian J, Yao Y. Flavonoid Accumulation Plays an Important Role in the Rust Resistance of Malus Plant Leaves. FRONTIERS IN PLANT SCIENCE 2017; 8:1286. [PMID: 28769974 PMCID: PMC5514348 DOI: 10.3389/fpls.2017.01286] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 07/07/2017] [Indexed: 05/20/2023]
Abstract
Cedar-apple rust (Gymnosporangium yamadai Miyabe) is a fungal disease that causes substantial injury to apple trees and results in fruit with reduced size and quality and a lower commercial value. The molecular mechanisms underlying the primary and secondary metabolic effects of rust spots on the leaves of Malus apple cultivars are poorly understood. Using HPLC, we found that the contents of flavonoid compounds, especially anthocyanin and catechin, were significantly increased in rust-infected symptomatic tissue (RIT). The expression levels of structural genes and MYB transcription factors related to flavonoid biosynthesis were one- to seven-fold higher in the RIT. Among these genes, CHS, DFR, ANS, FLS and MYB10 showed more than a 10-fold increase, suggesting that these genes were expressed at significantly higher levels in the RIT. Hormone concentration assays showed that the levels of abscisic acid (ABA), ethylene (ETH), jasmonate (JA) and salicylic acid (SA) were higher in the RIT and were consistent with the expression levels of McNCED, McACS, McLOX and McNPR1, respectively. Our study explored the complicated crosstalk of the signal transduction pathways of ABA, ETH, JA and SA; the primary metabolism of glucose, sucrose, fructose and sorbitol; and the secondary metabolism of flavonoids involved in the rust resistance of Malus crabapple leaves.
Collapse
Affiliation(s)
- Yanfen Lu
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Qi Chen
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Yufen Bu
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Rui Luo
- College of Food Science and Engineering, Beijing University of AgricultureBeijing, China
| | - Suxiao Hao
- College of Horticulture and Landscape Architecture, Southwest UniversityChongqing, China
| | - Jie Zhang
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
| | - Yuncong Yao
- Plant Science and Technology College, Beijing University of AgricultureBeijing, China
- Beijing Key Laboratory for Agricultural Applications and New TechniquesBeijing, China
- Beijing Nursery Engineering Research Center for Fruit CropsBeijing, China
- *Correspondence: Yuncong Yao,
| |
Collapse
|
166
|
Li S, Wang W, Gao J, Yin K, Wang R, Wang C, Petersen M, Mundy J, Qiu JL. MYB75 Phosphorylation by MPK4 Is Required for Light-Induced Anthocyanin Accumulation in Arabidopsis. THE PLANT CELL 2016; 28:2866-2883. [PMID: 27811015 PMCID: PMC5155340 DOI: 10.1105/tpc.16.00130] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/19/2016] [Accepted: 11/02/2016] [Indexed: 05/19/2023]
Abstract
Light is a major environmental cue affecting various physiological and metabolic processes in plants. Although plant photoreceptors are well characterized, the mechanisms by which light regulates downstream responses are less clear. In Arabidopsis thaliana, the accumulation of photoprotective anthocyanin pigments is light dependent, and the R2R3 MYB transcription factor MYB75/PAP1 regulates anthocyanin accumulation. Here, we report that MYB75 interacts with and is phosphorylated by MAP KINASE4 (MPK4). Their interaction is dependent on MPK4 kinase activity and is required for full function of MYB75. MPK4 can be activated in response to light and is involved in the light-induced accumulation of anthocyanins. We show that MPK4 phosphorylation of MYB75 increases its stability and is essential for light-induced anthocyanin accumulation. Our findings reveal an important role for a MAPK pathway in light signal transduction.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyi Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinlan Gao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kangquan Yin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rui Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengcheng Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Morten Petersen
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - John Mundy
- Department of Biology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
167
|
Zhang N, Sun Q, Li H, Li X, Cao Y, Zhang H, Li S, Zhang L, Qi Y, Ren S, Zhao B, Guo YD. Melatonin Improved Anthocyanin Accumulation by Regulating Gene Expressions and Resulted in High Reactive Oxygen Species Scavenging Capacity in Cabbage. FRONTIERS IN PLANT SCIENCE 2016; 7:197. [PMID: 27047496 PMCID: PMC4804130 DOI: 10.3389/fpls.2016.00197] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 02/04/2016] [Indexed: 05/18/2023]
|
168
|
Xu W, Dubos C, Lepiniec L. Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. TRENDS IN PLANT SCIENCE 2015; 20:176-85. [PMID: 25577424 DOI: 10.1016/j.tplants.2014.12.001] [Citation(s) in RCA: 1019] [Impact Index Per Article: 101.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/21/2014] [Accepted: 12/10/2014] [Indexed: 05/18/2023]
Abstract
Flavonoids are widely known for the colors they confer to plant tissues, their contribution to plant fitness and health benefits, and impact on food quality. As convenient biological markers, flavonoids have been instrumental in major genetic and epigenetic discoveries. We review recent advances in the characterization of the underlying regulatory mechanisms of flavonoid biosynthesis, with a special focus on the MBW (MYB-bHLH-WDR) protein complexes. These proteins are well conserved in higher plants. They participate in different types of controls ranging from fine-tuned transcriptional regulation by environmental factors to the initiation of the flavonoid biosynthesis pathway by positive regulatory feedback. The MBW protein complexes provide interesting models for investigating developmentally or environmentally controlled transcriptional regulatory networks.
Collapse
Affiliation(s)
- Wenjia Xu
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France
| | - Christian Dubos
- INRA and Centre National de la Recherche Scientifique (CNRS) SupAgro-M, Université Montpellier 2 (UM2), Biochimie et Physiologie Moléculaire des Plantes, 2 place Viala, 34060 Montpellier CEDEX 1, France.
| | - Loïc Lepiniec
- Institut National de la Recherche Agronomique (INRA) Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, ERL-CNRS 3559, Saclay Plant Sciences, RD10, 78026 Versailles, France.
| |
Collapse
|