151
|
Impact of Blood Vessel Quantity and Vascular Expression of CD133 and ICAM-1 on Survival of Glioblastoma Patients. NEUROSCIENCE JOURNAL 2017; 2017:5629563. [PMID: 29250531 PMCID: PMC5698821 DOI: 10.1155/2017/5629563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 08/07/2017] [Accepted: 10/04/2017] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GB) is the most angiogenic tumor. Nevertheless, antiangiogenic therapy has not shown significant clinical efficacy. The aim of this study was to assess blood vessel characteristics on survival of GB patients. Surgically excised GB tissues were histologically examined for overall proportion of glomeruloid microvascular proliferation (MP) and the total number of blood vessels. Also, immunohistochemical vascular staining intensities of CD133 and ICAM-1 were determined. Vessel parameters were correlated with patients' overall survival. The survival time depended on the number of blood vessels (p = 0.03) but not on the proportion of MP. Median survival times for patients with low (<median) and high (≥median) number of blood vessels were 9.0 months (95% CI: 7.5–10.5) and 12.0 months (95% CI: 9.3–14.7). Also, median survival times for patients with low (<median) and high (≥median) vascular expression level of CD133 were 9.0 months (95% CI: 8.0–10.1) and 12.0 months (95% CI: 10.3–13.7). In contrast, the staining intensity of vascular ICAM-1 did not affect survival. In multivariate analysis, the number of blood vessels emerged as an independent predictor for longer overall survival (HR: 2.4, 95% CI: 1.2–5.0, p = 0.02). For success in antiangiogenic therapy, better understanding about tumor vasculature biology is needed.
Collapse
|
152
|
Balañá C, Alonso M, Hernandez-Lain A, Hernandez A, Perez-Segura P, Pineda E, Ramos A, Sanchez AR, Teixidor P, Verger E, Benavides M. SEOM clinical guidelines for anaplastic gliomas (2017). Clin Transl Oncol 2017; 20:16-21. [PMID: 29058264 PMCID: PMC5785606 DOI: 10.1007/s12094-017-1762-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 11/29/2022]
Abstract
The SEOM/GEINO clinical guidelines provide recommendations for radiological, and molecular diagnosis, treatment and follow-up of adult patients with anaplastic gliomas (AG). We followed the 2016 WHO classification which specifies the major diagnostic/prognostic and predictive value of IDH1/IDH2 missense mutations and 1p/19q codeletions in AG. The diagnosis of anaplastic oligoastrocytoma is discouraged. Surgery, radiotherapy and chemotherapy with PCV or TMZ are the first-line standard of care for AG with slight modifications according to molecular variables. A multidisciplinary team is highly recommended in the management of these tumors.
Collapse
Affiliation(s)
- C Balañá
- Institut Català Oncologia Badalona, Ct. Canyet, s/n, 08916, Barcelona, Spain.
| | - M Alonso
- Complejo Hospitalario Virgen del Rocío, Seville, Spain
| | | | | | - P Perez-Segura
- Hospital Universitario Clínico San Carlos, Madrid, Spain
| | - E Pineda
- Hospital Clínic i Provincial, Barcelona, Spain
| | - A Ramos
- Hospital 12 de Octubre, Madrid, Spain
| | - A R Sanchez
- Complejo Asistencial Universitario de León, León, Spain
| | - P Teixidor
- Hospital Universitari Germans Trias i Pujol Badalona, Barcelona, Spain
| | - E Verger
- Hospital Clínic i Provincial, Barcelona, Spain
| | - M Benavides
- Hospital Universitario Regional y Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
153
|
Ralff MD, Lulla AR, Wagner J, El-Deiry WS. ONC201: a new treatment option being tested clinically for recurrent glioblastoma. Transl Cancer Res 2017; 6:S1239-S1243. [PMID: 30175049 PMCID: PMC6117120 DOI: 10.21037/tcr.2017.10.03] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glioblastoma is an aggressive central nervous system tumor with a 5-year-survival rate of less than 10%. Patients diagnosed with the disease are treated with surgery, radiation and temozolomide chemotherapy. Despite survival benefits, patients eventually relapse. There is a need for new treatments with improved efficacy. Imipridone ONC201 is a small molecule originally identified as a TNF-related apoptosis inducing ligand (TRAIL)-inducing compound. ONC201 has the unique ability to induce expression of both pro-death ligand TRAIL and its receptor DR5 through engagement of the cellular integrated stress response (ISR) pathway. Arrillaga-Romany et al. report early results from futility analysis of a phase II clinical trial of ONC201 in 17 patients with recurrent or refractory glioblastoma conducted at the Massachusetts General Hospital Cancer Center. The results are promising, as ONC201 shows preliminary signs of efficacy. Further testing of ONC201 in an expansion cohort of patients with glioblastoma is ongoing.
Collapse
Affiliation(s)
- Marie D. Ralff
- MD/PhD Program, Lewis Katz School of Medicine, Temple
University, Philadelphia, PA, USA
- Laboratory of Translational Oncology and Experimental
Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics
Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Amriti R. Lulla
- Laboratory of Translational Oncology and Experimental
Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics
Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- PhD Program, Penn State Hershey Cancer Institute, Penn
State College of Medicine, Hershey, PA, USA
| | - Jessica Wagner
- Laboratory of Translational Oncology and Experimental
Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics
Program, Fox Chase Cancer Center, Philadelphia, PA, USA
- PhD Program, Lewis Katz School of Medicine, Temple
University, Philadelphia, PA, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental
Cancer Therapeutics, Department of Medical Oncology and Molecular Therapeutics
Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
154
|
Abstract
Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults despite contemporary gold-standard first-line treatment strategies. This type of tumor recurs in virtually all patients and no commonly accepted standard treatment exists for the recurrent disease. Therefore, advances in all scientific and clinical aspects of GBM are urgently needed. Epigenetic mechanisms are one of the major factors contributing to the pathogenesis of cancers, including glioblastoma. Epigenetic modulators that regulate gene expression by altering the epigenome and non-histone proteins are being exploited as therapeutic drug targets. Over the last decade, numerous preclinical and clinical studies on histone deacetylase (HDAC) inhibitors have shown promising results in various cancers. This article provides an overview of the anticancer mechanisms of HDAC inhibitors and the role of HDAC isoforms in GBM. We also summarize current knowledge on HDAC inhibitors on the basis of preclinical studies and emerging clinical data.
Collapse
|
155
|
Hohmann T, Grabiec U, Vogel C, Ghadban C, Ensminger S, Bache M, Vordermark D, Dehghani F. The Impact of Non-Lethal Single-Dose Radiation on Tumor Invasion and Cytoskeletal Properties. Int J Mol Sci 2017; 18:E2001. [PMID: 28926987 PMCID: PMC5618650 DOI: 10.3390/ijms18092001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/05/2017] [Accepted: 09/15/2017] [Indexed: 12/27/2022] Open
Abstract
Irradiation is the standard therapy for glioblastoma multiforme. Glioblastoma are highly resistant to radiotherapy and the underlying mechanisms remain unclear. To better understand the biological effects of irradiation on glioblastoma cells, we tested whether nonlethal irradiation influences the invasiveness, cell stiffness, and actin cytoskeleton properties. Two different glioblastoma cell lines were irradiated with 2 Gy and changes in mechanical and migratory properties and alterations in the actin structure were measured. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. Irradiation led to changes in motility and a less invasive phenotype in both investigated cell lines that were associated with an increase in a "generalized stiffness" and changes in the actin structure. In this study we demonstrate that irradiation can induce changes in the actin cytoskeleton and motility, which probably results in reduced invasiveness of glioblastoma cell lines. Furthermore, "generalized stiffness" was shown to be a profound marker of the invasiveness of a tumor cell population in our model.
Collapse
Affiliation(s)
- Tim Hohmann
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Urszula Grabiec
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Carolin Vogel
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Chalid Ghadban
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| | - Stephan Ensminger
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Matthias Bache
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Dirk Vordermark
- Department of Radiation Oncology, Martin Luther University Halle-Wittenberg, Ernst-Grube-Strasse 40, 06120 Halle, Germany.
| | - Faramarz Dehghani
- Institute of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Grosse Steinstrasse 52, 06108 Halle, Germany.
| |
Collapse
|
156
|
Abstract
Glioblastoma (GBM) is a rare tumor and one of the most challenging malignancies to treat in all of oncology. Although advances have been made in the treatment of GBM, encouraging outcomes typically are not observed; patients diagnosed with these tumors generally have a dismal prognosis and poor quality of life as the disease progresses. This review summarizes the clinical presentation of GBM, diagnostic methods, evidentiary basis for the current standards of care, and investigational approaches to treat or manage GBM. Because the track record for developing effective therapies for GBM has been dismal, we also review the challenges to successful therapeutic and biomarker development.
Collapse
Affiliation(s)
- Brian M. Alexander
- Brian M. Alexander, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA; and Timothy F. Cloughesy, University of California Los Angeles, Los Angeles, CA
| | - Timothy F. Cloughesy
- Brian M. Alexander, Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA; and Timothy F. Cloughesy, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
157
|
MicroRNA Regulation of Glycolytic Metabolism in Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9157370. [PMID: 28804724 PMCID: PMC5539934 DOI: 10.1155/2017/9157370] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/22/2017] [Indexed: 12/20/2022]
Abstract
Glioblastoma (GBM) is the most aggressive and common malignant brain tumour in adults. A well-known hallmark of GMB and many other tumours is aerobic glycolysis. MicroRNAs (miRNAs) are a class of short nonprotein coding sequences that exert posttranscriptional controls on gene expression and represent critical regulators of aerobic glycolysis in GBM. In GBM, miRNAs regulate the expression of glycolytic genes directly and via the regulation of metabolism-associated tumour suppressors and oncogenic signalling pathways. This review aims to establish links between miRNAs expression levels, the expression of GBM glycolytic regulatory genes, and the malignant progression and prognosis of GBM. In this review, the involvement of 25 miRNAs in the regulation of glycolytic metabolism of GBM is discussed. Seven of these miRNAs have been shown to regulate glycolytic metabolism in other tumour types. Further eight miRNAs, which are differentially expressed in GBM, have also been reported to regulate glycolytic metabolism in other cancer types. Thus, these miRNAs could serve as potential glycolytic regulators in GBM but will require functional validation. As such, the characterisation of these molecular and metabolic signatures in GBM can facilitate a better understanding of the molecular pathogenesis of this disease.
Collapse
|
158
|
Ndubuisi CA, Mezue WC, Nzegwu M, Okwunodulu O, Ejembi G, Ohaegbulam SC. The Challenges of Management of High-grade Gliomas in Nigeria. J Neurosci Rural Pract 2017; 8:407-411. [PMID: 28694621 PMCID: PMC5488562 DOI: 10.4103/jnrp.jnrp_18_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND High-grade gliomas (HGG) are among the most challenging brain tumors despite many research efforts worldwide. AIM The aim of this study was to evaluate the local challenges that may influence outcome of HGG managed in a neurosurgical center in Nigeria. METHODOLOGY Retrospective analysis of prospectively recorded data of patients managed for intracranial HGG at Memfys Hospital for Neurosurgery, Enugu, Nigeria, between the year 2006 and 2015. Only cases with conclusive histology following surgery were analyzed. RESULTS Glioma was 60 (23.8%) of 252 histology confirmed brain tumors. HGG represented 53.8% of gliomas with male:female ratio of 2.2:1.0 and peaked from fifth decade of life. Glioblastoma multiforme accounted for 69% of HGG. At 1-year postsurgery, 53% of HGGs were dead and 88% of these deaths were in the World Health Organization Grade IV group. Only 40% of cases could receive adjuvant treatment with only 15% mortality at 1 year in this subgroup that received adjuvant therapy. In addition, 19% of cases had surgery at Karnofsky score (Ks) of ≥70%. However, 94% of mortality at 1 year was related to surgery at Ks of ≤60%. Only four patients had a tumor volume of ≤50 cm3, and among these cases, three patients were independent at 1 year. Patients with tumor volume above 50 cm3 accounted for 94% of mortality. CONCLUSION The peak age incidence for HGG seems to be lower than in Caucasians. Most cases present late with poor Ks and big tumor volume. The proportion with access to adjuvant treatment is still poor. Preoperative Karnofsky, extent of resection, duration of hospital, and Intensive Care Unit stay have impact on outcome.
Collapse
Affiliation(s)
| | - Wilfred C. Mezue
- Department of Surgery, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Martin Nzegwu
- Department of Surgery, University of Nigeria Teaching Hospital, Enugu, Nigeria
| | - Okwuoma Okwunodulu
- Department of Neurosurgery, Memfys Hospital for Neurosurgery, Enugu, Nigeria
| | - Gabriel Ejembi
- Department of Neurosurgery, Memfys Hospital for Neurosurgery, Enugu, Nigeria
| | | |
Collapse
|
159
|
Abstract
Malignancies arising from the central nervous system are rare. Brain metastases, in contrast, are perhaps the most common neurologic complication of cancer. Radiotherapy, as part of combined modality therapy, continues to evolve with the advancement of stereotactic radiosurgery indications, the addition of new technologies, such as alternating electric field therapy, and mounting advances in the complex biology of these entities. The explosion of new clinical trials combined with newly discovered molecular markers suggest the beginning of a paradigm shift in the management of these challenging malignancies that will allow for future risk-stratification strategies.
Collapse
Affiliation(s)
- Eric Kemmerer
- Department of Radiation Oncology, Drexel University College of Medicine, 245 North 15 Street, Philadelphia, PA 19102, USA.
| | - Sunjay Shah
- Department of Radiation Oncology, Christiana Care, 4701 Ogletown-Stanton Rd, Newark, DE 19713, USA
| |
Collapse
|
160
|
Weller M, van den Bent M, Tonn JC, Stupp R, Preusser M, Cohen-Jonathan-Moyal E, Henriksson R, Le Rhun E, Balana C, Chinot O, Bendszus M, Reijneveld JC, Dhermain F, French P, Marosi C, Watts C, Oberg I, Pilkington G, Baumert BG, Taphoorn MJB, Hegi M, Westphal M, Reifenberger G, Soffietti R, Wick W. European Association for Neuro-Oncology (EANO) guideline on the diagnosis and treatment of adult astrocytic and oligodendroglial gliomas. Lancet Oncol 2017; 18:e315-e329. [PMID: 28483413 DOI: 10.1016/s1470-2045(17)30194-8] [Citation(s) in RCA: 763] [Impact Index Per Article: 95.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/29/2016] [Accepted: 01/13/2017] [Indexed: 12/14/2022]
Abstract
The European Association for Neuro-Oncology guideline provides recommendations for the clinical care of adult patients with astrocytic and oligodendroglial gliomas, including glioblastomas. The guideline is based on the 2016 WHO classification of tumours of the central nervous system and on scientific developments since the 2014 guideline. The recommendations focus on pathological and radiological diagnostics, and the main treatment modalities of surgery, radiotherapy, and pharmacotherapy. In this guideline we have also integrated the results from contemporary clinical trials that have changed clinical practice. The guideline aims to provide guidance for diagnostic and management decisions, while limiting unnecessary treatments and costs. The recommendations are a resource for professionals involved in the management of patients with glioma, for patients and caregivers, and for health-care providers in Europe. The implementation of this guideline requires multidisciplinary structures of care, and defined processes of diagnosis and treatment.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, Brain Tumour Centre, University Hospital and University of Zurich, Zurich, Switzerland.
| | | | - Jörg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Roger Stupp
- Department of Oncology, Brain Tumour Centre, University Hospital and University of Zurich, Zurich, Switzerland
| | - Matthias Preusser
- Department of Medicine, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Elizabeth Cohen-Jonathan-Moyal
- Département de Radiotherapie, Institut Claudius Regaud, L'Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Roger Henriksson
- Regional Cancer Centre Stockholm-Gotland and Department of Radiation Sciences and Oncology, Umeå University Hospital, Umeå, Sweden
| | - Emilie Le Rhun
- Neuro-Oncology, Department of Neurosurgery, University Hospital, Lille, France
| | - Carmen Balana
- Catalan Institute of Oncology, Hospital Germans Trias i Pujol, Barcelona, Spain
| | - Olivier Chinot
- Department of Neuro-Oncology, Aix-Marseille Université, Assistance Publique-Hopitaux de Marseille, Centre Hospitalo-Universitaire Timone, Marseilles, France
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jaap C Reijneveld
- Department of Neurology and Brain Tumour Centre Amsterdam, Vrije Universiteit Medical Centre, Amsterdam, Netherlands
| | - Frederick Dhermain
- Department of Radiotherapy, Gustave Roussy University Hospital, Villejuif, France
| | - Pim French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Christine Marosi
- Department of Medicine, Comprehensive Cancer Centre Vienna, Medical University of Vienna, Vienna, Austria
| | - Colin Watts
- Department of Clinical Neurosciences, Division of Neurosurgery, University of Cambridge, Cambridge, UK
| | - Ingela Oberg
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge University Hospitals Foundation Trust, Cambridge, UK
| | | | - Brigitta G Baumert
- Department of Radiation Oncology, MediClin Robert Janker Clinic and Clinical Cooperation Unit Neurooncology, University of Bonn Medical Centre, Bonn, Germany
| | - Martin J B Taphoorn
- Department of Neurology, Leiden University Medical Centre and Medical Centre Haaglanden, The Hague, Netherlands
| | - Monika Hegi
- Department of Clinical Neurosciences, University Hospital Lausanne, Lausanne, Switzerland
| | - Manfred Westphal
- Department of Neurosurgery, University Hospital Hamburg, Hamburg, Germany
| | - Guido Reifenberger
- Department of Neuropathology, Heinrich Heine University Düsseldorf and German Cancer Consortium (DKTK), Essen/Düsseldorf, Germany
| | | | - Wolfgang Wick
- Neurology Clinic and National Centre for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany; German Consortium of Translational Cancer Research (DKTK), Clinical Cooperation Unit Neurooncology, German Cancer Research Center, Heidelberg, Germany
| | | |
Collapse
|
161
|
Central nervous system gliomas. Crit Rev Oncol Hematol 2017; 113:213-234. [DOI: 10.1016/j.critrevonc.2017.03.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 03/16/2017] [Accepted: 03/20/2017] [Indexed: 12/22/2022] Open
|
162
|
Suzuki Y, Fujioka K, Ikeda K, Murayama Y, Manome Y. Temozolomide does not influence the transcription or activity of matrix metalloproteinases 9 and 2 in glioma cell lines. J Clin Neurosci 2017; 41:144-149. [PMID: 28408249 DOI: 10.1016/j.jocn.2017.03.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
Abstract
Glioblastoma multiforme (GBM) is a treatment-resistant malignancy with poor prognosis. Temozolomide (TMZ) is widely used as a first-line drug for GBM. Although this improves patient prognosis, it does not completely eradicate the tumour. Even after total surgical resection, GBM can exhibit uncontrollable invasiveness at the tumour margins owing to activation of matrix metalloproteinases (MMPs) such as MMP-2 and -9; these degrade collagen IV in the basement membrane, which normally prevents cancer invasion. TMZ induces DNA damage and activates transcription factors including c-jun, c-fos, nuclear factor-κβ, and early growth response protein-1, which have putative binding sites on the MMP-9 promoter. TMZ may therefore enhance tumour invasion by stimulating MMP-9 transcription and enzymatic activity. To test this hypothesis, we investigated MMP-2 and -9 mRNA transcription and activity in GBM cell lines treated with TMZ. Human A172 GBM cells were exposed to TMZ (25% and 50% inhibitory concentrations) for 24 or 48h; cell cycle distribution and mRNA levels of MMP-2 and -9 were evaluated using flow cytometry and semi-quantitative reverse transcription PCR, respectively. MMP-2 and -9 enzymatic activities were assessed using gelatin zymography in human A172 and U373 MG GBM cells exposed to TMZ under the same conditions. TMZ altered A172 cell cycle distribution, but not MMP-2 or -9 mRNA levels. TMZ did not affect MMP-2 or -9 enzymatic activities in A172 or U373 MG cells. These findings indicated that TMZ is therefore unlikely to promote GBM invasiveness.
Collapse
Affiliation(s)
- Yuta Suzuki
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo, Japan; Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan.
| | - Kouki Fujioka
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Keiichi Ikeda
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoshinobu Manome
- Division of Molecular Cell Biology, Core Research Facilities for Basic Science, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
163
|
Management of GBM: a problem of local recurrence. J Neurooncol 2017; 134:487-493. [PMID: 28378194 DOI: 10.1007/s11060-016-2347-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 12/23/2016] [Indexed: 01/22/2023]
Abstract
Forty years ago, adjuvant treatment of patients with GBM using fractionated radiotherapy following surgery was shown to substantially improve survival compared to surgery alone. However, even with the addition of temozolomide to radiotherapy, overall survival is quite limited and local failure remains a fundamental problem, despite multiple attempts to increase dose to the tumor target. This review presents the historical background and clinical rationale leading to the current standard of care consisting of 60 Gy total dose in 2 Gy fractions to the MRI-defined targets in younger, high performance status patients and more hypofractionated regimens in elderly and/or debilitated patients. Particle therapies offer the potential to increase local control while reducing dose and, potentially, long-term neurocognitive toxicity. However, improvements in systemic therapies for GBM will need to be implemented before the full benefits of improved local control can be realized.
Collapse
|
164
|
Corso CD, Bindra RS, Mehta MP. The role of radiation in treating glioblastoma: here to stay. J Neurooncol 2017; 134:479-485. [PMID: 28271281 DOI: 10.1007/s11060-016-2348-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/23/2016] [Indexed: 11/25/2022]
Abstract
Despite numerous efforts over the past several decades, few therapeutic breakthroughs in the treatment of GBM have been realized, and even these have yielded only incrementally modest gains. Radiotherapy remains a crucial component in the management of this disease. In this review, the historical basis for inclusion of radiotherapy as part of the therapeutic regimen for GBM is examined. Additionally, an overview of the evidence supporting the modern role of radiotherapy is provided along with a discussion of standard and emerging combined modality therapies. Finally, GBM management guidelines from three professional societies are reviewed.
Collapse
Affiliation(s)
- Christopher D Corso
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Ranjit S Bindra
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Minesh P Mehta
- Miami Cancer Institute, 1575 San Ignacio Avenue, Suite 100, Coral Gables, Miami, FL, 33146, USA.
| |
Collapse
|
165
|
Sulman EP, Ismaila N, Chang SM. Radiation Therapy for Glioblastoma: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation Oncology Guideline. J Oncol Pract 2017; 13:123-127. [DOI: 10.1200/jop.2016.018937] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Erik P. Sulman
- The University of Texas MD Anderson Cancer Center, Houston, TX; American Society of Clinical Oncology, Alexandria, VA; University of California, San Francisco, CA
| | - Nofisat Ismaila
- The University of Texas MD Anderson Cancer Center, Houston, TX; American Society of Clinical Oncology, Alexandria, VA; University of California, San Francisco, CA
| | - Susan M. Chang
- The University of Texas MD Anderson Cancer Center, Houston, TX; American Society of Clinical Oncology, Alexandria, VA; University of California, San Francisco, CA
| |
Collapse
|
166
|
Hohmann T, Grabiec U, Ghadban C, Feese K, Dehghani F. The influence of biomechanical properties and cannabinoids on tumor invasion. Cell Adh Migr 2017; 11:54-67. [PMID: 27149140 PMCID: PMC5308229 DOI: 10.1080/19336918.2016.1183867] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 03/10/2016] [Accepted: 04/25/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Cannabinoids are known to have an anti-tumorous effect, but the underlying mechanisms are only sparsely understood. Mechanical characteristics of tumor cells represent a promising marker to distinguish between tumor cells and the healthy tissue. We tested the hypothesis whether cannabinoids influence the tumor cell specific mechanical and migratory properties and if these factors are a prognostic marker for the invasiveness of tumor cells. METHODS 3 different glioblastoma cell lines were treated with cannabinoids and changes of mechanical and migratory properties of single cells were measured using atomic force microscopy and time lapse imaging. The invasiveness of cell lines was determined using a co-culture model with organotypic hippocampal slice cultures. RESULTS We found that cannabinoids are capable of influencing migratory and mechanical properties in a cell line specific manner. A network analysis revealed a correlation between a "generalized stiffness" and the invasiveness for all tumor cell lines after 3 and 4 d of invasion time: r3d = -0.88 [-0.52;-0.97]; r4d = -0.90 [-0.59;-0.98]. CONCLUSIONS Here we could show that a "generalized stiffness" is a profound marker for the invasiveness of a tumor cell population in our model and thus might be of high clinical relevance for drug testing. Additionally cannabinoids were shown to be of potential use for therapeutic approaches of glioblastoma.
Collapse
Affiliation(s)
- Tim Hohmann
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Urszula Grabiec
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Kerstin Feese
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
167
|
Gzell C, Back M, Wheeler H, Bailey D, Foote M. Radiotherapy in Glioblastoma: the Past, the Present and the Future. Clin Oncol (R Coll Radiol) 2017; 29:15-25. [DOI: 10.1016/j.clon.2016.09.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/22/2016] [Accepted: 08/25/2016] [Indexed: 10/25/2022]
|
168
|
Song XL, Liu S, Jiang Y, Gu LY, Xiao Y, Wang X, Cheng L, Li XT. Targeting vincristine plus tetrandrine liposomes modified with DSPE-PEG 2000 -transferrin in treatment of brain glioma. Eur J Pharm Sci 2017; 96:129-140. [DOI: 10.1016/j.ejps.2016.09.024] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/15/2016] [Accepted: 09/15/2016] [Indexed: 01/06/2023]
|
169
|
A genome-based model for adjusting radiotherapy dose (GARD): a retrospective, cohort-based study. Lancet Oncol 2016; 18:202-211. [PMID: 27993569 DOI: 10.1016/s1470-2045(16)30648-9] [Citation(s) in RCA: 363] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/05/2016] [Accepted: 10/17/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Despite its common use in cancer treatment, radiotherapy has not yet entered the era of precision medicine, and there have been no approaches to adjust dose based on biological differences between or within tumours. We aimed to assess whether a patient-specific molecular signature of radiation sensitivity could be used to identify the optimum radiotherapy dose. METHODS We used the gene-expression-based radiation-sensitivity index and the linear quadratic model to derive the genomic-adjusted radiation dose (GARD). A high GARD value predicts for high therapeutic effect for radiotherapy; which we postulate would relate to clinical outcome. Using data from the prospective, observational Total Cancer Care (TCC) protocol, we calculated GARD for primary tumours from 20 disease sites treated using standard radiotherapy doses for each disease type. We also used multivariable Cox modelling to assess whether GARD was independently associated with clinical outcome in five clinical cohorts: Erasmus Breast Cancer Cohort (n=263); Karolinska Breast Cancer Cohort (n=77); Moffitt Lung Cancer Cohort (n=60); Moffitt Pancreas Cancer Cohort (n=40); and The Cancer Genome Atlas Glioblastoma Patient Cohort (n=98). FINDINGS We calculated GARD for 8271 tissue samples from the TCC cohort. There was a wide range of GARD values (range 1·66-172·4) across the TCC cohort despite assignment of uniform radiotherapy doses within disease types. Median GARD values were lowest for gliomas and sarcomas and highest for cervical cancer and oropharyngeal head and neck cancer. There was a wide range of GARD values within tumour type groups. GARD independently predicted clinical outcome in breast cancer, lung cancer, glioblastoma, and pancreatic cancer. In the Erasmus Breast Cancer Cohort, 5-year distant-metastasis-free survival was longer in patients with high GARD values than in those with low GARD values (hazard ratio 2·11, 95% 1·13-3·94, p=0·018). INTERPRETATION A GARD-based clinical model could allow the individualisation of radiotherapy dose to tumour radiosensitivity and could provide a framework to design genomically-guided clinical trials in radiation oncology. FUNDING None.
Collapse
|
170
|
Jena A, Taneja S, Gambhir A, Mishra AK, Dʼsouza MM, Verma SM, Hazari PP, Negi P, Jhadav GKR, Sogani SK. Glioma Recurrence Versus Radiation Necrosis: Single-Session Multiparametric Approach Using Simultaneous O-(2-18F-Fluoroethyl)-L-Tyrosine PET/MRI. Clin Nucl Med 2016; 41:e228-36. [PMID: 26859208 DOI: 10.1097/rlu.0000000000001152] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to investigate the potential of hybrid gadolinium (Gd)-enhanced F-fluoroethyl-L-tyrosine (F-FET) PET/MRI in distinguishing recurrence from radiation necrosis using simultaneously acquired multiple structural and functional parameters. METHODS Twenty-six patients (5 female and 21 male patients; mean ± SD age, 51.58 ± 15.97 years) with single or multiple contrast-enhancing brain lesions (n = 32) on MRI after surgery and radiation therapy were evaluated with simultaneously acquired Gd-enhanced F-FET PET/MRI. They were then followed up with resurgery and histopathological diagnosis (n = 9) and/or clinical/MRI- or PET/MRI-based imaging follow-up (n = 17). PET/MR images were analyzed using manually drawn regions of interest over areas of maximal contrast enhancement and/or FET uptake. Maximum target-to-background ratio (TBRmax), mean target-to-background ratio (TBRmean), and choline-to-creatine (Cho/Cr) ratios as well as normalized mean relative cerebral blood volume (rCBVmean) and mean apparent diffusion coefficient (ADCmean) were determined. The accuracy of each parameter individually and in various possible combinations for differentiating recurrence versus radiation necrosis was evaluated using 2-tailed independent samples Student t test, multivariate analysis of variance, and multivariate receiver operating characteristic analysis. Positive histopathological finding and long-term imaging/clinical follow-up suggestive of disease progression served as criterion standard. RESULTS Of 26 patients, 19 were classified as recurrence, with 7 patients showing radiation necrosis. Individually, TBRmax, TBRmean, ADCmean, and Cho/Cr ratios as well as normalized rCBVmean was significant in differentiating recurrence from radiation necrosis, with an accuracy of 93.8% for TBRmax, 87.5% for TBRmean, 81.3% for ADCmean, 96.9% for Cho/Cr ratio, and 90.6% for normalized rCBVmean. The accuracy of both normalized rCBVmean and ADCmean was improved in combination with TBRmax or Cho/Cr ratio. However, TBRmax (or TBRmean) with Cho/Cr ratio yielded the highest accuracy, approaching up to 97%. Furthermore, maximum area under the curve is achieved with the combination of TBRmean, CBV, and Cho/Cr values. CONCLUSIONS Our findings suggest that FET uptake with Cho/Cr ratio and normalized rCBVmean could be most useful to distinguish primary glioma recurrence from radiation necrosis. Hybrid simultaneous multiparametric F-FET PET/MRI might play a significant role in the evaluation of patients with suspected glioma recurrence.
Collapse
Affiliation(s)
- Amarnath Jena
- From the *PET Suite, Department of Molecular Imaging and Nuclear Medicine, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi; †Molecular Imaging and Research Centre, Institute of Nuclear Medicine and Allied Sciences, Delhi; and ‡Institute of Radiation Oncology, and §Institute of Neuro Sciences, Indraprastha Apollo Hospitals, Sarita Vihar, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Sulman EP, Ismaila N, Armstrong TS, Tsien C, Batchelor TT, Cloughesy T, Galanis E, Gilbert M, Gondi V, Lovely M, Mehta M, Mumber MP, Sloan A, Chang SM. Radiation Therapy for Glioblastoma: American Society of Clinical Oncology Clinical Practice Guideline Endorsement of the American Society for Radiation Oncology Guideline. J Clin Oncol 2016; 35:361-369. [PMID: 27893327 DOI: 10.1200/jco.2016.70.7562] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose The American Society for Radiation Oncology (ASTRO) produced an evidence-based guideline on radiation therapy for glioblastoma. Because of its relevance to the ASCO membership, ASCO reviewed the guideline and applied a set of procedures and policies used to critically examine guidelines developed by other organizations. Methods The ASTRO guideline on radiation therapy for glioblastoma was reviewed for developmental rigor by methodologists. An ASCO endorsement panel updated the literature search and reviewed the content and recommendations. Results The ASCO endorsement panel determined that the recommendations from the ASTRO guideline, published in 2016, are clear, thorough, and based on current scientific evidence. ASCO endorsed the ASTRO guideline on radiation therapy for glioblastoma and added qualifying statements. Recommendations Partial-brain fractionated radiotherapy with concurrent and adjuvant temozolomide is the standard of care after biopsy or resection of newly diagnosed glioblastoma in patients up to 70 years of age. Hypofractionated radiotherapy for elderly patients with fair to good performance status is appropriate. The addition of concurrent and adjuvant temozolomide to hypofractionated radiotherapy seems to be safe and efficacious without impairing quality of life for elderly patients with good performance status. Reasonable options for patients with poor performance status include hypofractionated radiotherapy alone, temozolomide alone, or best supportive care. Focal reirradiation represents an option for select patients with recurrent glioblastoma, although this is not supported by prospective randomized evidence. Additional information is available at www.asco.org/glioblastoma-radiotherapy-endorsement and www.asco.org/guidelineswiki .
Collapse
Affiliation(s)
- Erik P Sulman
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Nofisat Ismaila
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Terri S Armstrong
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Christina Tsien
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Tracy T Batchelor
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Tim Cloughesy
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Evanthia Galanis
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Mark Gilbert
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Vinai Gondi
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Mary Lovely
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Minesh Mehta
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Matthew P Mumber
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Andrew Sloan
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| | - Susan M Chang
- Erik P. Sulman and Terri S. Armstrong, MD Anderson Cancer Center; Terri S. Armstrong, University of Texas Health Science Center, Houston, TX; Nofisat Ismaila, American Society of Clinical Oncology, Alexandria, VA; Christina Tsien, Washington University Physicians, St Louis, MO; Tracy T. Batchelor, Massachusetts General Hospital, Boston, MA; Tim Cloughesy, University of California, Los Angeles, Los Angeles; Mary Lovely and Susan M. Chang, University of California, San Francisco, San Francisco, CA; Evanthia Galanis, Mayo Clinic, Rochester, MN; Mark Gilbert, National Cancer Institute, Bethesda; Minesh Mehta, University of Maryland School of Medicine, Baltimore, MD; Vinai Gondi, Northwestern Medicine Cancer Center, Warrenville, IL; Matthew P. Mumber, Harbin Clinic Radiation Oncology, Rome, GA; and Andrew Sloan, University Hospitals Cleveland Medical Center, Cleveland, OH
| |
Collapse
|
172
|
Success and Failures of Combined Modalities in Glioblastoma Multiforme: Old Problems and New Directions. Semin Radiat Oncol 2016; 26:281-98. [DOI: 10.1016/j.semradonc.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
173
|
Khan L, Soliman H, Sahgal A, Perry J, Xu W, Tsao MN. External beam radiation dose escalation for high grade glioma. Cochrane Database Syst Rev 2016:CD011475. [PMID: 27541334 DOI: 10.1002/14651858.cd011475.pub2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The incidence of high grade glioma (HGG) is approximately 5 per 100,000 person-years in Europe and North America. OBJECTIVES To assess the effects of postoperative external beam radiation dose escalation in adults with HGG. SEARCH METHODS We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (2015, Issue 9), MEDLINE (1977 to October 2015) and Embase (1980 to end October 2015) for relevant randomised phase III trials. SELECTION CRITERIA We included adults with a pathological diagnosis of HGG randomised to the following external beam radiation regimens.1. Daily conventionally fractionated radiation therapy versus no radiation therapy.2. Hypofractionated radiation therapy versus daily conventionally fractionated radiation therapy.3. Hyperfractionated radiation therapy versus daily conventionally fractionated radiation therapy.4. Accelerated radiation therapy versus daily conventionally fractionated radiation therapy. DATA COLLECTION AND ANALYSIS The primary outcomes were overall survival and adverse effects. The secondary outcomes were progression-free survival and quality of life. We used the standard methodological procedures expected by Cochrane. We used the GRADE approach, as outlined by Cochrane, to interpret the overall quality of the evidence from included studies. MAIN RESULTS We included 11 randomised controlled trials (RCTs) with a total of 2062 participants and 1537 in the relevant arms for this review. There was an overall survival benefit for HGG participants receiving postoperative radiotherapy compared to the participants receiving postoperative supportive care. For the four pooled RCTs (397 participants), the overall hazard ratio (HR) for survival was 2.01 (95% confidence interval (CI) 1.58 to 2.55, P < 0.00001), moderate GRADE quality evidence favouring postoperative radiotherapy. Although these trials may not have completely reported adverse effects, they did not note any significant toxicity attributable to radiation. Progression free survival and quality of life could not be pooled due to lack of data.Overall survival was similar between hypofractionated versus conventional radiotherapy in five trials (943 participants), where the HR was 0.95 (95% CI 0.78 to 1.17, P = 0.63), very low GRADE quality evidence. The trials reported that hypofractionated and conventional radiotherapy were well tolerated with mild acute adverse effects. These trials only reported one patient in the hypofractionated arm developing symptomatic radiation necrosis that required surgery. Progression free survival and quality of life could not be pooled due to the lack of data.Overall survival was also similar between hypofractionated versus conventional radiotherapy in the subset of two trials (293 participants) which included 60 years and older participants with glioblastoma. For this category, the HR was 1.16 (95% CI 0.92 to 1.46, P = 0.21), high GRADE quality evidence.There were two trials which compared hyperfractionated radiation therapy versus conventional radiation and one trial which compared accelerated radiation therapy versus conventional radiation. However, the results could not be pooled.The conventionally fractionated radiation therapy regimens were 4500 to 6000 cGy given in 180 to 200 cGy daily fractions, over 5 to 6 weeks.All these trials generally included participants with World Health Organization (WHO) performance status from 0 to 2 and Karnofsky performance status of 50 and higher.The risk of selection bias was generally low among these randomized trials. The number of participants lost to follow-up for the outcome of overall survival was low. Attrition, performance, detection and reporting bias for the outcome of overall survival was low. There was unclear attrition, performance, detection and reporting bias relating to the outcomes of adverse effects, progression free survival and quality of life. AUTHORS' CONCLUSIONS Postoperative conventional daily radiotherapy improves survival for adults with good performance status and HGG as compared to no postoperative radiotherapy.Hypofractionated radiation therapy has similar efficacy for survival as compared to conventional radiotherapy, particularly for individuals aged 60 and older with glioblastoma.There is insufficient data regarding hyperfractionation versus conventionally fractionated radiation (without chemotherapy) and for accelerated radiation versus conventionally fractionated radiation (without chemotherapy).There are HGG subsets who have poor prognosis even with treatment (e.g. glioblastoma histology, older age and poor performance status). These poor prognosis HGG individuals have generally been excluded from the randomised trials based on poor performance status. No randomised trial has compared comfort measures or best supportive care with an active intervention using radiotherapy or chemotherapy in these poor prognosis patients.
Collapse
Affiliation(s)
- Luluel Khan
- Radiation Oncology, University of Toronto, 2075 Bayview Avenue, Toronto, ON, Canada, M4N 3M5
| | | | | | | | | | | |
Collapse
|
174
|
Rees J, Bradford R, Brandner S, Fersht N, Jäger R, Wilson E. Neuro-Oncology. Neurology 2016. [DOI: 10.1002/9781118486160.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Jeremy Rees
- National Hospital for Neurology & Neurosurgery
| | | | | | | | | | | |
Collapse
|
175
|
Zhao P, Li Q, Shi Z, Li C, Wang L, Liu X, Jiang C, Qian X, You Y, Liu N, Liu LZ, Ding L, Jiang BH. GSK-3β regulates tumor growth and angiogenesis in human glioma cells. Oncotarget 2016; 6:31901-15. [PMID: 26388612 PMCID: PMC4741649 DOI: 10.18632/oncotarget.5043] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glioma accounts for the majority of primary malignant brain tumors in adults. METHODS Glioma specimens and normal brain tissues were analyzed for the expression levels of GSK-3β and p-GSK-3β (Ser9) by tissue microarray analysis (TMA) and Western blotting. Glioma cells over-expressing GSK-3β were used to analyze biological functions both in vitro and in vivo. RESULTS The levels of p-GSK-3β (Ser9), but not total GSK-3β, are significantly up-regulated in glioma tissues compared to normal tissues, and are significantly correlated with the glioma grades. Ectopic expression of GSK-3β decreased the phosphorylation levels of mTOR and p70S6K1; and inhibited β-catenin, HIF-1α and VEGF expression. Forced expression of GSK-3β in glioma cells significantly inhibited both tumor growth and angiogenesis in vivo. CONCLUSIONS These results reveal that GSK-3β regulates mTOR/p70S6K1 signaling pathway and inhibits glioma progression in vivo; its inactivation via p-GSK-3β (Ser9) is associated with glioma development, which is new mechanism that may be helpful in developing GSK-3β-based treatment of glioma in the future.
Collapse
Affiliation(s)
- Peng Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qi Li
- State Key Lab of Reproductive Medicine, Department of Pathology and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing 210029, China.,Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing, University Medical School, Nanjing 210008, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Charlie Li
- Department of Environmental Toxicology, University of California-Davis, Davis, CA 94564, USA
| | - Lin Wang
- State Key Lab of Reproductive Medicine, Department of Pathology and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing 210029, China
| | - Xue Liu
- State Key Lab of Reproductive Medicine, Department of Pathology and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing 210029, China
| | - Chengfei Jiang
- State Key Lab of Reproductive Medicine, Department of Pathology and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing 210029, China.,Ninggao Personalized Medicine and Technology Innovation Center, Nanjing 21130, China
| | - Xu Qian
- State Key Lab of Reproductive Medicine, Department of Pathology and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing 210029, China.,Ninggao Personalized Medicine and Technology Innovation Center, Nanjing 21130, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ling-Zhi Liu
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Lianshu Ding
- Department of Neurosurgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an 223300, China
| | - Bing-Hua Jiang
- State Key Lab of Reproductive Medicine, Department of Pathology and Collaborative Innovation Center for Cancer Personalized Medicine, Cancer Center, Nanjing Medical University, Nanjing 210029, China.,Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
176
|
Shabason JE, Sutton D, Kenton O, Guttmann DM, Lustig RA, Hill-Kayser C. Patterns of Failure for Pediatric Glioblastoma Multiforme Following Radiation Therapy. Pediatr Blood Cancer 2016; 63:1465-7. [PMID: 27128519 DOI: 10.1002/pbc.26031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Abstract
Despite aggressive multimodal therapy for pediatric glioblastoma multiforme (GBM), patient survival remains poor. This retrospective review of patients with GBM aims to evaluate the patterns of failure after radiation therapy (RT). The study included 14 pediatric patients treated with RT at the Children's Hospital of Philadelphia from 2007 to 2015. With a median follow-up of 16.9 months, 13 (92.9%) developed recurrent disease. Of recurrences, nine (69.2%) were in-field, three (23.1%) were marginal, and one (7.7%) was distant. The majority of patients treated with adjuvant radiation failed in the region of high-dose RT, indicating the need for improvements in local therapy.
Collapse
Affiliation(s)
- Jacob E Shabason
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Sutton
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Owen Kenton
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M Guttmann
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Robert A Lustig
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christine Hill-Kayser
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
177
|
Ozel O, Kurt M, Ozdemir O, Bayram J, Akdeniz H, Koca D. Complete response to bevacizumab plus irinotecan in patients with rapidly progressive GBM: Cases report and literature review. JOURNAL OF ONCOLOGICAL SCIENCES 2016. [DOI: 10.1016/j.jons.2016.07.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
178
|
Suchorska B, Hamisch C, Treuer H, Mahnkopf K, Lehrke RE, Kocher M, Ruge MI, Voges J. Stereotactic brachytherapy using iodine 125 seeds for the treatment of primary and recurrent anaplastic glioma WHO° III. J Neurooncol 2016; 130:123-131. [PMID: 27422129 DOI: 10.1007/s11060-016-2214-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
Abstract
The current study analyzed the outcome after stereotactic brachytherapy (SBT) using iodine-125 seeds in anaplastic astrocytoma, oligoastrocytoma or oligodendroglioma not suitable for resection. Out of 223 patients harbouring a malignant glioma treated according to a prospective protocol, 172 patients were selected who received SBT to treat a WHO grade III de-novo/residual tumor (n = 99) or a tumor recurrence after multimodal treatment (n = 73). We assessed progression free survival (PFS), overall survival (OS), radiological and clinical outcome and determined prognostic factors using univariate and multivariate regression analyses. The median follow-up time was 38 months. Median OS and median PFS was 28.9 and 21.4 months in the de-novo group vs. 49.4 and 32.6 months in the recurrence group. Recurrent tumors had more frequently (p = 0.01) an oligodendroglial-component compared to de novo tumors. According to cohort-specific univariate analyses KPS at SBT had a significant (p = 0.008) impact on OS in the de-novo group. In the recurrence group, (Cox regression analysis) OS was significantly associated with histology subtype (oligoastro-/oligodendroglioma vs. astrocytoma, p = 0.043). Transient and permanent morbidity (~1 %) was low. For patients unable to undergo surgery due to eloquent tumour location or reduced general condition SBT is an effective treatment option, which does not foreclose additional therapeutic interventions.
Collapse
Affiliation(s)
- B Suchorska
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany.,Department of Neurosurgery, Ludwig Maximilians University of Munich, Munich, Germany
| | - C Hamisch
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, University of Cologne, Cologne, Germany.,Department of Neurosurgery, Centre of Neurosurgery, University of Cologne, Cologne, Germany
| | - H Treuer
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, University of Cologne, Cologne, Germany
| | - K Mahnkopf
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany
| | - R E Lehrke
- Department of Stereotactic Neurosurgery, St. Barbara Hospital, Hamm, Germany
| | - M Kocher
- Department of Radiation Oncology, University Hospital of Cologne, Cologne, Germany
| | - M I Ruge
- Department of Stereotaxy and Functional Neurosurgery, Centre of Neurosurgery, University of Cologne, Cologne, Germany
| | - J Voges
- Department of Stereotactic Neurosurgery, Otto-von-Guericke University of Magdeburg, Magdeburg, Germany. .,Leibniz Institute for Neurobiology, Magdeburg, Germany.
| |
Collapse
|
179
|
Cabrera AR, Kirkpatrick JP, Fiveash JB, Shih HA, Koay EJ, Lutz S, Petit J, Chao ST, Brown PD, Vogelbaum M, Reardon DA, Chakravarti A, Wen PY, Chang E. Radiation therapy for glioblastoma: Executive summary of an American Society for Radiation Oncology Evidence-Based Clinical Practice Guideline. Pract Radiat Oncol 2016; 6:217-225. [DOI: 10.1016/j.prro.2016.03.007] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 03/24/2016] [Indexed: 10/22/2022]
|
180
|
Abstract
BACKGROUND optimal treatment of glioblastoma (gBM) in the elderly remains unclear. the impact of age on treatment planning, toxicity, and efficacy at a Canadian Cancer Centre was retrospectively reviewed. METHODS glioblastoma patients treated consecutively between 2004 and 2008 were reviewed. utilizing 70 years as the threshold for definition of an elderly patient, treatments and outcome were compared in younger and elderly populations. RESULTS four hundred and twenty one patients were included in this analysis and median overall survival (oS) for the entire cohort was 9.8 months. 290 patients were aged <70 (median age 57, range 17- 69) and 131 were aged ≥ 70 (median age 76, range 70-93). patients ≥ 70 were more likely to receive best supportive care (BSC) and all patients >70 who were treated with radiotherapy received <60 gy (P<0.001), except one. patients aged >70 demonstrated inferior survival (one year oS 16% versus 54% for those <70, hr 3.46, P<0.001). in patients treated with BSC only, age had no impact on survival (median survival two months in both groups, hr 0.89, P=0.75). for those treated with higher doses of radiotherapy (>30 gy to <60 gy), one year survival was 19% versus 24% in patients aged >70 versus <70 (hr 1.47, P=0.02) respectively. CONCLUSION in this retrospective single institution series, elderly patients were more likely to be treated with BSC or palliative doses of radiotherapy. randomized phase iii study results are required for guidance in treatment of this population of patients.
Collapse
|
181
|
Levin VA, Tonge PJ, Gallo JM, Birtwistle MR, Dar AC, Iavarone A, Paddison PJ, Heffron TP, Elmquist WF, Lachowicz JE, Johnson TW, White FM, Sul J, Smith QR, Shen W, Sarkaria JN, Samala R, Wen PY, Berry DA, Petter RC. CNS Anticancer Drug Discovery and Development Conference White Paper. Neuro Oncol 2016; 17 Suppl 6:vi1-26. [PMID: 26403167 DOI: 10.1093/neuonc/nov169] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Following the first CNS Anticancer Drug Discovery and Development Conference, the speakers from the first 4 sessions and organizers of the conference created this White Paper hoping to stimulate more and better CNS anticancer drug discovery and development. The first part of the White Paper reviews, comments, and, in some cases, expands on the 4 session areas critical to new drug development: pharmacological challenges, recent drug approaches, drug targets and discovery, and clinical paths. Following this concise review of the science and clinical aspects of new CNS anticancer drug discovery and development, we discuss, under the rubric "Accelerating Drug Discovery and Development for Brain Tumors," further reasons why the pharmaceutical industry and academia have failed to develop new anticancer drugs for CNS malignancies and what it will take to change the current status quo and develop the drugs so desperately needed by our patients with malignant CNS tumors. While this White Paper is not a formal roadmap to that end, it should be an educational guide to clinicians and scientists to help move a stagnant field forward.
Collapse
Affiliation(s)
- Victor A Levin
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Peter J Tonge
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - James M Gallo
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Marc R Birtwistle
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Arvin C Dar
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Antonio Iavarone
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Patrick J Paddison
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Timothy P Heffron
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - William F Elmquist
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Jean E Lachowicz
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Ted W Johnson
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Forest M White
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Joohee Sul
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Quentin R Smith
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Wang Shen
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Jann N Sarkaria
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Ramakrishna Samala
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Patrick Y Wen
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Donald A Berry
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| | - Russell C Petter
- Kaiser Permanente, Redwood City, California, USA (V.A.L.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (V.A.L.); University of California, San Francisco, CA, USA (V.A.L.); SUNY Stony Brook University, Stony Brook, NY, USA (P.J.T.); Icahn School of Medicine at Mount Sinai, New York, NY, USA (J.M.G., M.R.B., A.C.D.); Columbia University Institute for Cancer Genetics, New York, NY, USA (A.I.); Fred Hutchinson Cancer Research Center, Seattle, WA, USA (P.J.P.); Genentech, Inc., South San Francisco, CA, USA (T.P.H.); University of Minnesota School of Pharmacy, Minneapolis, MN, USA (W.F.E.); Angiochem, Inc., Montreal, Quebec, Canada (J.E.L.); Pfizer Oncology, San Diego, CA, USA (T.W.J.); Massachusetts Institute of Technology, Cambridge, MA, USA (F.M.W.); US Food and Drug Administration, Silver Spring, MD, USA (J.S.); Texas Tech University School of Pharmacy, Amarillo, TX, USA (Q.R.S., R.S.); NewGen Therapeutics, Inc., Menlo Park, CA, USA (W.S.); Mayo Clinic, Rochester, MN, USA (J.N.S.); Dana-Farber Cancer Institute, Boston, MA, USA (P.Y.W.); University of Texas MD Anderson Cancer Center, Houston, TX, USA (D.A.B.); Celgene Avilomics Research, Bedford, MA, USA (R.C.P.)
| |
Collapse
|
182
|
Zhou X, Liao X, Zhang B, He H, Shui Y, Xu W, Jiang C, Shen L, Wei Q. Recurrence patterns in patients with high-grade glioma following temozolomide-based chemoradiotherapy. Mol Clin Oncol 2016; 5:289-294. [PMID: 27446566 PMCID: PMC4950878 DOI: 10.3892/mco.2016.936] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/20/2016] [Indexed: 11/09/2022] Open
Abstract
There is currently no consensus regarding the optimal radiation volume for high-grade glioma (HGG). The brain volume irradiated is associated with the extent of radiation neurotoxicity. When reducing the treatment volume, the risk of geographic tumor miss should be considered. In such cases, the recurrence patterns and, particularly, the rate of marginal tumor recurrence, are important indices for determining the optimal radiation volume. In the present study, a smaller-target delineation protocol with limited margins was adopted. The postoperative enhancing tumor and resection cavity were defined as gross tumor volume (GTV); 1 and 2 cm were added to the GTV to create clinical target volume (CTV1 and CTV2), which received 60 and 54 Gy, respectively. At a median follow-up of 14 months, 54 HGG patients developed tumor recurrence. The median overall and progression-free survival were 14 and 10.5 months, respectively. A total of 34 patients developed central recurrence, 8 presented with in-field recurrence, 2 developed marginal recurrence, 2 had distant recurrence and 11 patients developed cerebrospinal fluid dissemination, 2 of whom developed central recurrence, with 1 patient simultaneously developing marginal recurrence. Local recurrence (central and in-field) was found to be the main recurrence pattern. As the rate of marginal recurrence was low (<5%), it appears that the smaller irradiated volume in the present study was appropriate. However, clinical trials investigating limited irradiation volume are required to validate our findings.
Collapse
Affiliation(s)
- Xiaofeng Zhou
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Xiaofang Liao
- Department of Radiation Oncology, Quzhou Central Hospital, Quzhou, Zhejiang 324000, P.R. China
| | - Bicheng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Huijuan He
- Department of Radiation Oncology, Quzhou Central Hospital, Quzhou, Zhejiang 324000, P.R. China
| | - Yongjie Shui
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Wenhong Xu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Chaogen Jiang
- Department of Radiology, Quzhou Central Hospital, Quzhou, Zhejiang 324000, P.R. China
| | - Li Shen
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
183
|
Application of Convection-Enhanced Drug Delivery in the Treatment of Malignant Gliomas. World Neurosurg 2016; 90:172-178. [DOI: 10.1016/j.wneu.2016.02.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/08/2016] [Accepted: 02/09/2016] [Indexed: 02/01/2023]
|
184
|
Zhao F, Li M, Kong L, Zhang G, Yu J. Delineation of radiation therapy target volumes for patients with postoperative glioblastoma: a review. Onco Targets Ther 2016; 9:3197-204. [PMID: 27313465 PMCID: PMC4892826 DOI: 10.2147/ott.s104241] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Glioblastoma is the most aggressive and lethal primary malignancy of the brain, and radiotherapy (RT) is a fundamental part of its treatment. However, the optimal radiation treatment conditions are still a matter of debate, and there is no clear consensus concerning the inclusion of peritumoral edema in the clinical target volume calculation. Target delineation calculations that use postoperative residual tumor and cavity volumes plus 2 cm margins result in smaller volumes of normal brain receiving high-dose irradiation, compared to calculations that include expanded edema. Smaller RT fields may be more appropriate than larger RT fields, possibly reducing the risk of late neurological deterioration, especially in patients with significant peritumoral edema. This review focuses on the factors influencing target delineation, such as peritumoral edema, failure patterns, and prognostic factors (clinical and pathological characteristics) of patients with glioblastoma. Based on this information, we make three suggestions for radiation oncologists to refer to in daily practice. Further study is necessary to investigate the unresolved problems related to routine clinical application of RT.
Collapse
Affiliation(s)
- Fen Zhao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| | - Minghuan Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| | - Li Kong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| | - Guoli Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong, People's Republic of China; Key Laboratory of Radiation Oncology Shandong Province, Jinan, Shandong, People's Republic of China
| |
Collapse
|
185
|
Abstract
Anaplastic astrocytoma (AA) is a diffusely infiltrating, malignant, astrocytic, primary brain tumor. AA is currently defined by histology although future classification schemes will include molecular alterations. AA can be separated into subgroups, which share similar molecular profiles, age at diagnosis and median survival, based on 1p/19q co-deletion status and IDH mutation status. AA with co-deletion of chromosomes 1p and 19q and IDH mutation have the best prognosis. AA with IDH mutation and no 1p/19q co-deletion have intermediate prognosis and AA with wild-type IDH have the worst prognosis and share many molecular alterations with glioblastoma. Treatment of noncodeleted AA based on preliminary results from the CATNON clinical trial consists of maximal safe resection followed by radiotherapy with post-radiotherapy temozolomide (TMZ) chemotherapy. The role of concurrent TMZ and whether IDH1 subgroups benefit from TMZ is currently being evaluated in the recently completed randomized, prospective Phase III clinical trial, CATNON.
Collapse
Affiliation(s)
- Sean A Grimm
- Northwestern Medicine Brain & Spine Tumor Center, Warrenville, IL 60555, USA
| | - Marc C Chamberlain
- Department of Neurology & Neurological Surgery, Seattle Cancer Care Alliance, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, WA 98109-1023, USA
| |
Collapse
|
186
|
Yang C, Lee DH, Mangraviti A, Su L, Zhang K, Zhang Y, Zhang B, Li W, Tyler B, Wong J, Wang KKH, Velarde E, Zhou J, Ding K. Quantitative correlational study of microbubble-enhanced ultrasound imaging and magnetic resonance imaging of glioma and early response to radiotherapy in a rat model. Med Phys 2016; 42:4762-72. [PMID: 26233204 DOI: 10.1118/1.4926550] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Radiotherapy remains a major treatment method for malignant tumors. Magnetic resonance imaging (MRI) is the standard modality for assessing glioma treatment response in the clinic. Compared to MRI, ultrasound imaging is low-cost and portable and can be used during intraoperative procedures. The purpose of this study was to quantitatively compare contrast-enhanced ultrasound (CEUS) imaging and MRI of irradiated gliomas in rats and to determine which quantitative ultrasound imaging parameters can be used for the assessment of early response to radiation in glioma. METHODS Thirteen nude rats with U87 glioma were used. A small thinned skull window preparation was performed to facilitate ultrasound imaging and mimic intraoperative procedures. Both CEUS and MRI with structural, functional, and molecular imaging parameters were performed at preradiation and at 1 day and 4 days postradiation. Statistical analysis was performed to determine the correlations between MRI and CEUS parameters and the changes between pre- and postradiation imaging. RESULTS Area under the curve (AUC) in CEUS showed significant difference between preradiation and 4 days postradiation, along with four MRI parameters, T2, apparent diffusion coefficient, cerebral blood flow, and amide proton transfer-weighted (APTw) (all p < 0.05). The APTw signal was correlated with three CEUS parameters, rise time (r = - 0.527, p < 0.05), time to peak (r = - 0.501, p < 0.05), and perfusion index (r = 458, p < 0.05). Cerebral blood flow was correlated with rise time (r = - 0.589, p < 0.01) and time to peak (r = - 0.543, p < 0.05). CONCLUSIONS MRI can be used for the assessment of radiotherapy treatment response and CEUS with AUC as a new technique and can also be one of the assessment methods for early response to radiation in glioma.
Collapse
Affiliation(s)
- Chen Yang
- Department of Ultrasound, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, China
| | - Dong-Hoon Lee
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Antonella Mangraviti
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Lin Su
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Kai Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Yin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Bin Zhang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Wenxiao Li
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Betty Tyler
- Department of Neurosurgery, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - John Wong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Ken Kang-Hsin Wang
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Esteban Velarde
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21287
| | - Kai Ding
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
187
|
Abstract
BACKGROUND Radiation therapy (RT) is the major component of glioblastoma treatment; however, the time to initiate RT after surgical intervention varies between institutions. Our study examined the time from diagnosis to the initiation of RT and its effects on overall patient survival. METHODS We retrospectively examined 267 patients with glioblastoma who received RT as part of their therapy in two Canadian tertiary care centers. The primary goal of the study is to assess if time to RT can predict/impact survival in glioblastoma patients. RESULTS The following variables were associated with an increased risk of death: hazard ratio (HR) of time to RT was 0.95 [95% confidence interval (CI), 0.91–0.99] for every extra week. HRs for the type of surgery (resection or biopsy) and type of management received (standard of care in comparison with RT regardless of chemotherapeutic agents other than concomitant and adjuvant temozolomide) were 0.50 (95% CI, 0.37–0.66) and 0.53 (95% CI, 0.38–0.75), respectively. HR for age was 1.02 (95% CI, 1.01–1.03) for every extra year. Standard 60 Gy RT HR was 0.70 [95% confidence interval (CI), 0.51–0.97] in younger patients. CONCLUSIONS The time from diagnosis to the initiation of RT was found to be a significant prognostic factor for overall patient survival. The addition of temozolomide to the treatment protocol, age, standard RT dose in younger patients and extent of surgery are others factors associated with longer survival periods. Impact potentiel de la radiothérapie différée chez les patients atteints d'un glioblastome.
Collapse
|
188
|
Rhome R, Fisher R, Hormigo A, Parikh RR. Disparities in receipt of modern concurrent chemoradiotherapy in glioblastoma. J Neurooncol 2016; 128:241-50. [PMID: 26970981 DOI: 10.1007/s11060-016-2101-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 03/02/2016] [Indexed: 10/22/2022]
Abstract
Temozolomide given concurrently with radiation after resection/biopsy improves survival in glioblastoma (GBM). The disparities in receipt of adjuvant single-agent chemotherapy and their association with outcome have not been well established. Observational study of a prospectively collected database, the National Cancer Database (NCDB), from 1998 to 2012 with median follow-up 12.4 months. Among the 114,979 patients in the NCDB with GBM, 44,531 patients were analyzed for disparities, and 28,279 patients were analyzed for overall survival (OS). Associations were assessed in a multivariable Cox proportional hazards regression model. Survival was estimated using the Kaplan-Meier method. Median age was 58 years. Chemotherapy use was associated with male gender, white race, younger age (≤50), higher performance status (≥70), more extensive surgery, insurance status, higher income/education, and treatment at academic centers (all p < 0.05). We found improved OS associated with type of insurance (private insurance HR 0.91, 95 % CI 0.85-0.96 and Medicare HR 1.24, 95 % CI 1.16-1.33, both p < 0.01 compared to uninsured) and treatment at academic programs (HR 0.86; p < 0.01). MGMT methylation status predicted improved OS (HR 0.54; 95 % CI 0.41-0.70, p < 0.01). 1-year OS for patients receiving chemotherapy was 55.9 % versus 35.3 % for those without (p < 0.0001). After adjustment for confounders, chemotherapy use remained associated with improved OS (HR 0.64, 95 % CI 0.63-0.66, p < 0.01). Chemotherapy utilization increased from 26.9 to 93.3 % during the study period. We have identified specific disparities in the use of chemotherapy that may be targeted to improve patient access to care. Widespread adoption of adjuvant chemoradiotherapy after resection or biopsy for GBM appears to improve OS.
Collapse
Affiliation(s)
- Ryan Rhome
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA
| | - Rebecca Fisher
- Division of Neuro-Oncology, Department of Neurology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, 3rd Floor, New York, NY, 10029, USA
| | - Adília Hormigo
- Division of Neuro-Oncology, Department of Neurology, Icahn School of Medicine at Mount Sinai, 1470 Madison Avenue, 3rd Floor, New York, NY, 10029, USA.,Departments of Medicine, Neurosurgery, and The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, 1190 5th Avenue, New York, NY, 10029, USA
| | - Rahul R Parikh
- Department of Radiation Oncology, Robert Wood Johnson Medical School, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08903, USA.
| |
Collapse
|
189
|
Capilla-Gonzalez V, Bonsu JM, Redmond KJ, Garcia-Verdugo JM, Quiñones-Hinojosa A. Implications of irradiating the subventricular zone stem cell niche. Stem Cell Res 2016; 16:387-96. [PMID: 26921873 PMCID: PMC8442998 DOI: 10.1016/j.scr.2016.02.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 01/10/2016] [Accepted: 02/14/2016] [Indexed: 01/19/2023] Open
Abstract
Radiation therapy is a standard treatment for brain tumor patients. However, it comes with side effects, such as neurological deficits. While likely multi-factorial, the effect may in part be associated with the impact of radiation on the neurogenic niches. In the adult mammalian brain, the neurogenic niches are localized in the subventricular zone (SVZ) of the lateral ventricles and the dentate gyrus of the hippocampus, where the neural stem cells (NSCs) reside. Several reports showed that radiation produces a drastic decrease in the proliferative capacity of these regions, which is related to functional decline. In particular, radiation to the SVZ led to a reduced long-term olfactory memory and a reduced capacity to respond to brain damage in animal models, as well as compromised tumor outcomes in patients. By contrast, other studies in humans suggested that increased radiation dose to the SVZ may be associated with longer progression-free survival in patients with high-grade glioma. In this review, we summarize the cellular and functional effects of irradiating the SVZ niche. In particular, we review the pros and cons of using radiation during brain tumor treatment, discussing the complex relationship between radiation dose to the SVZ and both tumor control and toxicity.
Collapse
Affiliation(s)
- Vivian Capilla-Gonzalez
- Department of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Stem Cells, Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), Seville 41092, Spain
| | - Janice M Bonsu
- Department of Neurosurgery and Oncology, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kristin J Redmond
- Department of Radiation Oncology & Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Jose Manuel Garcia-Verdugo
- Laboratory of Comparative Neurobiology, Instituto Cavanilles de Biodiversidad y Biologia Evolutiva, University of Valencia, CIBERNED, Paterna 46980, Valencia, Spain
| | | |
Collapse
|
190
|
Hau E, Shen H, Clark C, Graham PH, Koh ES, L McDonald K. The evolving roles and controversies of radiotherapy in the treatment of glioblastoma. J Med Radiat Sci 2016; 63:114-23. [PMID: 27350891 PMCID: PMC4914819 DOI: 10.1002/jmrs.149] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 08/25/2015] [Accepted: 10/06/2015] [Indexed: 12/22/2022] Open
Abstract
Numerous randomised controlled trials have demonstrated the benefit of radiation therapy in patients with newly diagnosed glioblastoma and it has been the cornerstone of treatment for decades. The aims of this review are to (1) Briefly outline the historical studies which resulted in radiation being the current standard of care as used in the Stupp et al. trial (2) Discuss the evolving role of radiation therapy in the management of elderly patients (3) Review the current evidence and ongoing studies of radiation use in the recurrent/salvage setting and (4) Discuss the continuing controversies of volume delineation in the planning of radiation delivery.
Collapse
Affiliation(s)
- Eric Hau
- Cure Brain Cancer Foundation Biomarkers and Translational Research Laboratory Prince of Wales Clinical School UNSW Sydney New South Wales Australia; Cancer Care Centre St George Hospital Sydney New South Wales Australia
| | - Han Shen
- Targeted Therapies Group Children's Cancer Institute Australia Lowy Cancer Research Centre Sydney New South Wales Australia
| | - Catherine Clark
- Cancer Care Centre St George Hospital Sydney New South Wales Australia
| | - Peter H Graham
- St George Cancer Care Centre Kogarah Sydney New South Wales Australia
| | - Eng-Siew Koh
- Liverpool Cancer Care Centre Liverpool Hospital Sydney New South Wales Australia; University of New South Wales Sydney New South Wales Australia
| | - Kerrie L McDonald
- Cure Brain Cancer Foundation Biomarkers and Translational Research Laboratory Prince of Wales Clinical School UNSW Sydney New South Wales Australia
| |
Collapse
|
191
|
Niyazi M, Brada M, Chalmers AJ, Combs SE, Erridge SC, Fiorentino A, Grosu AL, Lagerwaard FJ, Minniti G, Mirimanoff RO, Ricardi U, Short SC, Weber DC, Belka C. ESTRO-ACROP guideline “target delineation of glioblastomas”. Radiother Oncol 2016; 118:35-42. [DOI: 10.1016/j.radonc.2015.12.003] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/13/2015] [Indexed: 11/26/2022]
|
192
|
Kleinberg L. Polifeprosan 20, 3.85% carmustine slow release wafer in malignant glioma: patient selection and perspectives on a low-burden therapy. Patient Prefer Adherence 2016; 10:2397-2406. [PMID: 27920506 PMCID: PMC5125766 DOI: 10.2147/ppa.s93020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Polifeprosan 20 with carmustine (GLIADEL®) polymer implant wafer is a biodegradable compound containing 3.85% carmustine (BCNU, bischloroethylnitrosourea) implanted in the brain at the time of planned tumor surgery, which then slowly degrades to release the BCNU chemotherapy directly into the brain thereby bypassing the blood-brain barrier. Carmustine implant wafers were demonstrated to improve survival in randomized placebo-controlled trials in patients undergoing a near total resection of newly diagnosed or recurrent malignant glioma. Based on these trials and other supporting data, carmustine wafer therapy was approved for use for newly diagnosed and recurrent malignant glioma in the United States and the European Union. Adverse events are uncommon, and as this therapy is placed at the time of surgery, it does not add to patient treatment burden. Nevertheless, this therapy appears to be underutilized. This article reviews the evidence for a favorable therapeutic ratio for the patient and the potential barriers. Consideration of these issues is important for optimal use of this therapeutic approach and may be important as this technology and other local therapies are further developed in the future.
Collapse
Affiliation(s)
- Lawrence Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, USA
- Correspondence: Lawrence Kleinberg, Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, 401 North Broadway, Suite 1440, Baltimore, MD 21231, USA, Email
| |
Collapse
|
193
|
Abstract
Although resection remains the mainstay in the treatment of gliomas, microscopically complete resection of most central nervous system tumors remains challenging, and is, in fact, rarely accomplished. Considering their invasive nature, gross total resections to clearly negative margins often do or would require removal or transection of functional brain, with likely serious neurologic deficits. Consequently, radiotherapy has emerged as an indispensable component of therapy. It is delivered primarily by external-beam radiotherapy or brachytherapy techniques. Herein, we present the biologic principles, techniques, and applications of radiotherapy in glioma treatment today.
Collapse
Affiliation(s)
- James W Snider
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Minesh Mehta
- Department of Radiation Oncology, Marlene and Stewart Greenebaum Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA.
| |
Collapse
|
194
|
Loureiro LVM, Victor EDS, Callegaro-Filho D, Koch LDO, Pontes LDB, Weltman E, Rother ET, Malheiros SMF. Minimizing the uncertainties regarding the effects of delaying radiotherapy for Glioblastoma: A systematic review and meta-analysis. Radiother Oncol 2015; 118:1-8. [PMID: 26700603 DOI: 10.1016/j.radonc.2015.11.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 10/28/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Previous studies have provided no clear conclusions regarding the effects of delaying radiotherapy (RT) in GBM patients. We present a systematic review and meta-analysis to address the effect of delayed RT on the overall survival (OS) of GBM patients. METHODS A systematic search retrieved 19 retrospective studies published between 1975 and 2014 reporting on the waiting time (WT) to RT for GBM patients. The meta-analysis was performed by converting WT to RT studies intervals into a regression coefficient (β) and standard error expressing the effect size on OS per week of delay. RESULTS Data required to calculate the effect size on OS per week of delay were available for 12 studies (5212 patients). A non-adjusted model and a meta-regression model based on well-recognized prognostic factors were performed. No association between WT to RT, per week of delay, and OS was found (HR=0.98; 95% CI 0.90-1.08; p=0.70). The meta-regression adjusted for prognostic factors weighted by the inverse-variance (1/SE(2)) showed no clear evidence of the effect of WT to RT, per week of delay, on OS. CONCLUSIONS This meta-analysis, despite limitations, provided no evidence of a true effect on OS by delaying RT in GBM patients.
Collapse
Affiliation(s)
- Luiz Victor Maia Loureiro
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP) - Escola Paulista de Medicina - Pós-graduação de Neurologia e Neurociências, São Paulo, Brazil.
| | | | | | | | | | - Eduardo Weltman
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Faculdade de Medicina da Universidade de São Paulo, Brazil
| | | | - Suzana Maria Fleury Malheiros
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Universidade Federal de São Paulo (UNIFESP) - Escola Paulista de Medicina - Pós-graduação de Neurologia e Neurociências, São Paulo, Brazil
| |
Collapse
|
195
|
Affiliation(s)
- Jonathan P.S. Knisely
- North Shore-LIJ Health System and Hofstra University Medical School, Lake Success, NY
| |
Collapse
|
196
|
Wernicke AG, Smith AW, Taube S, Mehta MP. Glioblastoma: Radiation treatment margins, how small is large enough? Pract Radiat Oncol 2015; 6:298-305. [PMID: 26952812 DOI: 10.1016/j.prro.2015.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/24/2015] [Accepted: 12/01/2015] [Indexed: 01/23/2023]
Abstract
Standard treatment for glioblastoma consists of surgical resection followed by radiation therapy with concurrent and adjuvant chemotherapy. Conventional radiation clinical treatment volumes include a 2- to 3-cm margin around magnetic resonance imaging or computed tomography enhancing abnormalities in the brain as well as a margin around the T2 or fluid-attenuated inversion recovery abnormality. However, there remains significant variability with respect to whether such extensive margins are necessary. Collectively, we as authors of this manuscript also use different margins, with A.G.W. employing European Organization for Research and Treatment of Cancer recommendations of a 2- to 3-cm margin on T1 enhancement for 60 Gy and M.P.M. using Radiation Therapy Oncology Group recommendations of 2 cm on T2 signal abnormality for the initial 46 Gy and 2.5-cm margin on T1 enhancement for a 14-Gy boost. Our experiences reflect the heterogeneity of margin definition and selection for this disease and underscore an important area of further research to minimize this variability. In this article, we review studies exploring recurrence patterns and outcomes in patients treated using both conventional and more limited margins. We conclude that treating to "smaller" margins does not alter recurrence patterns nor does it result in inferior survival, but whether this is because of the inherently limited benefit of radiation therapy in the first place, or whether it is truly because microscopic tumor control at larger distances is not an issue, remains unestablished.
Collapse
Affiliation(s)
- A Gabriella Wernicke
- Stich Radiation Oncology, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, New York.
| | - Andrew W Smith
- University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Shoshana Taube
- Stich Radiation Oncology, Weill Cornell Medical College/New York-Presbyterian Hospital, New York, New York
| | - Minesh P Mehta
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
197
|
An economic model to assess the cost-benefit of BNCT. Appl Radiat Isot 2015; 106:3-9. [DOI: 10.1016/j.apradiso.2015.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 08/14/2015] [Accepted: 08/16/2015] [Indexed: 11/20/2022]
|
198
|
Jordan JT, Gerstner ER, Batchelor TT, Cahill DP, Plotkin SR. Glioblastoma care in the elderly. Cancer 2015; 122:189-97. [PMID: 26618888 DOI: 10.1002/cncr.29742] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/20/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022]
Abstract
Glioblastoma is common among elderly patients, a group in which comorbidities and a poor prognosis raise important considerations when designing neuro-oncologic care. Although the standard of care for nonelderly patients with glioblastoma includes maximal safe surgical resection followed by radiotherapy with concurrent and adjuvant temozolomide, the safety and efficacy of these modalities in elderly patients are less certain given the population's underrepresentation in many clinical trials. The authors reviewed the clinical trial literature for reports on the treatment of elderly patients with glioblastoma to provide evidence-based guidance for practitioners. In elderly patients with glioblastoma, there is a survival advantage for those who undergo maximal safe resection, which likely includes an incremental benefit with increasing completeness of resection. Radiotherapy extends survival in selected patients, and hypofractionation appears to be more tolerable than standard fractionation. In addition, temozolomide chemotherapy is safe and extends the survival of patients with tumors that harbor O(6)-methylguanine-DNA methyltransferase (MGMT) promoter methylation. The combination of standard radiation with concurrent and adjuvant temozolomide has not been studied in this population. Although many questions remain unanswered regarding the treatment of glioblastoma in elderly patients, the available evidence provides a framework on which providers may base individual treatment decisions. The importance of tumor biomarkers is increasingly apparent in elderly patients, for whom the therapeutic efficacy of any treatment must be weighed against its potential toxicity. MGMT promoter methylation status has specifically demonstrated utility in predicting the efficacy of temozolomide and should be considered in treatment decisions when possible. Cancer 2016;122:189-197. © 2015 American Cancer Society.
Collapse
Affiliation(s)
- Justin T Jordan
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth R Gerstner
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Tracy T Batchelor
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Scott R Plotkin
- Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
199
|
Rehman AA, Elmore KB, Mattei TA. The effects of alternating electric fields in glioblastoma: current evidence on therapeutic mechanisms and clinical outcomes. Neurosurg Focus 2015; 38:E14. [PMID: 25727223 DOI: 10.3171/2015.1.focus14742] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glioblastoma is both the most common and most lethal primary CNS malignancy in adults, accounting for 45.6% of all malignant CNS tumors, with a 5-year survival rate of only 5.0%, despite the utilization of multimodal therapy including resection, chemotherapy, and radiation. Currently available treatment options for glioblastoma often remain limited, offering brief periods of improved survival, but with substantial side effects. As such, improvements in current treatment strategies or, more likely, the implementation of novel strategies altogether are warranted. In this topic review, the authors provide a comprehensive review on the potential of alternating electric fields (AEFs) in the treatment of glioblastoma. Alternating electric fields-also known as tumor-treating fields (TTFs)-represent an entirely original therapeutic modality with preliminary studies suggesting comparable, and at times improved, efficacy to standard chemotherapeutic agents in the treatment of recurrent glioblastoma. A recent multicenter, Phase III, randomized clinical trial comparing NovoTTF-100A monotherapy to physician's best choice chemotherapy in patients with recurrent glioblastoma revealed that AEFs have similar efficacy to standard chemotherapeutic agents with a more favorable side-effects profile and improved quality of life. In particular, AEFs were shown to have limited systemic adverse effects, with the most common side effect being contact dermatitis on the scalp at the sites of transducer placement. This study prompted FDA approval of the NovoTTF-100A system in April 2011 as a standalone therapy for treatment of recurrent glioblastoma refractory to surgical and radiation treatment. In addition to discussing the available clinical evidence regarding the utilization of AEFs in glioblastoma, this article provides essential information regarding the supposed therapeutic mechanism as well as modes of potential tumor resistance to such novel therapy, delineating future perspectives regarding basic science research on the issue.
Collapse
Affiliation(s)
- Azeem A Rehman
- University of Illinois College of Medicine at Peoria, Illinois; and
| | | | | |
Collapse
|
200
|
Winter L, Oezerdem C, Hoffmann W, van de Lindt T, Periquito J, Ji Y, Ghadjar P, Budach V, Wust P, Niendorf T. Thermal magnetic resonance: physics considerations and electromagnetic field simulations up to 23.5 Tesla (1GHz). Radiat Oncol 2015; 10:201. [PMID: 26391138 PMCID: PMC4578265 DOI: 10.1186/s13014-015-0510-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/11/2015] [Indexed: 11/10/2022] Open
Abstract
Background Glioblastoma multiforme is the most common and most aggressive malign brain tumor. The 5-year survival rate after tumor resection and adjuvant chemoradiation is only 10 %, with almost all recurrences occurring in the initially treated site. Attempts to improve local control using a higher radiation dose were not successful so that alternative additive treatments are urgently needed. Given the strong rationale for hyperthermia as part of a multimodal treatment for patients with glioblastoma, non-invasive radio frequency (RF) hyperthermia might significantly improve treatment results. Methods A non-invasive applicator was constructed utilizing the magnetic resonance (MR) spin excitation frequency for controlled RF hyperthermia and MR imaging in an integrated system, which we refer to as thermal MR. Applicator designs at RF frequencies 300 MHz, 500 MHz and 1GHz were investigated and examined for absolute applicable thermal dose and temperature hotspot size. Electromagnetic field (EMF) and temperature simulations were performed in human voxel models. RF heating experiments were conducted at 300 MHz and 500 MHz to characterize the applicator performance and validate the simulations. Results The feasibility of thermal MR was demonstrated at 7.0 T. The temperature could be increased by ~11 °C in 3 min in the center of a head sized phantom. Modification of the RF phases allowed steering of a temperature hotspot to a deliberately selected location. RF heating was monitored using the integrated system for MR thermometry and high spatial resolution MRI. EMF and thermal simulations demonstrated that local RF hyperthermia using the integrated system is feasible to reach a maximum temperature in the center of the human brain of 46.8 °C after 3 min of RF heating while surface temperatures stayed below 41 °C. Using higher RF frequencies reduces the size of the temperature hotspot significantly. Conclusion The opportunities and capabilities of thermal magnetic resonance for RF hyperthermia interventions of intracranial lesions are intriguing. Employing such systems as an alternative additive treatment for glioblastoma multiforme might be able to improve local control by “fighting fire with fire”. Interventions are not limited to the human brain and might include temperature driven targeted drug and MR contrast agent delivery and help to understand temperature dependent bio- and physiological processes in-vivo.
Collapse
Affiliation(s)
- Lukas Winter
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Berlin, Germany.
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Werner Hoffmann
- Physikalisch Technische Bundesanstalt (PTB), Berlin, Germany
| | - Tessa van de Lindt
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Joao Periquito
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Yiyi Ji
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Volker Budach
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Wust
- Department of Radiation Oncology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a joint cooperation between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany.,MRI.TOOLS GmbH, Berlin, Germany
| |
Collapse
|