151
|
Nurjadi D, Scherrer M, Frank U, Mutters NT, Heininger A, Späth I, Eichel VM, Jabs J, Probst K, Müller-Tidow C, Brandt J, Heeg K, Boutin S. Genomic Investigation and Successful Containment of an Intermittent Common Source Outbreak of OXA-48-Producing Enterobacter cloacae Related to Hospital Shower Drains. Microbiol Spectr 2021; 9:e0138021. [PMID: 34817232 PMCID: PMC8612159 DOI: 10.1128/spectrum.01380-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/28/2021] [Indexed: 11/20/2022] Open
Abstract
The hospital environment has been reported as a source of transmission events and outbreaks of carbapenemase-producing Enterobacterales. Interconnected plumbing systems and the microbial diversity in these reservoirs pose a challenge for outbreak investigation and control. A total of 133 clinical and environmental OXA-48-producing Enterobacter cloacae isolates collected between 2015 and 2021 were characterized by whole-genome sequencing (WGS) to investigate a prolonged intermittent outbreak involving 41 patients in the hematological unit. A mock-shower experiment was performed to investigate the possible acquisition route. WGS indicated the hospital water environmental reservoir as the most likely source of the outbreak. The lack of diversity of the blaOXA-48-like harbouring plasmids was a challenge for data interpretation. The detection of blaOXA-48-like-harboring E. cloacae strains in the shower area after the mock-shower experiment provided strong evidence that showering is the most likely route of acquisition. Initially, in 20 out of 38 patient rooms, wastewater traps and drains were contaminated with OXA-48-positive E. cloacae. Continuous decontamination using 25% acetic acid three times weekly was effective in reducing the trap/drain positivity in monthly environmental screening but not in reducing new acquisitions. However, the installation of removable custom-made shower tubs did prevent new acquisitions over a subsequent 12-month observation period. In the present study, continuous decontamination was effective in reducing the bacterial burden in the nosocomial reservoirs but was not sufficient to prevent environment-to-patient transmission in the long term. Construction interventions may be necessary for successful infection prevention and control. IMPORTANCE The hospital water environment can be a reservoir for a multiward outbreak, leading to acquisitions or transmissions of multidrug-resistant organisms in a hospital setting. The majority of Gram-negative bacteria are able to build biofilms and persist in the hospital plumbing system over a long period of time. The elimination of the reservoir is essential to prevent further transmission and spread, but proposed decontamination regimens, e.g., using acetic acid, can only suppress but not fully eliminate the environmental reservoir. In this study, we demonstrated that colonization with multidrug-resistant organisms can be acquired by showering in showers with contaminated water traps and drains. A construction intervention by installing removable and autoclavable shower inserts to avoid sink contact during showering was effective in containing this outbreak and may be a viable alternative infection prevention and control measure in outbreak situations involving contaminated shower drains and water traps.
Collapse
Affiliation(s)
- Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Scherrer
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Uwe Frank
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Infection Prevention and Hospital Epidemiology, Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
- Institute for Hygiene and Public Health, Bonn University Hospital, Bonn, Germany
| | - Nico T. Mutters
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Hygiene and Public Health, Bonn University Hospital, Bonn, Germany
| | - Alexandra Heininger
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Department of Hospital Hygiene, University Medical Center Mannheim, Mannheim, Germany
| | - Isabel Späth
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Vanessa M. Eichel
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Jonas Jabs
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- Institute for Hygiene and Public Health, Bonn University Hospital, Bonn, Germany
| | - Katja Probst
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Carsten Müller-Tidow
- Department of Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Juliane Brandt
- Department of Hematology, Oncology, and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
152
|
Lin W, Li D, Gao M, Qin W, Xu L, Pan L, Liu W, Fan H, Mi Z, Tong Y. Isolation, characterization and biocontrol efficacy of a T4-like phage virulent to multidrug-resistant Enterobacter hormaechei. DISEASES OF AQUATIC ORGANISMS 2021; 147:97-109. [PMID: 34913439 DOI: 10.3354/dao03622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Enterobacter hormaechei is an important emerging pathogen, often exhibiting resistance to multiple clinically important antibiotics. In this study, E. hormaechei was found, for the first time, to be lethal to fish. Bacteriophages are considered potential treatments for bacterial infections. The lytic phage vB_EhoM-IME523 (abbreviated 'IME523') infecting multidrug-resistant E. hormaechei was isolated from hospital sewage. IME523 exhibits T4-like morphology, including a prolate icosahedral head 110 ± 1.89 nm (mean ± SD) long and 82 ± 0.75 nm wide, and a contractile tail of ca. 110 ± 0.91 nm in length. The complete genome length of phage IME523 is 172763 bp, with a G + C content of 39.97%. The whole genome sequence of IME523 has a 93.10% average nucleotide identity (ANI) and a 53.3% in silico DNA-DNA hybridization (isDDH) value with the closest-related Enterobacter phage vB_EclM_CIP9 ('CIP9'). ANI and isDDH values between IME523 and other phages were lower than 78 and 22%, respectively. IME523 and CIP9 formed a monophyletic branch in a phylogenetic tree based on the terminase large subunit, DNA polymerase protein and whole genome phylogenetic analysis. Results suggest that IME523 is a novel species in the subfamily Tevenvirinae and forms a novel genus together with CIP9. No IME523 open reading frame was found to be associated with virulence factors or antibiotic resistance genes. IME523 showed promising protection to zebrafish and brocade carp against E. hormaechei challenge.
Collapse
Affiliation(s)
- Wei Lin
- Zhejiang Key Laboratory of Marine Biotechnology, Ningbo University, Ningbo 315832, Zhejiang, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Antibiotic Resistant Enterobacteriaceae in Milk Alternatives. Foods 2021; 10:foods10123070. [PMID: 34945621 PMCID: PMC8702211 DOI: 10.3390/foods10123070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 11/17/2022] Open
Abstract
The consumption of non-dairy milk is on the rise due to health benefits. Although there is increasing inclination towards milk alternatives (MA), there is limited data on antibiotic resistant bacteria in these substitutes. The aim of this study was to investigate antimicrobial resistance of bacteria isolated from MA. A total of 138 extracts from almonds (n = 63), cashew nuts (n = 36), and soybeans (n = 39) were analyzed for Enterobacteriaceae. The identification of the bacteria was based on biochemical and PCR methods. Antibiotic sensitivity was determined by using the Kirby-Bauer disk diffusion technique. Overall, 31% (43 of 138) of extracts were positive for Enterobacteriaceae. Ten bacterial species were identified, of which Enterobacter cloacae (42.7%) and Enterobacter cancerogenus (35.4%) were the most predominant species (p < 0.05). Antibiotic resistance was exhibited to vancomycin (88.3%), novobiocin (83.8%), erythromycin (81.1%), which was significantly higher (p < 0.05) than in tetracycline (59.5%), cefpodoxime (30.6%), and nalidixic acid (6.3%). There was no resistance displayed to kanamycin and imipenem. ERY-NOV-VAN-TET and ERY-NOV-CEP-VAN-TET were the most common resistant patterns displayed by Enterobacter cloacae. The findings of this study suggest that MAs, though considered healthy, may be a reservoir of multidrug resistant opportunist pathogens.
Collapse
|
154
|
Phenotypic and molecular characterization of antimicrobial resistance in clinical species of Enterobacter, Serratia, and Hafnia in Northeast Iran. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
155
|
ESBL/AmpC-Producing Enterobacteriaceae Fecal Colonization in Dogs after Elective Surgery. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The purpose of this study was to evaluate the presence and load of ESBL/AmpC-producing Enterobacteriaceae fecal carriage in healthy dogs. Fecal samples were collected from dogs submitted to surgical procedures (n = 25). Fecal samples were collected before surgery (BS) and after surgery (AS). β-lactamases were detected by PCR. Statistical analyses were performed with SAS software (v.9.4); a p value ≤ 0.05 was considered statistically significant. The ESBL/AmpC-producing Enterobacteriaceae bacteria species detected in this study were E. coli, K. pneumoniae and E. cloacae. TEM, and CTX-M-1 group genes were the most frequent β-lactamases detected. The number of dogs colonized with 3GC-resistant Enterobacteriaceae bacteria was significantly higher in the AS (63.6%, n = 14/22) group compared to in the BS group (20.0%, n = 5/25, p = 0.0033). The ESBL/AmpC-producing bacteria fecal load was significantly higher in the AS group compared to in the BS (p = 0.025) group. This study shows that 3GC-resistant Enterobacteriaceae and ESBLs/AmpC producers in the veterinary clinical practice are a concern and highlights the need to implement preventive measures to minimize their spread.
Collapse
|
156
|
Umar A, Haque A, Alghamdi YS, Mashraqi MM, Rehman A, Shahid F, Khurshid M, Ashfaq UA. Development of a Candidate Multi-Epitope Subunit Vaccine against Klebsiella aerogenes: Subtractive Proteomics and Immuno-Informatics Approach. Vaccines (Basel) 2021; 9:vaccines9111373. [PMID: 34835304 PMCID: PMC8624419 DOI: 10.3390/vaccines9111373] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/17/2022] Open
Abstract
Klebsiella aerogenes is a Gram-negative bacterium which has gained considerable importance in recent years. It is involved in 10% of nosocomial and community-acquired urinary tract infections and 12% of hospital-acquired pneumonia. This organism has an intrinsic ability to produce inducible chromosomal AmpC beta-lactamases, which confer high resistance. The drug resistance in K. aerogenes has been reported in China, Israel, Poland, Italy and the United States, with a high mortality rate (~50%). This study aims to combine immunological approaches with molecular docking approaches for three highly antigenic proteins to design vaccines against K. aerogenes. The synthesis of the B-cell, T-cell (CTL and HTL) and IFN-γ epitopes of the targeted proteins was performed and most conserved epitopes were chosen for future research studies. The vaccine was predicted by connecting the respective epitopes, i.e., B cells, CTL and HTL with KK, AAY and GPGPG linkers and all these were connected with N-terminal adjuvants with EAAAK linker. The humoral response of the constructed vaccine was measured through IFN-γ and B-cell epitopes. Before being used as vaccine candidate, all identified B-cell, HTL and CTL epitopes were tested for antigenicity, allergenicity and toxicity to check the safety profiles of our vaccine. To find out the compatibility of constructed vaccine with receptors, MHC-I, followed by MHC-II and TLR4 receptors, was docked with the vaccine. Lastly, in order to precisely certify the proper expression and integrity of our construct, in silico cloning was carried out. Further studies are needed to confirm the safety features and immunogenicity of the vaccine.
Collapse
Affiliation(s)
- Ahitsham Umar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Asma Haque
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Youssef Saeed Alghamdi
- Department of Biology, Turabah University College, Taif University, Taif 21944, Saudi Arabia;
| | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, Najran University, Najran 61441, Saudi Arabia;
| | - Abdur Rehman
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Farah Shahid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.U.); (A.H.); (A.R.); (F.S.)
- Correspondence:
| |
Collapse
|
157
|
Scali JT, Son YG, Madison IT, Fink BA, Mueller TJ. Intraperitoneal abscess from perforated diverticulitis with fistualization to extraperitoneal abscess into the scrotum: a case report. AFRICAN JOURNAL OF UROLOGY 2021. [DOI: 10.1186/s12301-021-00251-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Scrotal abscesses are common skin abscesses seen in the general population; however, intraperitoneal abscesses tracking into the scrotum are rare. Intraperitoneal and retroperitoneal abscesses contiguous with the scrotum have been reported in the literature in specific populations. Wound cultures can aid in differentiating the source of the infections. Recurrent abscesses have been observed in high-risk populations, such as those with malignancy or who are immunocompromised.
Case presentation
We present a 71-year-old male with pericolonic abscess following perforated diverticulitis. The abscess was drained with interventional radiology and was complicated by an extraperitoneal abscess that tracked to the scrotum. Incision and drainage of the extraperitoneal abscess and the scrotal abscess were required with intravenous antibiotic therapy. The abscess tracking into the scrotum is reported without evidence of patent processus vaginalis.
Conclusion
We conclude that an intraperitoneal abscess can track to the scrotum through extraperitoneal fascial planes in the absence of a patent processus vaginalis. We show that extraperitoneal abscess spread to the scrotum is possible, with wound cultures helping to differentiate the source of the infection. High-risk patients with recurrent abscesses can also be susceptible to contiguous spread.
Collapse
|
158
|
Hegab OW, Abdel-Latif EF, Zaki HMBA, Moawad AA. Fundamental role of Lactobacillus plantarum and inulin in improving safety and quality of Karish cheese. Open Vet J 2021; 11:356-363. [PMID: 34722196 PMCID: PMC8541708 DOI: 10.5455/ovj.2021.v11.i3.4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/27/2021] [Indexed: 11/03/2022] Open
Abstract
Background Karish cheese manufactured traditionally from raw milk may harbor many biological health hazards. Aim Production of safe pasteurized Karish cheese with improved sensory characteristics using probiotics and prebiotics (synbiotic Karish cheese). Methods Laboratory Karish cheese was made to study the effect of Lactobacillus plantarum with and without inulin on cheese quality. Treatments were examined for sensory, chemical, and microbial quality, shelf life, and survival of L. plantarum were also monitored. The antimicrobial effect of L. plantarum and inulin against Enterobacter aerogenes in cheese was evaluated. Results Sensory, chemical, and microbial quality of Karish cheese supplemented with L. plantarum and inulin were positively affected; moreover, the shelf life was extended up to 28 days. Karish cheese contained L. plantarum showed the highest flavor score, while treatment contained both L. plantarum and inulin attained the best body and texture score. Moreover, L. plantarum and inulin significantly reduced E. aerogenes count during Karish cheese chilled storage; the reduction log reached 3.76 log10cfu/g on the seventh day of storage compared to control. Additionally, Inulin significantly increased the survival of L. plantarum throughout the storage period. Conclusion This study concluded that using probiotics and prebiotics in Karish cheese synergistically improved its sensory properties, safety, and hygienic quality.
Collapse
Affiliation(s)
- Ola W Hegab
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eman F Abdel-Latif
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Hamdy M B A Zaki
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ashraf A Moawad
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
159
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10. [PMID: 34684258 DOI: 10.3390/pathogens10101310/s1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 05/20/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| |
Collapse
|
160
|
Mancuso G, Midiri A, Gerace E, Biondo C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021; 10:pathogens10101310. [PMID: 34684258 PMCID: PMC8541462 DOI: 10.3390/pathogens10101310] [Citation(s) in RCA: 497] [Impact Index Per Article: 124.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 02/05/2023] Open
Abstract
Antibiotics have made it possible to treat bacterial infections such as meningitis and bacteraemia that, prior to their introduction, were untreatable and consequently fatal. Unfortunately, in recent decades overuse and misuse of antibiotics as well as social and economic factors have accelerated the spread of antibiotic-resistant bacteria, making drug treatment ineffective. Currently, at least 700,000 people worldwide die each year due to antimicrobial resistance (AMR). Without new and better treatments, the World Health Organization (WHO) predicts that this number could rise to 10 million by 2050, highlighting a health concern not of secondary importance. In February 2017, in light of increasing antibiotic resistance, the WHO published a list of pathogens that includes the pathogens designated by the acronym ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) to which were given the highest "priority status" since they represent the great threat to humans. Understanding the resistance mechanisms of these bacteria is a key step in the development of new antimicrobial drugs to tackle drug-resistant bacteria. In this review, both the mode of action and the mechanisms of resistance of commonly used antimicrobials will be examined. It also discusses the current state of AMR in the most critical resistant bacteria as determined by the WHO's global priority pathogens list.
Collapse
Affiliation(s)
- Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
| | | | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.)
- Correspondence: ; Tel.: +39-090-221-33-22
| |
Collapse
|
161
|
Sathyanarayana SR, Warke VG, Mahajan GB, Annapure US. Comparative studies of microbial and heavy metal safety assessment of the herbs cultivated in hydroponically and regular soil system. J Food Saf 2021. [DOI: 10.1111/jfs.12936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Sowmya R. Sathyanarayana
- Department of Food Engineering and Technology Institute of Chemical Technology (ICT) Mumbai India
| | | | | | - Uday S. Annapure
- Department of Food Engineering and Technology Institute of Chemical Technology (ICT) Mumbai India
- Institute of Chemical Technology, Marathwada Campus Jalna India
| |
Collapse
|
162
|
Filatov AV, Perepelov AV, Shashkov AS, Burygin GL, Gogoleva NE, Khlopko YA, Grinev VS. Structure and genetics of the O-antigen of Enterobacter cloacae K7 containing di-N-acetylpseudaminic acid. Carbohydr Res 2021; 508:108392. [PMID: 34274818 DOI: 10.1016/j.carres.2021.108392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 11/29/2022]
Abstract
The O-antigen (O-polysaccharide) is an essential component of lipopolysaccharide on the surface of Gram-negative bacteria and plays an important role in interaction with host organisms. In this study, we investigated the chemical structure and characterized the gene cluster of Enterobacter cloacae K7 O-antigen. As judged by sugar analyses along with NMR spectroscopy data, E. cloacae K7 antigen has a tetrasaccharide O-unit with the following structure: →8)-β-Psep5Ac7Ac-(2 → 2)-β-l-Rhap-(1 → 4)-α-l-Rhap-(1 → 3)-α-d-Galp-(1→ The O-antigen gene cluster of E. cloacae K7 between conserved genes galF and gnd was sequenced. Most genes necessary for the O-antigen synthesis were found in the cluster and their functions were tentatively assigned by comparison with sequences in the available databases.
Collapse
Affiliation(s)
- Andrei V Filatov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation.
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991, Moscow, Russian Federation
| | - Gennady L Burygin
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049, Saratov, Russian Federation; Vavilov Saratov State Agrarian University, 410012, Saratov, Russian Federation
| | - Natalia E Gogoleva
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Centre, Russian Academy of Sciences, 420111, Kazan, Russian Federation; Kazan Federal University, 420111, Kazan, Russian Federation
| | - Yuriy A Khlopko
- Institute for Cellular and Intracellular Symbiosis, Urals Branch, Russian Academy of Sciences, 460000, Orenburg, Russian Federation
| | - Vyacheslav S Grinev
- Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, 410049, Saratov, Russian Federation
| |
Collapse
|
163
|
Clinical Status of Efflux Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10091117. [PMID: 34572699 PMCID: PMC8467137 DOI: 10.3390/antibiotics10091117] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 09/15/2021] [Indexed: 01/25/2023] Open
Abstract
Antibiotic efflux is a mechanism that is well-documented in the phenotype of multidrug resistance in bacteria. Efflux is considered as an early facilitating mechanism in the bacterial adaptation face to the concentration of antibiotics at the infectious site, which is involved in the acquirement of complementary efficient mechanisms, such as enzymatic resistance or target mutation. Various efflux pumps have been described in the Gram-negative bacteria most often encountered in infectious diseases and, in healthcare-associated infections. Some are more often involved than others and expel virtually all families of antibiotics and antibacterials. Numerous studies report the contribution of these pumps in resistant strains previously identified from their phenotypes. The authors characterize the pumps involved, the facilitating antibiotics and those mainly concerned by the efflux. However, today no study describes a process for the real-time quantification of efflux in resistant clinical strains. It is currently necessary to have at hospital level a reliable and easy method to quantify the efflux in routine and contribute to a rational choice of antibiotics. This review provides a recent overview of the prevalence of the main efflux pumps observed in clinical practice and provides an idea of the prevalence of this mechanism in the multidrug resistant Gram-negative bacteria. The development of a routine diagnostic tool is now an emergency need for the proper application of current recommendations regarding a rational use of antibiotics.
Collapse
|
164
|
Liu S, Huang N, Zhou C, Lin Y, Zhang Y, Wang L, Zheng X, Zhou T, Wang Z. Molecular Mechanisms and Epidemiology of Carbapenem-Resistant Enterobacter cloacae Complex Isolated from Chinese Patients During 2004-2018. Infect Drug Resist 2021; 14:3647-3658. [PMID: 34522107 PMCID: PMC8434891 DOI: 10.2147/idr.s327595] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/02/2021] [Indexed: 12/17/2022] Open
Abstract
Background The emergence and spread of carbapenem-resistant Enterobacter cloacae complex (ECC) have posed a serious threat to human health worldwide. This study aimed to investigate the molecular mechanism of carbapenem resistance and its prevalence among ECC in China. Methods A total of 1314 ECC clinical isolates were collected from the First Affiliated Hospital of Wenzhou Medical University from 2004 to 2018. Sensitivity to antibiotics was determined using the agar dilution method. The production of carbapenemases and the prevalence of resistance-associated genes were investigated using PCR. The expression of outer membrane porin (OMP) genes (ompC/ompF) and cephalosporinase gene ampC was analyzed by quantitative real-time PCR. The effect of efflux pump mechanism on carbapenem resistance was tested. ECC was typed by multilocus sequence typing (MLST). Results In this study, 113 carbapenem-nonsusceptible ECC strains were identified. The prevalence rates of carbapenemase genes bla KPC-2 and bla NDM were 12.4% (14/113) and 17.7% (20/113), and that of the extended-spectrum β-lactamase (ESBL) genes bla CTX-M, bla TEM, and bla SHV were 28.3% (32/113), 27.4% (31/113), and 14.2% (16/113), respectively. Among 67 carbapenem-nonsusceptible ECC isolates producing non-carbapenemase, low expression of ompC/ompF and overexpression of ampC were found in 46 and 40 strains, respectively. In addition, the carbapenem resistance was related to the overexpression of the efflux pump in the study. Finally, the 113 carbapenem-nonsusceptible ECC strains were categorized into 39 different sequence types using MLST. Conclusion Carbapenem-nonsusceptible ECC strains producing non-carbapenemase were predominant. The low expression of OMP with the overexpression of cephalosporinase or production of ESBLs and overexpression of efflux pump might contribute to the resistance to carbapenem for carbapenem-nonsusceptible ECC strains producing non-carbapenemase. The bla NDM and bla KPC comprised the principal resistance mechanism of carbapenemase-producing ECC in the hospital, causing a threat to public health. Therefore, monitoring programs to prevent the emergence and further spread of antibiotic resistance are urgently needed.
Collapse
Affiliation(s)
- Shixing Liu
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Na Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Cui Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Yishuai Lin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Lingbo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Xiangkuo Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Tieli Zhou
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| | - Zhongyong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
165
|
Pellissari BA, Sabino GSP, de Souza Lima RN, Motta RHL, Suzuki SS, Garcez AS, Basting RT, Barbosa JA, Martins Montalli VA. Antimicrobial resistance of bacterial strains in patients undergoing orthodontic treatment with and without fixed appliances. Angle Orthod 2021; 91:672-679. [PMID: 33901282 DOI: 10.2319/120720-990.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/01/2021] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVES To identify microorganisms isolated from patients wearing fixed orthodontic appliances and to evaluate the resistance of isolated bacterial strains to different antimicrobials. MATERIALS AND METHODS Seventeen healthy patients wearing a fixed orthodontic appliance (group 1) and six nonwearers (group 2, control group) were evaluated. The biofilm that formed around the orthodontic brackets was collected, and the samples were then plated in a chromogenic medium (chromIDT, bioMérieux). Colony-forming units (CFUs) were isolated and inoculated in blood-agar medium. Automated biochemical tests (VITEK 2, bioMérieux) were carried out to identify the genus and species of the microorganisms and the resistance provided by 43 drugs (37 antibacterial and 6 antifungal). RESULTS The most prevalent microbial genera identified in group 1 were Streptococcus (24.0%), Staphylococcus (20.0%), Enterobacter (12.0%), Geobacillus (12.0%), and Candida (12.0%), and the most frequent species were Enterobacter cloacae complex (13.6%) and Staphylococcus hominis (13.6%). In group 2, the most prevalent genera were Streptococcus (57.1%), Staphylococcus (14.2%), Sphingomonas (14.2%), and Enterobacter (14.2%). With regard to antimicrobial resistance, 14 of 19 (74%) isolated bacterial strains were found to be resistant to at least 1 of the tested antimicrobials. CONCLUSIONS The findings of the present study suggest that patients undergoing orthodontic treatment with fixed appliances have a more complex biofilm with a higher level of bacterial resistance.
Collapse
|
166
|
Reynoso A, Munson E. Surveillance of Wisconsin Organisms for Trends in Antimicrobial Resistance and Epidemiology (SWOTARE): 2018-2019 Report on Enterobacter cloacae and Klebsiella pneumoniae Clinical Isolates. Clin Med Res 2021; 19:123-131. [PMID: 34531269 PMCID: PMC8445663 DOI: 10.3121/cmr.2021.1588] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/14/2021] [Accepted: 04/22/2021] [Indexed: 01/21/2023]
Abstract
Objectives: Both Enterobacter cloacae and Klebsiella pneumoniae have been regarded as important opportunistic pathogens for humans. Recent data have described the spread of multi-resistant strains of these organisms. Development of novel resistance phenotypes may result in a reduction in anti-infective efficacy, therefore making patient treatment decisions challenging. The Surveillance of Wisconsin Organisms for Trends in Antimicrobial Resistance and Epidemiology (SWOTARE) program aims to combat this issue and improve antibiotic stewardship by monitoring antimicrobial resistance at a local level.Design: Multi-center laboratory surveillance, with testing at a single location utilizing standardized media and susceptibility testing protocolsMethods: In the years 2018 and 2019, a total of 591 clinically-significant E. cloacae and 668 clinically-significant K. pneumoniae isolates were collected through this initiative; limited demographic data were also supplied. Isolates were tested by broth microdilution procedures advocated by Clinical and Laboratory Standards Institute.Results: On a statewide level, both E. cloacae and K. pneumoniae demonstrated in vitro potency to carbapenem and aminoglycoside agents at rates exceeding 96%. K. pneumoniae isolates were generally more susceptible to cephem and monobactam agents than E. cloacae isolates; the converse was true for fluoroquinolone agents. Patterns of local antimicrobial resistance were revealed that were not apparent at the state level. E. cloacae isolates submitted from the Northcentral and Southeast regions demonstrated decreased susceptibility to five antimicrobial agents (notably third- and fourth-generation cephems) when compared to the state average. Isolates derived from males, older individuals, and urogenital sources exhibited decreased susceptibility to third- and fourth-generation cephem agents (P ≤ 0.047). With respect to K. pneumoniae, antimicrobial resistance phenotype was not a function of geography or gender. However, isolates emanating from older patients and the respiratory tract showed decreased susceptibility to ampicillin/sulbactam and cefazolin, respectively (P ≤ 0.019).Conclusions: Antimicrobial resistance surveillance at a local level provides utility to community/rural hospital clinicians, pharmacists, and infection control practitioners. With respect to E. cloacae, further surveillance efforts may be necessary in the Northcentral and Southeast regions of Wisconsin. Subanalysis of demographic data indicated cephem-resistance correlates that are not apparent at the statewide level.
Collapse
Affiliation(s)
- Alyssa Reynoso
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin USA
| | - Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin USA
- Wisconsin Clinical Laboratory Network Laboratory Technical Advisory Group, Madison, Wisconsin USA
| |
Collapse
|
167
|
Addablah AYA, Kakou-Ngazoa S, Akpa EE, M'Bourou Ndombi F, Adioumani E, Koudou A, Coulibaly N'Golo D, Kouame Sina M, Kouassi SK, Aoussi S, Dosso M. Investigation of Phages Infecting Escherichia coli Strains B and C, and Enterobacter cloacae in Sewage and Ebrié Lagoon, Côte d'Ivoire. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:104-111. [PMID: 36161244 PMCID: PMC9041496 DOI: 10.1089/phage.2020.0047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background: Bacteriophages are a promising biotechnological against bacterial pathogens. Currently, phage research is garnering interest in sub-Saharan countries as bacterial resistance to antibiotics becomes widespread. They are sought in all environments as they offer the possibility of a sustainable alternative to antibiotics. Materials and Methods: Altogether 30 water samples from urban sewage and environmental water were screened for the presence of bacteriophages able to infect Escherichia coli and Enterobacter cloacae. Their genomic diversity was determined by random amplification of polymorphic DNA (RAPD)-PCR fingerprinting. Results: We isolated 35 phages including 9 polyvalent phages that infect simultaneously E. coli and E. cloacae. This study allowed first isolation of E. cloacae-specific phages in Côte d'Ivoire. All phages were distinct based on their RAPD band patterns. Conclusions: Sewage systems of Yopougon and the environmental water of Ebrié lagoon were a rich source of phages. The phage collection could be useful for phage application in Côte d'Ivoire.
Collapse
Affiliation(s)
- Ameyo Yayra Audrey Addablah
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Laboratoire de Pharmacodynamie biochimique, Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire.,Address correspondence to: Ameyo Yayra Audrey Addablah, MS, Plateforme de Biologie Moléculaire, Département Technologie et Technique, Institut Pasteur de Côte d'Ivoire, Abidjan 01 BP 490, Côte d'Ivoire
| | - Solange Kakou-Ngazoa
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Address correspondence to: Solange Kakou-Ngazoa, PhD, Plateforme de Biologie Moléculaire, Département Technologie et Technique, Institut Pasteur de Côte d'Ivoire, Abidjan 01 BP 490, Côte d'Ivoire
| | - Eric Essoh Akpa
- Laboratoire de Pharmacodynamie biochimique, Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Fred M'Bourou Ndombi
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Emmanuella Adioumani
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire.,Laboratoire de Pharmacodynamie biochimique, Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Aristide Koudou
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - David Coulibaly N'Golo
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Mireille Kouame Sina
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Stephane Kan Kouassi
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Serge Aoussi
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Mireille Dosso
- Plateforme de Biologie Moléculaire, Département Technique et Technologie, Institut Pasteur de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
168
|
Xue Y, Hu M, Chen S, Hu A, Li S, Han H, Lu G, Zeng L, Zhou J. Enterobacter asburiae and Pantoea ananatis Causing Rice Bacterial Blight in China. PLANT DISEASE 2021; 105:2078-2088. [PMID: 33342235 DOI: 10.1094/pdis-10-20-2292-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rice bacterial blight is a devastating bacterial disease threatening rice yield all over the world and Xanthomonas oryzae pv. oryzae is traditionally believed to be the pathogen. In recent years, we have received diseased rice samples with symptoms of blighted leaves from Sichuan and Guangdong provinces, China. Pathogen isolation and classification identified two different enterobacteria as the causal agents, namely Enterobacter asburiae and Pantoea ananatis. Among them, E. asburiae was isolated from samples of both provinces, and P. ananatis was only isolated from the Sichuan samples. Different from rice foot rot pathogen Dickeya zeae EC1 and rice bacterial blight pathogen X. oryzae pv. oryzae PXO99A, strains SC1, RG1, and SC7 produced rare cell wall degrading enzymes (CWDEs) but more extrapolysaccharides (EPS). E. asburiae strains SC1 and RG1 produced bacteriostatic substances while P. ananatis strain SC7 produced none. Pathogenicity tests indicated that all of them infected monocotyledonous rice and banana seedlings, but not dicotyledonous potato, radish, or cabbage. Moreover, strain RG1 was most virulent, while strains SC1 and SC7 were similarly virulent on rice leaves, even though strain SC1 propagated significantly faster in rice leaf tissues than strain SC7. This study firstly discovered E. asburiae as a new pathogen of rice bacterial blight, and in some cases, P. ananatis could be a companion pathogen. Analysis on production of virulence factors suggested that both pathogens probably employ a different mechanism to infect hosts other than using cell wall degrading enzymes to break through host cell walls.
Collapse
Affiliation(s)
- Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Anqun Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shimao Li
- Agricultural Technology Service Centre of Daojiao Town, Dongguan 523170, China
| | - Haiya Han
- Dongguan Agricultural Technology Extension Management Office, Dongguan 523010, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lisha Zeng
- Dongguan Banana and Vegetable Research Institute, Dongguan 523061, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
169
|
Distribution and molecular characterization of ESBL, pAmpC β-lactamases, and non-β-lactam encoding genes in Enterobacteriaceae isolated from hospital wastewater in Eastern Cape Province, South Africa. PLoS One 2021; 16:e0254753. [PMID: 34288945 PMCID: PMC8294522 DOI: 10.1371/journal.pone.0254753] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/02/2021] [Indexed: 11/30/2022] Open
Abstract
Globally, there is an increasing occurrence of multidrug-resistant (MDR) Enterobacteriaceae with extended-spectrum β-lactamases (ESBLs) and/or plasmid-encoded AmpC (pAmpC) β-lactamases in clinical and environmental settings of significant concern. Therefore, we aimed to evaluate the occurrence of ESBL/pAmpC genetic determinants, and some essential non-β-lactam genetic determinants in the MDR phenotypic antimicrobial resistance in Enterobacteriaceae isolates recovered from hospital wastewater. We collected samples from two hospitals in Amathole and Chris Hani District Municipalities in the Eastern Cape Province, South Africa, within October and November 2017. Using the matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF), we identified a total of 44 presumptive Enterobacteriaceae isolates. From this, 31 were identified as the targeted Enterobacteriaceae members. Thirty-six percent of these belonged to Klebsiella oxytoca, while 29% were Klebsiella pneumoniae. The other identified isolates included Citrobacter freundii and Escherichia coli (10%), Enterobacter asburiae (6%), Enterobacter amnigenus, Enterobacter hormaechei, and Enterobacter kobei (3%). We established the antibiotic susceptibility profiles of these identified bacterial isolates against a panel of 18 selected antibiotics belonging to 11 classes were established following established guidelines by the Clinical and Laboratory Standard Institute. All the bacterial species exhibited resistance phenotypically against at least four antibiotic classes and were classified as MDR. Notably, all the bacterial species displayed resistance against cefotaxime, ampicillin, nalidixic acid, and trimethoprim-sulfamethoxazole. The generated multiple antibiotic resistance indices ranged between 0.5 to 1.0, with the highest value seen in one K. oxytoca isolated. Molecular characterization via the Polymerase Chain Reaction uncovered various ESBLs, pAmpCs, and other non-β-lactam encoding genes. Of the phenotypically resistant isolates screened for each class of antibiotics, the ESBLs detected were blaCTX-M group (including groups 1, 2, and 9) [51.6% (16/31)], blaTEM [32.3% (10/31)], blaOXA-1-like [19.4% (6/31)], blaSHV [12.9% (4/31)], blaPER [6.5% (2/31)], blaVEB [3.2% (1/31)], blaOXA-48-like and blaVIM [15.4% (2/13)], and blaIMP [7.7% (1/13)]. The pAmpC resistance determinants detected were blaCIT [12.9% (4/31)], blaFOX [9.7% (3/31)], blaEBC [6.5% (2/31)], and blaDHA [3.2% (1/31)]. The frequencies of the non-β-lactam genes detected were catII [79.2% (19/24)], tetA [46.7% (14/30)], sulI and sulII [35.5% (11/31)], tetB [23.3% (7/30)], aadA [12.9% (4/31)], tetC [10% (3/30)], and tetD [3.3% (1/30)]. These results indicate that hospital wastewater is laden with potentially pathogenic MDR Enterobacteriaceae with various antibiotic resistance genes that can be spread to humans throughout the food chain, provided the wastewaters are not properly treated before eventual discharge into the environment.
Collapse
|
170
|
Sangija F, Martin H, Matemu A. African nightshades (Solanum nigrum complex): The potential contribution to human nutrition and livelihoods in sub-Saharan Africa. Compr Rev Food Sci Food Saf 2021; 20:3284-3318. [PMID: 33938139 DOI: 10.1111/1541-4337.12756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Achieving zero hunger in sub-Saharan Africa (SSA) without minimizing postharvest losses of agricultural products is impossible. Therefore, a holistic approach is vital to end hunger, simultaneously improving food security, diversity, and livelihoods. This review focuses on the African nightshades (ANS) Solanum spp. contribution to improving food and nutrition security in SSA. Different parts of ANS are utilized as food and medicine; however, pests and diseases hinder ANS utilization. African nightshade is rich in micronutrients such as β-carotene, vitamins C and E, minerals (iron, calcium, and zinc), and dietary fiber. The leaves contain a high amount of nutrients than the berries. Proper utilization of ANS can contribute to ending hidden hunger, mainly in children and pregnant women. Literature shows that ANS contains antinutritional factors such as oxalate, phytate, nitrate, and alkaloids; however, their quantities are low to cause potential health effects. Several improved varieties with high yields, rich in nutrients, and low alkaloids have been developed in SSA. Various processing and preservation techniques such as cooking, drying, and fermentation are feasible techniques for value addition on ANS in SSA; moreover, most societies are yet to adopt them effectively. Furthermore, promoting value addition and commercialization of ANS is of importance and can create more jobs. Therefore, this review provides an overview of ANS production and challenges that hinder their utilization, possible solutions, and future research suggestions. This review concludes that ANS is an essential nutritious leafy vegetable for improving nutrition and livelihoods in SSA.
Collapse
Affiliation(s)
- Frank Sangija
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Haikael Martin
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | - Athanasia Matemu
- Department of Food Biotechnology and Nutritional Sciences (FBNS), Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| |
Collapse
|
171
|
Prevalence of enterotoxin genes and antibacterial susceptibility pattern of pathogenic bacteria isolated from traditionally preserved fish products of Sikkim, India. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
172
|
Antimicrobial and Antibiofilm Activity of the Probiotic Strain Streptococcus salivarius K12 against Oral Potential Pathogens. Antibiotics (Basel) 2021; 10:antibiotics10070793. [PMID: 34209988 PMCID: PMC8300812 DOI: 10.3390/antibiotics10070793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Oral probiotics are increasingly used in the harmonization of the oral microbiota in the prevention or therapy of various oral diseases. Investigation of the antimicrobial activity of the bacteriocinogenic strain Streptococcus salivarius K12 against oral pathogens shows promising results, not only in suppressing growth, but also in eliminating biofilm formation. Based on these findings, we decided to investigate the antimicrobial and antibiofilm activity of the neutralized cell-free supernatant (nCFS) of S. salivarius K12 at various concentrations against selected potential oral pathogens under in vitro conditions on polystyrene microtiter plates. The nCFS of S. salivarius K12 significantly reduced growth (p < 0.01) in Streptococcus mutans Clarke with increasing concentration from 15 to 60 mg/mL and also in Staphylococcus hominis 41/6 at a concentration of 60 mg/mL (p < 0.001). Biofilm formation significantly decreased (p < 0.001) in Schaalia odontolytica P10 at nCFS concentrations of 60 and 30 mg/mL. Biofilm inhibition (p < 0.001) was also observed in Enterobacter cloacae 4/2 at a concentration of 60 mg/mL. In Schaalia odontolytica P10 and Enterobacter cloacae 4/2, the nCFS had no effect on their growth.
Collapse
|
173
|
Roode GJ, Bütow KW, Naidoo S. Microbial contamination profile change over a 4-year period in nonoperated cleft soft palate. J Appl Microbiol 2021; 132:665-674. [PMID: 34180558 DOI: 10.1111/jam.15193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/16/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
AIMS Surgical site infection is a major concern in cleft soft palate. Knowledge of the type, number and antimicrobial resistance of pathogens present preoperatively contribute to treatment success. The aim of this study is to determine whether or not the microbial contamination (diversity) preoperatively has changed since 2015. METHODS AND RESULTS Swabs were taken from the surgical site in 103 consecutive patients who presented for primary repair of the soft palate cleft. These were sent for microscopy, culture and sensitivity testing. Swabs were taken before disinfecting the site. Results were tabled and compared with two previous studies from the same facility. Out of 103 patients, 100 patients showed positive cultures with 42 different pathogenic micro-organisms identified. Most dominant pathogen was Klebsiella pneumoniae, 45.6%, increased by 28% from the previous two studies, with 93.6% of these pathogens resistant to one or more antimicrobials. Most of the other identified pathogens showed an alarming increase in occurrence, with a wide resistance to antimicrobials. CONCLUSIONS The increase in number and diversity of microbial contamination as well as their resistance to antimicrobials is a real concern. Ways of preventing postoperative infection in a natural way need to be explored. SIGNIFICANCE Surgeons need to be aware of constant changes in micro-organisms.
Collapse
Affiliation(s)
| | - Kurt-Wilhelm Bütow
- Maxillo-Facial and Oral Surgical Practice, Life-Wilgers Hospital, Lynnwood Ridge, South Africa
| | - Sharan Naidoo
- Maxillo-Facial and Oral Surgical Practice, Mediclinic Midstream Hospital, Lyttelton, South Africa.,Department of Maxillofacial and Oral surgery, Facial Deformity Clinic, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
174
|
Chen J, Tian S, Nian H, Wang R, Li F, Jiang N, Chu Y. Carbapenem-resistant Enterobacter cloacae complex in a tertiary Hospital in Northeast China, 2010-2019. BMC Infect Dis 2021; 21:611. [PMID: 34174823 PMCID: PMC8235818 DOI: 10.1186/s12879-021-06250-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/27/2021] [Indexed: 12/03/2022] Open
Abstract
Background Carbapenem-resistant Enterobacter cloacae complex (CREC) is a new emerging threat to global public health. The objective of the study was to investigate the clinical characteristics and molecular epidemiology of CREC infections in the medical center of northeast China. Methods Twenty-nine patients were infected/colonized with CREC during a ten-year period (2010–2019) by WHONET analysis. Antibiotic susceptibilities were tested with VITEK 2 and micro broth dilution method (for polymyxin B and tigecycline). Carbapenemase encoding genes, β-lactamase genes, and seven housekeeping genes for MLST were amplified and sequenced for 18 cryopreserved CREC isolates. Maximum likelihood phylogenetic tree was built with the concentrated sequences to show the relatedness between the 18 isolates. Results There was a rapid increase in CREC detection rate during the ten-year period, reaching 8.11% in 2018 and 6.48% in 2019. The resistance rate of CREC isolates to imipenem and meropenem were 100.0 and 77.8%, however, they showed high sensitivity to tigecycline, polymyxin B and amikacin. The 30-day crude mortality of CREC infection was 17.4%, indicating that it may be a low-virulence bacterium. Furthermore, molecular epidemiology revealed that ST93 was the predominant sequence type followed by ST171 and ST145, with NDM-1 and NDM-5 as the main carbapenemase-encoding genes. Moreover, E. hormaechei subsp. steigerwaltii and E. hormaechei subsp. oharae were the main species, which showed different resistance patterns. Conclusion Rising detection rate of CREC was observed in a tertiary hospital, which showed heterogeneity in drug resistance patterns, resistance genes, and MLST types. Effective infection prevention and control measures should be taken to reduce the spread of CREC. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06250-0.
Collapse
Affiliation(s)
- Jingjing Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Sufei Tian
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Hua Nian
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ruixuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Fushun Li
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Ning Jiang
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China.,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China
| | - Yunzhuo Chu
- Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China. .,National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China. .,Labortory Medicine Innovation Unit, Chinese Academy of Medical Sciences, Shenyang, China.
| |
Collapse
|
175
|
Majewski P, Gutowska A, Sacha P, Schneiders T, Talalaj M, Majewska P, Zebrowska A, Ojdana D, Wieczorek P, Hauschild T, Kowalczuk O, Niklinski J, Radziwon P, Tryniszewska E. Expression of AraC/XylS stress response regulators in two distinct carbapenem-resistant Enterobacter cloacae ST89 biotypes. J Antimicrob Chemother 2021; 75:1146-1150. [PMID: 31960042 DOI: 10.1093/jac/dkz569] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 12/09/2019] [Accepted: 12/20/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The growing incidence of MDR Gram-negative bacteria is a rapidly emerging challenge in modern medicine. OBJECTIVES We sought to establish the role of intrinsic drug-resistance regulators in combination with specific genetic mutations in 11 Enterobacter cloacae isolates obtained from a single patient within a 7 week period. METHODS The molecular characterization of eight carbapenem-resistant and three carbapenem-susceptible E. cloacae ST89 isolates included expression-level analysis and WGS. Quantitative PCR included: (i) chromosomal cephalosporinase gene (ampC); (ii) membrane permeability factor genes, e.g. ompF, ompC, acrA, acrB and tolC; and (iii) intrinsic regulatory genes, e.g. ramA, ampR, rob, marA and soxS, which confer reductions in antibiotic susceptibility. RESULTS In this study we describe the influence of the alterations in membrane permeability (ompF and ompC levels), intrinsic regulatory genes (ramA, marA, soxS) and intrinsic chromosomal cephalosporinase AmpC on reductions in carbapenem susceptibility of E. cloacae clinical isolates. Interestingly, only the first isolate possessed the acquired VIM-4 carbapenemase, which has been lost in subsequent isolates. The remaining XDR E. cloacae ST89 isolates presented complex carbapenem-resistance pathways, which included perturbations in permeability of bacterial membranes mediated by overexpression of ramA, encoding an AraC/XylS global regulator. Moreover, susceptible isolates differed significantly from other isolates in terms of marA down-regulation and soxS up-regulation. CONCLUSIONS Molecular mechanisms of resistance among carbapenem-resistant E. cloacae included production of acquired VIM-4 carbapenemase, significant alterations in membrane permeability due to increased expression of ramA, encoding an AraC/XylS global regulator, and the overproduction of chromosomal AmpC cephalosporinase.
Collapse
Affiliation(s)
- Piotr Majewski
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Gutowska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Pawel Sacha
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | | | - Mariola Talalaj
- Department of Anaesthesiology and Intensive Care with Postoperative Unit, University Children's Clinical Hospital, Bialystok, Poland
| | | | | | - Dominika Ojdana
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Wieczorek
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Tomasz Hauschild
- Department of Microbiology, Institute of Biology, University of Bialystok, Bialystok, Poland
| | - Oksana Kowalczuk
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Jacek Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Radziwon
- Regional Centre for Transfusion Medicine, Bialystok, Poland.,Department of Hematology, Medical University of Bialystok, Bialystok, Poland
| | - Elzbieta Tryniszewska
- Department of Microbiological Diagnostics and Infectious Immunology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
176
|
Zhu Y, Liu W, Schwarz S, Wang C, Yang Q, Luan T, Wang L, Liu S, Zhang W. Characterization of a blaNDM-1-carrying IncHI5 plasmid from Enterobacter cloacae complex of food-producing animal origin. J Antimicrob Chemother 2021; 75:1140-1145. [PMID: 32016414 DOI: 10.1093/jac/dkaa010] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES To characterize an NDM-1-encoding multiresistance IncHI5 plasmid from Enterobacter cloacae complex of chicken origin. METHODS Carbapenemase genes were detected by PCR and Sanger sequencing. The MICs for the E. cloacae complex isolate and its transformant were determined by the agar dilution and broth microdilution methods. Conjugation and electrotransformation were performed to assess the horizontal transferability of the carbapenemase plasmid. Plasmid DNA was isolated from the transformant and fully sequenced using Illumina HiSeq and PacBio platforms. Plasmid stability was investigated by sequential passages on antibiotic-free medium. A circular intermediate was detected by inverse PCR and Sanger sequencing. RESULTS Plasmid pNDM-1-EC12 carried a conserved IncHI5 backbone and exhibited an MDR phenotype. All antimicrobial resistance genes were clustered in a single MDR region. Genetic environment analysis revealed that the blaNDM-1 gene was in a novel complex integron, In469. Based on sequence analysis, the blaNDM-1-carrying region was thought to be inserted by homologous recombination. Inverse PCR indicated that an ISCR1-mediated circular intermediate can be formed. Plasmid pNDM-1-EC12 was stably maintained both in the parental strain and the transformant without selective pressure. Comprehensive analysis of IncHI5-type plasmids suggested that they may become another key vehicle for rapid transmission of carbapenemase genes. CONCLUSIONS To the best of our knowledge, this is the first report of a fully sequenced IncHI5 plasmid recovered from an E. cloacae complex strain of food-producing animal origin. Co-occurrence of blaNDM-1 with genes encoding resistance to other antimicrobial agents on the same IncHI5 plasmid may result in the co-selection of blaNDM-1 and facilitates its persistence and rapid dissemination.
Collapse
Affiliation(s)
- Yao Zhu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wenyu Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Changzhen Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Qin Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tian Luan
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Lingli Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wanjiang Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
177
|
Malayil L, Chattopadhyay S, Mongodin EF, Sapkota AR. Coupled DNA-labeling and sequencing approach enables the detection of viable-but-non-culturable Vibrio spp. in irrigation water sources in the Chesapeake Bay watershed. ENVIRONMENTAL MICROBIOME 2021; 16:13. [PMID: 34158117 PMCID: PMC8218497 DOI: 10.1186/s40793-021-00382-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/01/2021] [Indexed: 06/01/2023]
Abstract
Nontraditional irrigation water sources (e.g., recycled water, brackish water) may harbor human pathogens, including Vibrio spp., that could be present in a viable-but-nonculturable (VBNC) state, stymieing current culture-based detection methods. To overcome this challenge, we coupled 5-bromo-2'-deoxyuridine (BrdU) labeling, enrichment techniques, and 16S rRNA sequencing to identify metabolically-active Vibrio spp. in nontraditional irrigation water (recycled water, pond water, non-tidal freshwater, and tidal brackish water). Our coupled BrdU-labeling and sequencing approach revealed the presence of metabolically-active Vibrio spp. at all sampling sites. Whereas, the culture-based method only detected vibrios at three of the four sites. We observed the presence of V. cholerae, V. vulnificus, and V. parahaemolyticus using both methods, while V. aesturianus and V. shilonii were detected only through our labeling/sequencing approach. Multiple other pathogens of concern to human health were also identified through our labeling/sequencing approach including P. shigelloides, B. cereus and E. cloacae. Most importantly, 16S rRNA sequencing of BrdU-labeled samples resulted in Vibrio spp. detection even when our culture-based methods resulted in negative detection. This suggests that our novel approach can effectively detect metabolically-active Vibrio spp. that may have been present in a VBNC state, refining our understanding of the prevalence of vibrios in nontraditional irrigation waters.
Collapse
Affiliation(s)
- Leena Malayil
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Suhana Chattopadhyay
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Amy R Sapkota
- Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD, USA.
| |
Collapse
|
178
|
D'Souza R, Nguyen LP, Pinto NA, Lee H, Vu TN, Kim H, Cho HS, Yong D. Role of AmpG in the resistance to β-lactam agents, including cephalosporins and carbapenems: candidate for a novel antimicrobial target. Ann Clin Microbiol Antimicrob 2021; 20:45. [PMID: 34134705 PMCID: PMC8207665 DOI: 10.1186/s12941-021-00446-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A complex cascade of genes, enzymes, and transcription factors regulates AmpC β-lactamase overexpression. We investigated the network of AmpC β-lactamase overexpression in Klebsiella aerogenes and identified the role of AmpG in resistance to β-lactam agents, including cephalosporins and carbapenems. METHODS A transposon mutant library was created for carbapenem-resistant K. aerogenes YMC2008-M09-943034 (KE-Y1) to screen for candidates with increased susceptibility to carbapenems, which identified the susceptible mutant derivatives KE-Y3 and KE-Y6. All the strains were subjected to highly contiguous de novo assemblies using PacBio sequencing to investigate the loss of resistance due to transposon insertion. Complementation and knock-out experiments using lambda Red-mediated homologous recombinase and CRISPR-Cas9 were performed to confirm the role of gene of interest. RESULTS In-depth analysis of KE-Y3 and KE-Y6 revealed the insertion of a transposon at six positions in each strain, at which truncation of the AmpG permease gene was common in both. The disruption of the AmpG permease leads to carbapenem susceptibility, which was further confirmed by complementation. We generated an AmpG permease gene knockout using lambda Red-mediated recombineering in K. aerogenes KE-Y1 and a CRISPR-Cas9-mediated gene knockout in multidrug-resistant Klebsiella pneumoniae-YMC/2013/D to confer carbapenem susceptibility. CONCLUSIONS These findings suggest that inhibition of the AmpG is a potential strategy to increase the efficacy of β-lactam agents against Klebsiella aerogenes.
Collapse
Affiliation(s)
- Roshan D'Souza
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,J. Craig Venter Institute, Rockville, MD, USA
| | - Le Phuong Nguyen
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Brain Korea 21+ Project for Medical Science, Yonsei University, Seoul, Korea
| | - Naina A Pinto
- Brain Korea 21+ Project for Medical Science, Yonsei University, Seoul, Korea
| | - Hyunsook Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Brain Korea 21+ Project for Medical Science, Yonsei University, Seoul, Korea
| | - Thao Nguyen Vu
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.,Brain Korea 21+ Project for Medical Science, Yonsei University, Seoul, Korea
| | - Hoyoung Kim
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Hyun Soo Cho
- Department of Systems Biology, Yonsei University, Seoul, Korea
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Korea.
| |
Collapse
|
179
|
Meade E, Slattery MA, Garvey M. Biocidal Resistance in Clinically Relevant Microbial Species: A Major Public Health Risk. Pathogens 2021; 10:598. [PMID: 34068912 PMCID: PMC8156472 DOI: 10.3390/pathogens10050598] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance is one of the greatest dangers to public health of the 21st century, threatening the treatment and prevention of infectious diseases globally. Disinfection, the elimination of microbial species via the application of biocidal chemicals, is essential to control infectious diseases and safeguard animal and human health. In an era of antimicrobial resistance and emerging disease, the effective application of biocidal control measures is vital to protect public health. The COVID-19 pandemic is an example of the increasing demand for effective biocidal solutions to reduce and eliminate disease transmission. However, there is increasing recognition into the relationship between biocide use and the proliferation of Antimicrobial Resistance species, particularly multidrug-resistant pathogens. The One Health approach and WHO action plan to combat AMR require active surveillance and monitoring of AMR species; however, biocidal resistance is often overlooked. ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens and numerous fungal species have demonstrated drug and biocidal resistance where increased patient mortality is a risk. Currently, there is a lack of information on the impact of biocide application on environmental habitats and ecosystems. Undoubtedly, the excessive application of disinfectants and AMR will merge to result in secondary disasters relating to soil infertility, loss of biodiversity and destruction of ecosystems.
Collapse
Affiliation(s)
- Elaine Meade
- Department of Life Science, Sligo Institute of Technology, Sligo, Ireland;
| | | | - Mary Garvey
- Department of Life Science, Sligo Institute of Technology, Sligo, Ireland;
| |
Collapse
|
180
|
Current antibiotic resistance patterns of rare uropathogens: survey from Central European Urology Department 2011-2019. BMC Urol 2021; 21:61. [PMID: 33849512 PMCID: PMC8042353 DOI: 10.1186/s12894-021-00821-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/24/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND While the resistance rates of commonly detected uropathogens are well described, those of less frequent Gram-negative uropathogenic bacteria have seldom been reported. The aim of this study was to examine the resistance rates of less frequent uropathogenic Gram-negatives in a population of patients treated in a Department of Urology of a tertiary referral centre in Central Europe over a period of 9 years. METHODS Data on all positive urine samples from urological in- and out-patients were extracted form the Department of Clinical Microbiology database from 2011 to 2019. Numbers of susceptible and resistant isolates per year were calculated for these uropathogens: Acinetobacter spp. (n = 74), Citrobacter spp. (n = 60), Enterobacter spp. (n = 250), Morganella morganii (n = 194), Providencia spp. (n = 53), Serratia spp. (n = 82) and Stenotrophomonas maltophilia (n = 27). Antimicrobial agents selected for the survey included: ampicillin, amoxicillin/clavulanic acid, piperacillin/tazobactam; cefuroxime, cefotaxime, ceftazidime and cefepime; ciprofloxacin and ofloxacin; gentamicin and amikacin; ertapenem, meropenem and imipenem; trimethoprim-sulfamethoxazole (co-trimoxazole), nitrofurantoin and colistin. RESULTS Penicillin derivatives have generally poor effect except piperacillin/tazobactam. Cefuroxime is not efficient unlike cefotaxime (except against Acinetobacter spp. and S. maltophilia). Susceptibility to fluoroquinolones is limited. Amikacin is somewhat more efficient than gentamicine but susceptibilities for both safely exceed 80%. Nitrofurantoin shows virtually no efficiency. Cotrimoxazole acts well against Citrobacter spp., Serratia spp. and it is the treatment of choice for S. maltophilia UTIs. Among carbapenems, ertapenem was less efficient than meropenem and imipenem except for S. maltophilia whose isolates were mostly not suceptible to any carbapenems. CONCLUSIONS Uropathogenic microorganisms covered in this report are noteworthy for their frequently multi-drug resistant phenotypes. Knowledge of resistance patterns helps clinicians choose the right empirical antibiotic treatment when the taxonomical assignment of the isolate is known but sensitivity results are pending.
Collapse
|
181
|
Habibinava F, Zolfaghari MR, Zargar M, Shahrbabak SS, Soleimani M. vB-Ea-5: a lytic bacteriophage against multi-drug-resistant Enterobacter aerogenes. IRANIAN JOURNAL OF MICROBIOLOGY 2021; 13:225-234. [PMID: 34540158 PMCID: PMC8408028 DOI: 10.18502/ijm.v13i2.5984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
BACKGROUND AND OBJECTIVES Multi-drug-resistant Enterobacter aerogenes is associated with various infectious diseases that cannot be easily treated by antibiotics. However, bacteriophages have potential therapeutic applications in the control of multi-drug-resistant bacteria. In this study, we aimed to isolate and characterize of a lytic bacteriophage that can lyse specifically the multi-drug-resistant (MDR) E. aerogenes. MATERIALS AND METHODS Lytic bacteriophage was isolated from Qaem hospital wastewater and characterized morphologically and genetically. Next-generation sequencing was used to complete genome analysis of the isolated bacteriophage. RESULTS Based on the transmission electron microscopy feature, the isolated bacteriophage (vB-Ea-5) belongs to the family Myoviridae. vB-Ea-5 had a latent period of 25 minutes, a burst size of 13 PFU/ml, and a burst time of 40 min. Genome sequencing revealed that vB-Ea-5 has a 135324 bp genome with 41.41% GC content. The vB-Ea-5 genome codes 212 ORFs 90 of which were categorized into several functional classes such as DNA replication and modification, transcriptional regulation, packaging, structural proteins, and a host lysis protein (Holin). No antibiotic resistance and toxin genes were detected in the genome. SDS-PAGE of vB-Ea-5 proteins exhibited three major and four minor bands with a molecular weight ranging from 18 to 50 kD. CONCLUSION Our study suggests vB-Ea-5 as a potential candidate for phage therapy against MDR E. aerogenes infections.
Collapse
Affiliation(s)
- Fatemeh Habibinava
- Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohammad Reza Zolfaghari
- Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Mohsen Zargar
- Department of Microbiology, Faculty of Basic Sciences, Qom Branch, Islamic Azad University, Qom, Iran
| | - Salehe Sabouri Shahrbabak
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Soleimani
- Department of Microbiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Infectious Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
182
|
Msomi NN, Padayachee T, Nzuza N, Syed PR, Kryś JD, Chen W, Gront D, Nelson DR, Syed K. In Silico Analysis of P450s and Their Role in Secondary Metabolism in the Bacterial Class Gammaproteobacteria. Molecules 2021; 26:1538. [PMID: 33799696 PMCID: PMC7998510 DOI: 10.3390/molecules26061538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/21/2022] Open
Abstract
The impact of lifestyle on shaping the genome content of an organism is a well-known phenomenon and cytochrome P450 enzymes (CYPs/P450s), heme-thiolate proteins that are ubiquitously present in organisms, are no exception. Recent studies focusing on a few bacterial species such as Streptomyces, Mycobacterium, Cyanobacteria and Firmicutes revealed that the impact of lifestyle affected the P450 repertoire in these species. However, this phenomenon needs to be understood in other bacterial species. We therefore performed genome data mining, annotation, phylogenetic analysis of P450s and their role in secondary metabolism in the bacterial class Gammaproteobacteria. Genome-wide data mining for P450s in 1261 Gammaproteobacterial species belonging to 161 genera revealed that only 169 species belonging to 41 genera have P450s. A total of 277 P450s found in 169 species grouped into 84 P450 families and 105 P450 subfamilies, where 38 new P450 families were found. Only 18% of P450s were found to be involved in secondary metabolism in Gammaproteobacterial species, as observed in Firmicutes as well. The pathogenic or commensal lifestyle of Gammaproteobacterial species influences them to such an extent that they have the lowest number of P450s compared to other bacterial species, indicating the impact of lifestyle on shaping the P450 repertoire. This study is the first report on comprehensive analysis of P450s in Gammaproteobacteria.
Collapse
Affiliation(s)
- Ntombizethu Nokuphiwa Msomi
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Tiara Padayachee
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Nomfundo Nzuza
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| | - Puleng Rosinah Syed
- Department of Pharmaceutical Chemistry, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Justyna Dorota Kryś
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - Wanping Chen
- Department of Molecular Microbiology and Genetics, University of Göttingen, 37077 Göttingen, Germany;
| | - Dominik Gront
- Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland;
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Khajamohiddin Syed
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa; (N.N.M.); (T.P.); (N.N.)
| |
Collapse
|
183
|
Beyond four decades of Elaeidobius kamerunicus Faust (Coleoptera: Curculionidae) in the Malaysian oil palm industry: a review. JOURNAL OF TROPICAL ECOLOGY 2021. [DOI: 10.1017/s026646742000022x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
AbstractOil palm (Elaeis guineensis Jacq) is an economically important crop in South-east Asia, especially in Malaysia and Indonesia. In Malaysia, oil palm is the most profitable commodity in the agriculture sector. The future of oil palm lies in obtaining a higher yield that is aligned and directed towards achieving the Sustainable Development Goals (SDG) by 2030. Elaeidobius kamerunicus was introduced into Malaysia during the late 1980s to boost the production of oil palm fruit bunches. Almost 40 years since the introduction of E. kamerunicus, significant improvements have been witnessed in the increase of oil palm yield. Nevertheless, the current concern in the oil palm sector is regarding the decreasing of fruit set that may be affected by E. kamerunicus. The weevil population plays a crucial factor in the pollination of oil palm. Several factors had been reported to reduce the weevil population such as natural enemies, interaction with local insects, pesticides, climate and male inflorescence. These factors have been addressed in this article based on various studies conducted since the first investigation in Cameroon by Syed in 1977. The role of the pollinator in terms of its biology, behaviour and pollination mechanism is also described in this article, together with the population management of the weevils. This review article will provide a summary of the current state of Elaeidobius kamerunicus in Malaysia and other neighbouring oil palm-producing countries.
Collapse
|
184
|
Pan F, Xu Q, Zhang H. Emergence of NDM-5 Producing Carbapenem-Resistant Klebsiella aerogenes in a Pediatric Hospital in Shanghai, China. Front Public Health 2021; 9:621527. [PMID: 33718321 PMCID: PMC7947282 DOI: 10.3389/fpubh.2021.621527] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/03/2021] [Indexed: 12/24/2022] Open
Abstract
Background: Carbapenem-resistant Klebsiella aerogenes (CRKA) has posed a serious threat for clinical anti-infective therapy. However, the molecular characteristics of CRKA in Shanghai are rarely reported. Objective: This study aimed to investigate the resistance profiles, dissemination mechanism, and molecular characteristics of CRKA strains isolated from children in a pediatric hospital, Shanghai. Method: Fifty CRKA isolates were collected in 2019. Antimicrobial susceptibility of the strains was determined by broth microdilution method. The β-lactamases and outer membrane porin genes were characterized by polymerase chain reaction (PCR). Conjugation experiments were performed to determine the transferability of the plasmids. The plasmids were typed based on their incompatibility group using the PCR-based replicon typing method. Multilocus sequence typing (MLST) and enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR) were performed for the genetic relationship. Results: All CRKA strains showed high level of resistance to cephalosporins and carbapenems, but still susceptible to aminoglycosides, colistin, and tigecycline. Forty five of fifty isolates carried blaNDM−5 genes (45/50, 90%), alongside with other β-Lactamase genes including blaCTX−M−1, blaTEM−1, and blaSHV−11 being detected. Loss of ompK35 and ompK36 genes were observed in 14% (7/50) and 28% (14/50), respectively, with 5 isolates lacking both ompK35 and ompK36. MLST analysis demonstrated that the majority of isolates belonged to ST4 (47/50, 94%) and ERIC-PCR fingerprinting was performed to identify NDM-5-producing isolates with approximately or more than 80% similarity levels. Plasmids carrying blaNDM−5 were successfully transferred to the E. coli recipient and plasmid typing showed that IncX3 were the prevalent among CRKA isolates. Conclusions: Our finding revealed the emergence of NDM-5 producing CRKA belonging to ST4 among children in Shanghai. Further attention should be paid to control the horizontal spread of the Class B carbapenemases like NDM in children.
Collapse
Affiliation(s)
- Fen Pan
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Qi Xu
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Hong Zhang
- Department of Clinical Laboratory, Shanghai Children's Hospital, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
185
|
|
186
|
Blaustein RA, Michelitsch LM, Glawe AJ, Lee H, Huttelmaier S, Hellgeth N, Ben Maamar S, Hartmann EM. Toothbrush microbiomes feature a meeting ground for human oral and environmental microbiota. MICROBIOME 2021; 9:32. [PMID: 33517907 PMCID: PMC7849112 DOI: 10.1186/s40168-020-00983-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 12/16/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND While indoor microbiomes impact our health and well-being, much remains unknown about taxonomic and functional transitions that occur in human-derived microbial communities once they are transferred away from human hosts. Toothbrushes are a model to investigate the potential response of oral-derived microbiota to conditions of the built environment. Here, we characterize metagenomes of toothbrushes from 34 subjects to define the toothbrush microbiome and resistome and possible influential factors. RESULTS Toothbrush microbiomes often comprised a dominant subset of human oral taxa and less abundant or site-specific environmental strains. Although toothbrushes contained lower taxonomic diversity than oral-associated counterparts (determined by comparison with the Human Microbiome Project), they had relatively broader antimicrobial resistance gene (ARG) profiles. Toothbrush resistomes were enriched with a variety of ARGs, notably those conferring multidrug efflux and putative resistance to triclosan, which were primarily attributable to versatile environmental taxa. Toothbrush microbial communities and resistomes correlated with a variety of factors linked to personal health, dental hygiene, and bathroom features. CONCLUSIONS Selective pressures in the built environment may shape the dynamic mixture of human (primarily oral-associated) and environmental microbiota that encounter each other on toothbrushes. Harboring a microbial diversity and resistome distinct from human-associated counterparts suggests toothbrushes could potentially serve as a reservoir that may enable the transfer of ARGs. Video abstract.
Collapse
Affiliation(s)
- Ryan A. Blaustein
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | | | - Adam J. Glawe
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Hansung Lee
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Nancy Hellgeth
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Sarah Ben Maamar
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL USA
| |
Collapse
|
187
|
The Alteration of Intestinal Microbiota Profile and Immune Response in Epinephelus coioides during Pathogen Infection. Life (Basel) 2021; 11:life11020099. [PMID: 33525589 PMCID: PMC7912457 DOI: 10.3390/life11020099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Epinephelus coioides, or grouper, is a high economic value fish species that plays an important role in the aquaculture industry in Asia. However, both viral and bacterial diseases have threatened grouper for many years, especially nervous necrosis virus, grouper iridovirus and Vibrio harveyi, which have caused a bottleneck in the grouper industry. Currently, intestinal microbiota can provide novel insights into the pathogenesis-related factors involved in pathogen infection. Hence, we investigated the comparison of intestinal microbiota communities in control group and pathogen-infected grouper through high-throughput sequencing of the 16S rRNA gene. Our results showed that microbial diversity was decreased, whereas microbial richness was increased during pathogen infection. The individuals in each group were distributed distinctly on the PLSDA diagram, especially the GIV group. Proteobacteria and Firmicutes were the most abundant bacterial phyla in all groups. Interestingly, beneficial genera, Faecalibacterium and Bifidobacterium, predominated in the intestines of the control group. In contrast, the intestines of pathogen-infected grouper had higher levels of harmful genera such as Sphingomonas, Atopostipes, Staphylococcus and Acinetobacter. Additionally, we investigated the expression levels of innate and adaptive immune-related genes after viral and bacterial infection. The results revealed that immunoglobulin T and proinflammatory cytokine levels in the intestine increased after pathogen infection. Through these unique bacterial compositions in diseased and uninfected fish, we could establish a novel therapeutic approach and bacterial marker for preventing and controlling these diseases.
Collapse
|
188
|
Bonnin RA, Girlich D, Jousset AB, Emeraud C, Creton E, Gauthier L, Jové T, Dortet L, Naas T. Genomic analysis of VIM-2-producing Enterobacter hormaechei subsp. steigerwaltii. Int J Antimicrob Agents 2021; 57:106285. [PMID: 33493673 DOI: 10.1016/j.ijantimicag.2021.106285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 12/24/2020] [Accepted: 01/03/2021] [Indexed: 11/15/2022]
Abstract
Carbapenemase-producing Enterobacterales (CPE) is a major public-health concern. Here we describe the occurrence of blaVIM-2 in three isolates of Enterobacter hormaechei subsp. steigerwaltii. The blaVIM-2 gene was part of a class II transposon Tn1332 and was embedded in a remnant of a class 1 integron. Tn1332 was carried by a large, conjugative, non-typeable plasmid. The three isolates belonged to sequence type 90 (ST90). Two isolates (90H2 and 90H3) were highly related [<10 single nucleotide polymorphisms (SNPs)], whereas isolate 104D2 exhibited more than 50 SNPs and Tn1332 was inserted in a different place in the plasmid. Another IncHI-type plasmid carrying the extended-spectrum β-lactamase (ESBL) gene blaCTX-M-15 was identified in 90H2 and 90H3. Among the three isolates, isolate 104D2 was negative for detection of carbapenemase activity using the biochemical Carba NP test, despite the presence of Tn1332 on the same plasmid. Mutants of 104D2 with higher minimum inhibitory concentrations (MICs) for carbapenems were obtained and one mutant (m104D2) was analysed. In contrast to 104D2, mutant m104D2 gave a positive Carba NP test. The mutant possessed two copies of Tn1332 per cell and a nonsense mutation in WecA, an enzyme involved in enterobacterial common antigen and peptidoglycan intermediate biosynthesis. This study describes the first occurrence of Tn1332 in Enterobacterales and the phenotypic diversity of VIM-2-producing E. hormaechei.
Collapse
Affiliation(s)
- Rémy A Bonnin
- Team Resist, UMR-1184 (INSERM - Université Paris-Saclay - CEA), LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; EERA 'Evolution and Ecology of Resistance to Antibiotics' Unit, (Institut Pasteur - APHP - Université Paris Saclay), Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance 'Carbapenemase-producing Enterobacteriaceae', Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Delphine Girlich
- Team Resist, UMR-1184 (INSERM - Université Paris-Saclay - CEA), LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; EERA 'Evolution and Ecology of Resistance to Antibiotics' Unit, (Institut Pasteur - APHP - Université Paris Saclay), Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance 'Carbapenemase-producing Enterobacteriaceae', Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Agnès B Jousset
- Team Resist, UMR-1184 (INSERM - Université Paris-Saclay - CEA), LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; EERA 'Evolution and Ecology of Resistance to Antibiotics' Unit, (Institut Pasteur - APHP - Université Paris Saclay), Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance 'Carbapenemase-producing Enterobacteriaceae', Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Cecile Emeraud
- Team Resist, UMR-1184 (INSERM - Université Paris-Saclay - CEA), LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; EERA 'Evolution and Ecology of Resistance to Antibiotics' Unit, (Institut Pasteur - APHP - Université Paris Saclay), Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance 'Carbapenemase-producing Enterobacteriaceae', Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Elodie Creton
- Team Resist, UMR-1184 (INSERM - Université Paris-Saclay - CEA), LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance 'Carbapenemase-producing Enterobacteriaceae', Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Lauraine Gauthier
- Team Resist, UMR-1184 (INSERM - Université Paris-Saclay - CEA), LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; EERA 'Evolution and Ecology of Resistance to Antibiotics' Unit, (Institut Pasteur - APHP - Université Paris Saclay), Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance 'Carbapenemase-producing Enterobacteriaceae', Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, University of Limoges, Limoges, France
| | - Laurent Dortet
- Team Resist, UMR-1184 (INSERM - Université Paris-Saclay - CEA), LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; EERA 'Evolution and Ecology of Resistance to Antibiotics' Unit, (Institut Pasteur - APHP - Université Paris Saclay), Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance 'Carbapenemase-producing Enterobacteriaceae', Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
| | - Thierry Naas
- Team Resist, UMR-1184 (INSERM - Université Paris-Saclay - CEA), LabEx Lermit, Faculty of Medicine, Le Kremlin-Bicêtre, France; EERA 'Evolution and Ecology of Resistance to Antibiotics' Unit, (Institut Pasteur - APHP - Université Paris Saclay), Le Kremlin-Bicêtre, France; Associated French National Reference Center for Antibiotic Resistance 'Carbapenemase-producing Enterobacteriaceae', Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, Le Kremlin-Bicêtre, France.
| |
Collapse
|
189
|
Characterization and proteomic analysis of outer membrane vesicles from a commensal microbe, Enterobacter cloacae. J Proteomics 2021; 231:103994. [PMID: 33007464 DOI: 10.1016/j.jprot.2020.103994] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
Outer membrane vesicles (OMVs) are membrane-enclosed spherical entities released by gram-negative bacteria and are important for bacterial survival under stress conditions. There have been numerous studies on OMVs released by gram-negative pathogenic bacteria, but an understanding of the functions and characteristics of the OMVs produced by commensal microbes is still lacking. Enterobacter cloacae is a gram-negative commensal bacterium present in the human gut microbiome, but this organism can also function as an opportunistic pathogen. Understanding the OMV-mediated communication route between bacteria-bacteria or bacteria-host is essential for the determination of the biological functions of the commensal bacterium in the gut and delineating between benign and virulent characteristics. In this study, we have described a proteome of E. cloacae OMVs, which are membrane vesicles in a size range of 20-300 nm. Proteomic analysis showed the presence of membrane-bound proteins, including transporters, receptors, signaling molecules, and protein channels. The physical and proteomic analyses also indicate this bacterium uses two mechanisms for OMV production. This study is one of the few existing descriptions of the proteomic profile of OMVs generated by a commensal Proteobacteria, and the first report of OMVs produced by E. cloacae. SIGNIFICANCE: This study prioritizes the importance of understanding the vesicular proteome of the human commensal bacterium, Enterobacter cloacae. We demonstrate for the first time that the gram-negative bacterium E. cloacae ATCC 13047 produces outer membrane vesicles (OMVs). The proteomic analysis showed enrichment of membrane-bound proteins in these vesicles. Understanding the cargo proteins of OMVs will help in exploring the physiological and functional role of these vesicles in the human microbiome and how they assist in the conversion of a bacterium from commensal to pathogen under certain conditions. While EM images reveal vesicles budding from the bacterial surface, the presence of cytoplasmic proteins and genomic DNA within the OMVs indicate that explosive cell lysis is an additional mechanism of biogenesis for these OMVs along with outer membrane blebbing. This research encourages future work on characterizing membrane vesicles produced by commensal bacterial and investigating their role in cell to cell communication.
Collapse
|
190
|
Chakkyarath V, Shanmugam A, Natarajan J. Prioritization of potential drug targets and antigenic vaccine candidates against Klebsiella aerogenes using the computational subtractive proteome-driven approach. JOURNAL OF PROTEINS AND PROTEOMICS 2021; 12:201-211. [PMID: 34305354 PMCID: PMC8284688 DOI: 10.1007/s42485-021-00068-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/14/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023]
Abstract
Klebsiella aerogenes is a multidrug-resistant Gram-negative bacterium that causes nosocomial infections. The organism showed resistance to most of the conventional antibiotics available. Because of the high resistance of the species, the treatment of K. aerogenes is difficult. These species are resistant to third-generation cephalosporins due to the production of chromosomal beta-lactams with cephalosporin activity. The lack of better treatment and the development of therapeutic resistance in hospitals hinders better/new broad-spectrum-based treatment against this pathogen. This study identifies potential drug targets/vaccine candidates through a computational subtractive proteome-driven approach. This method is used to predict proteins that are not homologous to humans and human symbiotic intestinal flora. The resultant proteome of K. aerogenes was further searched for proteins, which are essential, virulent, and determinants of antibiotic/drug resistance. Subsequently, their druggability properties were also studied. The data set was reduced based on its presence in the pathogen-specific metabolic pathways. The subtractive proteome analysis predicted 13 proteins as potential drug targets for K. aerogenes. Furthermore, these target proteins were annotated based on their spectrum of activity, cellular localization, and antigenicity properties, which ensured that they are potent candidates for broad-spectrum antibiotic and vaccine design. The results open up new opportunities for designing and manufacturing powerful antigenic vaccines against K. aerogenes and the detection and release of new and active drugs against K. aerogenes without altering the gut microbiome. Supplementary Information The online version contains supplementary material available at 10.1007/s42485-021-00068-9.
Collapse
Affiliation(s)
- Vijina Chakkyarath
- grid.411677.20000 0000 8735 2850Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046 India
| | - Anusuya Shanmugam
- grid.444708.b0000 0004 1799 6895Department of Pharmaceutical Engineering, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamil Nadu 636308 India
| | - Jeyakumar Natarajan
- grid.411677.20000 0000 8735 2850Data Mining and Text Mining Laboratory, Department of Bioinformatics, Bharathiar University, Coimbatore, 641046 India
| |
Collapse
|
191
|
Chronic Rhinosinusitis: MALDI-TOF Mass Spectrometry Microbiological Diagnosis and Electron Microscopy Analysis; Experience of the 2nd Otorhinolaryngology Clinic of Cluj-Napoca, Romania. J Clin Med 2020; 9:jcm9123973. [PMID: 33302509 PMCID: PMC7763976 DOI: 10.3390/jcm9123973] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Chronic rhinosinusitis (CRS) represents a wide range of infectious-inflammatory processes affecting, simultaneously, the nose and paranasal sinuses mucosa. The paper presents outcomes of the investigation of CRS microbiological characteristics in a group of 32 patients. (2) Methods: The purulent samples were collected during functional endoscopic sinus surgery. Agar plates were incubated and examined. All types of colonies were identified using Matrix-Assisted Laser Desorption - Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF MS). For scanning electron microscopy, samples were fixed and sputter-coated with 10 nm gold and analyzed using a scanning electron microscope. For transmission electron microscopy, samples were fixed, postfixed, and dehydrated. After polymerization, ultrathin sections were collected on carbon coated copper grids and analyzed with Jeol JEM1010 TEM. (3) Results: Positive microbiological diagnosis was obtained in 62.5% of cases. The most frequent species found are Staphylococcus aureus and Streptococcus constellatus subsp. pharyngis. Corynebacterium aurimucosum and Eggerthia catenaformis were unreported species in CRS until the present. Biofilm was evidenced in 43.7% of sinus mucosa samples. Ciliary disorientation, atrophy, and no ciliated cells were also identified. (4) Conclusion: The microbial factor—pathogen or opportunistic—is one of the most important pathological links in chronic rhinosinusitis. MALDI-TOF MS allows easily and quickly identification of germs.
Collapse
|
192
|
Ngan WY, Rao S, Chan LC, Sekoai PT, Pu Y, Yao Y, Fung AHY, Habimana O. Impacts of Wet Market Modernization Levels and Hygiene Practices on the Microbiome and Microbial Safety of Wooden Cutting Boards in Hong Kong. Microorganisms 2020; 8:E1941. [PMID: 33297499 PMCID: PMC7762345 DOI: 10.3390/microorganisms8121941] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
Accessing food through wet markets is a common global daily occurrence, where fresh meat can be purchased to support an urbanizing world population. Similar to the wet markets in many other metropolitan cities in Asia, Hong Kong wet markets vary and are characterized by differing hygiene routines and access to essential modern technologies. The lack of risk assessments of food contact surfaces in these markets has led to substantial gaps in food safety knowledge and information that could help improve and maintain public health. Microbial profiling analyses were conducted on cutting boards that had been used to process pork, poultry, and seafood at 11 different wet markets. The markets differed in hygiene protocols and access to modern facilities. Irrespective of whether wet markets have access of modern infrastructure, the hygiene practices were largely found to be inefficient based on the prevalence of bacterial species typically associated with foodborne pathogens such as Campylobacter fetus, Clostridium perfringens, Staphylococcus aureus, and Vibrio parahaemolyticus; indicator organisms such as Escherichia coli; as well as nonfoodborne pathogenic bacterial species potentially associated with nosocomial infections, such as Klebsiella pneumoniae and Enterobacter cloacae. Other Vibrio species, V. parahaemolyticus and V. vulnificus, typically associated with contaminated raw or undercooked seafood with the potential to cause illness in humans, were also found on wooden cutting boards. This study indicated that the hygienic practices used in Hong Kong wet markets are not sufficient for preventing the establishment of spoilage or pathogenic organisms. This study serves as a basis to review current hygiene practices in wet markets and provides a framework to reassess existing safety protocols.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Olivier Habimana
- The School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; (W.Y.N.); (S.R.); (L.C.C.); (P.T.S.); (Y.P.); (Y.Y.); (A.H.Y.F.)
| |
Collapse
|
193
|
Fadare FT, Adefisoye MA, Okoh AI. Occurrence, identification, and antibiogram signatures of selected Enterobacteriaceae from Tsomo and Tyhume rivers in the Eastern Cape Province, Republic of South Africa. PLoS One 2020; 15:e0238084. [PMID: 33284819 PMCID: PMC7721149 DOI: 10.1371/journal.pone.0238084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/23/2020] [Indexed: 12/19/2022] Open
Abstract
The increasing occurrence of multidrug-resistant Enterobacteriaceae in clinical and environmental settings has been seen globally as a complex public health challenge, mostly in the developing nations where they significantly impact freshwater used for a variety of domestic purposes and irrigation. This paper detail the occurrence and antibiogram signatures of the Enterobacteriaceae community in Tsomo and Tyhume rivers within the Eastern Cape Province, the Republic of South Africa, using standard methods. The average distribution of the presumptive Enterobacteriaceae in the rivers ranged from 1 × 102 CFU/100ml to 1.95 × 104 CFU/100ml. We confirmed 56 (70.8%) out of 79 presumptive Enterobacteriaceae isolated being species within the family Enterobacteriaceae through the Matrix-Assisted Laser Desorption Ionization Time of Flight technique. Citrobacter-, Enterobacter-, Klebsiella species, and Escherichia coli were selected (n = 40) due to their pathogenic potentials for antibiogram profiling. The results of the antibiotic susceptibility testing gave a revelation that all the isolates were phenotypically multidrug-resistant. The resistance against ampicillin (95%), tetracycline and doxycycline (88%), and trimethoprim-sulfamethoxazole (85%) antibiotics were most prevalent. The Multiple Antibiotic Resistance indices stretched from 0.22 to 0.94, with the highest index observed in a C. freundii isolate. Molecular characterisation using the PCR technique revealed the dominance of blaTEM (30%; 12/40) among the eight groups of β-lactams resistance determinants assayed. The prevalence of others was blaCTX-M genes including group 1, 2 and 9 (27.5%), blaSHV (20%), blaOXA-1-like (10%), blaPER (2.5%), and blaVEB (0%). The frequencies of the resistance determinants for the carbapenems were blaKPC (17.6%), blaGES (11.8%), blaIMP (11.8%), blaVIM (11.8%), and blaOXA-48-like (5.9%). Out of the six plasmid-mediated AmpC (pAmpC) genes investigated blaACC, blaEBC, blaFOX, blaCIT, blaDHA, and blaMOX, only the first four were detected. In this category, the most dominant was blaEBC, with 18.4% (7/38). The prevalence of the non-β-lactamases include tetA (33.3%), tetB (30.5%), tetC (2.8%), tetD (11.1%), tetK (0%), tetM (13.9%), catI (12%), catII (68%), sulI (14.3%), sulII (22.9%) and aadA (8.3%). Notably, a C. koseri harboured 42.8% (12/28) of the genes assayed for which includes five of the ESBL genes (including the only blaPER detected in this study), two of the pAmpC resistance genes (blaACC and blaCIT), and five of the non-β-lactamase genes. This study gives the first report on C. koseri exhibiting the co-occurrence of ESBL/AmpC β-lactamase genes from the environment to the best of our knowledge. The detection of a blaPER producing Citrobacter spp. in this study is remarkable. These findings provide evidence that freshwater serves as reservoirs of antimicrobial resistance determinants, which can then be easily transferred to human beings via the food chain and water.
Collapse
Affiliation(s)
- Folake Temitope Fadare
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
- * E-mail:
| | - Martins Ajibade Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
- Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa
| |
Collapse
|
194
|
Lu R, Frederiksen MW, Uhrbrand K, Li Y, Østergaard C, Madsen AM. Wastewater treatment plant workers' exposure and methods for risk evaluation of their exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111365. [PMID: 32977286 DOI: 10.1016/j.ecoenv.2020.111365] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/14/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Work in wastewater treatment plants (WWTPs) can be associated with respiratory symptoms and diarrhea. The aim of this study was to obtain knowledge about WWTP workers' exposure to airborne bacteria and endotoxin, and the inflammatory potential (TIP) of their exposure, and to evaluate the risk posed by the exposure by 1) calculating a hazard index and relating the exposure to suggested occupational exposure limits (OELs), 2) estimating the potential deposition of bacteria in the airways, 3) relating it to the risk group classification of bacteria by the European Union, and 4) estimating the TIP of the personal exposure. A cohort of 14 workers were followed over one year. Bioaerosols were collected using personal and stationary samplers in a grid chamber house and an aeration tank area. Airborne bacteria were identified using (MALDI-TOF MS), and TIP of exposure was measured using HL-60 cells. A significant effect of season, work task, and person was found on the personal exposure. A hazard index based on exposure levels indicates that the risk caused by inhalation is low. In relation to suggested OELs, 14% and 34% of the personal exposure were exceeded for endotoxin (≥50 EU/m3) and bacteria (≥500 CFU/m3). At least 70% of the airborne bacteria in the grid chamber house and the aeration tank area could potentially deposit in the lower respiratory tract. From the personal samples, three of 131 bacterial species, Enterobacter cloacae, Staphylococcus aureus, and Yersinia enterocolitica are classified within Risk Group 2. Seven additional bacteria from the stationary samples belong to Risk Group 2. The bacterial species composition was affected significantly by season (p = 0.014) and by sampling type/area (p = 0.001). The TIP of WWTP workers' exposure was higher than of a reference sample, and the highest TIP was measured in autumn. TIP of personal exposure correlated with bacterial exposure. Based on the geometric average exposures to endotoxin (9.2 EU/m3) and bacteria (299 CFU/m3) and based on the calculated hazard index, the risk associated with exposure is low. However, since 43 of 106 exposure levels exceed suggested OELs, the TIP of exposure was elevated and associated with bacterial exposure, and WWTP workers were exposed to pathogenic bacteria, a continued focus on preventive measures is important. The identification of bacteria to species level in personal samples was necessary in the risk assessment, and measurement of the microbial composition made the source tracking possible.
Collapse
Affiliation(s)
- Rui Lu
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark; School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Margit W Frederiksen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Katrine Uhrbrand
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Claus Østergaard
- Department of Clinical Microbiology, Lillebaelt Hospital, Denmark
| | - Anne Mette Madsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
195
|
Mota R, Pinto M, Palmeira J, Gonçalves D, Ferreira H. Multidrug-resistant bacteria as intestinal colonizers and evolution of intestinal colonization in healthy university students in Portugal. Access Microbiol 2020; 3:acmi000182. [PMID: 33997613 PMCID: PMC8115976 DOI: 10.1099/acmi.0.000182] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/02/2020] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant bacteria have been increasingly described in healthcare institutions, however community resistance also seems to be emerging. Escherichia coli an intestinal commensal bacteria, is also a pathogen and represents an important intestinal reservoir of resistance. Our aim was the study of the intestinal colonization and of the persistence of antibiotic resistant intestinal bacteria in healthy university students of Porto, in the north of Portugal. Samples from 30 university students were collected and analysed. Two E. coli isolates were randomly obtained from each student and Gram-negative bacilli resistant to antibiotics were studied. In addition, we evaluated changes in the Gram-negative intestinal colonization of ten university students in a short period of time. Molecular characterization showed a high presence of bla TEM in commensal E. coli . Gram-negative bacteria with intrinsic and extrinsic resistance were isolated, namely Pseudomonas spp., Enterobacter spp. and Pantoea spp. We isolated three ESBL-producing E. coli from two students. These isolates showed bla CTX-M group 1 (n=1), bla CTX-M group 9 (n=2), bla TEM (n=2), bla SHV (n=1) and tetA (n=2) genes. Additionally, they showed specific virulence factors and conjugational transfer of antibiotic resistance and virulence genes. One Pseudomonas spp. isolate resistant to carbapenems was detected colonizing one student. Our results confirm that healthy young adults may be colonized with commensals showing clinically relevant antibiotic resistance mechanisms, creating a risk of silent spread of these bacteria in the community.
Collapse
Affiliation(s)
- Raquel Mota
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marisa Pinto
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Josman Palmeira
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Daniela Gonçalves
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.,Instituto Superior de Saúde, Rua Castelo de Almourol, 4720-155 Amares, Portugal
| | - Helena Ferreira
- UCIBIO, Microbiology, Faculty of Pharmacy of University of Porto, Portugal.,Microbiology, Faculty of Pharmacy of University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
196
|
Pfaendler HR, Schmidt HU, Freidank H. The Novel CarbaLux Test for Carbapenemases and Carbapenem Deactivating AmpC Beta-Lactamases. Front Microbiol 2020; 11:588887. [PMID: 33329464 PMCID: PMC7719632 DOI: 10.3389/fmicb.2020.588887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Objectives To evaluate the rapid phenotypic CarbaLux test for routine diagnostics in the medical laboratory in a proof of concept study. Methods isolates of Gram-negative bacteria suspicious for carbapenem resistance including Enterobacterales (67), Pseudomonas (10), Acinetobacter (5), and Stenotrophomonas (1) species, collected between 2016 and 2018 from in-patients, were tested for carbapenemase activity using a novel fluorescent carbapenem. When subjected to extracted bacterial carbapenemases its fluorescence disappears. All bacteria to be tested were cultured on Columbia blood agar and few on other commercial media. MALDI TOF MS, molecular assays, automated MIC testing, and in part, agar diffusion tests served to characterize the isolates. For comparison, few selected bacteria were also investigated by prior phenotypic tests for carbapenemase detection. Results Under UV light, the CarbaLux test allowed a rapid detection of 39/39 carbapenemase-producing bacteria, including 15 isolates with OXA carbapenemases (e.g., OXA-23, OXA-24/40-like OXA-48-like or OXA-181). Several isolates had low MICs but still expressed carbapenemases. Among Enterobacter spp., it detected six strains with hyper-produced AmpC beta-lactamases, which deactivated carbapenems but were not detectable by prior rapid phenotypic assays. An unexpected high carbapenemase activity appeared with these enzymes. They were identified as AmpC variants by inhibition with cloxacillin. Conclusion Other than prior rapid phenotypic assessments for carbapenemases, which use secondary effects such as a change of pH, the inactivation of the fluorescent carbapenem substrate can be visualized directly under UV light. The new test works at 100 to 200-fold lower, therapy-like substrate concentrations. It takes advantage of the high substrate affinity to carbapenemases allowing also the detection of less reactive resistance enzymes via a trapping mechanism, even from bacteria, which might appear unsuspicious from initial antibiograms. The novel fluorescence method allows simple and safe handling, reliable readings, and documentation and is suitable for primary testing in the clinical laboratory.
Collapse
Affiliation(s)
| | | | - Heike Freidank
- Department of Medical Microbiology, München Klinik gGmbH, Munich, Germany
| |
Collapse
|
197
|
Burel C, Kala A, Purevdorj-Gage L. Impact of pH on citric acid antimicrobial activity against Gram-negative bacteria. Lett Appl Microbiol 2020; 72:332-340. [PMID: 33099798 PMCID: PMC7984346 DOI: 10.1111/lam.13420] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
The antimicrobial activity of citric acid (CA) is often evaluated without pH adjustment or control and its impact on micro‐organisms is better understood in acidic conditions. However, the biocidal action of the fully ionized CA molecule, predominantly available at higher pH, has not been previously investigated. The objective of this study was to evaluate the antimicrobial effect of high (10%) and low (1%) concentrations of CA, each adjusted over a wide range of pH values (4·5, 6·5 and 9·5) relative to the controls exposed to corresponding pH levels alone (no CA). The viability and morphology of Escherichia coli and Klebsiella aerogenes were evaluated using a culture‐based enumeration assay in parallel with direct SEM imaging. Overall, the highest membrane damage and loss in viability were achieved with 10% CA at pH 9·5, which yielded at least 4·6 log10 CFU per ml (P < 0·001) reductions in both organisms. Insight into the superior efficacy of CA at high pH is proposed based on zeta potential measurements which reveal a more negatively charged bacterial surface at higher pH. This pH‐dependent increase in surface charge may have rendered the cells potentially more sensitive towards chelants such as CA3− that interact with membrane‐stabilizing divalent metals.
Collapse
Affiliation(s)
- C Burel
- Complex Assemblies of Soft Matter Laboratory (COMPASS), CNRS-Solvay-University of Pennsylvania, CRTB, Bristol, PA, USA
| | - A Kala
- Complex Assemblies of Soft Matter Laboratory (COMPASS), CNRS-Solvay-University of Pennsylvania, CRTB, Bristol, PA, USA
| | | |
Collapse
|
198
|
Lee IM, Tu IF, Yang FL, Wu SH. Bacteriophage Tail-Spike Proteins Enable Detection of Pseudaminic-Acid-Coated Pathogenic Bacteria and Guide the Development of Antiglycan Antibodies with Cross-Species Antibacterial Activity. J Am Chem Soc 2020; 142:19446-19450. [PMID: 33166120 DOI: 10.1021/jacs.0c07314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pseudaminic acid (Pse), a unique carbohydrate in surface-associated glycans of pathogenic bacteria, has pivotal roles in virulence. Owing to its significant antigenicity and absence in mammals, Pse is considered an attractive target for vaccination or antibody-based therapies against bacterial infections. However, a specific and universal probe for Pse, which could also be used in immunotherapy, has not been reported. In a prior study, we used a tail spike protein from a bacteriophage (ΦAB6TSP) that digests Pse-containing exopolysaccharide (EPS) from Acinetobacter baumannii strain 54149 (Ab-54149) to form a glycoconjugate for preparing anti-Ab-54149 EPS serum. We report here that a catalytically inactive ΦAB6TSP (I-ΦAB6TSP) retains binding ability toward Pse. In addition, an I-ΦAB6TSP-DyLight-650 conjugate (Dy-I-ΦAB6TSP) was more sensitive in detecting Ab-54149 than an antibody purified from anti- Ab-54149 EPS serum. Dy-I-ΦAB6TSP also cross-reacted with other pathogenic bacteria containing Pse on their surface polysaccharides (e.g., Helicobacter pylori and Enterobacter cloacae), revealing it to be a promising probe for detecting Pse across bacterial species. We also developed a detection method that employs I-ΦAB6TSP immobilized on microtiter plate. These results suggested that the anti-Ab-54149 EPS serum would exhibit cross-reactivity to Pse on other organisms. When this was tested, this serum facilitated complement-mediated killing of H. pylori and E. cloacae, indicating its potential as a cross-species antibacterial agent. This work opens new avenues for diagnosis and treatment of multidrug resistant (MDR) bacterial infections.
Collapse
Affiliation(s)
- I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
199
|
Mateos M, Hernández-García M, Del Campo R, Martínez-García L, Gijón D, Morosini MI, Ruiz-Garbajosa P, Cantón R. Emergence and Persistence over Time of Carbapenemase-Producing Enterobacter Isolates in a Spanish University Hospital in Madrid, Spain (2005-2018). Microb Drug Resist 2020; 27:895-903. [PMID: 33090918 DOI: 10.1089/mdr.2020.0265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Carbapenemase production is constantly increasing among different Enterobacterales species. We analyzed the microbiological characteristics and population structure of all carbapenemase-producing Enterobacter spp. (CP-Ent) isolates recovered at the Ramón y Cajal Hospital between 2005 and 2018. Overall, 178 CP-Ent isolates (60.7% colonization, 39.3% clinical) were recovered from 165 hospitalized patients (165/176, 93.7%; medical [102/165], surgical [34/165], and intensive care unit [29/165] areas), emergency unit (4/176, 2.3%), and ambulatory patients (7/176, 4.0%). In addition, three CP-Ent were found in environmental sources. Clinical samples were mainly urine (37.1%). The most frequent matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)-identified species were Enterobacter cloacae (n = 85) and Enterobacter asburiae (n = 49). hsp60 gene sequencing showed a higher species diversity than MALDI-TOF: 70 Enterobacter hormaechei-clusters III, VI, VIII; 69 Enterobacter roggenkampii-IV; 15 Enterobacter kobei-II; 9 E. asburiae-I; 3 Enterobacter ludwigii-V; and 1 E. cloacae subsp. dissolvens-XII. Nine Klebsiella aerogenes were also identified. Overall, a high clonal diversity (Simpson Diversity Index >0.90) was found among CP-Ent-clusters. Environmental isolates were clonally related to clinical ones. Amikacin and tigecycline showed the highest susceptibility (>93%). VIM-1 (n = 133/181, 73.5%) and OXA-48 (n = 34/181, 18.8%) carbapenemases were predominant, followed by KPC-2 (n = 9/181, 5.0%), KPC-3 (n = 2/181, 1.1%), VIM-2 (n = 1/181, 0.6%), and two coproducers (VIM-1+KPC-2 and VIM-1+KPC-3). Extended-spectrum beta-lactamase (ESBL) coproduction (14.4%) emerged in 2012, mainly associated with blaSHV-12 (p < 0.001), E. roggenkampii (p < 0.001), and colonization (p = 0.03). VIM-1- and OXA-48-CP-Ent fecal carriers increased in our hospital, particularly between 2011 and 2018 (p < 0.001). Moreover, KPC and OXA-48 producers emerged in 2010 and 2012, respectively. They superimposed over VIM producers, which were persistently recovered since first detection in 2005. These results depict increased complexity over time of CP-Ent.
Collapse
Affiliation(s)
- Miriam Mateos
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Marta Hernández-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rosa Del Campo
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Laura Martínez-García
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Desirée Gijón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - María Isabel Morosini
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Patricia Ruiz-Garbajosa
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| | - Rafael Cantón
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain.,Red Española de Investigación en Patología Infecciosa (REIPI), Madrid, Spain
| |
Collapse
|
200
|
Slizen MV, Galzitskaya OV. Comparative Analysis of Proteomes of a Number of Nosocomial Pathogens by KEGG Modules and KEGG Pathways. Int J Mol Sci 2020; 21:ijms21217839. [PMID: 33105850 PMCID: PMC7660090 DOI: 10.3390/ijms21217839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/13/2023] Open
Abstract
Nosocomial (hospital-acquired) infections remain a serious challenge for health systems. The reason for this lies not only in the local imperfection of medical practices and protocols. The frequency of infection with antibiotic-resistant strains of bacteria is growing every year, both in developed and developing countries. In this work, a pangenome and comparative analysis of 201 genomes of Staphylococcus aureus, Enterobacter spp., Pseudomonas aeruginosa, and Mycoplasma spp. was performed on the basis of high-level functional annotations—KEGG pathways and KEGG modules. The first three organisms are serious nosocomial pathogens, often exhibiting multidrug resistance. Analysis of KEGG modules revealed methicillin resistance in 25% of S. aureus strains and resistance to carbapenems in 21% of Enterobacter spp. strains. P. aeruginosa has a wide range of unique efflux systems. One hundred percent of the analyzed strains have at least two drug resistance systems, and 75% of the strains have seven. Each of the organisms has a characteristic set of metabolic features, whose impact on drug resistance can be considered in future studies. Comparing the genomes of nosocomial pathogens with each other and with Mycoplasma genomes can expand our understanding of the versatility of certain metabolic features and mechanisms of drug resistance.
Collapse
Affiliation(s)
- Mikhail V. Slizen
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
| | - Oxana V. Galzitskaya
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia;
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- Correspondence:
| |
Collapse
|