151
|
Zhang P. Decidual vasculopathy and spiral artery remodeling revisited II: relations to trophoblastic dependent and independent vascular transformation. J Matern Fetal Neonatal Med 2020; 35:395-401. [PMID: 31986934 DOI: 10.1080/14767058.2020.1718646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background: There are three types of decidual vasculopathy at term, acute atherosis, fibrinoid medial necrosis, and mural arterial hypertrophy with two separate mechanisms. Acute atherosis and fibrinoid medial necrosis demonstrate the replacement of the muscular wall by the fibrinoid material and "foamy cells", whereas mural arterial hypertrophy depicts thickened hypertrophic muscular wall with a narrowed lumen.Methods: In this review, decidual vasculopathy is reexamined using the knowledge of CD56 expression on endovascular trophoblasts (EVTs) at term with perspective in diagnosis and pathogenesis.Results: All three types of vasculopathy can be identified in both decidua basalis and decidua vera (capsularis/parietalis) at term. Decidual vasculopathy at basalis is related to the persistence of EVTs in spiral artery remodeling at implantation and phenotypic switch to express CD56. However, no trophoblastic invasion of spiral artery is present at decidua vera. At implantation, the spiral artery undergoes a trophoblastic-dependent remodeling in decidua basalis whereas the spiral artery undergoes trophoblastic-independent remodeling in decidual vera.Conclusions: Decidual vasculopathy at term is related to spiral artery remodeling at implantation and this is associated with factors other than trophoblastic invasion alone. The spiral artery remodeling at implantation and pathogenesis of decidual vasculopathy at term is likely through circulating factors in relation to complex physiological and pathological conditions in pregnancy.
Collapse
Affiliation(s)
- Peilin Zhang
- Department of Pathology, New York Presbyterian - Brooklyn Methodist Hospital, New York, NY, USA
| |
Collapse
|
152
|
The phenotype of decidual CD56+ lymphocytes is influenced by secreted factors from decidual stromal cells but not macrophages in the first trimester of pregnancy. J Reprod Immunol 2020; 138:103082. [PMID: 31982613 DOI: 10.1016/j.jri.2020.103082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 01/08/2020] [Accepted: 01/12/2020] [Indexed: 11/23/2022]
Abstract
During the first trimester of pregnancy the decidua is comprised of decidual stromal cells (DSC), invading fetal trophoblast cells and maternal leukocytes, including decidual natural killer (dNK) cells and macrophages. dNK cells are distinct from peripheral blood NK cells and have a role in regulating trophoblast invasion and spiral artery remodelling. The unique phenotype of dNK cells results from the decidual environment in which they reside, however the interaction and influence of other cells in the decidua on dNK phenotype is unknown. We isolated first trimester DSC and decidual macrophages and investigated the effect that DSC and decidual macrophage secreted factors have on CD56+ decidual lymphocyte receptor expression and cytokine secretion (including dNK cells). We report that DSC secreted factors induce the secretion of the cytokines IL-8 and IL-6 from first trimester CD56+ cells. However, neither DSC nor decidual macrophage secreted factors changed CD56+ cell receptor expression. These results suggest that secreted factors from DSC influence CD56+ decidual lymphocytes during the first trimester of pregnancy and therefore may play a role in regulating the unique phenotype and function of dNK cells during placentation.
Collapse
|
153
|
Placental bed research: II. Functional and immunological investigations of the placental bed. Am J Obstet Gynecol 2019; 221:457-469. [PMID: 31288009 DOI: 10.1016/j.ajog.2019.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 06/01/2019] [Accepted: 07/02/2019] [Indexed: 01/14/2023]
Abstract
Research on the placenta as the interface between the mother and the fetus has been undertaken for some 150 years, and in 2 subsequent reviews, we attempted to summarize the situation. In the first part, we described the discovery of unique physiological modifications of the uteroplacental spiral arteries, enabling them to cope with a major increase in blood flow necessary to ensure proper growth of the fetus. These consist of an invasion of the arterial walls by trophoblast and a progressive disappearance of its normal structure. Researchers then turned to the pathophysiology of the placental bed and in particular to its maternal vascular tree. This yielded vital information for a better understanding of the so-called great obstetrical syndromes (preeclampsia, fetal growth restriction, premature labor and delivery, placenta accreta). Systematic morphological investigations of the uteroplacental vasculature showed that preeclampsia is associated with decreased or failed transformation of spiral arteries and the persistence of endothelial and smooth muscle cells in segments of their myometrial portion. Here we report on recent functional investigations of the placental bed, including in situ biophysical studies of uteroplacental blood flow and vascular resistance, and manipulation of uteroplacental perfusion. These new methodologies have provided a novel way of identifying pregnancies in which remodeling is impaired. In animals it is now possible to manipulate uteroplacental blood flow, leading to an enhancement of fetal growth; this opens the way to trials in abnormal human pregnancies. In this second part, we explored a new, extremely important area of research that deals with the role of specific subsets of leukocytes and macrophages in the placental bed. The human first-trimester decidua is rich in leukocytes called uterine natural killer cells. Both macrophages and uterine natural killer cells increase in number from the secretory endometrium to early pregnancy and play a critical role in mediating the process of spiral artery transformation by inducing initial structural changes. It seems therefore that vascular remodeling of spiral arteries is initiated independently of trophoblast invasion. Dysregulation of the immune system may lead to reproductive failure or pregnancy complications, and in this respect, recent studies have advanced our understanding of the mechanisms regulating immunological tolerance during pregnancy, with several mechanisms being proposed for the development of tolerance to the semiallogeneic fetus. In particular, these include several strategies by which the trophoblast avoids maternal recognition. Finally, an important new dimension is being explored: the likelihood that pregnancy syndromes and impaired uteroplacental vascular remodeling may be linked to future maternal and even the child's cardiovascular disease risk. The functional evidence underlying these observations will be discussed.
Collapse
|
154
|
Vondra S, Kunihs V, Eberhart T, Eigner K, Bauer R, Haslinger P, Haider S, Windsperger K, Klambauer G, Schütz B, Mikula M, Zhu X, Urban AE, Hannibal RL, Baker J, Knöfler M, Stangl H, Pollheimer J, Röhrl C. Metabolism of cholesterol and progesterone is differentially regulated in primary trophoblastic subtypes and might be disturbed in recurrent miscarriages. J Lipid Res 2019; 60:1922-1934. [PMID: 31530576 PMCID: PMC6824492 DOI: 10.1194/jlr.p093427] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
During pregnancy, extravillous trophoblasts (EVTs) invade the maternal decidua and remodel the local vasculature to establish blood supply for the growing fetus. Compromised EVT function has been linked to aberrant pregnancy associated with maternal and fetal morbidity and mortality. However, metabolic features of this invasive trophoblast subtype are largely unknown. Using primary human trophoblasts isolated from first trimester placental tissues, we show that cellular cholesterol homeostasis is differentially regulated in EVTs compared with villous cytotrophoblasts. Utilizing RNA-sequencing, gene set-enrichment analysis, and functional validation, we provide evidence that EVTs display increased levels of free and esterified cholesterol. Accordingly, EVTs are characterized by increased expression of the HDL-receptor, scavenger receptor class B type I, and reduced expression of the LXR and its target genes. We further reveal that EVTs express elevated levels of hydroxy-delta-5-steroid dehydrogenase 3 beta- and steroid delta-isomerase 1 (HSD3B1) (a rate-limiting enzyme in progesterone synthesis) and are capable of secreting progesterone. Increasing cholesterol export by LXR activation reduced progesterone secretion in an ABCA1-dependent manner. Importantly, HSD3B1 expression was decreased in EVTs of idiopathic recurrent spontaneous abortions, pointing toward compromised progesterone metabolism in EVTs of early miscarriages. Here, we provide insights into the regulation of cholesterol and progesterone metabolism in trophoblastic subtypes and its putative relevance in human miscarriage.
Collapse
Affiliation(s)
- Sigrid Vondra
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Victoria Kunihs
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Tanja Eberhart
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Karin Eigner
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Raimund Bauer
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Peter Haslinger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Sandra Haider
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Karin Windsperger
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Günter Klambauer
- Institute of Machine Learning,Johannes Kepler University Linz, Linz, Austria
| | - Birgit Schütz
- Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Mario Mikula
- Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Xiaowei Zhu
- Departments of PsychiatryStanford University School of Medicine, Stanford, CA,Genetics,Stanford University School of Medicine, Stanford, CA
| | - Alexander E. Urban
- Departments of PsychiatryStanford University School of Medicine, Stanford, CA,Genetics,Stanford University School of Medicine, Stanford, CA
| | | | - Julie Baker
- Genetics,Stanford University School of Medicine, Stanford, CA
| | - Martin Knöfler
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Jürgen Pollheimer
- Department of Obstetrics and Gynecology, Reproductive Biology Unit, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria,To whom correspondence should be addressed. e-mail: (C.R.); (J.P.)
| | - Clemens Röhrl
- Departments of Medical Chemistry Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria,University of Applied Sciences Upper Austria, Wels, Austria,To whom correspondence should be addressed. e-mail: (C.R.); (J.P.)
| |
Collapse
|
155
|
Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial Immune Dysfunction in Recurrent Pregnancy Loss. Int J Mol Sci 2019; 20:E5332. [PMID: 31717776 PMCID: PMC6862690 DOI: 10.3390/ijms20215332] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/17/2022] Open
Abstract
Recurrent pregnancy loss (RPL) represents an unresolved problem for contemporary gynecology and obstetrics. In fact, it is not only a relevant complication of pregnancy, but is also a significant reproductive disorder affecting around 5% of couples desiring a child. The current knowledge on RPL is largely incomplete, since nearly 50% of RPL cases are still classified as unexplained. Emerging evidence indicates that the endometrium is a key tissue involved in the correct immunologic dialogue between the mother and the conceptus, which is a condition essential for the proper establishment and maintenance of a successful pregnancy. The immunologic events occurring at the maternal-fetal interface within the endometrium in early pregnancy are extremely complex and involve a large array of immune cells and molecules with immunoregulatory properties. A growing body of experimental studies suggests that endometrial immune dysregulation could be responsible for several, if not many, cases of RPL of unknown origin. The present article reviews the major immunologic pathways, cells, and molecular determinants involved in the endometrial dysfunction observed with specific application to RPL.
Collapse
Affiliation(s)
- Carlo Ticconi
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Adalgisa Pietropolli
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Nicoletta Di Simone
- U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A.Gemelli IRCCS, Laego A. Gemelli, 8, 00168, Rome Italy;
- Istituto di Clinica Ostetrica e Ginecologica, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy
| | - Emilio Piccione
- Department of Surgical Sciences, Section of Gynecology and Obstetrics, University Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (A.P.); (E.P.)
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA;
| |
Collapse
|
156
|
Yang F, Zheng Q, Jin L. Dynamic Function and Composition Changes of Immune Cells During Normal and Pathological Pregnancy at the Maternal-Fetal Interface. Front Immunol 2019; 10:2317. [PMID: 31681264 PMCID: PMC6813251 DOI: 10.3389/fimmu.2019.02317] [Citation(s) in RCA: 271] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022] Open
Abstract
A successful pregnancy requires a fine-tuned and highly regulated balance between immune activation and embryonic antigen tolerance. Since the fetus is semi-allogeneic, the maternal immune system should exert tolerant to the fetus while maintaining the defense against infection. The maternal-fetal interface consists of different immune cells, such as decidual natural killer (dNK) cells, macrophages, T cells, dendritic cells, B cells, and NKT cells. The interaction between immune cells, decidual stromal cells, and trophoblasts constitute a vast network of cellular connections. A cellular immunological imbalance may lead to adverse pregnancy outcomes, such as recurrent spontaneous abortion, pre-eclampsia, pre-term birth, intrauterine growth restriction, and infection. Dynamic changes in immune cells at the maternal-fetal interface have not been clearly stated. While many studies have described changes in the proportions of immune cells in the normal maternal-fetus interface during early pregnancy, few studies have assessed the immune cell changes in mid and late pregnancy. Research on pathological pregnancy has provided clues about these dynamic changes, but a deeper understanding of these changes is necessary. This review summarizes information from previous studies, which may lay the foundation for the diagnosis of pathological pregnancy and put forward new ideas for future studies.
Collapse
Affiliation(s)
- Fenglian Yang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qingliang Zheng
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Liping Jin
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
157
|
Jena MK, Nayak N, Chen K, Nayak NR. Role of Macrophages in Pregnancy and Related Complications. Arch Immunol Ther Exp (Warsz) 2019; 67:295-309. [PMID: 31286151 PMCID: PMC7140981 DOI: 10.1007/s00005-019-00552-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/28/2019] [Indexed: 12/20/2022]
Abstract
Macrophages (MФs) are the leukocytes produced from differentiation of monocytes and are located in almost all tissues of human body. They are involved in various processes, such as phagocytosis, innate and adaptive immunity, proinflammatory (M1) and anti-inflammatory (M2) activity, depending on the tissue microenvironment. They play a crucial role in pregnancy, and their dysfunction or alteration of polarity is involved in pregnancy disorders, like preeclampsia, recurrent spontaneous abortion, infertility, intrauterine growth restriction, and preterm labor. About 50-60% of decidual leukocytes are natural killer (NK) cells followed by MФs (the second largest population). MФs are actively involved in trophoblast invasion, tissue and vascular remodeling during early pregnancy, besides their role as major antigen-presenting cells in the decidua. These cells have different phenotypes and polarities in different stages of pregnancy. They have also been observed to enhance tumor growth by their anti-inflammatory activity (M2 type) and prevent immunogenic rejection. Targeted alteration of polarity (M1-M2 or vice versa) could be a major focus in the future treatment of pregnancy complications. This review is focused on the role of MФs in pregnancy, their involvement in pregnancy disorders, and decidual MФs as possible therapeutic targets for the treatment of pregnancy complications.
Collapse
Affiliation(s)
- Manoj K Jena
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA.
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University (LPU), Phagwara, Punjab, India.
| | - Neha Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| | - Nihar R Nayak
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI, USA
| |
Collapse
|
158
|
Calo G, Sabbione F, Pascuali N, Keitelman I, Vota D, Paparini D, Ramhorst R, Parborell F, Trevani A, Leirós CP. Interplay between neutrophils and trophoblast cells conditions trophoblast function and triggers vascular transformation signals. J Cell Physiol 2019; 235:3592-3603. [PMID: 31559642 DOI: 10.1002/jcp.29247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/26/2019] [Indexed: 01/26/2023]
Abstract
Normal placentation entails highly regulated interactions of maternal leukocytes with vascular and trophoblast cells to favor vascular transformation. Neutrophil activation and neutrophil extracellular trap (NET) formation associate with poor placentation and severe pregnancy complications. To deepen into the mechanisms of trophoblast-neutrophil interaction, we explored the effects of NETs on trophoblast cell function and, conversely, whether trophoblast cell-derived factors condition neutrophils to favor angiogenesis and anti-inflammatory signals required for fetal growth. NETs isolated from activated neutrophils hindered trophoblast cell migration. Trophoblast conditioned media prevented the effect as well as the vasoactive intestinal peptide (VIP) known to regulate trophoblast and neutrophil function. On the other hand, factors released by trophoblast cells and VIP shaped neutrophils to a proangiogenic profile with increased vascular endothelial growth factor synthesis and increased capacity to promote vascular transformation. Results presented here provide novel clues to reconstruct the interaction of trophoblast cells and neutrophils in vivo during placentation in humans.
Collapse
Affiliation(s)
- Guillermina Calo
- Immunopharmacology Laboratory, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Florencia Sabbione
- Laboratory of Innate Immunity, Institute of Experimental Medicine (IMEX), National Academy of Medicine, CONICET, Buenos Aires, Argentina
| | - Natalia Pascuali
- Laboratory of Ovarian Physiopathology, Institute of Experimental Biology and Medicine (IByME), CONICET, Buenos Aires, Argentina
| | - Irene Keitelman
- Laboratory of Innate Immunity, Institute of Experimental Medicine (IMEX), National Academy of Medicine, CONICET, Buenos Aires, Argentina
| | - Daiana Vota
- Immunopharmacology Laboratory, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Daniel Paparini
- Immunopharmacology Laboratory, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Immunopharmacology Laboratory, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Fernanda Parborell
- Laboratory of Ovarian Physiopathology, Institute of Experimental Biology and Medicine (IByME), CONICET, Buenos Aires, Argentina
| | - Analía Trevani
- Laboratory of Innate Immunity, Institute of Experimental Medicine (IMEX), National Academy of Medicine, CONICET, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Immunopharmacology Laboratory, Institute of Biological Chemistry (IQUIBICEN), School of Exact and Natural Sciences, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
159
|
Knöfler M, Haider S, Saleh L, Pollheimer J, Gamage TKJB, James J. Human placenta and trophoblast development: key molecular mechanisms and model systems. Cell Mol Life Sci 2019; 76:3479-3496. [PMID: 31049600 PMCID: PMC6697717 DOI: 10.1007/s00018-019-03104-6] [Citation(s) in RCA: 428] [Impact Index Per Article: 71.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 12/16/2022]
Abstract
Abnormal placentation is considered as an underlying cause of various pregnancy complications such as miscarriage, preeclampsia and intrauterine growth restriction, the latter increasing the risk for the development of severe disorders in later life such as cardiovascular disease and type 2 diabetes. Despite their importance, the molecular mechanisms governing human placental formation and trophoblast cell lineage specification and differentiation have been poorly unravelled, mostly due to the lack of appropriate cellular model systems. However, over the past few years major progress has been made by establishing self-renewing human trophoblast stem cells and 3-dimensional organoids from human blastocysts and early placental tissues opening the path for detailed molecular investigations. Herein, we summarize the present knowledge about human placental development, its stem cells, progenitors and differentiated cell types in the trophoblast epithelium and the villous core. Anatomy of the early placenta, current model systems, and critical key regulatory factors and signalling cascades governing placentation will be elucidated. In this context, we will discuss the role of the developmental pathways Wingless and Notch, controlling trophoblast stemness/differentiation and formation of invasive trophoblast progenitors, respectively.
Collapse
Affiliation(s)
- Martin Knöfler
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria.
| | - Sandra Haider
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Leila Saleh
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Jürgen Pollheimer
- Reproductive Biology Unit, Department of Obstetrics and Gynaecology, Medical University of Vienna, Währinger Gürtel 18-20, 5Q, 1090, Vienna, Austria
| | - Teena K J B Gamage
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
160
|
Toth B, Vomstein K, Togawa R, Böttcher B, Hudalla H, Strowitzki T, Daniel V, Kuon RJ. The impact of previous live births on peripheral and uterine natural killer cells in patients with recurrent miscarriage. Reprod Biol Endocrinol 2019; 17:72. [PMID: 31472670 PMCID: PMC6717647 DOI: 10.1186/s12958-019-0514-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/16/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Peripheral and uterine natural killer cells (pNK and uNK cells) are key players in the establishment and maintenance of pregnancy and are disturbed in patients with recurrent miscarriage (RM). Different immunologic risk factors have been proposed between patients with primary RM (pRM, no previous live birth) and secondary RM (sRM, ≥ 1 previous live birth). However, so far, the study populations mainly consisted of small subgroups. Therefore, we aimed to analyse pNK and uNK cells in a large, well defined study population within a prospective study. METHODS In total, n = 575 RM patients (n = 393 pRM, n = 182 sRM) were screened according to a standard protocol for established risk factors as well as pNK and uNK cells. Peripheral blood levels of CD45+CD3-CD56+CD16+ NK cells were determined by flow cytometry and uterine CD56+ NK cells by immunohistochemistry in mid-luteal non-pregnant RM patients. Exclusion of patients with ≥1 established risk factor revealed n = 248 idiopathic RM patients (iRM, n = 167 primary iRM (ipRM), n = 81 secondary iRM (isRM)). RESULTS Patients with pRM and ipRM showed significant higher absolute numbers and percentages of pNK cells compared to sRM and isRM patients (pRM/ipRM vs sRM/isRM, mean ± SD /μl: 239.1 ± 118.7/244.9 ± 112.9 vs 205.1 ± 107.9/206.0 ± 105.6, p = 0.004/ p = 0.009; mean ± SD %: 12.4 ± 5.5/12.8 ± 5.4 vs 11.1 ± 4.6/11.1 ± 4.3, p = 0.001; p = 0.002). Only patients with isRM showed significantly higher uNK levels compared to patients with ipRM (mean ± SD /mm2 288.4 ± 239.3 vs 218.2 ± 184.5, p = 0.044). CONCLUSIONS The demonstrated differences in pNK and uNK cells in RM patients depending on previous live birth might indicate differences in NK cell recruitment and potentially different underlying immune disorders between pRM and sRM. As there is an overlap in the distribution of the NK cell results, further studies with focus on NK cell function are needed in order to clearly identify RM patients with distinct immune abnormalities. The clinical relevance of our findings should be interpreted cautiously until specificity and sensitivity are further evaluated.
Collapse
Affiliation(s)
- B Toth
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - K Vomstein
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
- Department of Gynecological Endocrinology and Fertility Disorders, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany.
| | - R Togawa
- Department of Gynecological Endocrinology and Fertility Disorders, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - B Böttcher
- Department of Gynecological Endocrinology and Reproductive Medicine, Medical University Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - H Hudalla
- Department of Neonatology, Heidelberg University Children's Hospital, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany
| | - Th Strowitzki
- Department of Gynecological Endocrinology and Fertility Disorders, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - V Daniel
- Transplantation-Immunology, Institute of Immunology, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - R J Kuon
- Department of Gynecological Endocrinology and Fertility Disorders, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| |
Collapse
|
161
|
Saghian R, Bogle G, James JL, Clark AR. Establishment of maternal blood supply to the placenta: insights into plugging, unplugging and trophoblast behaviour from an agent-based model. Interface Focus 2019; 9:20190019. [PMID: 31485310 DOI: 10.1098/rsfs.2019.0019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2019] [Indexed: 12/14/2022] Open
Abstract
The ability of the baby to receive nutrients and oxygen in utero depends on the healthy development of the placenta. For maternal blood to adequately perfuse the placenta, it dramatically alters the arteries in the uterus that supply it with nutrient-rich blood right from the start of pregnancy. Placental cells (trophoblasts) invade both into the tissue of the uterus and into the maternal blood vessels nearest to the site of implantation (the spiral arteries (SAs)) and transform these allowing a relatively high and steady flow of nutrient-rich blood to perfuse the placenta. Trophoblasts also form plugs that occlude SAs, preventing maternal blood flow to the placenta until the late first trimester, at which point these plugs dislodge or disintegrate. Here we present an agent-based model of trophoblast migration within plugged SAs to tease apart the impact of chemical signals and mechanical factors on trophoblast behaviour. The model supports our previous in vitro hypothesis that plugging of the maternal arteries in early pregnancy can act to promote trophoblast invasion by providing a 'low flow' environment and extends our understanding by suggesting 'weak spots' in plug structure can lead to plug degeneration, allowing increased blood flow through the materno-fetal circulation.
Collapse
Affiliation(s)
- Rojan Saghian
- Auckland Bioengineering Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Gib Bogle
- Auckland Bioengineering Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joanna L James
- Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
162
|
Vishnyakova P, Elchaninov A, Fatkhudinov T, Sukhikh G. Role of the Monocyte-Macrophage System in Normal Pregnancy and Preeclampsia. Int J Mol Sci 2019; 20:3695. [PMID: 31357698 PMCID: PMC6696152 DOI: 10.3390/ijms20153695] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 02/07/2023] Open
Abstract
The proper functioning of the monocyte-macrophage system, an important unit of innate immunity, ensures the normal course of pregnancy. In this review, we present the current data on the origin of the monocyte-macrophage system and its functioning in the female reproductive system during the ovarian cycle, and over the course of both normal and complicated pregnancy. Preeclampsia is a crucial gestation disorder characterized by pronounced inflammation in the maternal body that affects the work of the monocyte-macrophage system. The effects of inflammation at preeclampsia manifest in changes in monocyte counts and their subset composition, and changes in placental macrophage counts and their polarization. Here we summarize the recent data on this issue for both the maternal organism and the fetus. The influence of estrogen on macrophages and their altered levels in preeclampsia are also discussed.
Collapse
Affiliation(s)
- Polina Vishnyakova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia.
| | - Andrey Elchaninov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Street, 117198 Moscow, Russia
- Scientific Research Institute of Human Morphology, 3 Tsurupa Street, 117418 Moscow, Russia
| | - Gennady Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, 4 Oparina Street, 117997 Moscow, Russia
| |
Collapse
|
163
|
Olmos-Ortiz A, Flores-Espinosa P, Mancilla-Herrera I, Vega-Sánchez R, Díaz L, Zaga-Clavellina V. Innate Immune Cells and Toll-like Receptor-Dependent Responses at the Maternal-Fetal Interface. Int J Mol Sci 2019; 20:ijms20153654. [PMID: 31357391 PMCID: PMC6695670 DOI: 10.3390/ijms20153654] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022] Open
Abstract
During pregnancy, the placenta, the mother and the fetus exploit several mechanisms in order to avoid fetal rejection and to maintain an immunotolerant environment throughout nine months. During this time, immune cells from the fetal and maternal compartments interact to provide an adequate defense in case of an infection and to promote a tolerogenic milieu for the fetus to develop peacefully. Trophoblasts and decidual cells, together with resident natural killer cells, dendritic cells, Hofbauer cells and other macrophages, among other cell types, contribute to the modulation of the uterine environment to sustain a successful pregnancy. In this review, the authors outlined some of the various roles that the innate immune system plays at the maternal-fetal interface. First, the cell populations that are recruited into gestational tissues and their immune mechanisms were examined. In the second part, the Toll-like receptor (TLR)-dependent immune responses at the maternal-fetal interface was summarized, in terms of their specific cytokine/chemokine/antimicrobial peptide expression profiles throughout pregnancy.
Collapse
Affiliation(s)
- Andrea Olmos-Ortiz
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Pilar Flores-Espinosa
- Departamento de Inmunobioquímica, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Ismael Mancilla-Herrera
- Departamento de Infectología e Inmunología, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Rodrigo Vega-Sánchez
- Departamento de Nutrición y Bioprogramación, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico
| | - Lorenza Díaz
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| | - Verónica Zaga-Clavellina
- Departamento de Fisiología y Desarrollo Celular, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Ciudad de México 11000, Mexico.
| |
Collapse
|
164
|
Robson A, Lash GE, Innes BA, Zhang JY, Robson SC, Bulmer JN. Uterine spiral artery muscle dedifferentiation. Hum Reprod 2019; 34:1428-1438. [DOI: 10.1093/humrep/dez124] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 04/30/2019] [Accepted: 06/06/2019] [Indexed: 12/25/2022] Open
Abstract
AbstractSTUDY QUESTIONIs vascular smooth muscle cell (VSMC) dedifferentiation a feature of uterine spiral artery (SpA) remodelling in early human pregnancy?SUMMARY ANSWERRemodelling of human uterine SpAs is associated with dedifferentiation of VSMCs and can be induced in vitro by uterine natural killer (uNK) cells and extravillous trophoblast cells (EVTs).WHAT IS KNOWN ALREADYUterine SpAs undergo profound morphological changes in normal pregnancy with replacement of the musculoelastic arterial wall structure by fibrinoid containing EVTs. The fate of VSMCs in SpA remodelling is unknown; in guinea pig uterine artery VSMCs dedifferentiate, remain in the vessel wall and differentiate after parturition to restore the arterial wall. There is increasing evidence that uNK cells play a role in SpA remodelling. We hypothesized that SpA remodelling in human pregnancy is associated with VSMC dedifferentiation, initiated by uNK cell-derived growth factors.STUDY DESIGN, SIZE, DURATIONFormalin fixed, paraffin embedded placental bed biopsies were immunostained for angiogenic growth factor (AGF) receptors and markers of VSMC differentiation. An in vitro model of SpA remodelling using chorionic plate arteries (CPAs) was used to test the effect of different cell types and AGFs on VSMC differentiation.PARTICIPANTS/MATERIALS, SETTING, METHODSPlacental bed biopsies were immunostained for vascular endothelial growth factor receptors 1-3 (VEGF-R1, VEGF-R2, VEGF-R3), transforming growth factor beta 1 receptors I and II (TGF-βRI, TGF-βRII), interferon gamma receptors 1 and 2 (IFN-γR1, IFN-γR2), Tie2, α-smooth muscle actin (α-SMA), H-caldesmon (H-Cal), myosin heavy chain (MyHC), osteopontin and smoothelin. Staining intensity was assessed using a modified quickscore. Expression by VSMCs of the AGF receptors was confirmed by laser capture microdissection and real-time RT-PCR of non-remodelled SpAs, after laser removal of the endothelium. As an in vitro model, VSMC differentiation was assessed in CPAs by immunohistochemistry after culture in uNK cell-conditioned medium (CM), EVT-CM, uNK cell/EVT co-culture CM, Ang-1, Ang-2, IFN-γ, VEGF-A and VEGF-C, and after blocking of both Ang-1 and Ang-2 in uNK-CM.MAIN RESULTS AND THE ROLE OF CHANCESpA VSMC expression of Tie-2 (P = 0.0007), VEGF-R2 (P = 0.005) and osteopontin (P = 0.0001) increased in partially remodelled SpAs compared with non-remodelled SpAs, while expression of contractile VSMC markers was reduced (α-SMA P < 0.0001, H-Cal P = 0.03, MyHC P = 0.03, smoothelin P = 0.0001). In the in vitro CPA model, supernatants from purified uNK cell (H-Cal P < 0.0001, MyHC P = 0.03, α-SMA P = 0.02, osteopontin P = 0.03), EVT (H-Cal P = 0.0006, MyHC P = 0.02, osteopontin P = 0.01) and uNK cell/EVT co-cultures (H-Cal P = 0.001, MyHC P = 0.05, osteopontin P = 0.02) at 12–14 weeks, but not 8–10 weeks, gestational age induced reduced expression of contractile VSMC markers and increased osteopontin expression. Addition of exogenous (10 ng/ml) Ang-1 (P = 0.006) or Ang-2 (P = 0.009) also reduced H-Cal expression in the CPA model. Inhibition of Ang-1 (P = 0.0004) or Ang-2 (P = 0.004) in uNK cell supernatants blocked the ability of uNK cell supernatants to reduce H-Cal expression.LIMITATIONS, REASONS FOR CAUTIONThis is an in vitro study and the role of uNK cells, Ang-1 and Ang-2 in SpA remodelling in vivo has not yet been shown.WIDER IMPLICATIONS OF THE FINDINGSVSMC dedifferentiation is a feature of early SpA remodelling and uNK cells and EVT play key roles in this process by secretion of Ang-1 and Ang-2. This is one of the first studies to suggest a direct role for Ang-1 and Ang-2 in VSMC biology.STUDY FUNDING/COMPETING INTEREST(S)This work was supported by a grant from British Biotechnology and Biosciences Research Council (BB/E016790/1). The authors have no competing interests to declare.
Collapse
Affiliation(s)
- A Robson
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - G E Lash
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - B A Innes
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J Y Zhang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, 510623, China
| | - S C Robson
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - J N Bulmer
- Reproductive and Vascular Biology Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
165
|
Mikhailova VA, Khokhlova EV, Bazhenov DO, Agnaeva AO, Kozyreva AR, Bespalova ON, Selkov SA, Sokolov DI. Changes in expression of Ki-67, CD16 and CD56 by natural killer cells from peripheral blood mononuclear cells in the setting of recurrent miscarriage after in vitro culturing in the presence of trophoblast cells and IL-2. Cytotechnology 2019; 71:861-871. [PMID: 31317282 PMCID: PMC6664104 DOI: 10.1007/s10616-019-00331-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 07/09/2019] [Indexed: 11/25/2022] Open
Abstract
The aim of this research was to assess the proliferative activity of Natural Killer Cells (NK cells) from Peripheral Blood Mononuclear Cells (PBMCs) in the presence of trophoblast cells in women with a history of recurrent miscarriages. We examined the peripheral blood of women with recurrent miscarriage in the proliferative (n = 12) or secretory (n = 13) phase of their menstrual cycle, and pregnant women with a history of recurrent miscarriage at 6-7 weeks of their current pregnancy (n = 14). Controls were fertile non-pregnant women in the proliferative (n = 11) or secretory (n = 13) phase of their menstrual cycle, and pregnant women at 6-7 weeks of a physiologically normal pregnancy (n = 20). We used IL-2 as a factor maintaining PBMCs viability during long-term culturing. We established that culturing in the presence of IL-2 contributed to an increase in the number of CD56+CD16- NK cells and to a decrease in the number of CD56+CD16+ NK cells from PBMCs compared with these numbers before culturing in both healthy women and in women with recurrent miscarriage. After culturing of PBMCs in the presence of trophoblast cells and IL-2 (compared with culturing without trophoblast cells), the intensity of Ki-67 expression by NK cells was reduced in the whole NK cell population (CD3-CD56+), and in the CD56+CD16- and CD56+CD16+ populations of NK cells in women with recurrent miscarriage and in healthy controls. The intensity of CD56 expression was reduced in the presence of trophoblast cells and IL-2 in non-pregnant women with recurrent miscarriage in the secretory versus the proliferative phase of the menstrual cycle.
Collapse
Affiliation(s)
- V A Mikhailova
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology, and Reproductology Named After D.O. Ott, Saint Petersburg, Russia.
| | - E V Khokhlova
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology, and Reproductology Named After D.O. Ott, Saint Petersburg, Russia
| | - D O Bazhenov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology, and Reproductology Named After D.O. Ott, Saint Petersburg, Russia
- Federal State Budgetary Scientific Institution Research Institute of Experimental Medicine, Saint Petersburg, Russia
| | - A O Agnaeva
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology, and Reproductology Named After D.O. Ott, Saint Petersburg, Russia
| | - A R Kozyreva
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology, and Reproductology Named After D.O. Ott, Saint Petersburg, Russia
| | - O N Bespalova
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology, and Reproductology Named After D.O. Ott, Saint Petersburg, Russia
| | - S A Selkov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology, and Reproductology Named After D.O. Ott, Saint Petersburg, Russia
| | - D I Sokolov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology, and Reproductology Named After D.O. Ott, Saint Petersburg, Russia
- Federal State Budgetary Scientific Institution Research Institute of Experimental Medicine, Saint Petersburg, Russia
| |
Collapse
|
166
|
Preeclampsia: The Relationship between Uterine Artery Blood Flow and Trophoblast Function. Int J Mol Sci 2019; 20:ijms20133263. [PMID: 31269775 PMCID: PMC6651116 DOI: 10.3390/ijms20133263] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/29/2022] Open
Abstract
Maternal uterine artery blood flow is critical to maintaining the intrauterine environment, permitting normal placental function, and supporting fetal growth. It has long been believed that inadequate transformation of the maternal uterine vasculature is a consequence of primary defective trophoblast invasion and leads to the development of preeclampsia. That early pregnancy maternal uterine artery perfusion is strongly associated with placental cellular function and behaviour has always been interpreted in this context. Consistently observed changes in pre-conceptual maternal and uterine artery blood flow, abdominal pregnancy implantation, and late pregnancy have been challenging this concept, and suggest that abnormal placental perfusion may result in trophoblast impairment, rather than the other way round. This review focuses on evidence that maternal cardiovascular function plays a significant role in the pathophysiology of preeclampsia.
Collapse
|
167
|
Abstract
The presence of unusual natural killer cells in human endometrium has been recognized for 30 years, but despite considerable research effort, the
in vivo role of uterine natural killer (uNK) cells in both normal and pathological pregnancy remains uncertain. uNK cells may differentiate from precursors present in endometrium, but migration from peripheral blood in response to chemokine stimuli with
in situ modification to a uNK cell phenotype is also possible. uNK cells produce a wide range of secretory products with diverse effects on trophoblast and spiral arteries which may play an important role in implantation and early placentation. Interactions with other decidual cell populations are also becoming clear. Recent evidence has demonstrated subpopulations of uNK cells and the presence of other innate lymphoid cell populations in decidua which may refine future approaches to investigation of the role of uNK cells in human pregnancy.
Collapse
Affiliation(s)
- Judith N Bulmer
- Institute of Cellular Medicine, Newcastle University, William Leech Building, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Gendie E Lash
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children's Medical Center, 9 Jinsui Road, Guangzhou, Guangdong, 510623, China
| |
Collapse
|
168
|
Stieglitz F, Celik AA, von Kaisenberg C, Camps MA, Blasczyk R, Bade-Döding C. The microstructure in the placenta is influenced by the functional diversity of HLA-G allelic variants. Immunogenetics 2019; 71:455-463. [PMID: 31250049 PMCID: PMC6647172 DOI: 10.1007/s00251-019-01121-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022]
Abstract
The main expression sites of HLA-G are human extravillous trophoblast cells. The interaction of HLA-G with uterine NK cells promotes their maturation and differentiation into decidual NK (dNK) cells. dNK cells secrete chemokines, cytokines, and proangiogenic factors in favor of a vascular remodeling and an immune suppressive microenvironment of the decidua. HLA-G is the most polymorphic member of the oligomorphic non-classical HLA molecule family; yet, the impact of polymorphic differences is not comprehensively understood. sHLA-G levels in embryo culture medium correlate with successful pregnancy; however, it remains questionable if HLA-G allelic diversity impacts on the outcome of dNK cell development. We utilized synthetic sHLA-G*01:01, 01:03, and 01:04 molecules and transduced K652/mHLA-G*01:01, 01:03, and 01:04 cells to study the biological interaction between HLA-G alleles and primary NK cells of human term placenta. Despite its low frequency, HLA-G*01:04 and not the most prevalent allele HLA-G*01:01 appear to be strong catalysts of dNK cell proliferation. Concluding, this study illustrates novel insights into the impact and binding efficiency of the three most common variants of HLA-G on primary placental NK cells.
Collapse
Affiliation(s)
- F Stieglitz
- Hannover Medical School, Institute for Transfusion Medicine, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - A A Celik
- Hannover Medical School, Institute for Transfusion Medicine, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - C von Kaisenberg
- Department of Obstetrics and Gynecology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - M A Camps
- Imusyn GmbH & Co. KG, Feodor-Lynen-Str. 5, 30625, Hannover, Germany
| | - R Blasczyk
- Hannover Medical School, Institute for Transfusion Medicine, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Christina Bade-Döding
- Hannover Medical School, Institute for Transfusion Medicine, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
169
|
Tarca AL, Romero R, Benshalom-Tirosh N, Than NG, Gudicha DW, Done B, Pacora P, Chaiworapongsa T, Panaitescu B, Tirosh D, Gomez-Lopez N, Draghici S, Hassan SS, Erez O. The prediction of early preeclampsia: Results from a longitudinal proteomics study. PLoS One 2019; 14:e0217273. [PMID: 31163045 PMCID: PMC6548389 DOI: 10.1371/journal.pone.0217273] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To identify maternal plasma protein markers for early preeclampsia (delivery <34 weeks of gestation) and to determine whether the prediction performance is affected by disease severity and presence of placental lesions consistent with maternal vascular malperfusion (MVM) among cases. STUDY DESIGN This longitudinal case-control study included 90 patients with a normal pregnancy and 33 patients with early preeclampsia. Two to six maternal plasma samples were collected throughout gestation from each woman. The abundance of 1,125 proteins was measured using high-affinity aptamer-based proteomic assays, and data were modeled using linear mixed-effects models. After data transformation into multiples of the mean values for gestational age, parsimonious linear discriminant analysis risk models were fit for each gestational-age interval (8-16, 16.1-22, 22.1-28, 28.1-32 weeks). Proteomic profiles of early preeclampsia cases were also compared to those of a combined set of controls and late preeclampsia cases (n = 76) reported previously. Prediction performance was estimated via bootstrap. RESULTS We found that 1) multi-protein models at 16.1-22 weeks of gestation predicted early preeclampsia with a sensitivity of 71% at a false-positive rate (FPR) of 10%. High abundance of matrix metalloproteinase-7 and glycoprotein IIbIIIa complex were the most reliable predictors at this gestational age; 2) at 22.1-28 weeks of gestation, lower abundance of placental growth factor (PlGF) and vascular endothelial growth factor A, isoform 121 (VEGF-121), as well as elevated sialic acid binding immunoglobulin-like lectin 6 (siglec-6) and activin-A, were the best predictors of the subsequent development of early preeclampsia (81% sensitivity, FPR = 10%); 3) at 28.1-32 weeks of gestation, the sensitivity of multi-protein models was 85% (FPR = 10%) with the best predictors being activated leukocyte cell adhesion molecule, siglec-6, and VEGF-121; 4) the increase in siglec-6, activin-A, and VEGF-121 at 22.1-28 weeks of gestation differentiated women who subsequently developed early preeclampsia from those who had a normal pregnancy or developed late preeclampsia (sensitivity 77%, FPR = 10%); 5) the sensitivity of risk models was higher for early preeclampsia with placental MVM lesions than for the entire early preeclampsia group (90% versus 71% at 16.1-22 weeks; 87% versus 81% at 22.1-28 weeks; and 90% versus 85% at 28.1-32 weeks, all FPR = 10%); and 6) the sensitivity of prediction models was higher for severe early preeclampsia than for the entire early preeclampsia group (84% versus 71% at 16.1-22 weeks). CONCLUSION We have presented herein a catalogue of proteome changes in maternal plasma proteome that precede the diagnosis of preeclampsia and can distinguish among early and late phenotypes. The sensitivity of maternal plasma protein models for early preeclampsia is higher in women with underlying vascular placental disease and in those with a severe phenotype.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, United States of America
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, United States of America
| | - Neta Benshalom-Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nandor Gabor Than
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
- Maternity Clinic, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Dereje W. Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Dan Tirosh
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- C.S. Mott Center for Human Growth and Development, Wayne State University, Detroit, Michigan, United States of America
- Department of Biochemistry, Microbiology, and Immunology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Sorin Draghici
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, United States of America
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services (NICHD/NIH/DHHS), Bethesda, Maryland, and Detroit, Michigan, United States of America
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
- Maternity Department "D," Division of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
170
|
Liu W, Luo M, Zou L, Liu X, Wang R, Tao H, Wu D, Zhang W, Luo Q, Zhao Y. uNK cell-derived TGF-β1 regulates the long noncoding RNA MEG3 to control vascular smooth muscle cell migration and apoptosis in spiral artery remodeling. J Cell Biochem 2019; 120:15997-16007. [PMID: 31099432 DOI: 10.1002/jcb.28878] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 12/21/2022]
Abstract
Successful pregnancy depends on correct spiral artery (SpA) remodeling, and thus, on normal patterns of the vascular smooth muscle cell (VSMC) apoptosis and migration. Uterine natural killer (uNK) cells-derived transforming growth factor β1 (TGF-β1) is known to mediate the separation of VSMC layers via as yet unknown mechanisms. Likewise, the long noncoding RNA maternally expressed gene 3 (MEG3) is a tumor suppressor that has been shown to regulate cancer cell apoptosis and migration; however, its role in VSMC loss is unclear. Thus, the aim of the present study was to assess the effects of uNK-derived TGF-β1 and MEG3 on VSMC function during SpA. Analyses were conducted to assess the effects of downregulating MEG3 expression, and/or administering treatments to increase or block TGF-β1 signaling on VSMC survival and behavior. The results of these analyses showed that treating the VSMC with uNK cell-derived supernatant or recombinant human TGF-β1 promoted MEG3 and matrix metalloprotease 2 expression and VSMC apoptosis and migration, and suppressed VSMC proliferation. Conversely, MEG3 silencing promoted VSMC proliferation and inhibited VSMC apoptosis and migration. Notably, TGF-β1 signaling induction had no significant effect on the proliferation, apoptosis, nor migration of the MEG3-silenced VSMC. Together, these findings suggest that MEG3 is regulated by uNK-derived TGF-β1, and itself mediates VSMC apoptosis and migration; thus, it may be an important positive regulator of VSMCs separation during maternal SpA remodeling.
Collapse
Affiliation(s)
- Weifang Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Minglian Luo
- Department of Obstetrics and Gynecology, Wuhan First Hospital, Wuhan, China
| | - Li Zou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Liu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qingqing Luo
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
171
|
Beltrame JS, Scotti L, Sordelli MS, Cañumil VA, Franchi AM, Parborell F, Ribeiro ML. Lysophosphatidic acid induces the crosstalk between the endovascular human trophoblast and endothelial cells in vitro. J Cell Physiol 2019; 234:6274-6285. [PMID: 30362520 DOI: 10.1002/jcp.27358] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/17/2018] [Indexed: 12/29/2022]
Abstract
Spiral artery remodeling at the maternal-fetal interface is crucial for successful pregnancy and requires the interaction between the first trimester trophoblast and the endothelial cells of the maternal vessels. However, the precise mechanism of this dialog has yet to be determined. The current study investigated whether lysophosphatidic acid (LPA) modulates trophoblast-endothelial crosstalk in vitro. HTR-8/SVneo trophoblast cell line (H8) was seeded on top of Geltrex, incubated with LPA or LPA + NS-398 (selective cyclooxygenase-2 inhibitor), LPA + 1400W (selective inducible nitric oxide synthase inhibitor) or LPA + IL-6 neutralizing antibody and assayed for tube formation to model the acquisition of trophoblast endovascular phenotype. The supernatants were collected and used as conditioned media (CM). To test trophoblast-endothelial crosstalk, the endothelial cell line EA.hy926 was incubated with trophoblast CM. The CM from LPA-induced tubulogenesis stimulated endothelial cells migration and did not modify the apoptosis. Soluble factors derived from cyclooxygenase-2 and IL-6 pathways were involved in H8-EA.hy926 interaction under the LPA effect. Moreover, LPA increased the levels of IL-6 mRNA by cyclooxygenase-2 pathway in H8 cells. Collectively, LPA promotes trophoblast-endothelial crosstalk in vitro and induces the release of trophoblast soluble factors that stimulate endothelial cells migration without changes in apoptosis. The evidence presented here provides new insights about an active role of LPA as a lipid mediator regulating vascular remodeling at the maternal-fetal interface.
Collapse
Affiliation(s)
- Jimena S Beltrame
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| | - Leopoldina Scotti
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME) - (CONICET), Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - Micaela S Sordelli
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| | - Vanesa A Cañumil
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| | - Ana M Franchi
- Laboratorio de Fisiopatología de la Preñez y el Parto, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| | - Fernanda Parborell
- Laboratorio de Estudios de la Fisiopatología del Ovario, Instituto de Biología y Medicina Experimental (IByME) - (CONICET), Vuelta de Obligado 2490, Buenos Aires, Argentina
| | - María L Ribeiro
- Laboratorio de Fisiología y Farmacología de la Reproducción, Centro de Estudios Farmacológicos y Botánicos (CEFyBO) (CONICET - Facultad de Medicina, Universidad de Buenos Aires), Paraguay 2155, 16th floor, Buenos Aires, Argentina
| |
Collapse
|
172
|
Tan H, Lin L, Huang L, Yu Y. Is Atrial Natriuretic Peptide (ANP) and Natriuretic Peptide Receptor-A (NPR-A) Expression in Human Placenta and Decidua Normal? Med Sci Monit 2019; 25:2868-2878. [PMID: 31000687 PMCID: PMC6486799 DOI: 10.12659/msm.915449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Atrial natriuretic peptide (ANP) is a cardiac hormone that regulates blood pressure and the salt-water balance in the blood. It acts through natriuretic peptide receptors (NPR), and the major biologically active ANP receptor is natriuretic peptide receptor-A (NPR-A). Aberrant forms of ANP and its receptors have been reported in patients with preeclampsia. However, whether aberrant forms of ANP or NPR-A are present in preeclamptic placenta, and what their role is in preeclampsia pathogenesis, has not yet been elucidated clearly. The aim of this study was to assess the expression of ANP and NPR-A in the placenta and decidua and its role in preeclampsia development. Material/Methods The expression of ANP and NPR-A in the first-trimester villous and decidua, full-term placenta, and preeclamptic placenta was determined using immunohistochemistry and Western blot analysis. The HTR8/SVneo cell line was used to investigate the role of NPR-A in proliferation, apoptosis, and invasion using Cell Counting Kit-8 analysis, flow cytometry analysis, and a Transwell invasion assay, respectively. Results ANP and NPR-A were localized in the syncytiotrophoblasts, cytotrophoblasts, and trophoblast columns of human first-trimester villous trophoblast cells of decidua, and in the glandular epithelium and extravillous trophoblast cells of decidua. ANP-positive and NPR-A-positive cells in the decidual stroma were clustered around and infiltrated into the vascular wall of the spiral artery undergoing remodeling. NPR-A expression was significantly reduced in preeclamptic placentas, and NPR-A knockdown significantly impaired the invasion ability of HTR8/SVneo cells, although it had no effect on cell proliferation and apoptosis. Conclusions ANP and NPR-A are involved in human placental development. Decreased levels of NPR-A may contribute to the development of preeclampsia.
Collapse
Affiliation(s)
- Hongchuan Tan
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Liang Lin
- Department of Gynecology and Obstetrics, Provincial Clinical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, China (mainland)
| | - Liping Huang
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| | - Yanhong Yu
- Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
173
|
Paparini DE, Choudhury RH, Vota DM, Karolczak-Bayatti M, Finn-Sell S, Grasso EN, Hauk VC, Ramhorst R, Pérez Leirós C, Aplin JD. Vasoactive intestinal peptide shapes first-trimester placenta trophoblast, vascular, and immune cell cooperation. Br J Pharmacol 2019; 176:964-980. [PMID: 30726565 DOI: 10.1111/bph.14609] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 12/10/2018] [Accepted: 01/01/2019] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND AND PURPOSE Extravillous trophoblast (EVT) cells are responsible for decidual stromal invasion, vascular transformation, and the recruitment and functional modulation of maternal leukocytes in the first-trimester pregnant uterus. An early disruption of EVT function leads to placental insufficiency underlying pregnancy complications such as preeclampsia and fetal growth restriction. Vasoactive intestinal peptide (VIP) is a vasodilating and immune modulatory factor synthesized by trophoblast cells. However, its role in first-trimester placenta has not been explored. Here, we tested the hypothesis that VIP is involved in first-trimester EVT outgrowth, spiral artery remodelling, balancing angiogenesis, and maintenance of immune homeostasis. EXPERIMENTAL APPROACH First-trimester placental tissue (five to nine weeks of gestation) was collected, and was used for EVT outgrowth experiments, immunofluorescence, isolation of decidual natural killer (dNK) cells and decidual macrophages (dMA), and functional assays. Peripheral blood monocytes were differentiated with GM-CSF and used for angiogenesis assays. KEY RESULTS In decidua basalis, VIP+ EVT were observed sprouting from cell columns and lining spiral arterioles. EVT migrating from placental explants were also VIP+. VIP increased EVT outgrowth and IL-10 release, whereas it decreased pro-inflammatory cytokine production in EVT, dNK cells, and dMA. VIP disrupted endothelial cell networks, both directly and indirectly via an effect on macrophages. CONCLUSION AND IMPLICATIONS The results suggest that VIP assists the progress of EVT invasion and vessel remodelling in first-trimester placental bed in an immunologically "silent" milieu. The effects of VIP in the present ex vivo human placental model endorse its potential as a therapeutic candidate for deep placentation disorders.
Collapse
Affiliation(s)
- Daniel E Paparini
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Ruhul H Choudhury
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Daiana M Vota
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Magdalena Karolczak-Bayatti
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Sarah Finn-Sell
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| | - Esteban N Grasso
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Vanesa C Hauk
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- IQUIBICEN-CONICET, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - John D Aplin
- Maternal and Fetal Health Research Centre, University of Manchester, Manchester Academic Health Science Centre, St. Mary's Hospital, Manchester, UK
| |
Collapse
|
174
|
Bonney EA, Johnson MR. The role of maternal T cell and macrophage activation in preterm birth: Cause or consequence? Placenta 2019; 79:53-61. [PMID: 30929747 DOI: 10.1016/j.placenta.2019.03.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/06/2019] [Indexed: 12/18/2022]
Abstract
The role of the immune system in term (TL) and preterm labor (PTL) is unknown. Despite the fact that globally, PTL remains the most important cause of childhood mortality. Infection, typically of the fetal membranes, termed chorioamnionitis, is the best-understood driver of PTL, but the mechanisms underpinning other causes, including idiopathic and stretch-induced PTL, are unclear, but may well involve activation of the maternal immune system. The final common pathway of placental dysfunction, fetal membrane rupture, cervical dilation and uterine contractions are highly complex processes. At term, choriodecidual rather than myometrial inflammation is thought to drive the onset of labor and similar findings are present in different types of PTL including idiopathic PTL. Although accumulated data has confirmed an association between the immune response and preterm birth, there is yet a need to understand if this response is an initiator or a consequence of tissue-level dysregulation. This review focuses on the potential role of macrophages and T cells in innate and adaptive immunity relevant to preterm birth in humans and animal models.
Collapse
Affiliation(s)
- Elizabeth A Bonney
- Department of Obstetrics, Gynecology and Reproductive Sciences University of Vermont, Larner College of Medicine, Burlington, VT, USA.
| | - Mark R Johnson
- Faculty of Medicine, Department of Surgery & Cancer, Imperial College, London, United Kingdom
| |
Collapse
|
175
|
Wang X, Lee CL, Li RHW, Vijayan M, Duan YG, Yeung WSB, Zhang Y, Chiu PCN. Alteration of the immune cell profiles in the pathophysiology of tubal ectopic pregnancy. Am J Reprod Immunol 2019; 81:e13093. [PMID: 30672642 DOI: 10.1111/aji.13093] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/31/2022] Open
Abstract
Tubal ectopic pregnancy (TEP) refers to implantation of conceptus in the fallopian tube. It makes up over 98% of ectopic pregnancy (EP), which is the leading cause of maternal morbidity and mortality in the first trimester of pregnancy. Immune cells at the maternal-fetal interface play important roles in the process of embryo implantation, stroma decidualization, and early placental development. Alterations in the composition, phenotype, and activity of the immune cells in the fallopian tubes contribute toward the onset of TEP. In this review, we compare the leukocytic proportions in decidua of normal pregnancy, and in decidua and fallopian tubes of TEP. The possible functions of these immune cells in the pathophysiology of TEP are also discussed.
Collapse
Affiliation(s)
- Xia Wang
- Department of Obstetrics & Gynaecology, The University of Hong Kong, Hong Kong, SAR, China
| | - Cheuk-Lun Lee
- Department of Obstetrics & Gynaecology, The University of Hong Kong, Hong Kong, SAR, China.,Department of Obstetrics and Gynaecology, Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Raymond H W Li
- Department of Obstetrics & Gynaecology, The University of Hong Kong, Hong Kong, SAR, China.,Department of Obstetrics and Gynaecology, Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Madhavi Vijayan
- Department of Obstetrics & Gynaecology, The University of Hong Kong, Hong Kong, SAR, China
| | - Yong-Gang Duan
- Department of Obstetrics and Gynaecology, Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- Department of Obstetrics and Gynaecology, Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Philip C N Chiu
- Department of Obstetrics & Gynaecology, The University of Hong Kong, Hong Kong, SAR, China.,Department of Obstetrics and Gynaecology, Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
176
|
Yu X, Zhang Y, Yang P, Gao X, Wang Y. Downregulated low-density lipoprotein receptor-related protein 6 induces the maldevelopment of extravillous trophoblast via Wnt/β-catenin signaling pathway. Mol Cell Probes 2019; 44:21-28. [PMID: 30684559 DOI: 10.1016/j.mcp.2019.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/18/2019] [Accepted: 01/20/2019] [Indexed: 12/27/2022]
Abstract
Preeclampsia (PE), a special type of hypertensive disorder complicating pregnancy (HDCP), is highly associated with the migratory and invasive capacity of extravillous trophoblasts (EVTs). Here, we aimed to study the functions of low-density lipoprotein receptor-related protein 6 (LRP6) in PE pathogenesis. A comparative analysis of cellular gene expressions between placenta tissues collected from PE patients and normal pregnant women showed that the expressions of LRP6, β-catenin and matrix metallopeptidases/TIMP metallopeptidase inhibitors (MMPs/TIMPs) ratio in placentas of PE patients were much lower than the normal. Then, we constructed and transfected LRP6 siRNA (siLRP6) and LRP6 overexpression vectors into HTR6/SVneo cells. On the contrary to siLRP6, LRP6 overexpression could significant enhance cell viability, and strengthen the abilities of cell migration and invasion. Importantly, the overexpression of LRP6 could induce the upregulation of MMP-2 and MMP-9 levels, and downregulation of TIMPs. The mRNA and protein levels of β-catenin, an intracellular signal transducer of Wnt signaling pathway, were significantly up-regulated under the effects of LRP6 overexpression. XAV939, a Wnt/β-catenin pathway inhibitor, was introduced to confirm the involvement of Wnt/β-catenin pathway in functions of LRP6. The results of cell viability detection showed that XAV939 could significantly inhibit the positive effects of LRP6 overexpression on cell viability. Taken together, low-expressed LRP6 may be responsible of lower migration and invasion of EVTs and subsequent PE, and the mechanisms show a highly association with Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Xiaoyan Yu
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Yan Zhang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Ping Yang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Xueli Gao
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China
| | - Yuping Wang
- Department of Obstetrics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, China.
| |
Collapse
|
177
|
Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-fetal interface. Sci Immunol 2019; 4:eaat6114. [PMID: 30635356 PMCID: PMC6744611 DOI: 10.1126/sciimmunol.aat6114] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/29/2018] [Indexed: 12/13/2022]
Abstract
Pregnancy poses an immunological challenge because a genetically distinct (nonself) fetus must be supported within the pregnant female for the required gestational period. Placentation, or the establishment of the fetally derived placenta, is a common strategy used by eutherian mammals to protect the fetus and promote its growth. However, the substantial morphological differences of the placental architecture among species suggest that the process of placentation results from convergent evolution. Although there are considerable similarities in placental function across placental mammals, there are important differences that arise owing to species-specific immunological (and other biological) constraints. This Review focuses on the immunological similarities and differences that occur at the maternal-fetal interface in the context of human and mouse pregnancies. We discuss how the decidua and placenta of these different species form key immunological barriers that sustain maternal tolerance yet generate innate immune responses that prevent microbial infections.
Collapse
Affiliation(s)
- Stephanie E Ander
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- Center for Microbial Pathogenesis, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
- Center for Microbial Pathogenesis, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
- R. K. Mellon Pediatric Research Institute, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
178
|
Skalis G, Katsi V, Miliou A, Georgiopoulos G, Papazachou O, Vamvakou G, Nihoyannopoulos P, Tousoulis D, Makris T. MicroRNAs in Preeclampsia. Microrna 2019; 8:28-35. [PMID: 30101723 DOI: 10.2174/2211536607666180813123303] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 05/22/2018] [Accepted: 07/27/2018] [Indexed: 11/22/2022]
Abstract
Preeclampsia (PE) continues to represent a worldwide problem and challenge for both clinicians and laboratory-based doctors. Despite many efforts, the knowledge acquired regarding its pathogenesis and pathophysiology does not allow us to treat it efficiently. It is not possible to arrest its progressive nature, and the available therapies are limited to symptomatic treatment. Furthermore, both the diagnosis and prognosis are frequently uncertain, whilst the ability to predict its occurrence is very limited. MicroRNAs are small non-coding RNAs discovered two decades ago, and present great interest given their ability to regulate almost every aspect of the cell function. A lot of evidence regarding the role of miRNAs in pre-eclampsia has been accumulated in the last 10 years. Differentially expressed miRNAs are characteristic of both mild and severe PE. In many cases they target signaling pathway-related genes that result in altered processes which are directly involved in PE. Immune system, angiogenesis and trophoblast proliferation and invasion, all fundamental aspects of placentation, are controlled in various degrees by miRNAs which are up- or downregulated. Finally, miRNAs represent a potential therapeutic target and a diagnostic tool.
Collapse
Affiliation(s)
- Georgios Skalis
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Vasiliki Katsi
- Cardiology Department, Hippokration Hospital, National Health System, Athens, Greece
| | - Antigoni Miliou
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | | | | | - Georgia Vamvakou
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| | - Petros Nihoyannopoulos
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Thomas Makris
- Department of Cardiology, Helena Venizelou Hospital, Athens, Greece
| |
Collapse
|
179
|
Dunk C, Kwan M, Hazan A, Walker S, Wright JK, Harris LK, Jones RL, Keating S, Kingdom JCP, Whittle W, Maxwell C, Lye SJ. Failure of Decidualization and Maternal Immune Tolerance Underlies Uterovascular Resistance in Intra Uterine Growth Restriction. Front Endocrinol (Lausanne) 2019; 10:160. [PMID: 30949130 PMCID: PMC6436182 DOI: 10.3389/fendo.2019.00160] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/25/2019] [Indexed: 12/14/2022] Open
Abstract
Failure of uterine vascular transformation is associated with pregnancy complications including Intra Uterine Growth Restriction (IUGR). The decidua and its immune cell populations play a key role in the earliest stages of this process. Here we investigate the hypothesis that abnormal decidualization and failure of maternal immune tolerance in the second trimester may underlie the uteroplacental pathology of IUGR. Placental bed biopsies were obtained from women undergoing elective caesarian delivery of a healthy term pregnancy, an IUGR pregnancy or a pregnancy complicated by both IUGR and preeclampsia. Decidual tissues were also collected from second trimester terminations from women with either normal or high uterine artery Doppler pulsatile index (PI). Immunohistochemical image analysis and flow cytometry were used to quantify vascular remodeling, decidual leukocytes and decidual status in cases vs. controls. Biopsies from pregnancies complicated by severe IUGR with a high uterine artery pulsatile index (PI) displayed a lack of: myometrial vascular transformation, interstitial, and endovascular extravillous trophoblast (EVT) invasion, and a lower number of maternal leukocytes. Apoptotic mural EVT were observed in association with mature dendritic cells and T cells in the IUGR samples. Second trimester pregnancies with high uterine artery PI displayed a higher incidence of small for gestational age fetuses; a skewed decidual immunology with higher numbers of; CD8 T cells, mature CD83 dendritic cells and lymphatic vessels that were packed with decidual leukocytes. The decidual stromal cells (DSCs) failed to differentiate into the large secretory DSC in these cases, remaining small and cuboidal and expressing lower levels of the nuclear progesterone receptor isoform B, and DSC markers Insulin Growth Factor Binding protein-1 (IGFBP-1) and CD10 as compared to controls. This study shows that defective progesterone mediated decidualization and a hostile maternal immune response against the invading endovascular EVT contribute to the failure of uterovascular remodeling in IUGR pregnancies.
Collapse
Affiliation(s)
- Caroline Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- *Correspondence: Caroline Dunk
| | - Melissa Kwan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Aleah Hazan
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Sierra Walker
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Julie K. Wright
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
| | - Lynda K. Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, United Kingdom
- Faculty of Biology Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
- Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom
| | - Rebecca Lee Jones
- Faculty of Biology Medicine and Health, Maternal and Fetal Health Research Centre, University of Manchester, Manchester, United Kingdom
- Academic Health Science Centre, St Mary's Hospital, Manchester, United Kingdom
| | - Sarah Keating
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - John C. P. Kingdom
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wendy Whittle
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Cynthia Maxwell
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Stephen J. Lye
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, ON, Canada
- Department of Obstetrics and Gynaecology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
180
|
Choudhury RH, Dunk CE, Lye SJ, Harris LK, Aplin JD, Jones RL. Decidual leucocytes infiltrating human spiral arterioles are rich source of matrix metalloproteinases and degrade extracellular matrix in vitro and in situ. Am J Reprod Immunol 2019; 81:e13054. [PMID: 30267451 DOI: 10.1111/aji.13054] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/02/2023] Open
Abstract
PROBLEM During pregnancy, the decidual spiral arterioles (SpAs) that supply maternal blood to the placenta undergo a series of changes to optimise the transfer of nutrients and oxygen to the developing foetus. Recent studies have shown that initiation of SpA transformation coincides with decidual leucocyte infiltration. Leucocytes are known to be a source of matrix metalloproteinases (MMPs); however, the complete profile of MMPs expressed by decidual NK cells (dNK) and macrophages has not been characterised. We hypothesised that leucocyte-derived MMPs contribute to SpA remodelling. METHODS Decidual NK cells and macrophages were isolated from first trimester decidua and their MMP repertoire profiled by qRT-PCR (n = 10; 5-11 weeks). Dual immunofluorescence was used to localise MMP expression in situ (n = 3; 5-12 weeks). Gelatin zymography was carried out to assess whether leucocyte-derived MMPs can degrade ECM. In situ zymography and immunofluorescence identified MMP activity in tissue-resident dNK and macrophages. RESULTS Decidual NK cells cells and macrophages expressed MMP2, -7, -9, -11, -16, -19 and tissue inhibitors of metalloproteinase-1, -2, and -3. Both cell types degraded gelatin using MMP2 and MMP9 and broke down collagen in an in vitro model of the SpA. Extravillous trophoblasts (EVTs) expressed a similar repertoire of MMPs. CONCLUSION We suggest that matrix remodelling in SpA is initiated by infiltrating leucocytes, while EVTs become involved at later stages.
Collapse
Affiliation(s)
- Ruhul H Choudhury
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Manchester, UK
| | - Caroline E Dunk
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Stephen J Lye
- Research Centre for Women's and Infants' Health, Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lynda K Harris
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Manchester, UK
- Manchester Pharmacy School, University of Manchester, Manchester, UK
| | - John D Aplin
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Manchester, UK
| | - Rebecca L Jones
- Maternal and Fetal Health Research Centre, Institute of Human Development, The University of Manchester, Manchester, UK
- Academic Health Science Centre, St Mary's Hospital, Manchester, UK
| |
Collapse
|
181
|
Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of Placental Extravillous Trophoblasts by the Maternal Uterine Environment. Front Immunol 2018; 9:2597. [PMID: 30483261 PMCID: PMC6243063 DOI: 10.3389/fimmu.2018.02597] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
During placentation invasive extravillous trophoblasts (EVTs) migrate into the maternal uterus and modify its vessels. In particular, remodeling of the spiral arteries by EVTs is critical for adapting blood flow and nutrient transport to the developing fetus. Failures in this process have been noticed in different pregnancy complications such as preeclampsia, intrauterine growth restriction, stillbirth, or recurrent abortion. Upon invasion into the decidua, the endometrium of pregnancy, EVTs encounter different maternal cell types such as decidual macrophages, uterine NK (uNK) cells and stromal cells expressing a plethora of growth factors and cytokines. Here, we will summarize development of the EVT lineage, a process occurring independently of the uterine environment, and formation of its different subtypes. Further, we will discuss interactions of EVTs with arteries, veins and lymphatics and illustrate how the decidua and its different immune cells regulate EVT differentiation, invasion and survival. The present literature suggests that the decidual environment and its soluble factors critically modulate EVT function and reproductive success.
Collapse
Affiliation(s)
- Jürgen Pollheimer
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Sigrid Vondra
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| | - Jennet Baltayeva
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Alexander Guillermo Beristain
- British Columbia's Children's Hospital Research Institute, Vancouver, BC, Canada.,Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada
| | - Martin Knöfler
- Department of Obstetrics and Gynaecology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
182
|
Cooper S, Laird SM, Mariee N, Li TC, Metwally M. The effect of prednisolone on endometrial uterine NK cell concentrations and pregnancy outcome in women with reproductive failure. A retrospective cohort study. J Reprod Immunol 2018; 131:1-6. [PMID: 30390547 DOI: 10.1016/j.jri.2018.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/19/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
This retrospective study of prospectively collected data examines the effect of prednisolone therapy on raised uterine Natural Killer cell (uNK) concentrations and pregnancy outcomes in women with recurrent miscarriage (RM) and recurrent implantation failure (RIF) after IVF/ICSI treatment. 136 women diagnosed with RRF who had a timed midluteal endometrial biopsy taken for uNK cell analysis were included. Women with high uNK cell concentrations (n = 45) were treated with prednisolone (10 mg/day) for one month, after which a second biopsy was taken for repeat uNK cell analysis. Women for whom prednisolone caused a decrease in uNK cell concentrations continued on prednisolone until 12 weeks of pregnancy. Pregnancy outcomes (live birth, miscarriage and implantation rates) and pregnancy complications were compared for women who received prednisolone and those who did not. Results showed that the prevalence of high uNK cells was 33.1%. Prednisolone significantly decreased the uNK cell concentration (P < 0.001), however reduction to normal limits was achieved in only 48.3% of patients. There was no difference in any of the pregnancy outcomes or complications between women who had received prednisolone and those who had not. In conclusion, this study showed a relatively high prevalence of raised uNK cells in women with recurrent reproductive failure and confirmed the effect of prednisolone on reducing uNK cell concentrations. We found however no evidence for a significant beneficial effect for prednisolone therapy on pregnancy outcomes. Until the results of an adequately powered RCT become available however, these findings should be considered preliminary.
Collapse
Affiliation(s)
- Sophie Cooper
- The Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield and Sheffield Teaching Hospitals, Sheffield, UK
| | - Susan M Laird
- Biomolecular Sciences Research Centre, Sheffield Hallam University, City Campus, Sheffield, UK
| | - Najat Mariee
- The Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield and Sheffield Teaching Hospitals, Sheffield, UK
| | - Tin Chiu Li
- Department of Obstetrics and Gynaecology, the Chinese University of Hong Kong, Shatin, Hong Kong
| | - Mostafa Metwally
- The Academic Unit of Reproductive and Developmental Medicine, The University of Sheffield and Sheffield Teaching Hospitals, Sheffield, UK.
| |
Collapse
|
183
|
Rätsep MT, Moore SD, Jafri S, Mitchell M, Brady HJM, Mandelboim O, Southwood M, Morrell NW, Colucci F, Ormiston ML. Spontaneous pulmonary hypertension in genetic mouse models of natural killer cell deficiency. Am J Physiol Lung Cell Mol Physiol 2018; 315:L977-L990. [PMID: 30234375 PMCID: PMC6337009 DOI: 10.1152/ajplung.00477.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Natural killer (NK) cells are cytotoxic innate lymphoid cells with an established role in the regulation of vascular structure in pregnancy and cancer. Impaired NK cell function has been identified in patients with pulmonary arterial hypertension (PAH), a disease of obstructive vascular remodeling in the lungs, as well as in multiple rodent models of disease. However, the precise contribution of NK cell impairment to the initiation and progression of PAH remains unknown. Here, we report the development of spontaneous pulmonary hypertension in two independent genetic models of NK cell dysfunction, including Nfil3−/− mice, which are deficient in NK cells due to the absence of the NFIL3 transcription factor, and Ncr1-Gfp mice, which lack the NK activating receptor NKp46. Mouse models of NK insufficiency exhibited increased right ventricular systolic pressure and muscularization of the pulmonary arteries in the absence of elevated left ventricular end-diastolic pressure, indicating that the development of pulmonary hypertension was not secondary to left heart dysfunction. In cases of severe NK cell impairment or loss, a subset of mice failed to develop pulmonary hypertension and instead exhibited reduced systemic blood pressure, demonstrating an extension of vascular abnormalities beyond the pulmonary circulation into the systemic vasculature. In both mouse models, the development of PAH was linked to elevated interleukin-23 production, whereas systemic hypotension in Ncr1-Gfp mice was accompanied by a loss of angiopoietin-2. Together, these results support an important role for NK cells in the regulation of pulmonary and systemic vascular function and the pathogenesis of PAH.
Collapse
Affiliation(s)
- Matthew T Rätsep
- Departments of Biomedical and Molecular Sciences, Medicine, and Surgery, Queen's University Kingston , Ontario , Canada
| | - Stephen D Moore
- Department of Medicine, University of Cambridge, Cambridge , United Kingdom
| | - Salema Jafri
- Department of Medicine, University of Cambridge, Cambridge , United Kingdom
| | - Melissa Mitchell
- Departments of Biomedical and Molecular Sciences, Medicine, and Surgery, Queen's University Kingston , Ontario , Canada
| | | | | | - Mark Southwood
- Department of Medicine, University of Cambridge, Cambridge , United Kingdom
| | - Nicholas W Morrell
- Department of Medicine, University of Cambridge, Cambridge , United Kingdom
| | - Francesco Colucci
- Department of Obstetrics and Gynecology, University of Cambridge, Cambridge , United Kingdom
| | - Mark L Ormiston
- Departments of Biomedical and Molecular Sciences, Medicine, and Surgery, Queen's University Kingston , Ontario , Canada
| |
Collapse
|
184
|
Hauk V, Vota D, Gallino L, Calo G, Paparini D, Merech F, Ochoa F, Zotta E, Ramhorst R, Waschek J, Leirós CP. Trophoblast VIP deficiency entails immune homeostasis loss and adverse pregnancy outcome in mice. FASEB J 2018; 33:1801-1810. [PMID: 30204500 DOI: 10.1096/fj.201800592rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Immune homeostasis maintenance throughout pregnancy is critical for normal fetal development. Trophoblast cells differentiate into an invasive phenotype and contribute to the transformation of maternal arteries and the functional shaping of decidual leukocyte populations. Insufficient trophoblast invasion, inadequate vascular remodeling, and a loss of immunologic homeostasis are associated with pregnancy complications, such as preeclampsia and intrauterine growth restriction. Vasoactive intestinal peptide (VIP) is a pleiotropic neuropeptide synthetized in trophoblasts at the maternal-placental interface. It regulates the function of trophoblast cells and their interaction with decidual leukocytes. By means of a murine model of pregnancy in normal maternal background with VIP-deficient trophoblast cells, here we demonstrate that trophoblast VIP is critical for trophoblast function: VIP gene haploinsufficiency results in lower matrix metalloproteinase 9 expression, and reduced migration and invasion capacities. A reduced number of regulatory T cells at the implantation sites along with a lower expression of proangiogenic and antiinflammatory markers were also observed. Findings detected in the implantation sites at early stages were followed by an abnormal placental structure and lower fetal weight. This effect was overcome by VIP treatment of the early pregnant mice. Our results support the relevance of trophoblast-synthesized VIP as a critical factor in vivo for trophoblast-cell function and immune homeostasis maintenance in mouse pregnancy.-Hauk, V., Vota, D., Gallino, L., Calo, G., Paparini, D., Merech, F., Ochoa, F., Zotta, E., Ramhorst, R., Waschek, J., Leirós, C. P. Trophoblast VIP deficiency entails immune homeostasis loss and adverse pregnancy outcome in mice.
Collapse
Affiliation(s)
- Vanesa Hauk
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| | - Daiana Vota
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| | - Lucila Gallino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| | - Guillermina Calo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| | - Daniel Paparini
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| | - Fátima Merech
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| | - Federico Ochoa
- Departamento de Ciencias Fisiológicas, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina
| | - Elsa Zotta
- Departamento de Ciencias Fisiológicas, Instituto de Fisiología y Biofísica Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires, Facultad de Medicina, Buenos Aires, Argentina.,Catedra de Fisiopatología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rosanna Ramhorst
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| | - James Waschek
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, The David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Claudia Pérez Leirós
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN)
| |
Collapse
|
185
|
El-Azzamy H, Dambaeva SV, Katukurundage D, Salazar Garcia MD, Skariah A, Hussein Y, Germain A, Fernandez E, Gilman-Sachs A, Beaman KD, Kwak-Kim J. Dysregulated uterine natural killer cells and vascular remodeling in women with recurrent pregnancy losses. Am J Reprod Immunol 2018; 80:e13024. [PMID: 30066369 DOI: 10.1111/aji.13024] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 06/27/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023] Open
Abstract
PROBLEM Angiogenesis and vascular remodeling in secretory endometrium represent one of the crucial steps in pregnancy establishment, for which uterine NK (uNK) cells have an important role. Impairment of these steps may proceed to implantation and instigate initial pathology of recurrent pregnancy losses (RPL). In this study, we aim to investigate vascular development and density of uNK cells in secretory endometrium of women with RPL. METHODS OF STUDY Mid-secretory phase endometrial tissues from women with RPL (n = 15) and fertile controls (n = 7) were investigated. CD56+ and CD16+ uNK cells, CD31+ vascular endothelial cells and smooth muscle myosin (SMM)+ . Vascular smooth muscle cells (VSMC) expressing SMM were investigated using immunohistochemistry and western blot. High-throughput quantitative real-time polymerase chain reaction (qRT-PCR) was used as well. RESULTS CD56+ uNK number was significantly higher in women with RPL compared to controls (P < 0.0001). uNK cell density by immunohistochemistry was positively correlated with CD56 mRNA expression by qRT-PCR (r2 = 0.43, P = 0.0137). The number of blood vessels represented by the expression of either CD31 or SMM was higher in women with RPL as compared to controls (P < 0.05 and P < 0.0001, respectively), and correlated with the number of uNK cell (r2 = 0.18, P < 0.04, and r2 = 0.65, P < 0.0001, respectively). The wall thickness of spiral arteries was significantly higher in women with RPL as compared with that of controls (P = 0.0027). CONCLUSION Increased uNK cells in mid-secretory endometrium are associated with increased vascularization and defective vascular transformation of spiral arteries in women with RPL.
Collapse
Affiliation(s)
- Haidy El-Azzamy
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Svetlana V Dambaeva
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Dimantha Katukurundage
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Maria D Salazar Garcia
- Reproductive Medicine and Immunology, Department of Obstetrics and Gynecology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Annie Skariah
- Reproductive Medicine and Immunology, Department of Obstetrics and Gynecology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Youssef Hussein
- Reproductive Medicine and Immunology, Department of Obstetrics and Gynecology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | | | | | - Alice Gilman-Sachs
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Joanne Kwak-Kim
- Department of Microbiology and Immunology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois.,Reproductive Medicine and Immunology, Department of Obstetrics and Gynecology, Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
186
|
Negishi Y, Takahashi H, Kuwabara Y, Takeshita T. Innate immune cells in reproduction. J Obstet Gynaecol Res 2018; 44:2025-2036. [DOI: 10.1111/jog.13759] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Yasuyuki Negishi
- Department of Microbiology and Immunology; Nippon Medical School; Tokyo Japan
- Department of Obstetrics and Gynecology; Nippon Medical School; Tokyo Japan
| | - Hidemi Takahashi
- Department of Microbiology and Immunology; Nippon Medical School; Tokyo Japan
| | | | | |
Collapse
|
187
|
MicroRNA-218-5p Promotes Endovascular Trophoblast Differentiation and Spiral Artery Remodeling. Mol Ther 2018; 26:2189-2205. [PMID: 30061037 DOI: 10.1016/j.ymthe.2018.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Preeclampsia (PE) is the leading cause of maternal and neonatal morbidity and mortality. Defects in trophoblast invasion, differentiation of endovascular extravillous trophoblasts (enEVTs), and spiral artery remodeling are key factors in PE development. There are no markers clinically available to predict PE, leaving expedited delivery as the only effective therapy. Dysregulation of miRNA in clinical tissues and maternal circulation have opened a new avenue for biomarker discovery. In this study, we investigated the role of miR-218-5p in PE development. miR-218-5p was highly expressed in EVTs and significantly downregulated in PE placentas. Using first-trimester trophoblast cell lines and human placental explants, we found that miR-218-5p overexpression promoted, whereas anti-miR-218-5p suppressed, trophoblast invasion, EVT outgrowth, and enEVT differentiation. Furthermore, miR-218-5p accelerated spiral artery remodeling in a decidua-placenta co-culture. The effect of miR-218-5p was mediated by the suppression of transforming growth factor (TGF)-β2 signaling. Silencing of TGFB2 mimicked, whereas treatment with TGF-β2 partially reversed, the effects of miR-218-5p. Taken together, these findings demonstrate that miR-218-5p promotes trophoblast invasion and enEVT differentiation through a novel miR-218-5p-TGF-β2 pathway. This study elucidates the role of an miRNA in enEVT differentiation and spiral artery remodeling and suggests that downregulation of miR-218-5p contributes to PE development.
Collapse
|
188
|
Bellofiore N, Cousins F, Temple-Smith P, Dickinson H, Evans J. A missing piece: the spiny mouse and the puzzle of menstruating species. J Mol Endocrinol 2018; 61:R25-R41. [PMID: 29789322 DOI: 10.1530/jme-17-0278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/11/2018] [Indexed: 12/12/2022]
Abstract
We recently discovered the first known menstruating rodent. With the exception of four bats and the elephant shrew, the common spiny mouse (Acomys cahirinus) is the only species outside the primate order to exhibit menses. There are few widely accepted theories on why menstruation developed as the preferred reproductive strategy of these select mammals, all of which reference the evolution of spontaneous decidualisation prior to menstrual shedding. Though menstruating species share several reproductive traits, there has been no identifiable feature unique to menstruating species. Such a feature might suggest why spontaneous decidualisation, and thus menstruation, evolved in these species. We propose that a ≥3-fold increase in progesterone during the luteal phase of the reproductive cycle is a unique characteristic linking menstruating species. We discuss spontaneous decidualisation as a consequence of high progesterone, and the potential role of prolactin in screening for defective embryos in these species to aid in minimising implantation of abnormal embryos. We further explore the possible impact of nutrition in selecting species to undergo spontaneous decidualisation and subsequent menstruation. We summarise the current knowledge of menstruation, discuss current pre-clinical models of menstruation and how the spiny mouse may benefit advancing our understanding of this rare biological phenomenon.
Collapse
Affiliation(s)
- Nadia Bellofiore
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | - Fiona Cousins
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | | | - Hayley Dickinson
- The Ritchie CentreHudson Institute of Medical Research, Clayton, Australia
- Obstetrics and GynaecologyMonash University, Clayton, Australia
| | - Jemma Evans
- Centre for Reproductive HealthHudson Institute of Medical Research, Clayton, Australia
| |
Collapse
|
189
|
James JL, Saghian R, Perwick R, Clark AR. Trophoblast plugs: impact on utero-placental haemodynamics and spiral artery remodelling. Hum Reprod 2018; 33:1430-1441. [DOI: 10.1093/humrep/dey225] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/28/2018] [Accepted: 06/02/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Joanna L James
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Rojan Saghian
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Rebecca Perwick
- Department of Obstetrics and Gynaecology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Alys R Clark
- Auckland Bioengineering Institute, The University of Auckland, Private Bag 92019, Auckland Mail Centre, Auckland 1142, New Zealand
| |
Collapse
|
190
|
Kasture VV, Sundrani DP, Joshi SR. Maternal one carbon metabolism through increased oxidative stress and disturbed angiogenesis can influence placental apoptosis in preeclampsia. Life Sci 2018; 206:61-69. [PMID: 29772225 DOI: 10.1016/j.lfs.2018.05.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 04/24/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023]
Abstract
Adequate maternal nutrition is critical for a healthy pregnancy outcome and poor maternal nutrition is known to be associated with pregnancy complications like preeclampsia. We have earlier demonstrated that there is an imbalance in the levels of micronutrients (folate and vitamin B12) along with low levels of long chain polyunsaturated fatty acids (LCPUFA) and high homocysteine levels in women with preeclampsia. Homocysteine is known to be involved in the formation of free radicals leading to increased oxidative stress. Higher oxidative stress has been shown to be associated with increased apoptotic markers in the placenta. Preeclampsia is of placental origin and is associated with increased oxidative stress, disturbed angiogenesis and placental apoptosis. The process of angiogenesis is important for placental and fetal development and various angiogenic growth factors inhibit apoptosis by inactivation of proapoptotic proteins through a series of cellular signalling pathways. We propose that an altered one carbon cycle resulting in increased oxidative stress and impaired angiogenesis will contribute to increased placental apoptosis leading to preeclampsia. Understanding the association of one carbon cycle components and the possible mechanisms through which they regulate apoptosis will provide clues for reducing risk of pregnancy complications.
Collapse
Affiliation(s)
- Vaishali V Kasture
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Deepali P Sundrani
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India
| | - Sadhana R Joshi
- Department of Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be University), Pune, India.
| |
Collapse
|
191
|
Ramhorst R, Calo G, Paparini D, Vota D, Hauk V, Gallino L, Merech F, Grasso E, Leirós CP. Control of the inflammatory response during pregnancy: potential role of VIP as a regulatory peptide. Ann N Y Acad Sci 2018; 1437:15-21. [PMID: 29740848 DOI: 10.1111/nyas.13632] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/24/2022]
Abstract
A network of cell-cell communications through contact and soluble factors supports the maternal-placental interaction and provides a suitable environment for fetal growth. Trophoblast cells take center stage at these loops: they interact with maternal leukocytes to sustain the varying demands of gestation, and they synthesize hormones, cytokines among other factors that contribute to the maintenance of immune homeostasis. Here, we discuss vasoactive intestinal peptide (VIP) and its potential as a regulatory neuropeptide in pregnancy. VIP is synthesized by trophoblast cells; it regulates trophoblast cell function and interaction with the major immune cell populations present in the pregnant uterus. VIP activity produces an anti-inflammatory microenvironment by modulating the functional profile of monocytes, macrophages, and regulatory T cells. Trophoblast VIP inhibits neutrophil extracellular trap formation and accelerates neutrophil apoptosis, enabling their silent clearance by phagocytic cells. The effects of VIP on the trophoblast-immune interaction are consistent with its regulatory role throughout pregnancy for immune homeostasis maintenance. These observations may provide new clues for pharmacological targeting of pregnancy complications associated with exacerbated inflammation.
Collapse
Affiliation(s)
- Rosanna Ramhorst
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Guillermina Calo
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Daniel Paparini
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Daiana Vota
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Vanesa Hauk
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Lucila Gallino
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Fatima Merech
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Esteban Grasso
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| | - Claudia Pérez Leirós
- Laboratory of Immunopharmacology, Department of Biological Chemistry, School of Sciences, University of Buenos Aires, Buenos Aires, Argentina.,IQUIBICEN-CONICET, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
192
|
Faas MM, De Vos P. Innate immune cells in the placental bed in healthy pregnancy and preeclampsia. Placenta 2018; 69:125-133. [PMID: 29748088 DOI: 10.1016/j.placenta.2018.04.012] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/23/2018] [Accepted: 04/23/2018] [Indexed: 12/18/2022]
Abstract
Immune cells in the placental bed are important for adequate development of the placental bed. The most prominent immune cells in the placental bed early in pregnancy are uterine natural killer cells (uNK) cells and macrophages. Also dendritic cells and mast cells can be found in the early placental bed. These cells not only have an immune regulatory function, but are also involved in the regulation of trophoblast invasion, angiogenesis and spiral artery remodeling. In preeclampsia, one of the major complications of pregnancy, decreased trophoblast invasion and spiral artery remodeling has been found. This is associated with decreased numbers of uNK cells, increased numbers of macrophages around the spiral arteries and similar or increased numbers of dendritic cells in the placental bed. In this review, we discuss the current insights in the functions of uNK cells, macrophages, dendritic cells and mast cells in the placental bed in humans during healthy pregnancy and during preeclampsia. As animal models are instrumental in understanding the role of immune cells in the placental bed, we also review studies on the function and phenotype of these innate immune cells in experimental preeclampsia. A better understanding of the dynamics and functional changes of these immune cells in the placental bed may eventually lead to new therapeutic targets for preeclampsia.
Collapse
Affiliation(s)
- Marijke M Faas
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands; Department of Obstetrics and Gynecology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands.
| | - Paul De Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
193
|
Sava RI, March KL, Pepine CJ. Hypertension in pregnancy: Taking cues from pathophysiology for clinical practice. Clin Cardiol 2018; 41:220-227. [PMID: 29485737 PMCID: PMC6490052 DOI: 10.1002/clc.22892] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 01/05/2018] [Indexed: 12/19/2022] Open
Abstract
Pregnancy-related hypertension (PHTN) syndromes are a frequent and potentially deadly complication of pregnancy, while also negatively impacting the lifelong health of the mother and child. PHTN appears in women likely to develop hypertension later in life, with the stress of pregnancy unmasking a subclinical hypertensive phenotype. However, distinguishing between PHTN and chronic hypertension is essential for optimal management. Preeclampsia (PE) is linked to potentially severe outcomes and lacks effective treatments due to poorly understood mechanisms. Inadequate remodeling of spiral uterine arteries (SUAs), the cornerstone of PE pathophysiology, leads to hypoperfusion of the developing placenta. In normal pregnancies, extravillous trophoblast (EVT) cells assume an invasive phenotype and invade SUAs, transforming them into large conduits. Decidual natural killer cells play an essential role, mediating materno-fetal immune tolerance, inducing early SUA remodeling and regulating EVT invasiveness. Notch signaling is important in EVT phenotypic switch and is dysregulated in PE. The hypoxic placenta releases antiangiogenic and proinflammatory factors that converge upon maternal endothelium, inducing endothelial dysfunction, hypertension, and organ damage. Hypoxia-inducible factor 1-α is upstream of such molecules, whereas endothelin-1 is a major effector. We also describe important genetic links and evidence of incomplete materno-fetal immune tolerance, with PE patients presenting with autoantibodies, lower Treg , and higher Th 17 cells. Thus, PE manifestations arise as a consequence of mal-placentation or/and because of a predisposition of the maternal vascular bed to excessively react to pathogenic molecules. From this pathophysiological basis, we provide current and propose future therapeutic directions for PE.
Collapse
Affiliation(s)
- Ruxandra I. Sava
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- “Elias” Emergency University Hospital“Carol Davila” University of Medicine and PharmacyBucharestRomania
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| | - Keith L. March
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| | - Carl J. Pepine
- Center for Regenerative MedicineUniversity of FloridaGainesvilleFlorida
- Division of Cardiovascular MedicineUniversity of Florida College of MedicineGainesvilleFlorida
| |
Collapse
|
194
|
Affiliation(s)
- Styliani Goulopoulou
- From the Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth
| |
Collapse
|
195
|
Chen X, Mariee N, Jiang L, Liu Y, Wang CC, Li TC, Laird S. Measurement of uterine natural killer cell percentage in the periimplantation endometrium from fertile women and women with recurrent reproductive failure: establishment of a reference range. Am J Obstet Gynecol 2017; 217:680.e1-680.e6. [PMID: 28935491 DOI: 10.1016/j.ajog.2017.09.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 09/07/2017] [Accepted: 09/11/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Uterine natural killer cells are the major leukocytes present in the periimplantation endometrium. Previous studies have found controversial differences in uterine natural killer cell percentage in women with recurrent reproductive failure compared with fertile controls. OBJECTIVE We sought to compare the uterine natural killer cell percentage in women with recurrent reproductive failure and fertile controls. STUDY DESIGN This was a retrospective study carried out in university hospitals. A total of 215 women from 3 university centers participated in the study, including 97 women with recurrent miscarriage, 34 women with recurrent implantation failure, and 84 fertile controls. Endometrial biopsy samples were obtained precisely 7 days after luteinization hormone surge in a natural cycle. Endometrial sections were immunostained for CD56 and cell counting was performed by a standardized protocol. Results were expressed as percentage of positive uterine natural killer cell/total stromal cells. RESULTS The median uterine natural killer cell percentage in Chinese ovulatory fertile controls in natural cycles was 2.5% (range 0.9-5.3%). Using 5th and 95th percentile to define the lower and upper limits of uterine natural killer cell percentage, the reference range was 1.2-4.5%. Overall, the groups with recurrent reproductive failure had significantly higher uterine natural killer cell percentage than the controls (recurrent miscarriage: median 3.2%, range 0.6-8.8%; recurrent implantation failure: median 3.1%, range 0.8-8.3%). However, there was a subset of both groups (recurrent miscarriage: 16/97; recurrent implantation failure: 6/34) that had lower uterine natural killer cell percentage compared to fertile controls. CONCLUSION A reference range for uterine natural killer cell percentage in fertile women was established. Women with recurrent reproductive failure had uterine natural killer cell percentages both above and below the reference range.
Collapse
Affiliation(s)
- Xiaoyan Chen
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Najat Mariee
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, United Kingdom
| | - Lingming Jiang
- Department of Obstetrics and Gynecology, Shenzhen People's Hospital, Second Affiliated Hospital of Jinan University, Shenzhen, China
| | - Yingyu Liu
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Shatin, Hong Kong; Li Ka Shing Institute of Health Science, Chinese University of Hong Kong, Shatin, Hong Kong; School of Biomedical Science, Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tin Chiu Li
- Department of Obstetrics and Gynecology, Chinese University of Hong Kong, Shatin, Hong Kong.
| | - Susan Laird
- Biomolecular Sciences Research Center, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
196
|
Renaud SJ, Scott RL, Chakraborty D, Rumi MAK, Soares MJ. Natural killer-cell deficiency alters placental development in rats. Biol Reprod 2017; 96:145-158. [PMID: 28395334 DOI: 10.1095/biolreprod.116.142752] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022] Open
Abstract
Natural killer (NK) cells are the most prevalent leukocyte population in the uterus during early pregnancy. Natural killer cells contribute to uterine vascular (spiral artery) remodeling in preparation for the increased demand on these vessels later in pregnancy. A second wave of spiral artery modification is directed by invasive trophoblast cells. The significance of the initial wave of NK-cell-mediated vascular remodeling in species exhibiting deep trophoblast invasion such as humans and rats is not known. The purpose of this study was to generate a genetic model of NK-cell deficiency in rats, and determine the consequences of NK-cell deficiency on spiral artery remodeling and reproductive outcomes. To accomplish this task, we utilized zinc finger nuclease-mediated genome editing of the rat interleukin-15 (Il15) gene. Il15 encodes a cytokine required for NK-cell lineage development. Using this strategy, a founder rat was generated containing a frameshift deletion in Il15. Uteri of females harboring a homozygous mutation at the Il15 locus contained no detectable NK cells. NK-cell deficiency did not impact fetal growth or viability. However, NK-cell deficiency caused major structural changes to the placenta, including expansion of the junctional zone and robust, early-onset activation of invasive trophoblast-guided spiral artery remodeling. In summary, we successfully generated an NK-cell-deficient rat and showed, using this model, that NK cells dampen the extent of trophoblast invasion and delay trophoblast-directed spiral artery remodeling. This study furthers our understanding of the role of NK cells on uterine vascular remodeling, trophoblast invasion, and placental development.
Collapse
Affiliation(s)
- Stephen J Renaud
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Regan L Scott
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Damayanti Chakraborty
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Mohammad A K Rumi
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Michael J Soares
- Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA.,Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
197
|
The role of decidual immune cells on human pregnancy. J Reprod Immunol 2017; 124:44-53. [DOI: 10.1016/j.jri.2017.10.045] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 01/17/2023]
|
198
|
Taylor T, Quinton A, Hyett J. The developmental origins of placental function. Australas J Ultrasound Med 2017; 20:141-146. [PMID: 34760487 DOI: 10.1002/ajum.12071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The placenta is the link between mother and fetus and its function is central to a successful pregnancy. The predominant theory within the literature is that the development of placental dysfunction is a result of abnormal trophoblast invasion early in pregnancy. Knowledge of the development of the early placenta and the establishment of the fetomaternal circulation assists in understanding the origins of placental dysfunction which manifest later in pregnancy. Perinatally, chronic placental dysfunction may result in a growth-restricted fetus, maternal problems such as gestational hypertension, pre-eclampsia, eclampsia and pregnancy complications such as placental abruption, preterm labour and delivery. In addition, the growth-restricted fetus and the mother are at an increased risk of a myriad of disorders later in life. The role of ultrasound in the assessment of first trimester pregnancy is evolving with the potential for value in the prediction of placental function in later pregnancy. This review will address two aims, first to describe the development of the placenta from fertilisation to 12 weeks' gestation, correlating this with first trimester ultrasound findings. Second, to describe the link between placental development and function later in pregnancy. Understanding the link between early placental development and later placental function is essential in directing the focus of new research addressing the role of ultrasound in the first trimester in the prediction of adverse obstetric outcomes.
Collapse
Affiliation(s)
- Tracey Taylor
- South Coast Ultrasound for Women 10/363 Crown Street Wollongong New South Wales 2500 Australia.,Discipline of Obstetrics, Gynaecology and Neonatology Central Clinical School Faculty of Medicine University of Sydney Camperdown New South Wales 2006 Australia
| | - Ann Quinton
- School of Health, Medical and Applied Science Central Queensland University 400 Kent Street Sydney New South Wales 2000 Australia.,Discipline of Obstetrics, Gynaecology and Neonatology Nepean School Faculty of Medicine University of Sydney Camperdown New South Wales 2006 Australia
| | - Jonathan Hyett
- Discipline of Obstetrics, Gynaecology and Neonatology Central Clinical School Faculty of Medicine University of Sydney Camperdown New South Wales 2006 Australia.,RPA Women and Babies Royal Prince Alfred Hospital 50 Missenden Road Camperdown New South Wales 2050 Australia
| |
Collapse
|
199
|
Jafri S, Ormiston ML. Immune regulation of systemic hypertension, pulmonary arterial hypertension, and preeclampsia: shared disease mechanisms and translational opportunities. Am J Physiol Regul Integr Comp Physiol 2017; 313:R693-R705. [PMID: 28978513 DOI: 10.1152/ajpregu.00259.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022]
Abstract
Systemic hypertension, preeclampsia, and pulmonary arterial hypertension (PAH) are diseases of high blood pressure in the systemic or pulmonary circulation. Beyond the well-defined contribution of more traditional pathophysiological mechanisms, such as changes in the renin-angiotensin-aldosterone system, to the development of these hypertensive disorders, there is substantial clinical evidence supporting an important role for inflammation and immunity in the pathogenesis of each of these three conditions. Over the last decade, work in small animal models, bearing targeted deficiencies in specific cytokines or immune cell subsets, has begun to clarify the immune-mediated mechanisms that drive changes in vascular structure and tone in hypertensive disease. By summarizing the clinical and experimental evidence supporting a contribution of the immune system to systemic hypertension, preeclampsia, and PAH, the current review highlights the cellular and molecular pathways that are common to all three hypertensive disorders. These mechanisms are centered on an imbalance in CD4+ helper T cell populations, defined by excessive Th17 responses and impaired Treg activity, as well as the excessive activation or impairment of additional immune cell types, including macrophages, dendritic cells, CD8+ T cells, B cells, and natural killer cells. The identification of common immune mechanisms in systemic hypertension, preeclampsia, and PAH raises the possibility of new therapeutic strategies that target the immune component of hypertension across multiple disorders.
Collapse
Affiliation(s)
- Salema Jafri
- University of Cambridge, Department of Medicine, Cambridge, United Kingdom; and
| | - Mark L Ormiston
- Queen's University, Departments of Biomedical and Molecular Sciences, Medicine and Surgery, Kingston, Canada
| |
Collapse
|
200
|
Vitamin D attenuates sphingosine-1-phosphate (S1P)-mediated inhibition of extravillous trophoblast migration. Placenta 2017; 60:1-8. [PMID: 29208234 PMCID: PMC5754325 DOI: 10.1016/j.placenta.2017.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/17/2017] [Accepted: 09/21/2017] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Failure of trophoblast invasion and remodelling of maternal blood vessels leads to the pregnancy complication pre-eclampsia (PE). In other systems, the sphingolipid, sphingosine-1-phosphate (S1P), controls cell migration therefore this study determined its effect on extravillous trophoblast (EVT) function. METHODS A transwell migration system was used to assess the behaviour of three trophoblast cell lines, Swan-71, SGHPL-4, and JEG3, and primary human trophoblasts in the presence or absence of S1P, S1P pathway inhibitors and 1,25(OH)2D3. QPCR and immunolocalisation were used to demonstrate EVT S1P receptor expression. RESULTS EVTs express S1P receptors 1, 2 and 3. S1P inhibited EVT migration. This effect was abolished in the presence of the specific S1PR2 inhibitor, JTE-013 (p < 0.05 versus S1P alone) whereas treatment with the S1R1/3 inhibitor, FTY720, had no effect. In other cell types S1PR2 is regulated by vitamin D; here we found that treatment with 1,25(OH)2D3 for 48 or 72 h reduces S1PR2 (4-fold; <0.05), but not R1 and R3, expression. Moreover, S1P did not inhibit the migration of cells exposed to 1,25(OH)2D3 (p < 0.05). DISCUSSION This study demonstrates that although EVT express three S1P receptor isoforms, S1P predominantly signals through S1PR2/Gα12/13 to activate Rho and thereby acts as potent inhibitor of EVT migration. Importantly, expression of S1PR2, and therefore S1P function, can be down-regulated by vitamin D. Our data suggest that vitamin D deficiency, which is known to be associated with PE, may contribute to the impaired trophoblast migration that underlies this condition.
Collapse
|