151
|
Rice CJ, Kelly SA, O’Brien SC, Melaugh EM, Ganacias JCB, Chai ZH, Gilmore BF, Skvortsov T. Novel Phage-Derived Depolymerase with Activity against Proteus mirabilis Biofilms. Microorganisms 2021; 9:2172. [PMID: 34683494 PMCID: PMC8539402 DOI: 10.3390/microorganisms9102172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022] Open
Abstract
The adherence of Proteus mirabilis to the surface of urinary catheters leads to colonization and eventual blockage of the catheter lumen by unique crystalline biofilms produced by these opportunistic pathogens, making P. mirabilis one of the leading causes of catheter-associated urinary tract infections. The Proteus biofilms reduce efficiency of antibiotic-based treatment, which in turn increases the risk of antibiotic resistance development. Bacteriophages and their enzymes have recently become investigated as alternative treatment options. In this study, a novel Proteus bacteriophage (vB_PmiS_PM-CJR) was isolated from an environmental sample and fully characterized. The phage displayed depolymerase activity and the subsequent genome analysis revealed the presence of a pectate lyase domain in its tail spike protein. The protein was heterologously expressed and purified; the ability of the purified tail spike to degrade Proteus biofilms was tested. We showed that the application of the tail spike protein was able to reduce the adherence of bacterial biofilm to plastic pegs in a MBEC (minimum biofilm eradication concentration) assay and improve the survival of Galleria mellonella larvae infected with Proteus mirabilis. Our study is the first to successfully isolate and characterize a biofilm depolymerase from a Proteus phage, demonstrating the potential of this group of enzymes in treatment of Proteus infections.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Timofey Skvortsov
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.R.); (S.A.K.); (S.C.O.); (E.M.M.); (J.C.B.G.); (Z.H.C.); (B.F.G.)
| |
Collapse
|
152
|
Genome Study of a Novel Virulent Phage vB_SspS_KASIA and Mu-like Prophages of Shewanella sp. M16 Provides Insights into the Genetic Diversity of the Shewanella Virome. Int J Mol Sci 2021; 22:ijms222011070. [PMID: 34681734 PMCID: PMC8541194 DOI: 10.3390/ijms222011070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/28/2021] [Accepted: 10/10/2021] [Indexed: 12/19/2022] Open
Abstract
Shewanella is a ubiquitous bacterial genus of aquatic ecosystems, and its bacteriophages are also isolated from aquatic environments (oceans, lakes, ice, and wastewater). In this study, the isolation and characterization of a novel virulent Shewanella phage vB_SspS_KASIA and the identification of three prophages of its host, Shewanella sp. M16, including a mitomycin-inducible Mu-like siphovirus, vB_SspS_MuM16-1, became the starting point for comparative analyses of phages infecting Shewanella spp. and the determination of their position among the known bacterial viruses. A similarity networking analysis revealed the high diversity of Shewanella phages in general, with vB_SspS_KASIA clustering exclusively with Colwellia phage 9A, with which it forms a single viral cluster composed of two separate viral subclusters. Furthermore, vB_SspS_MuM16-1 presented itself as being significantly different from the phages deposited in public databases, expanding the diversity of the known Mu-like phages and giving potential molecular markers for the identification of Mu-like prophages in bacterial genomes. Moreover, the functional analysis performed for vB_SspS_KASIA suggested that, despite the KASIA host, the M16 strain grows better in a rich medium and at 30 °C the phage replication cycle seems to be optimal in restrictive culture conditions mimicking their natural environment, the Zloty Stok gold and arsenic mine.
Collapse
|
153
|
Park DW, Park JH. Characterization of a novel phage depolymerase specific to Escherichia coli O157:H7 and biofilm control on abiotic surfaces. J Microbiol 2021; 59:1002-1009. [PMID: 34613607 DOI: 10.1007/s12275-021-1413-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
The increasing prevalence of foodborne diseases caused by Escherichia coli O157:H7 as well as its ability to form biofilms poses major threats to public health worldwide. With increasing concerns about the limitations of current disinfectant treatments, phage-derived depolymerases may be used as promising biocontrol agents. Therefore, in this study, the characterization, purification, and application of a novel phage depolymerase, Dpo10, specifically targeting the lipopolysaccharides of E. coli O157, was performed. Dpo10, with a molecular mass of 98 kDa, was predicted to possess pectate lyase activity via genome analysis and considered to act as a receptor-binding protein of the phage. We confirmed that the purified Dpo10 showed O-polysaccharide degrading activity only for the E. coli O157 strains by observing its opaque halo. Dpo10 maintained stable enzymatic activities across a wide range of temperature conditions under 55°C and mild basic pH. Notably, Dpo10 did not inhibit bacterial growth but significantly increased the complement-mediated serum lysis of E. coli O157 by degrading its O-polysaccharides. Moreover, Dpo10 inhibited the biofilm formation against E. coli O157 on abiotic polystyrene by 8-fold and stainless steel by 2.56 log CFU/coupon. This inhibition was visually confirmed via fieldemission scanning electron microscopy. Therefore, the novel depolymerase from E. coli siphophage exhibits specific binding and lytic activities on the lipopolysaccharide of E. coli O157 and may be used as a promising anti-biofilm agent against the E. coli O157:H7 strain.
Collapse
Affiliation(s)
- Do-Won Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam, 13120, Republic of Korea.
| |
Collapse
|
154
|
Islam MR, Martinez-Soto CE, Lin JT, Khursigara CM, Barbut S, Anany H. A systematic review from basics to omics on bacteriophage applications in poultry production and processing. Crit Rev Food Sci Nutr 2021:1-33. [PMID: 34609270 DOI: 10.1080/10408398.2021.1984200] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The growing human population is currently facing an unprecedented challenge on global food production and sustainability. Despite recognizing poultry as one of the most successful and rapidly growing food industries to address this challenge; poultry health and safety remain major issues that entail immediate attention. Bacterial diseases including colibacillosis, salmonellosis, and necrotic enteritis have become increasingly prevalent during poultry production. Likewise, outbreaks caused by consumption of undercooked poultry products contaminated with zoonotic bacterial pathogens such as Salmonella, Campylobacter and Listeria, are a serious public health concern. With antimicrobial resistance problem and restricted use of antibiotics in food producing animals, bacteriophages are increasingly recognized as an attractive natural antibacterial alternative. Bacteriophages have recently shown promising results to treat diseases in poultry, reduce contamination of carcasses, and enhance the safety of poultry products. Omics technologies have been successfully employed to accurately characterize bacteriophages and their genes/proteins important for interaction with bacterial hosts. In this review, the potential of using lytic bacteriophages to mitigate the risk of major poultry-associated bacterial pathogens are explored. This study also explores challenges associated with the adoption of this technology by industries. Furthermore, the impact of omics approaches on studying bacteriophages, their host interaction and applications is discussed.
Collapse
Affiliation(s)
- Md Rashedul Islam
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Carlos E Martinez-Soto
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Janet T Lin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Cezar M Khursigara
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Shai Barbut
- Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada.,Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.,Department of Food Science, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
155
|
Egido JE, Costa AR, Aparicio-Maldonado C, Haas PJ, Brouns SJJ. Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 2021; 46:6374866. [PMID: 34558600 PMCID: PMC8829019 DOI: 10.1093/femsre/fuab048] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
We are in the midst of a golden age of uncovering defense systems against bacteriophages. Apart from the fundamental interest in these defense systems, and revolutionary applications that have been derived from them (e.g. CRISPR-Cas9 and restriction endonucleases), it is unknown how defense systems contribute to resistance formation against bacteriophages in clinical settings. Bacteriophages are now being reconsidered as therapeutic agents against bacterial infections due the emergence of multidrug resistance. However, bacteriophage resistance through defense systems and other means could hinder the development of successful phage-based therapies. Here, we review the current state of the field of bacteriophage defense, highlight the relevance of bacteriophage defense for potential clinical use of bacteriophages as therapeutic agents and suggest new directions of research.
Collapse
Affiliation(s)
- Julia E Egido
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands.,Fagenbank, Delft, Netherlands
| | - Cristian Aparicio-Maldonado
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX Utrecht, Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, Netherlands.,Kavli Institute of Nanoscience, Delft, Netherlands.,Fagenbank, Delft, Netherlands
| |
Collapse
|
156
|
Gontijo MTP, Jorge GP, Brocchi M. Current Status of Endolysin-Based Treatments against Gram-Negative Bacteria. Antibiotics (Basel) 2021; 10:1143. [PMID: 34680724 PMCID: PMC8532960 DOI: 10.3390/antibiotics10101143] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/14/2021] [Accepted: 07/21/2021] [Indexed: 12/31/2022] Open
Abstract
The prevalence of multidrug-resistant Gram-negative bacteria is a public health concern. Bacteriophages and bacteriophage-derived lytic enzymes have been studied in response to the emergence of multidrug-resistant bacteria. The availability of tRNAs and endolysin toxicity during recombinant protein expression is circumvented by codon optimization and lower expression levels using inducible pET-type plasmids and controlled cultivation conditions, respectively. The use of polyhistidine tags facilitates endolysin purification and alters antimicrobial activity. Outer membrane permeabilizers, such as organic acids, act synergistically with endolysins, but some endolysins permeate the outer membrane of Gram-negative bacteria per se. However, the outer membrane permeation mechanisms of endolysins remain unclear. Other strategies, such as the co-administration of endolysins with polymyxins, silver nanoparticles, and liposomes confer additional outer membrane permeation. Engineered endolysins comprising domains for outer membrane permeation is also a strategy used to overcome the current challenges on the control of multidrug-resistant Gram-negative bacteria. Metagenomics is a new strategy for screening endolysins with interesting antimicrobial properties from uncultured phage genomes. Here, we review the current state of the art on the heterologous expression of endolysin, showing the potential of bacteriophage endolysins in controlling bacterial infections.
Collapse
Affiliation(s)
- Marco Túlio Pardini Gontijo
- Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas 13083-862, Brazil; (G.P.J.); (M.B.)
| | | | | |
Collapse
|
157
|
Sørensen AN, Woudstra C, Sørensen MCH, Brøndsted L. Subtypes of tail spike proteins predicts the host range of Ackermannviridae phages. Comput Struct Biotechnol J 2021; 19:4854-4867. [PMID: 34527194 PMCID: PMC8432352 DOI: 10.1016/j.csbj.2021.08.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/19/2021] [Accepted: 08/19/2021] [Indexed: 12/01/2022] Open
Abstract
Phages belonging to the Ackermannviridae family encode up to four tail spike proteins (TSPs), each recognizing a specific receptor of their bacterial hosts. Here, we determined the TSPs diversity of 99 Ackermannviridae phages by performing a comprehensive in silico analysis. Based on sequence diversity, we assigned all TSPs into distinctive subtypes of TSP1, TSP2, TSP3 and TSP4, and found each TSP subtype to be specifically associated with the genera (Kuttervirus, Agtrevirus, Limestonevirus, Taipeivirus) of the Ackermannviridae family. Further analysis showed that the N-terminal XD1 and XD2 domains in TSP2 and TSP4, hinging the four TSPs together, are preserved. In contrast, the C-terminal receptor binding modules were only conserved within TSP subtypes, except for some Kuttervirus TSP1s and TSP3s that were similar to specific TSP4s. A conserved motif in TSP1, TSP3 and TSP4 of Kuttervirus phages may allow recombination between receptor binding modules, thus altering host recognition. The receptors for numerous uncharacterized phages expressing TSPs in the same subtypes were predicted using previous host range data. To validate our predictions, we experimentally determined the host recognition of three of the four TSPs expressed by kuttervirus S117. We confirmed that S117 TSP1 and TSP2 bind to their predicted host receptors, and identified the receptor for TSP3, which is shared by 51 other Kuttervirus phages. Kuttervirus phages were thus shown encode a vast genetic diversity of potentially exchangeable TSPs influencing host recognition. Overall, our study demonstrates that comprehensive in silico and host range analysis of TSPs can predict host recognition of Ackermannviridae phages.
Collapse
Key Words
- ANI, Average nucleotide identity
- Ackermannviridae family
- Bacteriophage
- CPS, Capsular polysaccharide
- EOP, Efficiency of plating
- Escherichia coli O:157
- Host range
- LB, Luria-Bertani
- LPS, Lipopolysaccharide
- NCBI, National Center for Biotechnology Information
- O-antigen
- ORF, Open reading frame
- PFU, Plaque formation unit
- RBP, Receptor binding protein
- Receptor-binding proteins
- Salmonella
- TSP, Tail spike protein
- Tail spike proteins
- VriC, Virulence-associated protein
Collapse
Affiliation(s)
- Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Cedric Woudstra
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Martine C Holst Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark
| |
Collapse
|
158
|
Bonilla E, Costa AR, van den Berg DF, van Rossum T, Hagedoorn S, Walinga H, Xiao M, Song W, Haas PJ, Nobrega FL, Brouns SJJ. Genomic characterization of four novel bacteriophages infecting the clinical pathogen Klebsiella pneumoniae. DNA Res 2021; 28:6352498. [PMID: 34390569 PMCID: PMC8386662 DOI: 10.1093/dnares/dsab013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteriophages are an invaluable source of novel genetic diversity. Sequencing of phage genomes can reveal new proteins with potential uses as biotechnological and medical tools, and help unravel the diversity of biological mechanisms employed by phages to take over the host during viral infection. Aiming to expand the available collection of phage genomes, we have isolated, sequenced, and assembled the genome sequences of four phages that infect the clinical pathogen Klebsiella pneumoniae: vB_KpnP_FBKp16, vB_KpnP_FBKp27, vB_KpnM_FBKp34, and Jumbo phage vB_KpnM_FBKp24. The four phages show very low (0–13%) identity to genomic phage sequences deposited in the GenBank database. Three of the four phages encode tRNAs and have a GC content very dissimilar to that of the host. Importantly, the genome sequences of the phages reveal potentially novel DNA packaging mechanisms as well as distinct clades of tubulin spindle and nucleus shell proteins that some phages use to compartmentalize viral replication. Overall, this study contributes to uncovering previously unknown virus diversity, and provides novel candidates for phage therapy applications against antibiotic-resistant K. pneumoniae infections.
Collapse
Affiliation(s)
- Estrada Bonilla
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands
| | - Teunke van Rossum
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| | - Stefan Hagedoorn
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Hielke Walinga
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Minfeng Xiao
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Wenchen Song
- BGI-Shenzhen, Shenzhen 518083, China.,Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI-Shenzhen, Shenzhen 518083, China
| | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Franklin L Nobrega
- Fagenbank, Delft, The Netherlands.,School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, UK
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands.,Kavli Institute of Nanoscience, Delft, The Netherlands.,Fagenbank, Delft, The Netherlands
| |
Collapse
|
159
|
Ho MKY, Zhang P, Chen X, Xia J, Leung SSY. Bacteriophage endolysins against gram-positive bacteria, an overview on the clinical development and recent advances on the delivery and formulation strategies. Crit Rev Microbiol 2021; 48:303-326. [PMID: 34478359 DOI: 10.1080/1040841x.2021.1962803] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Facing the increasing threat of multi-drug antimicrobial resistance (AMR), humans strive to search for antibiotic drug candidates and antibacterial alternatives from all possible places, from soils in remote areas to deep in the sea. In this "gold rush for antibacterials," researchers turn to the natural enemy of bacterial cells, bacteriophage (phages), and find them a rich source of weapons for AMR bacteria. Endolysins (lysins), the enzymes phages use to break the bacterial cells from within, have been shown to be highly selective and efficient in killing their target bacteria from outside while maintaining a low occurrence of bacterial resistance. In this review, we start with the structures and mechanisms of action of lysins against Gram-positive (GM+) bacteria. The developmental history of lysins is also outlined. Then, we detail the latest preclinical and clinical research on their safety and efficacy against GM+ bacteria, focusing on the formulation strategies of these enzymes. Finally, the challenges and potential hurdles are discussed. Notwithstanding these limitations, the trends in development indicate that the first, approved lysin drugs will be available soon in the near future. Overall, this review presents a timely summary of the current progress on lysins as antibacterial enzymes for AMR GM+ bacteria, and provides a guidebook for biomaterial researchers who are dedicating themselves to the battle against bacterial infections.
Collapse
Affiliation(s)
- Marco Kai Yuen Ho
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Pengfei Zhang
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Xi Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiang Xia
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
160
|
Silva J, Dias R, Junior JI, Marcelino M, Silva M, Carmo A, Sousa M, Silva C, de Paula S. A Rapid Method for Performing a Multivariate Optimization of Phage Production Using the RCCD Approach. Pathogens 2021; 10:1100. [PMID: 34578135 PMCID: PMC8468216 DOI: 10.3390/pathogens10091100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/15/2023] Open
Abstract
Bacteriophages can be used in various applications, from the classical approach as substitutes for antibiotics (phage therapy) to new biotechnological uses, i.e., as a protein delivery vehicle, a diagnostic tool for specific strains of bacteria (phage typing), or environmental bioremediation. The demand for bacteriophage production increases daily, and studies that improve these production processes are necessary. This study evaluated the production of a T4-like bacteriophage vB_EcoM-UFV09 (an E. coli-infecting phage with high potential for reducing environmental biofilms) in seven types of culture media (Luria-Bertani broth and the M9 minimal medium with six different carbon sources) employing four cultivation variables (temperature, incubation time, agitation, and multiplicity of infection). For this purpose, the rotatable central composite design (RCCD) methodology was used, combining and comparing all parameters to determine the ideal conditions for starting to scale up the production process. We used the RCCD to set up the experimental design by combining the cultivation parameters in a specific and systematic way. Despite the high number of conditions evaluated, the results showed that when specific conditions were utilized, viral production was effective even when using a minimal medium, such as M9/glucose, which is less expensive and can significantly reduce costs during large-scale phage production.
Collapse
Affiliation(s)
- Jessica Silva
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Roberto Dias
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - José Ivo Junior
- Department of Statistics, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - Maraísa Marcelino
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Mirelly Silva
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Adriele Carmo
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| | - Maira Sousa
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
- Leopoldo Américo Miguez de Mello Research Center (CENPES), Petrobras, Rio de Janeiro 20230-010, Brazil
| | - Cynthia Silva
- Department of Microbiology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| | - Sergio de Paula
- Laboratory of Molecular Immunovirology, Department of General Biology, Federal University of Viçosa, Viçosa, Minas Gerais 36570-900, Brazil; (J.S.); (R.D.); (M.M.); (M.S.); (A.C.); (M.S.)
| |
Collapse
|
161
|
Novel Acinetobacter baumannii Bacteriophage Aristophanes Encoding Structural Polysaccharide Deacetylase. Viruses 2021; 13:v13091688. [PMID: 34578271 PMCID: PMC8471582 DOI: 10.3390/v13091688] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Acinetobacter baumannii appears to be one of the most crucial nosocomial pathogens. A possible component of antimicrobial therapy for infections caused by extremely drug-resistant A. baumannii strains may be specific lytic bacteriophages or phage-derived enzymes. In the present study, we observe the biological features, genomic organization, and phage–host interaction strategy of novel virulent bacteriophage Aristophanes isolated on A. baumannii strain having K26 capsular polysaccharide structure. According to phylogenetic analysis phage Aristophanes can be classified as a representative of a new distinct genus of the subfamily Beijerinckvirinae of the family Autographiviridae. This is the first reported A. baumannii phage carrying tailspike deacetylase, which caused O-acetylation of one of the K26 sugar residues.
Collapse
|
162
|
Miroshnikov KA, Evseev PV, Lukianova AA, Ignatov AN. Tailed Lytic Bacteriophages of Soft Rot Pectobacteriaceae. Microorganisms 2021; 9:1819. [PMID: 34576713 PMCID: PMC8472413 DOI: 10.3390/microorganisms9091819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
The study of the ecological and evolutionary traits of Soft Rot Pectobacteriaceae (SRP) comprising genera Pectobacterium and Dickeya often involves bacterial viruses (bacteriophages). Bacteriophages are considered to be a prospective tool for the ecologically safe and highly specific protection of plants and harvests from bacterial diseases. Information concerning bacteriophages has been growing rapidly in recent years, and this has included new genomics-based principles of taxonomic distribution. In this review, we summarise the data on phages infecting Pectobacterium and Dickeya that are available in publications and genomic databases. The analysis highlights not only major genomic properties that assign phages to taxonomic families and genera, but also the features that make them potentially suitable for phage control applications. Specifically, there is a discussion of the molecular mechanisms of receptor recognition by the phages and problems concerning the evolution of phage-resistant mutants.
Collapse
Affiliation(s)
- Konstantin A Miroshnikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
| | - Peter V Evseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
| | - Anna A Lukianova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str., 16/10, 117997 Moscow, Russia
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1, bldg. 12, 119234 Moscow, Russia
| | - Alexander N Ignatov
- Timiryazev Agricultural Academy, Russian State Agrarian University, Timiryazevskaya Str., 49, 127434 Moscow, Russia
- Agrobiotechnology Department, Agrarian and Technological Institute, RUDN University, Miklukho-Maklaya Str., 6, 117198 Moscow, Russia
| |
Collapse
|
163
|
Gorodnichev RB, Volozhantsev NV, Krasilnikova VM, Bodoev IN, Kornienko MA, Kuptsov NS, Popova AV, Makarenko GI, Manolov AI, Slukin PV, Bespiatykh DA, Verevkin VV, Denisenko EA, Kulikov EE, Veselovsky VA, Malakhova MV, Dyatlov IA, Ilina EN, Shitikov EA. Novel Klebsiella pneumoniae K23-Specific Bacteriophages From Different Families: Similarity of Depolymerases and Their Therapeutic Potential. Front Microbiol 2021; 12:669618. [PMID: 34434173 PMCID: PMC8381472 DOI: 10.3389/fmicb.2021.669618] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 07/14/2021] [Indexed: 12/25/2022] Open
Abstract
Antibiotic resistance is a major public health concern in many countries worldwide. The rapid spread of multidrug-resistant (MDR) bacteria is the main driving force for the development of novel non-antibiotic antimicrobials as a therapeutic alternative. Here, we isolated and characterized three virulent bacteriophages that specifically infect and lyse MDR Klebsiella pneumoniae with K23 capsule type. The phages belonged to the Autographiviridae (vB_KpnP_Dlv622) and Myoviridae (vB_KpnM_Seu621, KpS8) families and contained highly similar receptor-binding proteins (RBPs) with polysaccharide depolymerase enzymatic activity. Based on phylogenetic analysis, a similar pattern was also noted for five other groups of depolymerases, specific against capsule types K1, K30/K69, K57, K63, and KN2. The resulting recombinant depolymerases Dep622 (phage vB_KpnP_Dlv622) and DepS8 (phage KpS8) demonstrated narrow specificity against K. pneumoniae with capsule type K23 and were able to protect Galleria mellonella larvae in a model infection with a K. pneumoniae multidrug-resistant strain. These findings expand our knowledge of the diversity of phage depolymerases and provide further evidence that bacteriophages and phage polysaccharide depolymerases represent a promising tool for antimicrobial therapy.
Collapse
Affiliation(s)
- Roman B. Gorodnichev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Nikolay V. Volozhantsev
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Valentina M. Krasilnikova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Ivan N. Bodoev
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Maria A. Kornienko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Nikita S. Kuptsov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Anastasia V. Popova
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Galina I. Makarenko
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Alexander I. Manolov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Pavel V. Slukin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Dmitry A. Bespiatykh
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Vladimir V. Verevkin
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Egor A. Denisenko
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Eugene E. Kulikov
- Research Center of Biotechnology of the Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Vladimir A. Veselovsky
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Maja V. Malakhova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Ivan A. Dyatlov
- Department of Molecular Microbiology, State Research Center for Applied Microbiology and Biotechnology, Moscow, Russia
| | - Elena N. Ilina
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| | - Egor A. Shitikov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine, Moscow, Russia
| |
Collapse
|
164
|
Park DW, Park JH. Characterization and Food Application of the Novel Lytic Phage BECP10: Specifically Recognizes the O-polysaccharide of Escherichia coli O157:H7. Viruses 2021; 13:1469. [PMID: 34452334 PMCID: PMC8402813 DOI: 10.3390/v13081469] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/11/2021] [Accepted: 07/21/2021] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli O157:H7 is a global concern that causes serious diseases, such as hemolytic uremic syndrome and bloody diarrhea. To control E. coli O157:H7 in food, a novel siphophage, BECP10, that targets the O157 serotype was isolated and characterized. Unlike other E. coli phages, BECP10 can only infect E. coli O157 strains, and thus, did not infect other strains. The 48 kbp genome of BECP10 contained 76 open reading frames (ORFs), including 33 putative functional ORFs. The phage did not contain lysogeny-related modules or toxin-associated genes, suggesting that the phage might be strictly lytic. The tail spike protein (TSP) sequence had very low homology with the reported T1-like phages, indicating that TSP might be related to this unique host spectrum. The specific O-antigen residue of E. coli O157:H7 may be a key factor for phage infection by adsorption and receptor identification. The phage exhibited strong antibacterial activity against E. coli O157:H7 over a broad pH range and showed little development of phage-insensitive mutants. The phage sustained viability on the burger patties and reduced E. coli O157:H7 to a non-detectable level without the emergence of resistant cells at low temperatures for five days. Therefore, phage BECP10 might be a good biocontrol agent for E. coli O157:H7-contaminated food matrices.
Collapse
Affiliation(s)
| | - Jong-Hyun Park
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
165
|
Zhang Y, Liao YT, Salvador A, Lavenburg VM, Wu VCH. Characterization of Two New Shiga Toxin-Producing Escherichia coli O103-Infecting Phages Isolated from an Organic Farm. Microorganisms 2021; 9:microorganisms9071527. [PMID: 34361962 PMCID: PMC8303462 DOI: 10.3390/microorganisms9071527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 01/21/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) O103 strains have been recently attributed to various foodborne outbreaks in the United States. Due to the emergence of antibiotic-resistant strains, lytic phages are considered as alternative biocontrol agents. This study was to biologically and genomically characterize two STEC O103-infecting bacteriophages, vB_EcoP-Ro103C3lw (or Ro103C3lw) and vB_EcoM-Pr103Blw (or Pr103Blw), isolated from an organic farm. Based on genomic and morphological analyses, phages Ro103C3lw and Pr103Blw belonged to Autographiviridae and Myoviridae families, respectively. Ro103C3lw contained a 39,389-bp double-stranded DNA and encoded a unique tail fiber with depolymerase activity, resulting in huge plaques. Pr103Blw had an 88,421-bp double-stranded DNA with 26 predicted tRNAs associated with the enhancement of the phage fitness. Within each phage genome, no virulence, antibiotic-resistant, and lysogenic genes were detected. Additionally, Ro103C3lw had a short latent period (2 min) and a narrow host range, infecting only STEC O103 strains. By contrast, Pr103Blw had a large burst size (152 PFU/CFU) and a broad host range against STEC O103, O26, O111, O157:H7, and Salmonella Javiana strains. Furthermore, both phages showed strong antimicrobial activities against STEC O103:H2 strains. The findings provide valuable insight into these two phages’ genomic features with the potential antimicrobial activities against STEC O103.
Collapse
|
166
|
Abstract
Control of pathogenic bacteria by deliberate application of predatory phages has potential as a powerful therapy against antibiotic-resistant bacteria. The key advantages of phage biocontrol over antibacterial chemotherapy are: (1) an ability to self-propagate inside host bacteria, (2) targeted predation of specific species or strains of bacteria, (3) adaptive molecular machinery to overcome resistance in target bacteria. However, realizing the potential of phage biocontrol is dependent on harnessing or adapting these responses, as many phage species switch between lytic infection cycles (resulting in lysis) and lysogenic infection cycles (resulting in genomic integration) that increase the likelihood of survival of the phage in response to external stress or host depletion. Similarly, host range will need to be optimized to make phage therapy medically viable whilst avoiding the potential for deleteriously disturbing the commensal microbiota. Phage training is a new approach to produce efficient phages by capitalizing on the evolved response of wild-type phages to bacterial resistance. Here we will review recent studies reporting successful trials of training different strains of phages to switch into lytic replication mode, overcome bacterial resistance, and increase their host range. This review will also highlight the current knowledge of phage training and future implications in phage applications and phage therapy and summarize the recent pipeline of the magistral preparation to produce a customized phage for clinical trials and medical applications.
Collapse
|
167
|
Abstract
Bacteriophages and bacterial biofilms are widely present in natural environments, a fact that has accelerated the evolution of phages and their bacterial hosts in these particular niches. Phage-host interactions in biofilm communities are rather complex, where phages are not always merely predators but also can establish symbiotic relationships that induce and strengthen biofilms. In this review we provide an overview of the main features affecting phage-biofilm interactions as well as the currently available methods of studying these interactions. In addition, we address the applications of phages for biofilm control in different contexts.
Collapse
Affiliation(s)
- Diana P Pires
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Luís D R Melo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - Joana Azeredo
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| |
Collapse
|
168
|
Identification of a phage-derived depolymerase specific for KL64 capsule of Klebsiella pneumoniae and its anti-biofilm effect. Virus Genes 2021; 57:434-442. [PMID: 34156584 DOI: 10.1007/s11262-021-01847-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022]
Abstract
The increasing prevalence of Carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a serious threat to global health. Phages and phage-derived enzymes gained increasing attention for controling CRKP infections. In this study, a lytic phage P510 infecting KL64 type K. pneumoniae was isolated and characterized. Whole genome analysis and electron microscopy analysis showed that phage P510 belonged to genus Przondovirus, family Autographiviridae, the order Caudovirales. The tail fiber protein of the phage was predicted to encode capsule depolymerase. Further analysis demonstrated that recombinant depolymerase P510dep had polysaccharide-degrading activity against KL64-types capsule of K. pneumoniae, and its lysis spectrum matched to host range of phage P510. We also demonstrated that the recombinant depolymerase was able to significantly inhibit biofilm formation. The discovery of the phage-derived depolymerase lays the foundation for controlling the spread of CRKPs.
Collapse
|
169
|
Improving Phage-Biofilm In Vitro Experimentation. Viruses 2021; 13:v13061175. [PMID: 34205417 PMCID: PMC8234374 DOI: 10.3390/v13061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023] Open
Abstract
Bacteriophages or phages, the viruses of bacteria, are abundant components of most ecosystems, including those where bacteria predominantly occupy biofilm niches. Understanding the phage impact on bacterial biofilms therefore can be crucial toward understanding both phage and bacterial ecology. Here, we take a critical look at the study of bacteriophage interactions with bacterial biofilms as carried out in vitro, since these studies serve as bases of our ecological and therapeutic understanding of phage impacts on biofilms. We suggest that phage-biofilm in vitro experiments often may be improved in terms of both design and interpretation. Specific issues discussed include (a) not distinguishing control of new biofilm growth from removal of existing biofilm, (b) inadequate descriptions of phage titers, (c) artificially small overlying fluid volumes, (d) limited explorations of treatment dosing and duration, (e) only end-point rather than kinetic analyses, (f) importance of distinguishing phage enzymatic from phage bacteriolytic anti-biofilm activities, (g) limitations of biofilm biomass determinations, (h) free-phage interference with viable-count determinations, and (i) importance of experimental conditions. Toward bettering understanding of the ecology of bacteriophage-biofilm interactions, and of phage-mediated biofilm disruption, we discuss here these various issues as well as provide tips toward improving experiments and their reporting.
Collapse
|
170
|
Blundell-Hunter G, Enright MC, Negus D, Dorman MJ, Beecham GE, Pickard DJ, Wintachai P, Voravuthikunchai SP, Thomson NR, Taylor PW. Characterisation of Bacteriophage-Encoded Depolymerases Selective for Key Klebsiella pneumoniae Capsular Exopolysaccharides. Front Cell Infect Microbiol 2021; 11:686090. [PMID: 34222050 PMCID: PMC8253255 DOI: 10.3389/fcimb.2021.686090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/30/2021] [Indexed: 01/12/2023] Open
Abstract
Capsular polysaccharides enable clinically important clones of Klebsiella pneumoniae to cause severe systemic infections in susceptible hosts. Phage-encoded capsule depolymerases have the potential to provide an alternative treatment paradigm in patients when multiple drug resistance has eroded the efficacy of conventional antibiotic chemotherapy. An investigation of 164 K. pneumoniae from intensive care patients in Thailand revealed a large number of distinct K types in low abundance but four (K2, K51, K1, K10) with a frequency of at least 5%. To identify depolymerases with the capacity to degrade capsules associated with these common K-types, 62 lytic phage were isolated from Thai hospital sewage water using K1, K2 and K51 isolates as hosts; phage plaques, without exception, displayed halos indicative of the presence of capsule-degrading enzymes. Phage genomes ranged in size from 41-348 kb with between 50 and 535 predicted coding sequences (CDSs). Using a custom phage protein database we were successful in applying annotation to 30 - 70% (mean = 58%) of these CDSs. The largest genomes, of so-called jumbo phage, carried multiple tRNAs as well as CRISPR repeat and spacer sequences. One of the smaller phage genomes was found to contain a putative Cas type 1E gene, indicating a history of host DNA acquisition in these obligate lytic phage. Whole-genome sequencing (WGS) indicated that some phage displayed an extended host range due to the presence of multiple depolymerase genes; in total, 42 candidate depolymerase genes were identified with up to eight in a single genome. Seven distinct virions were selected for further investigation on the basis of host range, phage morphology and WGS. Candidate genes for K1, K2 and K51 depolymerases were expressed and purified as his6-tagged soluble protein and enzymatic activity demonstrated against K. pneumoniae capsular polysaccharides by gel electrophoresis and Anton-Paar rolling ball viscometry. Depolymerases completely removed the capsule in K-type-specific fashion from K. pneumoniae cells. We conclude that broad-host range phage carry multiple enzymes, each with the capacity to degrade a single K-type, and any future use of these enzymes as therapeutic agents will require enzyme cocktails for utility against a range of K. pneumoniae infections.
Collapse
Affiliation(s)
| | - Mark C. Enright
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - David Negus
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Matthew J. Dorman
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Gemma E. Beecham
- School of Pharmacy, University College London, London, United Kingdom
| | - Derek J. Pickard
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | | | | | - Nicholas R. Thomson
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, United Kingdom
- Department of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Peter W. Taylor
- School of Pharmacy, University College London, London, United Kingdom
| |
Collapse
|
171
|
Component Parts of Bacteriophage Virions Accurately Defined by a Machine-Learning Approach Built on Evolutionary Features. mSystems 2021; 6:e0024221. [PMID: 34042467 PMCID: PMC8269216 DOI: 10.1128/msystems.00242-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antimicrobial resistance (AMR) continues to evolve as a major threat to human health, and new strategies are required for the treatment of AMR infections. Bacteriophages (phages) that kill bacterial pathogens are being identified for use in phage therapies, with the intention to apply these bactericidal viruses directly into the infection sites in bespoke phage cocktails. Despite the great unsampled phage diversity for this purpose, an issue hampering the roll out of phage therapy is the poor quality annotation of many of the phage genomes, particularly for those from infrequently sampled environmental sources. We developed a computational tool called STEP3 to use the “evolutionary features” that can be recognized in genome sequences of diverse phages. These features, when integrated into an ensemble framework, achieved a stable and robust prediction performance when benchmarked against other prediction tools using phages from diverse sources. Validation of the prediction accuracy of STEP3 was conducted with high-resolution mass spectrometry analysis of two novel phages, isolated from a watercourse in the Southern Hemisphere. STEP3 provides a robust computational approach to distinguish specific and universal features in phages to improve the quality of phage cocktails and is available for use at http://step3.erc.monash.edu/. IMPORTANCE In response to the global problem of antimicrobial resistance, there are moves to use bacteriophages (phages) as therapeutic agents. Selecting which phages will be effective therapeutics relies on interpreting features contributing to shelf-life and applicability to diagnosed infections. However, the protein components of the phage virions that dictate these properties vary so much in sequence that best estimates suggest failure to recognize up to 90% of them. We have utilized this diversity in evolutionary features as an advantage, to apply machine learning for prediction accuracy for diverse components in phage virions. We benchmark this new tool showing the accurate recognition and evaluation of phage component parts using genome sequence data of phages from undersampled environments, where the richest diversity of phage still lies.
Collapse
|
172
|
Abstract
By evolving strains of E. coli that hyper-resist sedimentation, we discovered an uncharacterized mechanism that bacteria can use to remain in suspension indefinitely without expending energy. This unusual phenotype was traced to the anchoring of long colanic acid polymers (CAP) that project from the cell surface. Although each characterized mutant activated this same mechanism, the genes responsible and the strengths of the phenotypes varied. Mutations in rcsC, lpp, igaA, or the yjbEFGH operon were sufficient to stimulate sedimentation resistance, while mutations altering the cps promoter, cdgI, or yjbF provided phenotypic enhancements. The sedimentation resistances changed in response to temperature, growth phase, and carbon source and each mutant exhibited significantly reduced biofilm formation. We discovered that the degree of colony mucoidy exhibited by these mutants was not related to the degree of Rcs pathways activation or to the amount of CAP that was produced; rather, it was related to the fraction of CAP that was shed as a true exopolysaccharide. Therefore, these and other mutations that activate this phenotype are likely to be absent from genetic screens that relied on centrifugation to harvest bacteria. We also found that this anchored CAP form is not linked to LPS cores and may not be attached to the outer membrane.IMPORTANCEBacteria can partition in aqueous environments between surface-dwelling, planktonic, sedimentary, and biofilm forms. Residence in each location provides an advantage depending on nutritional and environmental stresses and a community of a single species is often observed to be distributed throughout two or more of these niches. Another adaptive strategy is to produce an extracellular capsule, which provides an environmental shield for the microbe and can allow escape from predators and immune systems. We discovered that bacteria can either shed or stably anchor capsules to dramatically alter their propensity to sediment. The degree to which the bacteria anchor their capsule is controlled by a stress sensing system, suggesting that anchoring may be used as an adaptive response to severe environmental challenges.
Collapse
|
173
|
Luo CH, Hsu YH, Wu WJ, Chang KC, Yeh CS. Phage Digestion of a Bacterial Capsule Imparts Resistance to Two Antibiotic Agents. Microorganisms 2021; 9:microorganisms9040794. [PMID: 33920206 PMCID: PMC8069232 DOI: 10.3390/microorganisms9040794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/10/2023] Open
Abstract
Bacteriophages are viruses that infect bacteria, replicating and multiplying using host resources. For specific infections, bacteriophages have developed extraordinary proteins for recognizing and degrading their host. Inspired by the remarkable development of viral proteins, we used the tail fiber protein to treat multiple drug-resistant Acinetobacter baumannii. The tail fiber protein exhibits polysaccharide depolymerases activity which specifically degrades exopolysaccharide (EPS) during the phage–host interaction. However, EPS-degraded cells are observed altering host susceptibility to bacterial lysis peptide, the endolysin-derived peptide. Notably, endolysin is necessary in the process of progeny liberation by breaking the bacterial cell wall. Surprisingly, peeling the EPS animated host to resist colistin, the last-resort antibiotic used in multidrug-resistant Gram-negative bacteria infection. Tail fiber-modified cell wall reduces colistin attachment, causing temporary antibiotic-resistance and possibly raising clinical risks in treating multiple drug-resistant A. baumannii.
Collapse
Affiliation(s)
- Cheng-Hung Luo
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan;
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (C.-H.L.); (K.-C.C.); (C.-S.Y.)
| | - Ya-Han Hsu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan;
| | - Wen-Jui Wu
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan;
| | - Kai-Chih Chang
- Department of Laboratory Medicine and Biotechnology, Tzu Chi University, Hualien 970, Taiwan;
- Department of Laboratory Medicine, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan
- Correspondence: (C.-H.L.); (K.-C.C.); (C.-S.Y.)
| | - Chen-Sheng Yeh
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan;
- Center of Applied Nanomedicine, National Cheng Kung University, Tainan 701, Taiwan
- Correspondence: (C.-H.L.); (K.-C.C.); (C.-S.Y.)
| |
Collapse
|
174
|
Žukauskienė E, Šimoliūnienė M, Truncaitė L, Skapas M, Kaupinis A, Valius M, Meškys R, Šimoliūnas E. Pantoea Bacteriophage vB_PagS_AAS23: A Singleton of the Genus Sauletekiovirus. Microorganisms 2021; 9:668. [PMID: 33807116 PMCID: PMC8004638 DOI: 10.3390/microorganisms9030668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 11/16/2022] Open
Abstract
A cold-adapted siphovirus, vB_PagS_AAS23 (AAS23) was isolated in Lithuania using the Pantoea agglomerans strain AUR for the phage propagation. The double-stranded DNA genome of AAS23 (51,170 bp) contains 92 probable protein encoding genes, and no genes for tRNA. A comparative sequence analysis revealed that 25 of all AAS23 open reading frames (ORFs) code for unique proteins that have no reliable identity to database entries. Based on the phylogenetic analysis, AAS23 has no close relationship to other viruses publicly available to date and represents a single species of the genus Sauletekiovirus within the family Drexlerviridae. The phage is able to form plaques in bacterial lawns even at 4 °C and demonstrates a depolymerase activity. Thus, the data presented in this study not only provides the information on Pantoea-infecting bacteriophages, but also offers novel insights into the diversity of cold-adapted viruses and their potential to be used as biocontrol agents.
Collapse
Affiliation(s)
- Emilija Žukauskienė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Monika Šimoliūnienė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Lidija Truncaitė
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Martynas Skapas
- Center for Physical Sciences and Technology, Saulėtekio av. 3, LT-10257 Vilnius, Lithuania;
| | - Algirdas Kaupinis
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Mindaugas Valius
- Proteomics Centre, Institute of Biochemistry, Life Sciences Centre, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (A.K.); (M.V.)
| | - Rolandas Meškys
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| | - Eugenijus Šimoliūnas
- Life Sciences Centre, Department of Molecular Microbiology and Biotechnology, Institute of Biochemistry, Vilnius University, Saulėtekio av. 7, LT-10257 Vilnius, Lithuania; (E.Ž.); (M.Š.); (R.M.)
| |
Collapse
|
175
|
Hassan AY, Lin JT, Ricker N, Anany H. The Age of Phage: Friend or Foe in the New Dawn of Therapeutic and Biocontrol Applications? Pharmaceuticals (Basel) 2021; 14:199. [PMID: 33670836 PMCID: PMC7997343 DOI: 10.3390/ph14030199] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/22/2021] [Accepted: 02/25/2021] [Indexed: 02/07/2023] Open
Abstract
Extended overuse and misuse of antibiotics and other antibacterial agents has resulted in an antimicrobial resistance crisis. Bacteriophages, viruses that infect bacteria, have emerged as a legitimate alternative antibacterial agent with a wide scope of applications which continue to be discovered and refined. However, the potential of some bacteriophages to aid in the acquisition, maintenance, and dissemination of negatively associated bacterial genes, including resistance and virulence genes, through transduction is of concern and requires deeper understanding in order to be properly addressed. In particular, their ability to interact with mobile genetic elements such as plasmids, genomic islands, and integrative conjugative elements (ICEs) enables bacteriophages to contribute greatly to bacterial evolution. Nonetheless, bacteriophages have the potential to be used as therapeutic and biocontrol agents within medical, agricultural, and food processing settings, against bacteria in both planktonic and biofilm environments. Additionally, bacteriophages have been deployed in developing rapid, sensitive, and specific biosensors for various bacterial targets. Intriguingly, their bioengineering capabilities show great promise in improving their adaptability and effectiveness as biocontrol and detection tools. This review aims to provide a balanced perspective on bacteriophages by outlining advantages, challenges, and future steps needed in order to boost their therapeutic and biocontrol potential, while also providing insight on their potential role in contributing to bacterial evolution and survival.
Collapse
Affiliation(s)
- Ahmad Y. Hassan
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Janet T. Lin
- Department of Molecular and Cellular Biology, College of Biological Science, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Hany Anany
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON N1G 5C9, Canada;
- Department of Food Science, Ontario Agricultural College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
176
|
Topka-Bielecka G, Dydecka A, Necel A, Bloch S, Nejman-Faleńczyk B, Węgrzyn G, Węgrzyn A. Bacteriophage-Derived Depolymerases against Bacterial Biofilm. Antibiotics (Basel) 2021; 10:175. [PMID: 33578658 PMCID: PMC7916357 DOI: 10.3390/antibiotics10020175] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022] Open
Abstract
In addition to specific antibiotic resistance, the formation of bacterial biofilm causes another level of complications in attempts to eradicate pathogenic or harmful bacteria, including difficult penetration of drugs through biofilm structures to bacterial cells, impairment of immunological response of the host, and accumulation of various bioactive compounds (enzymes and others) affecting host physiology and changing local pH values, which further influence various biological functions. In this review article, we provide an overview on the formation of bacterial biofilm and its properties, and then we focus on the possible use of phage-derived depolymerases to combat bacterial cells included in this complex structure. On the basis of the literature review, we conclude that, although these bacteriophage-encoded enzymes may be effective in destroying specific compounds involved in the formation of biofilm, they are rarely sufficient to eradicate all bacterial cells. Nevertheless, a combined therapy, employing depolymerases together with antibiotics and/or other antibacterial agents or factors, may provide an effective approach to treat infections caused by bacteria able to form biofilms.
Collapse
Affiliation(s)
- Gracja Topka-Bielecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Aleksandra Dydecka
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Agnieszka Necel
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Sylwia Bloch
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (G.T.-B.); (A.D.); (A.N.); (B.N.-F.); (G.W.)
| | - Alicja Węgrzyn
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland;
| |
Collapse
|
177
|
Green SI, Gu Liu C, Yu X, Gibson S, Salmen W, Rajan A, Carter HE, Clark JR, Song X, Ramig RF, Trautner BW, Kaplan HB, Maresso AW. Targeting of Mammalian Glycans Enhances Phage Predation in the Gastrointestinal Tract. mBio 2021; 12:e03474-20. [PMID: 33563833 PMCID: PMC7885116 DOI: 10.1128/mbio.03474-20] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/21/2022] Open
Abstract
The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.
Collapse
Affiliation(s)
- Sabrina I Green
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Carmen Gu Liu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xue Yu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Shelley Gibson
- Department of Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Wilhem Salmen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Anubama Rajan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah E Carter
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Justin R Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Xuezheng Song
- Department of Biochemistry, Emory Comprehensive Glycomics Core, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Robert F Ramig
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Barbara W Trautner
- Michael E. Debakey Veterans Affairs Medical Center, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Heidi B Kaplan
- Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Anthony W Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
178
|
Amarillas L, Villicaña C, Lightbourn-Rojas L, González-Robles A, León-Félix J. The complete genome and comparative analysis of the phage phiC120 infecting multidrug-resistant Escherichia coli and Salmonella strains. G3-GENES GENOMES GENETICS 2021; 11:6114451. [PMID: 33598707 PMCID: PMC8022965 DOI: 10.1093/g3journal/jkab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 01/06/2021] [Indexed: 11/25/2022]
Abstract
Phages infecting Salmonella and Escherichia coli are promising agents for therapeutics and biological control of these foodborne pathogens, in particular those strains with resistance to several antibiotics. In an effort to assess the potential of the phage phiC120, a virulent phage isolated from horse feces in Mexico, we characterized its morphology, host range and complete genome. Herein, we showed that phiC120 possesses strong lytic activity against several multidrug-resistant E. coli O157: H7 and Salmonella strains, and its morphology indicated that is a member of Myoviridae family. The phiC120 genome is double-stranded DNA and consists of 186,570 bp in length with a 37.6% G + C content. A total of 281 putative open reading frames (ORFs) and two tRNAs were found, where 150 ORFs encoded hypothetical proteins with unknown function. Comparative analysis showed that phiC120 shared high similarity at nucleotide and protein levels with coliphages RB69 and phiE142. Detailed phiC120 analysis revealed that ORF 94 encodes a putative depolymerase, meanwhile genes encoding factors associated with lysogeny, toxins, and antibiotic resistance were absent; however, ORF 95 encodes a putative protein with potential allergenic and pro-inflammatory properties, making needed further studies to guarantee the safety of phiC120 for human use. The characterization of phiC120 expands our knowledge about the biology of coliphages and provides novel insights supporting its potential for the development of phage-based applications to control unwanted bacteria.
Collapse
Affiliation(s)
- Luis Amarillas
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México.,Laboratorio de Genética, Instituto de Investigación Lightbourn, Chihuahua 33981, México
| | - Claudia Villicaña
- Laboratorio de Biología Molecular y Genómica Funcional, CONACYT-Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México
| | - Luis Lightbourn-Rojas
- Laboratorio de Genética, Instituto de Investigación Lightbourn, Chihuahua 33981, México
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Instituto Politécnico Nacional, Ciudad de México 07360, México
| | - Josefina León-Félix
- Laboratorio de Biología Molecular y Genómica Funcional, Centro de Investigación en Alimentación y Desarrollo, Sinaloa 80110, México
| |
Collapse
|
179
|
Cieślik M, Bagińska N, Górski A, Jończyk-Matysiak E. Animal Models in the Evaluation of the Effectiveness of Phage Therapy for Infections Caused by Gram-Negative Bacteria from the ESKAPE Group and the Reliability of Its Use in Humans. Microorganisms 2021; 9:206. [PMID: 33498243 PMCID: PMC7909267 DOI: 10.3390/microorganisms9020206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/12/2022] Open
Abstract
The authors emphasize how extremely important it is to highlight the role played by animal models in an attempt to determine possible phage interactions with the organism into which it was introduced as well as to determine the safety and effectiveness of phage therapy in vivo taking into account the individual conditions of a given organism and its physiology. Animal models in which phages are used make it possible, among other things, to evaluate the effective therapeutic dose and to choose the possible route of phage administration depending on the type of infection developed. These results cannot be applied in detail to the human body, but the knowledge gained from animal experiments is invaluable and very helpful. We would like to highlight how useful animal models may be for the possible effectiveness evaluation of phage therapy in the case of infections caused by gram-negative bacteria from the ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter species) group of pathogens. In this review, we focus specifically on the data from the last few years.
Collapse
Affiliation(s)
- Martyna Cieślik
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Natalia Bagińska
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| | - Andrzej Górski
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
- Phage Therapy Unit, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Ewa Jończyk-Matysiak
- Bacteriophage Laboratory, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland; (M.C.); (N.B.); (A.G.)
| |
Collapse
|
180
|
Turkington CJR, Varadan AC, Grenier SF, Grasis JA. The Viral Janus: Viruses as Aetiological Agents and Treatment Options in Colorectal Cancer. Front Cell Infect Microbiol 2021; 10:601573. [PMID: 33489934 PMCID: PMC7817644 DOI: 10.3389/fcimb.2020.601573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 12/24/2022] Open
Abstract
In recent years, our understanding of the importance of microorganisms on and within our bodies has been revolutionized by the ability to characterize entire microbial communities. No more so is this true than in cases of disease. Community studies have revealed strong associations between microbial populations and disease states where such concomitance was previously absent from aetiology: including in cancers. The study of viruses, in particular, has benefited from the development of new community profiling techniques and we are now realising that their prominence within our physiology is nearly as broad as the diversity of the organisms themselves. Here, we examine the relationship between viruses and colorectal cancer (CRC), the leading cause of gastrointestinal cancer-related death worldwide. In CRC, viruses have been suggested to be involved in oncogenesis both directly, through infection of our cells, and indirectly, through modulating the composition of bacterial communities. Interestingly though, these characteristics have also led to their examination from another perspective—as options for treatment. Advances in our understanding of molecular and viral biology have caused many to look at viruses as potential modular biotherapeutics, where deleterious characteristics can be tamed and desirable characteristics exploited. In this article, we will explore both of these perspectives, covering how viral infections and involvement in microbiome dynamics may contribute to CRC, and examine ways in which viruses themselves could be harnessed to treat the very condition their contemporaries may have had a hand in creating.
Collapse
Affiliation(s)
| | - Ambarish C Varadan
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| | - Shea F Grenier
- Department of Biology, San Diego State University, San Diego, CA, United States
| | - Juris A Grasis
- School of Natural Sciences, University of California Merced, Merced, CA, United States
| |
Collapse
|
181
|
Kwon J, Kim SG, Kim HJ, Giri SS, Kim SW, Lee SB, Park SC. Isolation and Characterization of Salmonella Jumbo-Phage pSal-SNUABM-04. Viruses 2020; 13:v13010027. [PMID: 33375688 PMCID: PMC7823757 DOI: 10.3390/v13010027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
The increasing emergence of antimicrobial resistance has become a global issue. Therefore, many researchers have attempted to develop alternative antibiotics. One promising alternative is bacteriophage. In this study, we focused on a jumbo-phage infecting Salmonella isolated from exotic pet markets. Using a Salmonella strain isolated from reptiles as a host, we isolated and characterized the novel jumbo-bacteriophage pSal-SNUABM-04. This phage was investigated in terms of its morphology, host infectivity, growth and lysis kinetics, and genome. The phage was classified as Myoviridae based on its morphological traits and showed a comparatively wide host range. The lysis efficacy test showed that the phage can inhibit bacterial growth in the planktonic state. Genetic analysis revealed that the phage possesses a 239,626-base pair genome with 280 putative open reading frames, 76 of which have a predicted function and 195 of which have none. By genome comparison with other jumbo phages, the phage was designated as a novel member of Machinavirus composed of Erwnina phages.
Collapse
|
182
|
Van Belleghem JD, Manasherob R, Miȩdzybrodzki R, Rogóż P, Górski A, Suh GA, Bollyky PL, Amanatullah DF. The Rationale for Using Bacteriophage to Treat and Prevent Periprosthetic Joint Infections. Front Microbiol 2020; 11:591021. [PMID: 33408703 PMCID: PMC7779626 DOI: 10.3389/fmicb.2020.591021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022] Open
Abstract
Prosthetic joint infection (PJI) is a devastating complication after a joint replacement. PJI and its treatment have a high monetary cost, morbidity, and mortality. The lack of success treating PJI with conventional antibiotics alone is related to the presence of bacterial biofilm on medical implants. Consequently, surgical removal of the implant and prolonged intravenous antibiotics to eradicate the infection are necessary prior to re-implanting a new prosthetic joint. Growing clinical data shows that bacterial predators, called bacteriophages (phages), could be an alternative treatment strategy or prophylactic approach for PJI. Phages could further be exploited to degrade biofilms, making bacteria more susceptible to antibiotics and enabling potential combinatorial therapies. Emerging research suggests that phages may also directly interact with the innate immune response. Phage therapy may play an important, and currently understudied, role in the clearance of PJI, and has the potential to treat thousands of patients who would either have to undergo revision surgery to attempt to clear an infections, take antibiotics for a prolonged period to try and suppress the re-emerging infection, or potentially risk losing a limb.
Collapse
Affiliation(s)
- Jonas D. Van Belleghem
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Robert Manasherob
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| | - Ryszard Miȩdzybrodzki
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Paweł Rogóż
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Andrzej Górski
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | - Paul L. Bollyky
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, CA, United States
| | - Derek F. Amanatullah
- Department of Orthopaedic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
183
|
Beyond antibacterials - exploring bacteriophages as antivirulence agents. Curr Opin Biotechnol 2020; 68:166-173. [PMID: 33333352 DOI: 10.1016/j.copbio.2020.11.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/28/2020] [Accepted: 11/09/2020] [Indexed: 01/10/2023]
Abstract
Life-threatening infections caused by multidrug-resistant bacteria are becoming increasingly difficult to treat. There is growing interest in exploiting bacteriophages (or phages) to combat bacterial infections. Phages often target bacterial surface structures that may also be important for virulence. Upon phage challenge, these molecules may be lost or modified, resulting in phage resistance and possibly phenotypical conversion. Importantly, possible trade-offs may include lower fitness, increased sensitivity to antibiotics and immune defense mechanisms, and virulence attenuation. Although evolution of phage-resistance may be difficult to prevent, the trade-off phenomenon carries potential for antibacterial therapy. Here we present some insights into the molecular principles and significance of this coincidental interplay between phages, bacteria, and immune cells, and discuss the prospect of developing phage-derived products as antivirulence agents.
Collapse
|
184
|
Unlocking the next generation of phage therapy: the key is in the receptors. Curr Opin Biotechnol 2020; 68:115-123. [PMID: 33202354 DOI: 10.1016/j.copbio.2020.10.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/21/2020] [Accepted: 10/09/2020] [Indexed: 12/18/2022]
Abstract
Phage therapy, the clinical use of viruses that kill bacteria, is a promising strategy in the fight against antimicrobial resistance. Before administration, phages undergo a careful examination of their safety and interactions with target bacteria. This characterization seldom includes identifying the receptor on the bacterial surface involved in phage adsorption. In this perspective article, we propose that understanding the function and location of these phage receptors can open the door to improved and innovative ways to use phage therapy. With knowledge of phage receptors, we can design intelligent phage cocktails, discover new phage-derived antimicrobials, and steer the evolution of phage-resistance towards clinically exploitable phenotypes. In an effort to jump-start this initiative, we recommend priority groups of hosts and phages. Finally, we review modern approaches for the identification of phage receptors, including molecular platforms for high-throughput mutagenesis, synthetic biology, and machine learning.
Collapse
|
185
|
Structure and function of bacteriophage CBA120 ORF211 (TSP2), the determinant of phage specificity towards E. coli O157:H7. Sci Rep 2020; 10:15402. [PMID: 32958885 PMCID: PMC7506556 DOI: 10.1038/s41598-020-72373-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/27/2020] [Indexed: 11/17/2022] Open
Abstract
The genome of Escherichia coli O157:H7 bacteriophage vB_EcoM_CBA120 encodes four distinct tailspike proteins (TSPs). The four TSPs, TSP1-4, attach to the phage baseplate forming a branched structure. We report the 1.9 Å resolution crystal structure of TSP2 (ORF211), the TSP that confers phage specificity towards E. coli O157:H7. The structure shows that the N-terminal 168 residues involved in TSPs complex assembly are disordered in the absence of partner proteins. The ensuing head domain contains only the first of two fold modules seen in other phage vB_EcoM_CBA120 TSPs. The catalytic site resides in a cleft at the interface between adjacent trimer subunits, where Asp506, Glu568, and Asp571 are located in close proximity. Replacement of Asp506 and Asp571 for alanine residues abolishes enzyme activity, thus identifying the acid/base catalytic machinery. However, activity remains intact when Asp506 and Asp571 are mutated into asparagine residues. Analysis of additional site-directed mutants in the background of the D506N:D571N mutant suggests engagement of an alternative catalytic apparatus comprising Glu568 and Tyr623. Finally, we demonstrate the catalytic role of two interacting glutamate residues of TSP1, located in a cleft between two trimer subunits, Glu456 and Glu483, underscoring the diversity of the catalytic apparatus employed by phage vB_EcoM_CBA120 TSPs.
Collapse
|
186
|
Vukotic G, Obradovic M, Novovic K, Di Luca M, Jovcic B, Fira D, Neve H, Kojic M, McAuliffe O. Characterization, Antibiofilm, and Depolymerizing Activity of Two Phages Active on Carbapenem-Resistant Acinetobacter baumannii. Front Med (Lausanne) 2020; 7:426. [PMID: 32974360 PMCID: PMC7461965 DOI: 10.3389/fmed.2020.00426] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/01/2020] [Indexed: 01/21/2023] Open
Abstract
Acinetobacter baumannii is a leading cause of healthcare-associated infections worldwide. Its various intrinsic and acquired mechanisms of antibiotic resistance make the therapeutic challenge even more serious. One of the promising alternative treatments that is increasingly highlighted is phage therapy, the therapeutic use of bacteriophages to treat bacterial infections. Two phages active against nosocomial carbapenem-resistant A. baumannii strain 6077/12, vB_AbaM_ISTD, and vB_AbaM_NOVI, were isolated from Belgrade wastewaters, purified, and concentrated using CsCl gradient ultracentrifugation. The phages were screened against 103 clinical isolates of A. baumannii from a laboratory collection and characterized based on plaque and virion morphology, host range, adsorption rate, and one-step growth curve. Given that phage ISTD showed a broader host range, better adsorption rate, shorter latent period, and larger burst size, its ability to lyse planktonic and biofilm-embedded cells was tested in detail. Phage ISTD yielded a 3.5- and 2-log reduction in planktonic and biofilm-associated viable bacterial cell count, respectively, but the effect was time-dependent. Both phages produced growing turbid halos around plaques indicating the synthesis of depolymerases, enzymes capable of degrading bacterial exopolysaccharides. Halos tested positive for presence of phages in the proximity of the plaque, but not further from the plaque, which indicates that the observed halo enlargement is a consequence of enzyme diffusion through the agar, independently of the phages. This notion was also supported by the growing halos induced by phage preparations applied on pregrown bacterial lawns, indicating that depolymerizing effect was achieved also on non-dividing sensitive cells. Overall, good rates of growth, fast adsorption rate, broad host range, and high depolymerizing activity, as well as antibacterial effectiveness against planktonic and biofilm-associated bacteria, make these phages good candidates for potential application in combating A. baumannii infections.
Collapse
Affiliation(s)
- Goran Vukotic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Chair of Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Mina Obradovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Katarina Novovic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - Branko Jovcic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Chair of Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Djordje Fira
- Chair of Biochemistry and Molecular Biology, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Kiel, Germany
| | - Milan Kojic
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Olivia McAuliffe
- Department of Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
187
|
Gambino M, Nørgaard Sørensen A, Ahern S, Smyrlis G, Gencay YE, Hendrix H, Neve H, Noben JP, Lavigne R, Brøndsted L. Phage S144, A New Polyvalent Phage Infecting Salmonella spp. and Cronobacter sakazakii. Int J Mol Sci 2020; 21:ijms21155196. [PMID: 32707941 PMCID: PMC7432712 DOI: 10.3390/ijms21155196] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Phages are generally considered species- or even strain-specific, yet polyvalent phages are able to infect bacteria from different genera. Here, we characterize the novel polyvalent phage S144, a member of the Loughboroughvirus genus. By screening 211 Enterobacteriaceae strains, we found that phage S144 forms plaques on specific serovars of Salmonella enterica subsp. enterica and on Cronobacter sakazakii. Analysis of phage resistant mutants suggests that the O-antigen of lipopolysaccharide is the phage receptor in both bacterial genera. The S144 genome consists of 53,628 bp and encodes 80 open reading frames (ORFs), but no tRNA genes. In total, 32 ORFs coding for structural proteins were confirmed by ESI-MS/MS analysis, whereas 45 gene products were functionally annotated within DNA metabolism, packaging, nucleotide biosynthesis and phage morphogenesis. Transmission electron microscopy showed that phage S144 is a myovirus, with a prolate head and short tail fibers. The putative S144 tail fiber structure is, overall, similar to the tail fiber of phage Mu and the C-terminus shows amino acid similarity to tail fibers of otherwise unrelated phages infecting Cronobacter. Since all phages in the Loughboroughvirus genus encode tail fibers similar to S144, we suggest that phages in this genus infect Cronobacter sakazakii and are polyvalent.
Collapse
Affiliation(s)
- Michela Gambino
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.G.); (A.N.S.); (S.A.); (G.S.); (Y.E.G.)
| | - Anders Nørgaard Sørensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.G.); (A.N.S.); (S.A.); (G.S.); (Y.E.G.)
| | - Stephen Ahern
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.G.); (A.N.S.); (S.A.); (G.S.); (Y.E.G.)
| | - Georgios Smyrlis
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.G.); (A.N.S.); (S.A.); (G.S.); (Y.E.G.)
| | - Yilmaz Emre Gencay
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.G.); (A.N.S.); (S.A.); (G.S.); (Y.E.G.)
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 24103 Kiel, Germany;
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, BE3590 Diepenbeek, Belgium;
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, 3001 Leuven, Belgium; (H.H.); (R.L.)
| | - Lone Brøndsted
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; (M.G.); (A.N.S.); (S.A.); (G.S.); (Y.E.G.)
- Correspondence:
| |
Collapse
|
188
|
Zrelovs N, Dislers A, Kazaks A. Novel Erwinia persicina Infecting Phage Midgardsormr38 Within the Context of Temperate Erwinia Phages. Front Microbiol 2020; 11:1245. [PMID: 32636815 PMCID: PMC7317114 DOI: 10.3389/fmicb.2020.01245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/15/2020] [Indexed: 11/17/2022] Open
Abstract
Prophages or prophage remnants are found in chromosomes of many bacterial strains and might increase the environmental fitness and/or virulence of their hosts. Up to this date, complete genome sequences of only seven temperate bacteriophages infecting bacteria from genus Erwinia, comprising of mostly phytopathogenic bacteria, are available publicly. No attempts to analyze the global diversity of temperate Erwinia phages and establish relationships between cultured temperate Erwinia phages and prophages were yet made. In this study, we have isolated, sequenced, and described novel Erwinia persicina infecting bacteriophage "Midgardsormr38" and placed it in the context of previously described Erwinia sp. temperate phages and putative prophages derived from chromosomes of publicly available complete genomes of Erwinia sp. to broaden and investigate diversity of temperate Erwinia phages based on their genomic contents. The study revealed more than 50 prophage or prophage remnant regions in the genomes of different Erwinia species. At least 5 of them seemed to be intact and might represent novel inducible Erwinia phages. Given the enormous bacteriophage diversity, attempts to establish evolutionary relationships between temperate Erwinia phages revealed at least five different clusters of temperate phages sharing higher degree of similarity.
Collapse
Affiliation(s)
- Nikita Zrelovs
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Dislers
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| | - Andris Kazaks
- Latvian Biomedical Research and Study Centre, Riga, Latvia
| |
Collapse
|
189
|
Domingo-Calap P, Beamud B, Mora-Quilis L, González-Candelas F, Sanjuán R. Isolation and Characterization of Two Klebsiella pneumoniae Phages Encoding Divergent Depolymerases. Int J Mol Sci 2020; 21:E3160. [PMID: 32365770 PMCID: PMC7246685 DOI: 10.3390/ijms21093160] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 01/05/2023] Open
Abstract
The emergence of multidrug-resistant bacteria is a major global health concern. The search for new therapies has brought bacteriophages into the spotlight, and new phages are being described as possible therapeutic agents. Among the bacteria that are most extensively resistant to current antibiotics is Klebsiella pneumoniae, whose hypervariable extracellular capsule makes treatment particularly difficult. Here, we describe two new K. pneumoniae phages, πVLC5 and πVLC6, isolated from environmental samples. These phages belong to the genus Drulisvirus within the family Podoviridae. Both phages encode a similar tail spike protein with putative depolymerase activity, which is shared among other related phages and probably determines their ability to specifically infect K. pneumoniae capsular types K22 and K37. In addition, we found that phage πVLC6 also infects capsular type K13 and is capable of striping the capsules of K. pneumoniae KL2 and KL3, although the phage was not infectious in these two strains. Genome sequence analysis suggested that the extended tropism of phage πVLC6 is conferred by a second, divergent depolymerase. Phage πVLC5 encodes yet another putative depolymerase, but we found no activity of this phage against capsular types other than K22 and K37, after testing a panel of 77 reference strains. Overall, our results confirm that most phages productively infected one or few Klebsiella capsular types. This constitutes an important challenge for clinical applications.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (L.M.-Q.); (F.G.-C.); (R.S.)
- Department of Genetics, Universitat de València, 46980 Paterna, Spain
| | - Beatriz Beamud
- FISABIO-Salud Pública, Generalitat Valenciana, 46020 Valencia, Spain;
| | - Lucas Mora-Quilis
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (L.M.-Q.); (F.G.-C.); (R.S.)
| | - Fernando González-Candelas
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (L.M.-Q.); (F.G.-C.); (R.S.)
- FISABIO-Salud Pública, Generalitat Valenciana, 46020 Valencia, Spain;
- CIBER in Epidemiology and Public Health, 46020 Valencia, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology, ISysBio, Universitat de València-CSIC, 46980 Paterna, Spain; (L.M.-Q.); (F.G.-C.); (R.S.)
| |
Collapse
|