151
|
Rommer PS, Ellenberger D, Hellwig K, Haas J, Pöhlau D, Stahmann A, Zettl UK. Relapsing and progressive MS: the sex-specific perspective. Ther Adv Neurol Disord 2020; 13:1756286420956495. [PMID: 33029201 PMCID: PMC7521047 DOI: 10.1177/1756286420956495] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Multiple sclerosis (MS) is an inflammatory and neurodegenerative
disease whose aetiology is not fully understood. The female sex
is clearly predominant, with a sex ratio between 2 and 3. In
primary progressive MS the sex ratio almost balances out. Since
the age at onset is higher for patients with progressive onset
(POMS) than for relapsing onset (ROMS), it can be hypothesized
that the age at onset is a decisive factor for the sex
ratio. Methods: To address this aspect, we compare clinical and demographic data
between females and males for the different disease courses
within the population of the German MS Register by the German MS
Society. Only patients with complete details in mandatory data
items and a follow-up visit since 01. Jan 2018 were
included. Results: A total of 18,728 patients were included in our analyses, revealing
a female-to-male ratio of 2.6 (2.7 for patients with ROMS and
1.3 for POMS). The age at diagnosis is higher in patients with
POMS (43.3 and 42.3 years for females and males
versus 32.1 and 33.2 years,
respectively). Females irrespective of disease course are
statistically significantly more often affected by cognitive
impairment (POMS: p = 0.013, ROMS:
p = 0.001) and depression (POMS:
p = 0.002, ROMS: 0.001) and suffer more
often from pain (POMS and ROMS: p < 0.001).
Fatigue is significantly more often seen in females with ROMS
(p < 0.001) but not in POMS. Females
with ROMS retire significantly (p < 0.001)
earlier (42.8 versus 44.2 years) and to a
greater extent than males (28 versus 24%).
Disease progression was similar for women and men. Conclusion: Our analysis shows that clinical and demographic data differ more
between disease courses than between men and women. For pain,
depression and cognitive impairment the female sex is the
decisive factor. Whether these factors are responsible for the
earlier retirement of females with ROMS is not clear.
Appropriate measures for optimization of symptomatic treatment
as well as to promote employment should be taken.
Collapse
Affiliation(s)
- Paulus Stefan Rommer
- Department of Neurology, Neuroimmunological Section, University of Rostock, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - David Ellenberger
- German MS-Register by the German MS Society, MS Forschungs- und Projektentwicklungs-gGmbH, Hannover, Germany
| | - Kerstin Hellwig
- Department of Neurology, Katholisches Klinikum Bochum, St. Josef Hospital, Ruhr University Bochum, Bochum, Germany
| | - Judith Haas
- Centre for Multiple Sclerosis, Jewish Hospital Berlin, Berlin, Germany
| | - Dieter Pöhlau
- Department of Neurology, German Red Cross-Kamillus-Clinic, Asbach, Germany
| | - Alexander Stahmann
- German MS-Register by the German MS Society, MS Forschungs- und Projektentwicklungs-gGmbH, Hannover, Germany
| | - Uwe Klaus Zettl
- Department of Neurology, Neuroimmunological Section, University of Rostock, Rostock, Germany
| | | |
Collapse
|
152
|
van Eeden C, Khan L, Osman MS, Cohen Tervaert JW. Natural Killer Cell Dysfunction and Its Role in COVID-19. Int J Mol Sci 2020; 21:E6351. [PMID: 32883007 PMCID: PMC7503862 DOI: 10.3390/ijms21176351] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
When facing an acute viral infection, our immune systems need to function with finite precision to enable the elimination of the pathogen, whilst protecting our bodies from immune-related damage. In many instances however this "perfect balance" is not achieved, factors such as ageing, cancer, autoimmunity and cardiovascular disease all skew the immune response which is then further distorted by viral infection. In SARS-CoV-2, although the vast majority of COVID-19 cases are mild, as of 24 August 2020, over 800,000 people have died, many from the severe inflammatory cytokine release resulting in extreme clinical manifestations such as acute respiratory distress syndrome (ARDS) and hemophagocytic lymphohistiocytosis (HLH). Severe complications are more common in elderly patients and patients with cardiovascular diseases. Natural killer (NK) cells play a critical role in modulating the immune response and in both of these patient groups, NK cell effector functions are blunted. Preliminary studies in COVID-19 patients with severe disease suggests a reduction in NK cell number and function, resulting in decreased clearance of infected and activated cells, and unchecked elevation of tissue-damaging inflammation markers. SARS-CoV-2 infection skews the immune response towards an overwhelmingly inflammatory phenotype. Restoration of NK cell effector functions has the potential to correct the delicate immune balance required to effectively overcome SARS-CoV-2 infection.
Collapse
Affiliation(s)
| | | | | | - Jan Willem Cohen Tervaert
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada; (C.v.E.); (L.K.); (M.S.O.)
| |
Collapse
|
153
|
Proteoglycans in the Pathogenesis of Hormone-Dependent Cancers: Mediators and Effectors. Cancers (Basel) 2020; 12:cancers12092401. [PMID: 32847060 PMCID: PMC7563227 DOI: 10.3390/cancers12092401] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022] Open
Abstract
Hormone-dependent cancers exhibit high morbidity and mortality. In spite of advances in therapy, the treatment of hormone-dependent cancers remains an unmet health need. The tumor microenvironment (TME) exhibits unique characteristics that differ among various tumor types. It is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded and supported by components of the extracellular matrix (ECM). Therefore, the interactions among cancer cells, stromal cells, and components of the ECM determine cancer progression and response to therapy. Proteoglycans (PGs), hybrid molecules consisting of a protein core to which sulfated glycosaminoglycan chains are bound, are significant components of the ECM that are implicated in all phases of tumorigenesis. These molecules, secreted by both the stroma and cancer cells, are crucial signaling mediators that modulate the vital cellular pathways implicated in gene expression, phenotypic versatility, and response to therapy in specific tumor types. A plethora of deregulated signaling pathways contributes to the growth, dissemination, and angiogenesis of hormone-dependent cancers. Specific inputs from the endocrine and immune systems are some of the characteristics of hormone-dependent cancer pathogenesis. Importantly, the mechanisms involved in various aspects of cancer progression are executed in the ECM niche of the TME, and the PG components crucially mediate these processes. Here, we comprehensively discuss the mechanisms through which PGs affect the multifaceted aspects of hormone-dependent cancer development and progression, including cancer metastasis, angiogenesis, immunobiology, autophagy, and response to therapy.
Collapse
|
154
|
Thorenoor N, S. Phelps D, Kala P, Ravi R, Floros Phelps A, M. Umstead T, Zhang X, Floros J. Impact of Surfactant Protein-A Variants on Survival in Aged Mice in Response to Klebsiella pneumoniae Infection and Ozone: Serendipity in Action. Microorganisms 2020; 8:microorganisms8091276. [PMID: 32825654 PMCID: PMC7570056 DOI: 10.3390/microorganisms8091276] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 01/10/2023] Open
Abstract
Innate immune molecules, SP-A1 (6A2, 6A4) and SP-A2 (1A0, 1A3), differentially affect young mouse survival after infection. Here, we investigated the impact of SP-A variants on the survival of aged mice. hTG mice carried a different SP-A1 or SP-A2 variant and SP-A-KO were either infected with Klebsiella pneumoniae or exposed to filtered air (FA) or ozone (O3) prior to infection, and their survival monitored over 14 days. In response to infection alone, no gene- or sex-specific (except for 6A2) differences were observed; variant-specific survival was observed (1A0 > 6A4). In response to O3, gene-, sex-, and variant-specific survival was observed with SP-A2 variants showing better survival in males than females, and 1A0 females > 1A3 females. A serendipitous, and perhaps clinically important observation was made; mice exposed to FA prior to infection exhibited significantly better survival than infected alone mice. 1A0 provided an overall better survival in males and/or females indicating a differential role for SP-A genetics. Improved ventilation, as provided by FA, resulted in a survival of significant magnitude in aged mice and perhaps to a lesser extent in young mice. This may have clinical application especially within the context of the current pandemic.
Collapse
Affiliation(s)
- Nithyananda Thorenoor
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| | - David S. Phelps
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Padma Kala
- Independent Consultant, Upper Saddle River, NJ 07458, USA;
| | - Radhika Ravi
- Division of Anesthesia, Department of Surgery, Veterans Affairs New Jersey Health Care System, 385 Tremont Avenue, East Orange, NJ 07018, USA;
| | | | - Todd M. Umstead
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Xuesheng Zhang
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
| | - Joanna Floros
- Center for Host Defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA; (D.S.P.); (T.M.U.); (X.Z.)
- Department of Obstetrics & Gynecology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Correspondence: (N.T.); (J.F.)
| |
Collapse
|
155
|
Brenner H, Holleczek B, Schöttker B. Vitamin D Insufficiency and Deficiency and Mortality from Respiratory Diseases in a Cohort of Older Adults: Potential for Limiting the Death Toll during and beyond the COVID-19 Pandemic? Nutrients 2020; 12:E2488. [PMID: 32824839 PMCID: PMC7468980 DOI: 10.3390/nu12082488] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
The COVID-19 pandemic goes along with increased mortality from acute respiratory disease. It has been suggested that vitamin D3 supplementation might help to reduce respiratory disease mortality. We assessed the prevalence of vitamin D insufficiency and deficiency, defined by 25-hydroxyvitamin D (25(OH)D) blood levels of 30-50 and <30 nmol/L, respectively, and their association with mortality from respiratory diseases during 15 years of follow-up in a cohort of 9548 adults aged 50-75 years from Saarland, Germany. Vitamin D insufficiency and deficiency were common (44% and 15%, respectively). Compared to those with sufficient vitamin D status, participants with vitamin D insufficiency and deficiency had strongly increased respiratory mortality, with adjusted hazard ratios (95% confidence intervals) of 2.1 (1.3-3.2) and 3.0 (1.8-5.2) overall, 4.3 (1.3-14.4) and 8.5 (2.4-30.1) among women, and 1.9 (1.1-3.2) and 2.3 (1.1-4.4) among men. Overall, 41% (95% confidence interval: 20-58%) of respiratory disease mortality was statistically attributable to vitamin D insufficiency or deficiency. Vitamin D insufficiency and deficiency are common and account for a large proportion of respiratory disease mortality in older adults, supporting the hypothesis that vitamin D3 supplementation could be helpful to limit the burden of the COVID-19 pandemic, particularly among women.
Collapse
Affiliation(s)
- Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, Germany Cancer Research Center (DKFZ), 69118 Heidelberg, Germany; (B.H.); (B.S.)
- Division of Preventive Oncology, Germany Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), Germany Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Network Aging Research, University of Heidelberg, 69115 Heidelberg, Germany
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, Germany Cancer Research Center (DKFZ), 69118 Heidelberg, Germany; (B.H.); (B.S.)
- Saarland Cancer Registry, 66119 Saarbrücken, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, Germany Cancer Research Center (DKFZ), 69118 Heidelberg, Germany; (B.H.); (B.S.)
- Network Aging Research, University of Heidelberg, 69115 Heidelberg, Germany
| |
Collapse
|
156
|
Massot-Cladera M, Azagra-Boronat I, Franch À, Castell M, Rodríguez-Lagunas MJ, Pérez-Cano FJ. Gut Health-Promoting Benefits of a Dietary Supplement of Vitamins with Inulin and Acacia Fibers in Rats. Nutrients 2020; 12:E2196. [PMID: 32718017 PMCID: PMC7468733 DOI: 10.3390/nu12082196] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 12/12/2022] Open
Abstract
The study's objective was to ascertain whether a nutritional multivitamin and mineral supplement enriched with two different dietary fibers influences microbiota composition, mineral absorption, and some immune and metabolic biomarkers in adult rats. Nine-week-old Wistar rats were randomly assigned into four groups: the reference group; the group receiving a daily supplement based on a food matrix with proteins, vitamins, and minerals; and two other groups receiving this supplement enriched with inulin (V + I) or acacia (V + A) fiber for four weeks. Microbiota composition was determined in cecal content and mineral content in fecal, blood, and femur samples. Intestinal IgA concentration, hematological, and biochemical variables were evaluated. Both V + I and V + A supplementations increased Firmicutes and Actinobacteria phyla, which were associated with a higher presence of Lactobacillus and Bifidobacterium spp. V + A supplementation increased calcium, magnesium, phosphorus, and zinc concentrations in femur. V + I supplementation increased the fecal IgA content and reduced plasma total cholesterol and uric acid concentration. Both fiber-enriched supplements tested herein seem to be beneficial to gut-health, although differently.
Collapse
Affiliation(s)
- Malén Massot-Cladera
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Ignasi Azagra-Boronat
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Àngels Franch
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Margarida Castell
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Maria J. Rodríguez-Lagunas
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| | - Francisco J. Pérez-Cano
- Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; (M.M.-C.); (I.A.-B.); (À.F.); (M.C.); (M.J.R.-L.)
- Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain
| |
Collapse
|
157
|
Sex and Gender Influences on Cancer Immunotherapy Response. Biomedicines 2020; 8:biomedicines8070232. [PMID: 32708265 PMCID: PMC7400663 DOI: 10.3390/biomedicines8070232] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/17/2020] [Accepted: 07/18/2020] [Indexed: 12/22/2022] Open
Abstract
The global burden of cancer is growing and a wide disparity in the incidence, malignancy and mortality of different types of cancer between each sex has been demonstrated. The sex specificity of cancer appears to be a relevant issue in the management of the disease, and studies investigating the role of sex and gender are becoming extremely urgent. Sex hormones are presumably the leading actors of sex differences in cancer, especially estrogens. They modulate gene expression, alter molecules and generate disparities in effectiveness and side effects of anticancer therapies. Recently immunotherapy aims to improve anticancer treatment strategies reducing off-target effects of chemotherapy and direct cancer cells killing. It is recognized as a fruitful strategy to treat and possible to cure cancer. Immunotherapeutic agents are used to activate or boost the activation of the immune system to fight cancer cells through physiological mechanisms often evaded in the offensive march of the disease. These therapeutic strategies have allowed new successes, but also have serious adverse effects including non-specific inflammation and autoimmunity. Sex and gender issues are of primary importance in this field, due to their recognized role in inflammation, immunity and cancer, and the clarification and understanding of these aspects is a necessary step to increase the responses and to diminish the adverse effects of immunotherapy. This review describes the available knowledge on the role of sex and gender in cancer immunotherapy, and will offer insights to stimulate the attention and practice of clinicians and researchers in a gender perspective of new cancer treatment strategies.
Collapse
|
158
|
Yao L, Fan Z, Han S, Sun N, Che H. Apigenin Attenuates the Allergic Reactions by Competitively Binding to ER With Estradiol. Front Pharmacol 2020; 11:1046. [PMID: 32765268 PMCID: PMC7378534 DOI: 10.3389/fphar.2020.01046] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 06/26/2020] [Indexed: 12/15/2022] Open
Abstract
Apigenin (API) is a natural phytoestrogen with properties including anti-inflammatory and other abilities. This study aims to 1) systematically validate that excessive estrogen exacerbates allergic reactions; 2) explore the anti-allergic effects and mechanisms of API. We conduct a survey of college students, indicating that of the 505 effective results, 70 individuals were self-reported allergic and 74.1% of them were women, which proved the gender difference in allergic reactions. BALB/c mice are grouped into the negative control group (N-Ctrl), the OVA-sensitized group (P-Ctrl), the estrogenized OVA-sensitized group (E2), and three treatment groups administrating different dose of API (E2 + API/L/M/H). In vivo data indicated that API treatment significantly inhibited the enhancement of estradiol on clinical symptoms. Moreover, we found that high doses of API inhibited Th2 type humoral response and mast cell degranulation levels in vivo and in vitro. Additionally, medium, and high doses of API significantly reduced the potentiation of estradiol on ER expression, attenuated the transmission of estrogen/ER signaling, thereby inhibiting the phosphorylation of ERK1/2 and JNK1/2/3 in the MAPK. Besides, we found that API competitively bound to ER with estradiol, and showed a weak selectivity to ERβ. Overall, we identified API can be beneficial in allergic disease.
Collapse
Affiliation(s)
- Lu Yao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhuoyan Fan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shiwen Han
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Na Sun
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Huilian Che
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
159
|
The Effect of Whole Blood Lead (Pb-B) Levels on Changes in Peripheral Blood Morphology and Selected Biochemical Parameters, and the Severity of Depression in Peri-Menopausal Women at Risk of Metabolic Syndrome or with Metabolic Syndrome. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17145033. [PMID: 32668760 PMCID: PMC7400500 DOI: 10.3390/ijerph17145033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 01/01/2023]
Abstract
The aim of our study was to assess the impact of whole blood lead (Pb-B) levels on changes in peripheral blood morphology and selected biochemical parameters, and the severity of depression in peri-menopausal women at risk of metabolic syndrome (pre-MetS) or with metabolic syndrome (MetS). The study involved 233 women from the general population of the West Pomeranian Province (Poland) aged 44–65 years. The intensity of menopausal symptoms and the severity of depression was examined using the Blatt–Kupperman Index (KI) and the Beck Depression Inventory (BDI). C-reactive protein (CRP), insulin, glucose, glycated hemoglobin (HbA1C), high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol, triglyceride levels (TG), cortisol, morphology of blood cells and homeostasis model assessment for insulin resistance (HOMA-IR) and Pb-B was measured. Women with MetS had higher levels of glucose, HbA1C, HDL, LDL, TG, cortisol, insulin and higher HOMA-IR. No significant differences in Pb-B were observed between pre-MetS and the control group, and between pre-MetS and the MetS group. A significant correlation was noticed between Pb-B vs. the percentage of monocytes in blood, and blood cortisol levels in women with MetS; Pb-B vs. lymphocyte count and HbA1C in the pre-MetS group, as well as in the BDI scores between the MetS and pre-MetS group. We cannot clearly state that exposure to Pb is an environmental factor that can be considered as a risk factor for MetS in this studied group.
Collapse
|
160
|
Meier HCS, Sandler DP, Simonsick EM, Weng NP, Parks CG. Sex differences in the association between antinuclear antibody positivity with diabetes and multimorbidity in older adults: Results from the Baltimore Longitudinal Study of Aging. Exp Gerontol 2020; 135:110906. [PMID: 32145292 DOI: 10.1016/j.exger.2020.110906] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/19/2020] [Accepted: 02/28/2020] [Indexed: 12/26/2022]
Abstract
Antinuclear antibodies (ANA), a marker of self-reactivity to DNA and other nuclear antigens, are present in several autoimmune diseases and have been observed in healthy persons in the absence of autoimmune disease. ANA prevalence is higher in women and older adults, but the health implications of ANA in middle- to older-aged adults are unknown. Immune system differences by sex may further result in sex-specific susceptibility to morbidity. In a cross-sectional analysis of data from the Baltimore Longitudinal Study of Aging, we examined the sex-specific relationship between age and ANA as well as the associations (odds ratios and 95% confidence intervals) between ANA and type-2 diabetes and multimorbidity (2 or more chronic diseases), stratified by sex and controlling for age and race. ANA was measured in a 1:160 dilution of sera by immunofluorescence using HEp-2 cells (seropositive = 3 or 4). Overall ANA seroprevalence was 12% (15.1% in women, 8.8% in men). We observed a non-linear relationship between age and ANA that varied by sex (interaction p-value < 0.05), with a clear sex differences in younger participants (ages 48-59), which converged in the oldest (age 80+). ANA positive women had higher odds of type 2 diabetes (OR: 2.06, 95% confidence interval: 1.04, 4.07) and multimorbidity (OR: 2.47, 95% confidence interval 1.11, 5.50) than women who were ANA negative. No statistically significant associations were observed in men. Insight into differences in age-related ANA positivity and ANA associations with chronic diseases by sex is important for understanding the impact of immune dysregulation in aging individuals.
Collapse
Affiliation(s)
- Helen C S Meier
- Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA.
| | - Dale P Sandler
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| | - Eleanor M Simonsick
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nan-Ping Weng
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Christine G Parks
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, NC, USA
| |
Collapse
|
161
|
Mody PH, Dos Santos NL, Barron LR, Price TJ, Burton MD. eIF4E phosphorylation modulates pain and neuroinflammation in the aged. GeroScience 2020; 42:1663-1674. [PMID: 32613493 DOI: 10.1007/s11357-020-00220-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
The aged population has a higher probability of developing chronic pain from acute insults because of age-associated low-grade inflammation. Several emerging studies have shown a crucial role of cap-dependent translation in the development of chronic pain in young adult animals; however, its role in the aged has never been reported. Acute and chronic inflammatory responses, including pain, are altered over age, and understanding how cap-dependent translation can represent an important and druggable pathway is imperative for understanding its therapeutic potential. Here we have tested how an inflammatory stimulus, complete Freund's adjuvant (CFA), affects spontaneous and evoked pain, as well as inflammation in young versus aged mice that lack functional cap-dependent translation machinery (eukaryotic translation initiation factor 4E (eIF4E)) compared with age-matched wild-type (WT) mice. Interestingly, we found that CFA-induced acute pain and inflammation are modulated by eIF4E phosphorylation in aged but not young animals. Aged transgenic animals showed attenuated paw temperature and inflammation, as well as a mitigation in the onset and quicker resolution in mechanical and thermal hypersensitivity. We found that levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α are elevated in dorsal root ganglia in aged WT and eIF4E transgenic groups, despite faster resolution of acute inflammation and pain in the aged eIF4E transgenic animals. We propose that these cytokines are important in mediating the observed behavioral responses in the young and represent an alternate pathway in the development of age-associated inflammation and behavioral consequences. These findings demonstrate that eIF4E phosphorylation can be a key target for treating inflammatory pain in the aged.
Collapse
Affiliation(s)
- Prapti H Mody
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Natalia L Dos Santos
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Luz R Barron
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Theodore J Price
- Pain Neurobiology Research Group, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Department of Neuroscience, School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
162
|
Pace S, Werz O. Impact of Androgens on Inflammation-Related Lipid Mediator Biosynthesis in Innate Immune Cells. Front Immunol 2020; 11:1356. [PMID: 32714332 PMCID: PMC7344291 DOI: 10.3389/fimmu.2020.01356] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Rheumatoid arthritis, asthma, allergic rhinitis and many other disorders related to an aberrant immune response have a higher incidence and severity in women than in men. Emerging evidences from scientific studies indicate that the activity of the immune system is superior in females and that androgens may act as “immunosuppressive” molecules with inhibitory effects on inflammatory reactions. Among the multiple factors that contribute to the inflammatory response, lipid mediators (LM), produced from polyunsaturated fatty acids, represent a class of bioactive small molecules with pivotal roles in the onset, maintenance and resolution of inflammation. LM encompass pro-inflammatory eicosanoids and specialized pro-resolving mediators (SPM) that coexist in a tightly regulated balance necessary for the return to homeostasis. Innate immune cells including neutrophils, monocytes and macrophages possess high capacities to generate distinct LM. In the last decades it became more and more evident that sex represents an important variable in the regulation of inflammation where sex hormones play crucial roles. Recent findings showed that the biosynthesis of inflammation-related LM is sex-biased and that androgens impact LM formation with consequences not only for pathophysiology but also for pharmacotherapy. Here, we review the modulation of the inflammatory response by sex and androgens with a specific focus on LM pathways. In particular, we highlight the impact of androgens on the biosynthetic pathway of inflammation-related eicosanoids in innate immune cells.
Collapse
Affiliation(s)
- Simona Pace
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
163
|
Sex differences in the association between tumor growth and T cell response in a melanoma mouse model. Cancer Immunol Immunother 2020; 69:2157-2162. [PMID: 32638080 DOI: 10.1007/s00262-020-02643-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022]
Abstract
Epidemiological evidence suggests that females have an advantage over males in cases of melanoma incidence, progression, and survival. However, the biological mechanisms underlying these sex differences remain unclear. With the knowledge that females generally have a more robust immune system than males, we investigated sex differences in melanoma progression in a B16-F10/BL6 syngeneic mouse model. We observed significantly less tumor volume and growth rate over 14 days in female mice compared to male mice. Furthermore, higher populations of CD4+ and CD8+ T cells, which indicate adaptive immune responses, were found in the circulating blood and tumors of females and corresponded with less tumor growth, and vice versa in males. Our results highlight a mouse model that represents melanoma progression in the human population and displays a higher immune response to melanoma in females compared to males. These findings suggest that the immune system may be one of the mechanisms responsible for sex differences in melanoma.
Collapse
|
164
|
Nolan LS. Age-related hearing loss: Why we need to think about sex as a biological variable. J Neurosci Res 2020; 98:1705-1720. [PMID: 32557661 DOI: 10.1002/jnr.24647] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
It has long been known that age-related hearing loss (ARHL) is more common, more severe, and with an earlier onset in men compared to women. Even in the absence of confounding factors such as noise exposure, these sexdifferences in susceptibility to ARHL remain. In the last decade, insight into the pleiotrophic nature by which estrogen signaling can impact multiple signaling mechanisms to mediate downstream changes in gene expression and/or elicit rapid changes in cellular function has rapidly gathered pace, and a role for estrogen signaling in the biological pathways that confer neuroprotection is becoming undeniable. Here I review the evidence why we need to consider sex as a biological variable (SABV) when investigating the etiology of ARHL. Loss of auditory function with aging is frequency-specific and modulated by SABV. Evidence also suggests that differences in cochlear physiology between women and men are already present from birth. Understanding the molecular basis of these sex differences in ARHL will accelerate the development of precision medicine therapies for ARHL.
Collapse
Affiliation(s)
- Lisa S Nolan
- Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
165
|
Tidière M, Badruna A, Fouchet D, Gaillard JM, Lemaître JF, Pontier D. Pathogens Shape Sex Differences in Mammalian Aging. Trends Parasitol 2020; 36:668-676. [PMID: 32540194 PMCID: PMC7203054 DOI: 10.1016/j.pt.2020.05.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/01/2020] [Accepted: 05/01/2020] [Indexed: 11/28/2022]
Abstract
Understanding the origin of sex differences in lifespan and aging patterns remains a salient challenge in both biogerontology and evolutionary biology. Different factors have been studied but the potential influence of pathogens has never been investigated. Sex differences, especially in hormones and resource allocation, generate a differential response to pathogens and thereby shape sex differences in lifespan or aging. We provide an integrative framework linking host pathogenic environment with both sex-specific selections on immune performance and mortality trajectories. We propose future directions to fill existing knowledge gaps about mechanisms that link sex differences, not only to exposition and sensitivity to pathogens, but also to mortality patterns, whilst emphasizing the urgent need to consider the role of sex in medicine. Years of research in biomedical sciences have revealed that sex-specific immune responses to pathogens can be associated with sex-specific consequences on health. These effects partly account for the observed sex gap in lifespan, leading women to be longer-lived than males in human populations. Sexual selection exerted on males and the pathogenic environment may explain, at least partly, the sex-difference in lifespan generally observed across mammalian populations.
Collapse
Affiliation(s)
- Morgane Tidière
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, F-69622, Villeurbanne, France; LabEx ECOFECT, Université de Lyon, F-69000, Lyon, France.
| | - Adèle Badruna
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, F-69622, Villeurbanne, France; LabEx ECOFECT, Université de Lyon, F-69000, Lyon, France
| | - David Fouchet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, F-69622, Villeurbanne, France; LabEx ECOFECT, Université de Lyon, F-69000, Lyon, France
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, F-69622, Villeurbanne, France; LabEx ECOFECT, Université de Lyon, F-69000, Lyon, France
| | - Jean-François Lemaître
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, F-69622, Villeurbanne, France; LabEx ECOFECT, Université de Lyon, F-69000, Lyon, France
| | - Dominique Pontier
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR5558, F-69622, Villeurbanne, France; LabEx ECOFECT, Université de Lyon, F-69000, Lyon, France
| |
Collapse
|
166
|
Fiechter M, Bengs S, Roggo A, Haider A, Marędziak M, Portmann A, Treyer V, Burger IA, Messerli M, Patriki D, von Felten E, Benz DC, Fuchs TA, Gräni C, Pazhenkottil AP, Buechel RR, Kaufmann PA, Gebhard C. Association between vertebral bone mineral density, myocardial perfusion, and long-term cardiovascular outcomes: A sex-specific analysis. J Nucl Cardiol 2020; 27:726-736. [PMID: 31286420 DOI: 10.1007/s12350-019-01802-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 04/22/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Sexual dimorphism in the manifestation of coronary artery disease (CAD) has unleashed a call to reconsider cardiovascular risk assessment. Alterations of bone mineral density (BMD) have been associated with congestive heart failure and appear to be modified by sex. However, the sex-specific association between BMD, myocardial perfusion, and cardiovascular outcomes is currently unknown. METHODS A total number of 491 patients (65.9 ± 10.7 years, 32.4% women) underwent 13N-ammonia positron emission tomography/computed tomography for evaluation of CAD, and were tracked for major adverse cardiac events (MACEs). RESULTS Event-free survival (median follow-up time of 4.3 ± 2.0 years) was significantly reduced in patients with low (≤ 100 Hounsfield units) compared to those with higher BMD (log-rank P = .037). Accordingly, reduced BMD was chosen as significant predictor of MACE in a fully adjusted proportional hazards regression model (P = .015). Further, a first-order interaction term consisting of sex and BMD was statistically significant (P = .007). BMD was significantly lower in patients with abnormal myocardial perfusion or impaired left ventricular ejection fraction (P < .05). This difference, however, was noticed in men, but not in women. CONCLUSIONS The association between low BMD and cardiovascular disease is sex dependent. Our data suggest that quantification of BMD during myocardial perfusion imaging for evaluation of CAD may be particularly useful in men.
Collapse
Affiliation(s)
- Michael Fiechter
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland.
- Swiss Paraplegic Center, Nottwil, Switzerland.
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Andrea Roggo
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Monika Marędziak
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Irene A Burger
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dimitri Patriki
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Elia von Felten
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Dominik C Benz
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Tobias A Fuchs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Christoph Gräni
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Catherine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
167
|
Chin KL, Sarmiento ME, Alvarez-Cabrera N, Norazmi MN, Acosta A. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis 2020; 39:799-826. [PMID: 31853742 PMCID: PMC7222044 DOI: 10.1007/s10096-019-03771-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
Abstract
Currently, there is a trend of increasing incidence in pulmonary non-tuberculous mycobacterial infections (PNTM) together with a decrease in tuberculosis (TB) incidence, particularly in developed countries. The prevalence of PNTM in underdeveloped and developing countries remains unclear as there is still a lack of detection methods that could clearly diagnose PNTM applicable in these low-resource settings. Since non-tuberculous mycobacteria (NTM) are environmental pathogens, the vicinity favouring host-pathogen interactions is known as important predisposing factor for PNTM. The ongoing changes in world population, as well as socio-political and economic factors, are linked to the rise in the incidence of PNTM. Development is an important factor for the improvement of population well-being, but it has also been linked, in general, to detrimental environmental consequences, including the rise of emergent (usually neglected) infectious diseases, such as PNTM. The rise of neglected PNTM infections requires the expansion of the current efforts on the development of diagnostics, therapies and vaccines for mycobacterial diseases, which at present, are mainly focused on TB. This review discuss the current situation of PNTM and its predisposing factors, as well as the efforts and challenges for their control.
Collapse
Affiliation(s)
- Kai Ling Chin
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah (UMS), Kota Kinabalu, Sabah, Malaysia.
| | - Maria E Sarmiento
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Nadine Alvarez-Cabrera
- Center for Discovery and Innovation (CDI), Hackensack Meridian School of Medicine at Seton Hall University, Nutley, NJ, USA
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia (USM), Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
168
|
Derbyshire E, Delange J. COVID-19: is there a role for immunonutrition, particularly in the over 65s? BMJ Nutr Prev Health 2020; 3:100-105. [PMID: 33230498 PMCID: PMC7211076 DOI: 10.1136/bmjnph-2020-000071] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023] Open
Abstract
In late December 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first emerged in Wuhan, Hubei, China, resulting in the potentially fatal COVID-19. It went on to be officially recognised as a pandemic by the World Health Organisation on 11 March 2020. While many public health strategies have evolved, there has been little mention of the immune system and how this could be strengthened to help protect against viral infections such as SARS-CoV-2. The present paper evaluates the current evidence base relating to immunonutrition, with a particular focus on respiratory viruses. Within the nutrition sector a promising body of evidence studying inter-relationships between certain nutrients and immune competence already exists. This could potentially be an important player in helping the body to deal with the coronavirus, especially among elders. Evidence for vitamins C, D and zinc and their roles in preventing pneumonia and respiratory infections (vitamins C and D) and reinforcing immunity (zinc) appears to look particularly promising. Ongoing research within this important field is urgently needed.
Collapse
|
169
|
Crowe J, Lumb FE, Doonan J, Broussard M, Tarafdar A, Pineda MA, Landabaso C, Mulvey L, Hoskisson PA, Babayan SA, Selman C, Harnett W, Harnett MM. The parasitic worm product ES-62 promotes health- and life-span in a high calorie diet-accelerated mouse model of ageing. PLoS Pathog 2020; 16:e1008391. [PMID: 32163524 PMCID: PMC7108737 DOI: 10.1371/journal.ppat.1008391] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 03/31/2020] [Accepted: 02/07/2020] [Indexed: 12/15/2022] Open
Abstract
Improvements in hygiene and health management have driven significant increases in human lifespan over the last 50 years. Frustratingly however, this extension of lifespan has not been matched by equivalent improvements in late-life health, not least due to the global pandemic in type-2 diabetes, obesity and cardiovascular disease, all ageing-associated conditions exacerbated and accelerated by widespread adoption of the high calorie Western diet (HCD). Recently, evidence has begun to emerge that parasitic worm infection might protect against such ageing-associated co-morbidities, as a serendipitous side-effect of their evolution of pro-survival, anti-inflammatory mechanisms. As a novel therapeutic strategy, we have therefore investigated the potential of ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, to improve healthspan (the period of life before diseases of ageing appear) by targeting the chronic inflammation that drives metabolic dysregulation underpinning ageing-induced ill-health. We administered ES-62 subcutaneously (at a dose of 1 μg/week) to C57BL/6J mice undergoing HCD-accelerated ageing throughout their lifespan, while subjecting the animals to analysis of 120 immunometabolic responses at various time-points. ES-62 improved a number of inflammatory parameters, but markedly, a range of pathophysiological, metabolic and microbiome parameters of ageing were also successfully targeted. Notably, ES-62-mediated promotion of healthspan in male and female HCD-mice was associated with different mechanisms and reflecting this, machine learning modelling identified sex-specific signatures predictive of ES-62 action against HCD-accelerated ageing. Remarkably, ES-62 substantially increased the median survival of male HCD-mice. This was not the case with female animals and unexpectedly, this difference between the two sexes could not be explained in terms of suppression of the chronic inflammation driving ageing, as ES-62 tended to be more effective in reducing this in female mice. Rather, the difference appeared to be associated with ES-62's additional ability to preferentially promote a healthier gut-metabolic tissue axis in male animals.
Collapse
Affiliation(s)
- Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaux Broussard
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Anuradha Tarafdar
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A. Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Carmen Landabaso
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Lorna Mulvey
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Paul A. Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Simon A. Babayan
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
170
|
Bufan B, Arsenović-Ranin N, Petrović R, Živković I, Stoiljković V, Leposavić G. Strain specificities in influence of ageing on germinal centre reaction to inactivated influenza virus antigens in mice: Sex-based differences. Exp Gerontol 2020; 133:110857. [PMID: 32006634 DOI: 10.1016/j.exger.2020.110857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/04/2019] [Accepted: 01/28/2020] [Indexed: 12/21/2022]
Abstract
Considering variability in vaccine responsiveness across human populations, in respect to magnitude and quality, and importance of vaccines in the elderly, the influence of recipient genetic background on the kinetics of age-related changes in the serum IgG antibody responses to seasonal trivalent inactivated split-virus influenza bulk (TIV) was studied in BALB/c and C57BL/6 mice showing quantitative and qualitative differences in this responses in young adult ages. With ageing the total serum IgG response to influenza viruses declined, in a strain-specific manner, so the strain disparity observed in young adult mice (the greater magnitude of IgG response in BALB/c mice) disappeared in aged mice. However, the sexual dimorphisms in this response (more prominent in females of both strains) remained in aged ones. The strain-specific differences in age-related decline in the magnitude of IgG response to TIV correlated with the number of germinal centre (GC) B splenocytes. The age-related decline in GC B cell number was consistent with the decrease in the proliferation of B cells and CD4+ cells in splenocyte cultures upon restimulation with TIV. Additionally, the age-related decrease in the magnitude of IgG response correlated with the increase in follicular T regulatory (fTreg)/follicular T helper (fTh) and fTreg/GC B splenocyte ratios (reflecting decrease in fTh and GC B numbers without changes in fTreg number), and the frequency of CD4+ splenocytes producing IL-21, a key factor in balancing the B cell and fTreg cell activity. With ageing the avidity of virus influenza-specific antibody increased in females of both strains. Moreover, ageing affected IgG2a/IgG1 and IgG2c/IgG1 ratios (reflecting Th1/Th2 balance) in male BALB/c mice and female C57BL/6 mice, respectively. Consequently, differently from young mice exhibiting the similar ratios in male and female mice, in aged female mice of both strains IgG2a(c)/IgG1 ratios were shifted towards a less effective IgG1 response (stimulated by IL-4 cytokines) compared with males. The age-related alterations in IgG subclass profiles in both strains correlated with those in IFN-γ/IL-4 production level ratio in splenocyte cultures restimulated with TIV. These findings stimulate further research to formulate sex-specific strategies to improve efficacy of influenza vaccine in the elderly.
Collapse
Affiliation(s)
- Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Nevena Arsenović-Ranin
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Raisa Petrović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Irena Živković
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Vera Stoiljković
- Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, 11221 Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221 Belgrade, Serbia.
| |
Collapse
|
171
|
Leng SX, Margolick JB. Aging, sex, inflammation, frailty, and CMV and HIV infections. Cell Immunol 2020; 348:104024. [PMID: 31843200 PMCID: PMC7002257 DOI: 10.1016/j.cellimm.2019.104024] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
Aging is characterized by significant immune remodeling at both cellular and molecular levels, also known as immunosenescence. Older adults often manifest a chronic low-grade inflammatory phenotype. These age-related immune system changes have increasingly been recognized not only to lead to immune functional decline and increased vulnerability to infections, but also to play an important role in many chronic conditions such as frailty in older adults. In addition to sex as an important biological factor, chronic viral infections including that by human immunodeficiency virus (HIV) and cytomegalovirus (CMV) are all known to have major impact on the aging immune system. This article provides an overview of our current understanding of aging immunity, sex, inflammation, frailty, and HIV and CMV infections.
Collapse
Affiliation(s)
- Sean X Leng
- Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Joseph B Margolick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
172
|
Wang Y, Mishra A, Brinton RD. Transitions in metabolic and immune systems from pre-menopause to post-menopause: implications for age-associated neurodegenerative diseases. F1000Res 2020; 9. [PMID: 32047612 PMCID: PMC6993821 DOI: 10.12688/f1000research.21599.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/22/2020] [Indexed: 12/13/2022] Open
Abstract
The brain undergoes two aging programs: chronological and endocrinological. This is particularly evident in the female brain, which undergoes programs of aging associated with reproductive competency. Comprehensive understanding of the dynamic metabolic and neuroinflammatory aging process in the female brain can illuminate windows of opportunities to promote healthy brain aging. Bioenergetic crisis and chronic low-grade inflammation are hallmarks of brain aging and menopause and have been implicated as a unifying factor causally connecting genetic risk factors for Alzheimer's disease and other neurodegenerative diseases. In this review, we discuss metabolic phenotypes of pre-menopausal, peri-menopausal, and post-menopausal aging and their consequent impact on the neuroinflammatory profile during each transition state. A critical aspect of the aging process is the dynamic metabolic neuro-inflammatory profiles that emerge during chronological and endocrinological aging. These dynamic systems of biology are relevant to multiple age-associated neurodegenerative diseases and provide a therapeutic framework for prevention and delay of neurodegenerative diseases of aging. While these findings are based on investigations of the female brain, they have a broader fundamental systems of biology strategy for investigating the aging male brain. Molecular characterization of alterations in fuel utilization and neuroinflammatory mechanisms during these neuro-endocrine transition states can inform therapeutic strategies to mitigate the risk of Alzheimer's disease in women. We further discuss a precision hormone replacement therapy approach to target symptom profiles during endocrine and chronological aging to reduce risk for age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Aarti Mishra
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Roberta Diaz Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|
173
|
Barabás K, Szabó-Meleg E, Ábrahám IM. Effect of Inflammation on Female Gonadotropin-Releasing Hormone (GnRH) Neurons: Mechanisms and Consequences. Int J Mol Sci 2020; 21:ijms21020529. [PMID: 31947687 PMCID: PMC7014424 DOI: 10.3390/ijms21020529] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/06/2020] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
: Inflammation has a well-known suppressive effect on fertility. The function of gonadotropin-releasing hormone (GnRH) neurons, the central regulator of fertility is substantially altered during inflammation in females. In our review we discuss the latest results on how the function of GnRH neurons is modified by inflammation in females. We first address the various effects of inflammation on GnRH neurons and their functional consequences. Second, we survey the possible mechanisms underlying the inflammation-induced actions on GnRH neurons. The role of several factors will be discerned in transmitting inflammatory signals to the GnRH neurons: cytokines, kisspeptin, RFamide-related peptides, estradiol and the anti-inflammatory cholinergic pathway. Since aging and obesity are both characterized by reproductive decline our review also focuses on the mechanisms and pathophysiological consequences of the impact of inflammation on GnRH neurons in aging and obesity.
Collapse
Affiliation(s)
- Klaudia Barabás
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
| | - Edina Szabó-Meleg
- Departement of Biophysics, Medical School, University of Pécs, H-7624 Pécs, Hungary;
| | - István M. Ábrahám
- Molecular Neuroendocrinology Research Group, Institute of Physiology, Medical School, Centre for Neuroscience, Szentágothai Research Institute, University of Pécs, H-7624 Pécs, Hungary;
- Correspondence:
| |
Collapse
|
174
|
Kugler-Umana O, Devarajan P, Swain SL. Understanding the Heterogeneous Population of Age-Associated B Cells and Their Contributions to Autoimmunity and Immune Response to Pathogens. Crit Rev Immunol 2020; 40:297-309. [PMID: 33426819 PMCID: PMC8118092 DOI: 10.1615/critrevimmunol.2020034934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In humans and mice, susceptibility to infections and autoimmunity increases with age due to age-associated changes in innate and adaptive immune responses. Aged innate cells are also less active, leading to decreased naive T- and B-cell responses. Aging innate cells contribute to an overall heightened inflammatory environment. Naive T and B cells undergo cell-intrinsic age-related changes that result in reduced effector and memory responses. However, previously established B- and T-cell memory responses persist with age. One dramatic change is the appearance of a newly recognized population of age-associated B cells (ABCs) that has a unique cluster of differentiation (CD)21-CD23- phenotype. Here, we discuss the discovery and origins of the naive phenotype immunoglobulin (Ig)D+ versus activated CD11c+T-bet+ ABCs, with a focus on protective and pathogenic properties. In humans and mice, antigen-experienced CD11c+T-bet+ ABCs increase with autoimmunity and appear in response to bacterial and viral infections. However, our analyses indicate that CD21-CD23- ABCs include a resting, naive, progenitor ABC population that expresses IgD. Similar to generation of CD11c+T-bet+ ABCs, naive ABC response to pathogens depends on toll-like receptor stimulation, making this a key feature of ABC activation. Here, we put forward a potential developmental map of distinct subsets from putative naive ABCs. We suggest that defining signals that can harness the naive ABC response may contribute to protection against pathogens in the elderly. CD11c+T-bet+ ABCs may be useful targets for therapeutic strategies to counter autoimmunity.
Collapse
Affiliation(s)
- Olivia Kugler-Umana
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | - Susan L. Swain
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
175
|
Rossi B, Constantin G, Zenaro E. The emerging role of neutrophils in neurodegeneration. Immunobiology 2020; 225:151865. [DOI: 10.1016/j.imbio.2019.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 10/30/2019] [Indexed: 12/11/2022]
|
176
|
Metcalf CJE, Roth O, Graham AL. Why leveraging sex differences in immune trade-offs may illuminate the evolution of senescence. Funct Ecol 2020; 34:129-140. [PMID: 32063662 PMCID: PMC7006808 DOI: 10.1111/1365-2435.13458] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/10/2019] [Indexed: 12/15/2022]
Abstract
The immune system affects senescence (declines in probabilities of survival or reproduction with age), by shaping late age vulnerability to chronic inflammatory diseases and infections. It is also a dynamic interactive system that must balance competing demands across the life course. Thus, immune system function remains an important frontier in understanding the evolution of senescence.Here, we review our expanding mechanistic understanding of immune function over the life course, in the context of theoretical predictions from life-history evolution. We are especially interested in stage- and sex-dependent costs and benefits of investment in the immune system, given differential life-history priorities of the life stages and sexes.We introduce the costs likely to govern immune allocation across the life course. We then discuss theoretical expectations for differences between the sexes and their likely consequences in terms of how the immune system is both modulated by and may modulate senescence, building on information from life-history theory, experimental immunology and demography.We argue that sex differences in immune function provide a potentially powerful probe of selection pressures on the immune system across the life course. In particular, differences in 'competing' and 'caring' between the sexes have evolved across the tree of life, providing repeated instances of divergent selection pressures on immune function occurring within the same overall bauplan.We conclude by detailing an agenda for future research, including development of theoretical predictions of the differences between the sexes under an array of existing models for sex differences in immunity, and empirical tests of such predictions across the tree of life. A free http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13458/suppinfo can be found within the Supporting Information of this article.
Collapse
Affiliation(s)
| | - Olivia Roth
- GEOMAR, Marine Evolutionary EcologyHelmholtz Centre for Ocean ResearchKielGermany
| | - Andrea L. Graham
- Department of Ecology and Evolutionary BiologyPrinceton UniversityPrincetonNJUSA
| |
Collapse
|
177
|
Christoforidou Z, Mora Ortiz M, Poveda C, Abbas M, Walton G, Bailey M, Lewis MC. Sexual Dimorphism in Immune Development and in Response to Nutritional Intervention in Neonatal Piglets. Front Immunol 2019; 10:2705. [PMID: 31921096 PMCID: PMC6911813 DOI: 10.3389/fimmu.2019.02705] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/04/2019] [Indexed: 12/13/2022] Open
Abstract
Although sex disparity in immunological function and susceptibility to various inflammatory and infectious disease is recognized in adults, far less is known about the situation in young infants during immune development. We have used an outbred piglet model to explore potential early sex disparity underlying both mucosal immune development and systemic responses to novel antigen. Despite similarities in intestinal barrier function and therefore, presumably, antigen exposure, females had less CD172+ (Sirp-α) antigen presenting cells and expression of MHCIIDR at 28 days old compared to males, along with greater regulatory T-cell numbers. This suggests that, during infancy, females may have greater potential for local immune regulation than their male counterparts. However, females also presented with significantly greater systemic antibody responses to injected ovalbumin and dietary soya. Females also synthesized significantly more IgA in mesenteric lymph nodes, whereas males synthesized more in caecal mucosa, suggesting that plasma cells were retained within the MLN in females, but increased numbers of plasma cells circulated through to the mucosal tissue in males. Significant effects of inulin and Bifidobacterium lactis NCC2818 on the developing immune system were also sex-dependent. Our results may start to explain inconsistencies in outcomes of trials of functional foods in infants, as distinction between males and females is seldom made. Since later functionality of the immune system is highly dependent on appropriate development during infancy, stratifying nutritional interventions by sex may present a novel means of optimizing treatments and preventative strategies to reduce the risk of the development of immunological disorders in later life.
Collapse
Affiliation(s)
- Zoe Christoforidou
- Infection and Immunity, School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Marina Mora Ortiz
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Carlos Poveda
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Munawar Abbas
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Gemma Walton
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Michael Bailey
- Infection and Immunity, School of Veterinary Science, University of Bristol, Bristol, United Kingdom
| | - Marie C Lewis
- Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
178
|
Tadount F, Doyon-Plourde P, Rafferty E, MacDonald S, Sadarangani M, Quach C. Is there a difference in the immune response, efficacy, effectiveness and safety of seasonal influenza vaccine in males and females? - A systematic review. Vaccine 2019; 38:444-459. [PMID: 31711676 DOI: 10.1016/j.vaccine.2019.10.091] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Seasonal influenza is an important cause of morbidity and mortality, despite being vaccine-preventable. Sex factors (genes and hormones) seem to impact individuals' susceptibility to infectious diseases and their response to vaccination. However, most vaccine studies do not explicitly assess sex differences in vaccine response, but rather adjust for sex. METHODS We conducted a systematic review to analyze immunogenicity, efficacy, effectiveness and/or safety of seasonal influenza vaccine data stratified by sex. We searched PubMed, EMBASE, CINAHL, Web of Science and clinicaltrials.gov for observational studies and phase III/IV trials from January 1990 to June 2018, published in English or French. Two reviewers independently screened all references, then proceeded to data extraction and quality assessment using the Cochrane tools (RoB and ROBINS-I) on included studies. RESULTS Of the 5,745 citations retrieved, 46 studies were included in the SR. Overall, 18 studies assessed immunogenicity, 1 estimated efficacy, 6 measured effectiveness and 25 evaluated safety of seasonal influenza vaccine in females and males (four studies reported on two sex-stratified outcomes concomitantly). CONCLUSION No clear conclusion could be drawn regarding the effect of sex on the immunogenicity and effectiveness of seasonal influenza vaccine, but higher rates of adverse events following immunization (AEFIs) were reported in females. The heterogeneity of data and studies' low quality prevented us from conducting a meta-analysis. There is a need to emphasize on the appropriate use of the terms sex and gender in biomedical research. Evidence of higher quality is needed to better understand sex differences in response to influenza vaccine.
Collapse
Affiliation(s)
- Fazia Tadount
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, University of Montreal (QC) Canada; Research Institute - CHU Sainte Justine, Montreal (QC) Canada
| | - Pamela Doyon-Plourde
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, University of Montreal (QC) Canada; Research Institute - CHU Sainte Justine, Montreal (QC) Canada
| | - Ellen Rafferty
- Faculty of Nursing, University of Alberta, Edmonton (AB) Canada
| | | | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver (BC) Canada; Division of Infectious Diseases, Department of Pediatrics, University of British Columbia, Vancouver (BC) Canada
| | - Caroline Quach
- Department of Microbiology, Infectious Diseases, and Immunology, Faculty of Medicine, University of Montreal (QC) Canada; Research Institute - CHU Sainte Justine, Montreal (QC) Canada; Department of Pediatric Laboratory Medicine, CHU Sainte-Justine, Montreal (QC) Canada; Infection Prevention & Control, CHU Sainte-Justine, Montreal (QC) Canada.
| |
Collapse
|
179
|
Keilich SR, Bartley JM, Haynes L. Diminished immune responses with aging predispose older adults to common and uncommon influenza complications. Cell Immunol 2019; 345:103992. [PMID: 31627841 PMCID: PMC6939636 DOI: 10.1016/j.cellimm.2019.103992] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Influenza (flu) is a serious disease for older adults, with increased severity of infection and greater risk for hospitalization and death. Flu infection is limited to pulmonary epithelial cells, yet there are many systemic symptoms and older adults are more susceptible to flu-related complications. In older adults, flu rarely comes without additional complications and there is a perfect storm for enhanced disease due to multiple factors including existing co-morbidities, plus impaired lung function and dysregulated immune responses that occur with even healthy aging. Commonly, opportunistic secondary bacterial infections prosper in damaged lungs. Intensified systemic inflammation with aging can cause dysfunction in extra-pulmonary organs and tissues such as cardiovascular, musculoskeletal, neuropathologic, hepatic, and renal complications. Often overlooked is the underappreciated connections between many of these conditions, which exacerbate one another when in parallel. This review focuses on flu infection and the numerous complications in older adults associated with diminished immune responses.
Collapse
Affiliation(s)
- Spencer R Keilich
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Jenna M Bartley
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| | - Laura Haynes
- UConn Center on Aging, University of Connecticut School of Medicine, Farmington, CT 06030, USA; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT 06030, USA.
| |
Collapse
|
180
|
Gounder AP, Boon ACM. Influenza Pathogenesis: The Effect of Host Factors on Severity of Disease. THE JOURNAL OF IMMUNOLOGY 2019; 202:341-350. [PMID: 30617115 DOI: 10.4049/jimmunol.1801010] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022]
Abstract
Influenza viruses continue to be a major global health threat. Severity and clinical outcome of influenza disease is determined by both viral and host factors. Viral factors have long been the subject of intense research and many molecular determinants have been identified. However, research into the host factors that protect or predispose to severe and fatal influenza A virus infections is lagging. The goal of this review is to highlight the recent insights into host determinants of influenza pathogenesis.
Collapse
Affiliation(s)
- Anshu P Gounder
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110.,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and
| | - Adrianus C M Boon
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; .,Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine in St. Louis, St. Louis, MO 63110; and.,Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| |
Collapse
|
181
|
Stojić-Vukanić Z, Pilipović I, Bufan B, Stojanović M, Leposavić G. Age and sex determine CD4+ T cell stimulatory and polarizing capacity of rat splenic dendritic cells. Biogerontology 2019; 21:83-107. [PMID: 31646402 DOI: 10.1007/s10522-019-09845-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
The study investigated influence of sex and age on splenic myeloid dendritic cells (DCs) from Dark Agouti rats. Freshly isolated DCs from young males exhibited less mature phenotype and greater endocytic capacity compared with those from age-matched females. Upon LPS stimulation in vitro they were less potent in stimulating allogeneic CD4+ cells in mixed leukocyte reaction (MLR), due to lower expression of MHC II, and greater NO and IL-10 production. In accordance with higher TGF-β production, young male rat DCs were less potent in stimulating IL-17 production in MLR than those from young females. Irrespective of sex, endocytic capacity and responsiveness of DCs to LPS stimulation in culture, judging by their allostimulatory capacity in MLR decreased with age, reflecting decline in MHC II surface density followed by their greater NO production; the effects more prominent in females. Additionally, compared with LPS-stimulated DCs from young rats, those from sex-matched aged rats were more potent in stimulating IL-10 production in MLR, whereas capacity of DCs from aged female and male rats to stimulate IL-17 production remained unaltered and decreased, respectively. This reflected age-related shift in IL-6/TGF-β production level ratio in LPS-stimulated DC cultures towards TGF-β, and sex-specific age-related remodeling CD4+ cell cytokine pathways. Additionally, compared with LPS-stimulated DCs from young rats, those cells from sex-matched aged rats were less potent in stimulating IFN-γ production in MLR, the effect particularly prominent in MLRs encompassing male rat DCs. The study showed that stimulatory and polarizing capacity of DCs depends on rat sex and age.
Collapse
Affiliation(s)
- Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", 458 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Biljana Bufan
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Marija Stojanović
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, Belgrade, 11221, Serbia.
| |
Collapse
|
182
|
Maglione A, Rolla S, Mercanti SFD, Cutrupi S, Clerico M. The Adaptive Immune System in Multiple Sclerosis: An Estrogen-Mediated Point of View. Cells 2019; 8:E1280. [PMID: 31635066 PMCID: PMC6829884 DOI: 10.3390/cells8101280] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic central nervous system inflammatory disease that leads to demyelination and neurodegeneration. The third trimester of pregnancy, which is characterized by high levels of estrogens, has been shown to be associated with reduced relapse rates compared with the rates before pregnancy. These effects could be related to the anti-inflammatory properties of estrogens, which orchestrate the reshuffling of the immune system toward immunotolerance to allow for fetal growth. The action of these hormones is mediated by the transcriptional regulation activity of estrogen receptors (ERs). Estrogen levels and ER expression define a specific balance of immune cell types. In this review, we explore the role of estradiol (E2) and ERs in the adaptive immune system, with a focus on estrogen-mediated cellular, molecular, and epigenetic mechanisms related to immune tolerance and neuroprotection in MS. The epigenome dynamics of immune systems are described as key molecular mechanisms that act on the regulation of immune cell identity. This is a completely unexplored field, suggesting a future path for more extensive research on estrogen-induced coregulatory complexes and molecular circuitry as targets for therapeutics in MS.
Collapse
Affiliation(s)
- Alessandro Maglione
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Simona Rolla
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | | | - Santina Cutrupi
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| | - Marinella Clerico
- Department of Clinical and Biological Sciences, University of Turin, 10043 Orbassano, Italy.
| |
Collapse
|
183
|
Matarrese P, Tieri P, Anticoli S, Ascione B, Conte M, Franceschi C, Malorni W, Salvioli S, Ruggieri A. X-chromosome-linked miR548am-5p is a key regulator of sex disparity in the susceptibility to mitochondria-mediated apoptosis. Cell Death Dis 2019; 10:673. [PMID: 31511496 PMCID: PMC6739406 DOI: 10.1038/s41419-019-1888-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/24/2019] [Accepted: 07/18/2019] [Indexed: 12/19/2022]
Abstract
Sex dimorphism in cell response to stress has previously been investigated by different research groups. This dimorphism could be at least in part accounted for by sex-biased expression of regulatory elements such as microRNAs (miRs). In order to spot previously unknown miR expression differences we took advantage of prior knowledge on specialized databases to identify X chromosome-encoded miRs potentially escaping X chromosome inactivation (XCI). MiR-548am-5p emerged as potentially XCI escaper and was experimentally verified to be significantly up-regulated in human XX primary dermal fibroblasts (DFs) compared to XY ones. Accordingly, miR-548am-5p target mRNAs, e.g. the transcript for Bax, was differently modulated in XX and XY DFs. Functional analyses indicated that XY DFs were more prone to mitochondria-mediated apoptosis than XX ones. Experimentally induced overexpression of miR548am-5p in XY cells by lentivirus vector transduction decreased apoptosis susceptibility, whereas its down-regulation in XX cells enhanced apoptosis susceptibility. These data indicate that this approach could be used to identify previously unreported sex-biased differences in miR expression and that a miR identified with this approach, miR548am-5p, can account for sex-dependent differences observed in the susceptibility to mitochondrial apoptosis of human DFs.
Collapse
Affiliation(s)
- Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy
| | - Paolo Tieri
- CNR National Research Council, IAC Institute for Applied Computing, Via dei Taurini 19, Rome, Italy.,Data Science Program, La Sapienza University of Rome, Rome, Italy
| | - Simona Anticoli
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy
| | - Barbara Ascione
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy
| | - Maria Conte
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy.,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, via San Giacomo 12, 40126, Bologna, Italy
| | - Claudio Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139, Bologna, Italy.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Walter Malorni
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy.,School of Mathematical, Physical and Natural Sciences and Faculty of Medicine, University of Tor Vergata, Rome, Italy
| | - Stefano Salvioli
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy. .,Interdepartmental Centre "L. Galvani" (CIG), University of Bologna, via San Giacomo 12, 40126, Bologna, Italy.
| | - Anna Ruggieri
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome, Italy.
| |
Collapse
|
184
|
Olagoke O, Quigley BL, Eiden MV, Timms P. Antibody response against koala retrovirus (KoRV) in koalas harboring KoRV-A in the presence or absence of KoRV-B. Sci Rep 2019; 9:12416. [PMID: 31455828 PMCID: PMC6711960 DOI: 10.1038/s41598-019-48880-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 08/13/2019] [Indexed: 01/13/2023] Open
Abstract
Koala retrovirus (KoRV) is in the process of endogenization into the koala (Phascolarctos cinereus) genome and is currently spreading through the Australian koala population. Understanding how the koala's immune system responds to KoRV infection is critical for developing an efficacious vaccine to protect koalas. To this end, we analyzed the antibody response of 235 wild koalas, sampled longitudinally over a four-year period, that harbored KoRV-A, and with or without KoRV-B. We found that the majority of the sampled koalas were able to make anti-KoRV antibodies, and that there was a linear increase in anti-KoRV IgG levels in koalas up to approximately seven years of age and then a gradual decrease thereafter. Koalas infected with both KoRV-A and KoRV-B were found to have slightly higher anti-KoRV IgG titers than koalas with KoRV-A alone and there was an inverse relationship between anti-KoRV IgG levels and circulating KoRV viral load. Finally, we identified distinct epitopes on the KoRV envelope protein that were recognized by antibodies. Together, these findings provide insight into the koala's immune response to KoRV and may be useful in the development of a therapeutic KoRV vaccine.
Collapse
Affiliation(s)
- O Olagoke
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - B L Quigley
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia
| | - M V Eiden
- Section on Directed Gene Transfer, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, USA
| | - P Timms
- Genecology Research Center, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, 4556, Queensland, Australia.
| |
Collapse
|
185
|
Ahnstedt H, McCullough LD. The impact of sex and age on T cell immunity and ischemic stroke outcomes. Cell Immunol 2019; 345:103960. [PMID: 31519365 DOI: 10.1016/j.cellimm.2019.103960] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 01/14/2023]
Abstract
Sex differences are well-recognized in ischemic stroke, a disease mainly affecting the elderly. Stroke results in robust activation of central and peripheral immune responses which contributes to functional outcome. Aging is associated with increased low-grade chronic inflammation known as "inflammaging" that renders aged males and females more susceptible to poor outcomes after ischemic stroke. Despite the fact that sex differences are well-documented in immunity and inflammation, few studies have focused on sex differences in inflammatory responses after ischemic stroke and even fewer have been performed in the context of aging. The role of T cell responses in ischemic stroke have gained increasing attention over the past decade as data suggest a major role in the pathophysiology/recovery after ischemic injury. T cells offer an attractive therapeutic target due to their relatively delayed infiltration into the ischemic brain. This review will focus on T cell immune responses in ischemic stroke, highlighting studies examining the effects of aging and biological sex.
Collapse
Affiliation(s)
- Hilda Ahnstedt
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| | - Louise D McCullough
- Department of Neurology, McGovern Medical School at The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| |
Collapse
|
186
|
Marzetti E, Picca A, Marini F, Biancolillo A, Coelho-Junior HJ, Gervasoni J, Bossola M, Cesari M, Onder G, Landi F, Bernabei R, Calvani R. Inflammatory signatures in older persons with physical frailty and sarcopenia: The frailty “cytokinome” at its core. Exp Gerontol 2019; 122:129-138. [DOI: 10.1016/j.exger.2019.04.019] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/09/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
|
187
|
Abstract
PURPOSE OF REVIEW The goal of this review has been to elucidate the sex differences in cancer incidence and mortality in cutaneous melanoma. We have evaluated biological and behavioral research to determine where the critical questions exist. RECENT FINDINGS The most recent findings, through 2015, are exploratory in nature but seem to indicate that the differences are more likely due to biological variations rather than behavioral. While behavioral studies do show that women are more likely than men to seek health care and practice healthy behaviors, these differences are not sufficiently strong to explain the variation in incidence and mortality in cutaneous melanoma. Evolved differences in the immune systems of females and the role of sex steroid hormones in immunomodulation are two promising avenues for research. Studies in mice demonstrate that the newer immunotherapies are more effective in females and sex steroid hormones, such as estrogen receptor beta are inversely associated with tumor aggressiveness while testosterone increases it. SUMMARY Our analysis indicates that biological factors need to be investigated more thoroughly to understand the variation in incidence and mortality in cutaneous melanoma. Such understanding could lead to reducing incidence and mortality for both males and females (male incidence is 27.4 per 100,000; female 16.8 per 100,000; male mortality is 3.9 per 100,000; female mortality 1.6 per 100,000). It is most likely that behavioral differences between the sexes cannot account for the preponderance of male mortality. In addition to the important role of genetic factors, it is critical to evaluate further additional biological factors and their interactions with genetics and behavior.
Collapse
Affiliation(s)
| | - Li Luo
- University of New Mexico Comprehensive Cancer Center, Department of Internal Medicine
| | - Marianne Berwick
- University of New Mexico Comprehensive Cancer Center, Department of Internal Medicine and Department of Dermatology
| |
Collapse
|
188
|
Özdemir BC, Dotto GP. Sex Hormones and Anticancer Immunity. Clin Cancer Res 2019; 25:4603-4610. [PMID: 30890551 DOI: 10.1158/1078-0432.ccr-19-0137] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/22/2019] [Accepted: 03/14/2019] [Indexed: 12/24/2022]
Abstract
The impact of sex hormones on anticancer immunity deserves attention due to the importance of the immune system in cancer therapy and the recognition of sex differences in immunity. Cancer is ultimately the result of failed immune surveillance, and the diverging effects of male and female sex hormones on anticancer immunity could contribute to the higher cancer incidence and poorer outcome in men. Estrogens and androgens affect the number and function of immune cells, an effect that depends on cell type, tumor microenvironment, and the age and reproductive status of the individual. Despite the recent progress in immuno-oncology, our current understanding of the interplay between sex hormones and anticancer immune responses is in its infancy. In this review, we will focus on the impact of sex hormones on anticancer immunity and immunotherapy. We will discuss the potential role of the changing hormone levels in anticancer immunity during aging and in the context of menopausal hormone therapies and oral contraception. We will review emerging data on sex differences in PD-L1 expression and potential biomarkers predictive for the efficacy of immune checkpoint inhibitors such as the microbiome and consider ongoing clinical trials evaluating the potential impact of hormone deprivation therapies to increase response to immune checkpoint inhibitors in breast and prostate cancer. Finally, we will point to areas of future research.
Collapse
Affiliation(s)
- Berna C Özdemir
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland. .,International Cancer Prevention Institute, Epalinges, Switzerland
| | - Gian-Paolo Dotto
- International Cancer Prevention Institute, Epalinges, Switzerland. .,Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts
| |
Collapse
|
189
|
Di Benedetto S, Gaetjen M, Müller L. The Modulatory Effect of Gender and Cytomegalovirus-Seropositivity on Circulating Inflammatory Factors and Cognitive Performance in Elderly Individuals. Int J Mol Sci 2019; 20:ijms20040990. [PMID: 30823516 PMCID: PMC6412896 DOI: 10.3390/ijms20040990] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Aging is characterized by a chronic increase in the systemic levels of inflammatory cytokines even in ostensibly healthy individuals. The drivers of age-related increase in systemic inflammation are unclear but one potential contributor may be a persistent infection with Cytomegalovirus (CMV). In this study, we characterized the inflammatory status of 161 older participants recruited to undergo a six-month training intervention. We investigated the influence of gender and CMV-seropositivity on the main inflammatory and anti-inflammatory circulating biomarkers, such as cytokines, receptor antagonist, soluble receptor, immune cells, and relevant metabolic markers. We found that both gender and CMV-seropositivity modulate circulating peripheral biomarkers, and that CMV-infection modifies associations among the latter. Moreover, we observed an interaction between CMV-serostatus and gender associations with cognitive abilities: gender differences in fluid intelligence (Gf) and working memory (WM) were noted only in CMV-negative individuals. Finally, we found that in the CMV-seronegative participants Gf, episodic memory (EM), and WM correlated negatively with pro-inflammatory tumor necrosis factor (TNF); and EM correlated positively with anti-inflammatory interleukin (IL)-10. In CMV-seropositive individuals EM and Gf correlated negatively with pro-inflammatory IL-6, while EM, Gf, and WM correlated negatively with anti-inflammatory IL-1RA. We conclude that both CMV-serostatus and gender may modulate neuroimmune factors, cognitive performance and the relationship between the two domains and should therefore be considered in comparative and interventional studies with elderly people.
Collapse
Affiliation(s)
- Svetlana Di Benedetto
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
- Center for Medical Research, University of Tübingen, Waldhörnlestr. 22, 72072 Tübingen, Germany.
| | - Marcel Gaetjen
- Becton Dickinson Biosciences, Tullastr. 8-12, 69126 Heidelberg, Germany.
| | - Ludmila Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany.
| |
Collapse
|
190
|
Lin CH, Lu YT, Ho CJ, Shih FY, Tsai MH. The Different Clinical Features Between Autoimmune and Infectious Status Epilepticus. Front Neurol 2019; 10:25. [PMID: 30814971 PMCID: PMC6381771 DOI: 10.3389/fneur.2019.00025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 01/09/2019] [Indexed: 12/14/2022] Open
Abstract
Objective: The prognosis of status epilepticus (SE) is highly related to the underlying etiology. Inflammation of the central nervous system (CNS), including infection and autoimmune encephalitis, is one of the treatable conditions causing SE. The initial presentation of infectious and autoimmune CNS disorders can be quite similar, which may be difficult to differentiate at the beginning. However, treatment for these entities can be quite different. In this study, we aim to identify the differences in clinical features among patients with infectious and autoimmune SE, which could help the clinicians to select initial investigation and ensuing therapies that may improve overall outcomes. Methods: This was a retrospective study that included 501 patients with SE within a period of 10.5-years. Patients with inflammatory etiology were collected and separated into infectious and autoimmune SE. The symptoms at onset, SE semiology, status epilepticus severity score, and END-IT score at admission, treatment for SE, and outcome (modified Rankin Scale) on discharge and last follow-up were recorded. Data on the first cerebrospinal fluid, electroencephalography, and magnetic resonance imaging were also collected. Results: Forty-six (9.2%) of the 501 patients had SE with inflammatory etiology. Twenty-five (5%) patients were autoimmune SE and 21 (4.2%) were infectious SE. Patients with autoimmune SE have younger age and female predominance. As for clinical presentations, psychosis, non-convulsive SE, and super refractory SE were more common in patients with autoimmune SE. Nevertheless, the prognosis showed no difference between the two groups. Conclusion: The different initial clinical presentations and patient characteristics may provide some clues about the underlying etiology of SE. When inflammatory etiology is suspected in patients with SE, younger age, female sex, psychosis, non-convulsive SE, and super refractory SE are clinical features that suggest an autoimmune etiology.
Collapse
Affiliation(s)
- Chih-Hsiang Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Yan-Ting Lu
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Chen-Jui Ho
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Fu-Yuan Shih
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| | - Meng-Han Tsai
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, Taiwan
| |
Collapse
|
191
|
Andrew MK, Tierney MC. The puzzle of sex, gender and Alzheimer’s disease: Why are women more often affected than men? WOMENS HEALTH 2018. [PMCID: PMC6311541 DOI: 10.1177/1745506518817995] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Objective: There are impressive differences in the incidence, prevalence and experience of women and men with Alzheimer’s Disease (AD). Notably, two-thirds of those with AD, the most common form of dementia, are women. Our objective was to provide a literature-based framework to understand these sex and gender differences in AD. Methods: We conducted a narrative review to examine sex and gender influences on AD. Results: We present a framework to understanding why these sex and gender differences exist in AD. This includes the influence of longevity (women live longer than men), biological differences (hormonal differences, epigenetics and frailty), differences in cognitive performance (women and men tend to perform differently on some cognitive tests), and gendered social roles and opportunities (educational and occupational opportunities, functional roles post-retirement). Our review clearly indicates the complex interaction of these sex and gender differences and variability within each. Conclusions: Given these important sex and gender differences in AD, we provide recommendations and steps forward describing how both sex and gender should be considered in dementia diagnosis and management and in the design and implementation of dementia research, including studies of caregiving interventions and models of dementia care.
Collapse
Affiliation(s)
- Melissa K Andrew
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
| | - Mary C Tierney
- Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
192
|
Gaya da Costa M, Poppelaars F, van Kooten C, Mollnes TE, Tedesco F, Würzner R, Trouw LA, Truedsson L, Daha MR, Roos A, Seelen MA. Age and Sex-Associated Changes of Complement Activity and Complement Levels in a Healthy Caucasian Population. Front Immunol 2018; 9:2664. [PMID: 30515158 PMCID: PMC6255829 DOI: 10.3389/fimmu.2018.02664] [Citation(s) in RCA: 169] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/29/2018] [Indexed: 01/03/2023] Open
Abstract
Introduction: The complement system is essential for an adequate immune response. Much attention has been given to the role of complement in disease. However, to better understand complement in pathology, it is crucial to first analyze this system under different physiological conditions. The aim of the present study was therefore to investigate the inter-individual variation in complement activity and the influences of age and sex. Methods: Complement levels and functional activity were determined in 120 healthy volunteers, 60 women, 60 men, age range 20–69 year. Serum functional activity of the classical pathway (CP), lectin pathway activated by mannan (MBL-LP) and alternative pathway (AP) was measured in sera, using deposition of C5b-9 as readout. In addition, levels of C1q, MBL, MASP-1, MASP-2, ficolin-2, ficolin-3, C2, C4, C3, C5, C6, C7, C8, C9, factor B, factor D, properdin, C1-inhibitor and C4b-binding protein, were determined. Age- and sex-related differences were evaluated. Results: Significantly lower AP activity was found in females compared to males. Further analysis of the AP revealed lower C3 and properdin levels in females, while factor D concentrations were higher. MBL-LP activity was not influenced by sex, but MBL and ficolin-3 levels were significantly lower in females compared to males. There were no significant differences in CP activity or CP components between females and males, nevertheless females had significantly lower levels of the terminal components. The CP and AP activity was significantly higher in the elderly, in contrast to MBL-LP activity. Moreover, C1-inhibitor, C5, C8, and C9 increased with age in contrast to a decrease of factor D and C3 levels. In-depth analysis of the functional activity assays revealed that MBL-LP activity was predominantly dependent on MBL and MASP-2 concentration, whereas CP activity relied on C2, C1-inhibitor and C5 levels. AP activity was strongly and directly associated with levels of C3, factor B and C5. Conclusion: This study demonstrated significant sex and age-related differences in complement levels and functionality in the healthy population. Therefore, age and sex analysis should be taken into consideration when discussing complement-related pathologies and subsequent complement-targeted therapies.
Collapse
Affiliation(s)
- Mariana Gaya da Costa
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Felix Poppelaars
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Obstetrics and Gynecology, Martini Hospital, Groningen, Netherlands
| | - Cees van Kooten
- Department of Nephrology, University of Leiden, Leiden University Medical Center, Leiden, Netherlands
| | - Tom E Mollnes
- Department of Immunology, Oslo University Hospital and University of Oslo, Oslo, Norway.,Research Laboratory, Bodø Hospital, and K.G. Jebsen TREC, University of Tromsø, Tromsø, Norway.,Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Francesco Tedesco
- Immunorheumatology Research Laboratory, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Reinhard Würzner
- Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, Netherlands
| | - Lennart Truedsson
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Mohamed R Daha
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Department of Nephrology, University of Leiden, Leiden University Medical Center, Leiden, Netherlands
| | - Anja Roos
- Department of Medical Microbiology and Immunology, St. Antonius Hospital, Nieuwegein, Netherlands
| | - Marc A Seelen
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
193
|
Kadel S, Kovats S. Sex Hormones Regulate Innate Immune Cells and Promote Sex Differences in Respiratory Virus Infection. Front Immunol 2018; 9:1653. [PMID: 30079065 PMCID: PMC6062604 DOI: 10.3389/fimmu.2018.01653] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/04/2018] [Indexed: 01/27/2023] Open
Abstract
Sex differences in the incidence and severity of respiratory virus infection are widely documented in humans and murine models and correlate with sex biases in numbers and/or functional responses of innate immune cells in homeostasis and lung infection. Similarly, changes in sex hormone levels upon puberty, pregnancy, and menopause/aging are associated with qualitative and quantitative differences in innate immunity. Immune cells express receptors for estrogens (ERα and ERβ), androgens (AR), and progesterone (PR), and experimental manipulation of sex hormone levels or receptors has revealed that sex hormone receptor activity often underlies sex differences in immune cell numbers and/or functional responses in the respiratory tract. While elegant studies have defined mechanistic roles for sex hormones and receptors in innate immune cells, much remains to be learned about the cellular and molecular mechanisms of action of ER, PR, and AR in myeloid cells and innate lymphocytes to promote the initiation and resolution of antiviral immunity in the lung. Here, we review the literature on sex differences and sex hormone regulation in innate immune cells in the lung in homeostasis and upon respiratory virus infection.
Collapse
Affiliation(s)
- Sapana Kadel
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|