151
|
Żera T, Nowiński A, Segiet A, Smykiewicz P. Microglia and brain angiotensin type 1 receptors are involved in desensitising baroreflex by intracerebroventricular hypertonic saline in male Sprague-Dawley rats. Auton Neurosci 2019; 217:49-57. [PMID: 30704975 DOI: 10.1016/j.autneu.2019.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 12/09/2022]
Abstract
High salt diet alters cardiovascular control by increasing concentration of sodium ions (Na+) in cerebrospinal fluid (CSF) and is a risk factor for hypertension. Hypernatremic conditions activate microglia and upregulate renin-angiotensin system in the brain. Thus, we checked if chronic elevation of CSF Na+ affects neural control of circulatory system via microglia and brain angiotensin type 1 receptors (AT1Rs). Normotensive adult male Sprague-Dawley rats received two-week intracerebroventricular (ICV) infusion of either isoosmotic saline (0.9% NaCl); hyperosmotic saline (5% NaCl); 5% NaCl with minocycline - inhibitor of microglia; 5% NaCl with losartan - AT1R blocker. Fluid intake, urine output, and urinary Na+ excretion were measured before and during ICV infusions. At the end of ICV infusions, blood pressure and heart rate were recorded in awake rats at rest, in response to acute air jet stressor, during pharmacological evaluation of baroreflex, and after autonomic ganglia blockade. CSF and blood were collected for evaluation of Na+ concentration. Baroreflex was blunted in rats ICV infused with 5% NaCl. ICV treatment with losartan or minocycline prevented decrease in baroreflex sensitivity. Hemodynamic parameters at rest, in response to acute stressor and autonomic ganglia blockade were similar in all groups. Neither treatment affected water intake, urine output and urinary Na+ excretion. ICV infusion of 5% NaCl resulted in higher concentration of Na+ in CSF than in control group (0.9% NaCl) and in plasma. Our results indicate that chronic ICV infusion of hyperosmotic saline blunts baroreflex in normotensive rats and this desensitization is mediated by microglia and AT1Rs.
Collapse
Affiliation(s)
- Tymoteusz Żera
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, the Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Artur Nowiński
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, the Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Agnieszka Segiet
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, the Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Paweł Smykiewicz
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, the Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|
152
|
Malek M. Brain consequences of acute kidney injury: Focusing on the hippocampus. Kidney Res Clin Pract 2018; 37:315-322. [PMID: 30619687 PMCID: PMC6312775 DOI: 10.23876/j.krcp.18.0056] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/19/2018] [Accepted: 07/31/2018] [Indexed: 12/11/2022] Open
Abstract
The high mortality rates associated with acute kidney injury are mainly due to extra-renal complications that occur following distant-organ involvement. Damage to these organs, which is commonly referred to as multiple organ dysfunction syndrome, has more severe and persistent effects. The brain and its sub-structures, such as the hippocampus, are vulnerable organs that can be adversely affected. Acute kidney injury may be associated with numerous brain and hippocampal complications, as it may alter the permeability of the blood-brain barrier. Although the pathogenesis of acute uremic encephalopathy is poorly understood, some of the underlying mechanisms that may contribute to hippocampal involvement include the release of multiple inflammatory mediators that coincide with hippocampus inflammation and cytotoxicity, neurotransmitter derangement, transcriptional dysregulation, and changes in the expression of apoptotic genes. Impairment of brain function, especially of a structure that has vital activity in learning and memory and is very sensitive to renal ischemic injury, can ultimately lead to cognitive and functional complications in patients with acute kidney injury. The objective of this review was to assess these complications in the brain following acute kidney injury, with a focus on the hippocampus as a critical region for learning and memory.
Collapse
Affiliation(s)
- Maryam Malek
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
153
|
Parga JA, Rodriguez-Perez AI, Garcia-Garrote M, Rodriguez-Pallares J, Labandeira-Garcia JL. Angiotensin II induces oxidative stress and upregulates neuroprotective signaling from the NRF2 and KLF9 pathway in dopaminergic cells. Free Radic Biol Med 2018; 129:394-406. [PMID: 30315936 DOI: 10.1016/j.freeradbiomed.2018.10.409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/30/2018] [Accepted: 10/05/2018] [Indexed: 12/19/2022]
Abstract
Nuclear factor-E2-related factor 2 (NRF2) is a transcription factor that activates the antioxidant cellular defense in response to oxidative stress, leading to neuroprotective effects in Parkinson's disease (PD) models. We have previously shown that Angiotensin II (AngII) induces an increase in reactive oxygen species (ROS) via AngII receptor type 1 and NADPH oxidase (NOX), which may activate the NRF2 pathway. However, controversial data suggest that AngII induces a decrease in NRF2 signaling leading to an increase in oxidative stress. We analyzed the effect of AngII and the dopaminergic neurotoxin 6-hydroxydopamine (6-OHDA) in culture and in vivo, and examined the effects on the expression of NRF2-related genes. Treatment of neuronal cell lines Mes23.5, N27 and SH-SY5Y with AngII, 6-OHDA or a combination of both increased ROS production and reduced cell viability. Simultaneously, these treatments induced an increase in expression in the NRF2-regulated genes heme oxygenase 1 (Hmox1), NAD(P)H quinone dehydrogenase 1 (Nqo1) and Kruppel like factor 9 (Klf9). Moreover, overexpression of KLF9 transcription factor caused a reduction in the production of ROS induced by treatment with AngII or 6-OHDA and improved the survival of these neuronal cells. Rats treated with AngII, 6-OHDA or a combination of both also showed an increased expression of NRF2 related genes and KLF9. In conclusion, our data indicate that AngII induces a damaging effect in neuronal cells, but also acts as a signaling molecule to activate NRF2 and KLF9 neuroprotective pathways in cellular and animal models of PD.
Collapse
Affiliation(s)
- Juan A Parga
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodriguez-Perez
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria Garcia-Garrote
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jannette Rodriguez-Pallares
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Labandeira-Garcia
- Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
154
|
Rodriguez-Perez AI, Sucunza D, Pedrosa MA, Garrido-Gil P, Kulisevsky J, Lanciego JL, Labandeira-Garcia JL. Angiotensin Type 1 Receptor Antagonists Protect Against Alpha-Synuclein-Induced Neuroinflammation and Dopaminergic Neuron Death. Neurotherapeutics 2018; 15:1063-1081. [PMID: 29987762 PMCID: PMC6277291 DOI: 10.1007/s13311-018-0646-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The loss of dopaminergic neurons and α-synuclein accumulation are major hallmarks of Parkinson's disease (PD), and it has been suggested that a major mechanism of α-synuclein toxicity is microglial activation. The lack of animal models that properly reproduce PD, and particularly the underlying synucleinopathy, has hampered the clarification of PD mechanisms and the development of effective therapies. Here, we used neurospecific adeno-associated viral vectors serotype 9 coding for either the wild-type or mutated forms of human alpha-synuclein (WT and SynA53T, respectively) under the control of a synapsin promoter to further induce a marked dopaminergic neuron loss together with an important microglial neuroinflammatory response. Overexpression of neuronal alpha-synuclein led to increased expression of angiotensin type 1 receptors and NADPH oxidase activity, together with a marked increase in the number of OX-6-positive microglial cells and expression of markers of phagocytic activity (CD68) and classical pro-inflammatory/M1 microglial phenotype markers such as inducible nitric oxide synthase, tumor necrosis factor alpha, interleukin-1β, and IL-6. Moreover, a significant decrease in the expression of markers of immunoregulatory/M2 microglial phenotype such as the enzyme arginase-1 was constantly observed. Interestingly, alpha-synuclein-induced changes in microglial phenotype markers and dopaminergic neuron death were inhibited by simultaneous treatment with the angiotensin type 1 blockers candesartan or telmisartan. Our results suggest the repurposing of candesartan and telmisartan as a neuroprotective strategy for PD.
Collapse
Affiliation(s)
- Ana I Rodriguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
| | - Diego Sucunza
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
- Neurosciences Division, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, 31008, Spain
| | - Maria A Pedrosa
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
| | - Jaime Kulisevsky
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital and Biomedical Research Institute, Universitat Autonoma de Barcelona and Universitat Oberta de Catalunya, Barcelona, 08025, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain
- Neurosciences Division, Centro de Investigación Médica Aplicada, University of Navarra, Pamplona, 31008, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, Centro de Investigación en Medicina Molecular y Enfermedades Crónicas, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.
- Networking Research Center on Neurodegenerative Diseases (Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas), Madrid, 28031, Spain.
| |
Collapse
|
155
|
Iris F, Beopoulos A, Gea M. How scientific literature analysis yields innovative therapeutic hypothesis through integrative iterations. Curr Opin Pharmacol 2018; 42:62-70. [PMID: 30092386 DOI: 10.1016/j.coph.2018.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/12/2018] [Indexed: 12/27/2022]
Abstract
It is becoming generally accepted that the current diagnostic system often guarantees, rather than diminishes, disease heterogeneity. In effects, syndrome-dominated conceptual thinking has become a barrier to understanding the biological causes of complex, multifactorial diseases characterized by clinical and therapeutic heterogeneity. Furthermore, not only is the flood of currently available medical and biological information highly heterogeneous, it is also often conflicting. Together with the entire absence of functional models of pathogenesis and pathological evolution of complex diseases, this leads to a situation where illness activity cannot be coherently approached and where therapeutic developments become highly problematic. Acquisition of the necessary knowledge can be obtained, in parts, using in silico models produced through analytical approaches and processes collectively known as `Systems Biology'. However, without analytical approaches that specifically incorporate the facts that all that is called `information' is not necessarily useful nor utilisable and that all information should be considered as a priori suspect, modelling attempts will fail because of the much too numerous conflicting and, although correct in molecular terms, physiologically invalid reports. In the present essay, we suggest means whereby this body of problems could be functionally attacked and describe new analytical approaches that have demonstrated their efficacy in alleviating these difficulties.
Collapse
Affiliation(s)
- Francois Iris
- Bio-Modeling Systems, Tour CIT, 3 Rue de l'Arrivée, 75015, Paris, France.
| | | | - Manuel Gea
- Bio-Modeling Systems, Tour CIT, 3 Rue de l'Arrivée, 75015, Paris, France
| |
Collapse
|
156
|
Bhat SA, Sood A, Shukla R, Hanif K. AT2R Activation Prevents Microglia Pro-inflammatory Activation in a NOX-Dependent Manner: Inhibition of PKC Activation and p47phox Phosphorylation by PP2A. Mol Neurobiol 2018; 56:3005-3023. [DOI: 10.1007/s12035-018-1272-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/19/2018] [Indexed: 12/22/2022]
|
157
|
Haspula D, Clark MA. Molecular Basis of the Brain Renin Angiotensin System in Cardiovascular and Neurologic Disorders: Uncovering a Key Role for the Astroglial Angiotensin Type 1 Receptor AT1R. J Pharmacol Exp Ther 2018; 366:251-264. [PMID: 29752427 DOI: 10.1124/jpet.118.248831] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/08/2018] [Indexed: 12/13/2022] Open
Abstract
The central renin angiotensin system (RAS) is one of the most widely investigated cardiovascular systems in the brain. It is implicated in a myriad of cardiovascular diseases. However, studies from the last decade have identified its involvement in several neurologic abnormalities. Understanding the molecular functionality of the various RAS components can thus provide considerable insight into the phenotypic differences and mechanistic drivers of not just cardiovascular but also neurologic disorders. Since activation of one of its primary receptors, the angiotensin type 1 receptor (AT1R), results in an augmentation of oxidative stress and inflammatory cytokines, it becomes essential to investigate not just neuronal RAS but glial RAS as well. Glial cells are key homeostatic regulators in the brain and are critical players in the resolution of overt oxidative stress and neuroinflammation. Designing better and effective therapeutic strategies that target the brain RAS could well hinge on understanding the molecular basis of both neuronal and glial RAS. This review provides a comprehensive overview of the major studies that have investigated the mechanisms and regulation of the brain RAS, and it also provides insight into the potential role of glial AT1Rs in the pathophysiology of cardiovascular and neurologic disorders.
Collapse
Affiliation(s)
- Dhanush Haspula
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| | - Michelle A Clark
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, Wisconsin (D.H.); and College of Pharmacy, Department of Pharmaceutical Sciences, Nova Southeastern University, Ft. Lauderdale, Florida (M.A.C.)
| |
Collapse
|
158
|
Liu SJ, Liu XY, Li JH, Guo J, Li F, Gui Y, Li XH, Yang L, Wu CY, Yuan Y, Li JJ. Gastrodin attenuates microglia activation through renin-angiotensin system and Sirtuin3 pathway. Neurochem Int 2018; 120:49-63. [PMID: 30075231 DOI: 10.1016/j.neuint.2018.07.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/26/2018] [Accepted: 07/30/2018] [Indexed: 01/14/2023]
Abstract
Microglia activation and its mediated production of proinflammatory mediators play important roles in different neurodegenerative diseases; hence, modulation of microglia activation has been considered a potential therapeutic strategy to ameliorate neurodegeneration. This study was aimed to determine whether Gastrodin, a common herbal agent known to possess neuroprotective property, can attenuate production of proinflammatory mediators in activated microglia through the renin-angiotensin system (RAS) and Sirtuin3 (SIRT3). Expression of various members of the RAS including ACE, AT1, AT2, and SIRT3 in activated microglia was assessed by immunofluorescence and Western blot in hypoxic-ischemia brain damage (HIBD) in postnatal rats, and in BV-2 microglia in vitro challenged with lipopolysaccharide (LPS) with or without Gastrodin treatment. Expression of NOX-2, a subunit of NADPH oxidase, and proinflammatory mediators including iNOS and TNF-α, was also evaluated. The present results showed that expression of ACE, AT1, NOX-2, iNOS and TNF-α was markedly increased in activated microglia in the corpus callosum of HIBD rats, and in LPS stimulated BV-2 microglia. Remarkably, the expression was markedly attenuated following Gastrodin treatment. Conversely, Gastrodin enhanced AT2 and SIRT3 protein expression. In BV-2 microglia treated with Azilsartan, a specific inhibitor of AT1 (AT1I group), NOX-2 expression was decreased whereas that of SIRT3 in LPS + AT1I and LPS + Gastrodin group was increased when compared with the controls. In LPS + AT1I + Gastrodin group, SIRT3 expression was further augmented. More importantly, Gastrodin effectively reduced caspase 3 protein expression level in the HIBD rats coupled with a significant decrease in caspase 3 positive cells. We conclude that Gastrodin can exert its protective effects against the hypoxic-ischemia brain damage in the present experimental HIBD model. It is suggested that this is mainly through suppression of expression of RAS (except for AT2 and SIRT3) and proinflammatory mediators e.g. TNF-α in activated microglia.
Collapse
Affiliation(s)
- Shun-Jin Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Xiao-Yu Liu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Jing-Hui Li
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, PR China.
| | - Jing Guo
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Fan Li
- Department of Pathology and Pathophysiology, School of Basic Medical Science, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Yang Gui
- Second Department of Neurosurgery, First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650500, PR China.
| | - Xiu-Hua Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Li Yang
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Chun-Yun Wu
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Yun Yuan
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| | - Juan-Juan Li
- Department of Anatomy and Histology/Embryology, School of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, PR China.
| |
Collapse
|
159
|
Nokkari A, Abou-El-Hassan H, Mechref Y, Mondello S, Kindy MS, Jaffa AA, Kobeissy F. Implication of the Kallikrein-Kinin system in neurological disorders: Quest for potential biomarkers and mechanisms. Prog Neurobiol 2018; 165-167:26-50. [PMID: 29355711 PMCID: PMC6026079 DOI: 10.1016/j.pneurobio.2018.01.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/15/2018] [Indexed: 01/06/2023]
Abstract
Neurological disorders represent major health concerns in terms of comorbidity and mortality worldwide. Despite a tremendous increase in our understanding of the pathophysiological processes involved in disease progression and prevention, the accumulated knowledge so far resulted in relatively moderate translational benefits in terms of therapeutic interventions and enhanced clinical outcomes. Aiming at specific neural molecular pathways, different strategies have been geared to target the development and progression of such disorders. The kallikrein-kinin system (KKS) is among the most delineated candidate systems due to its ubiquitous roles mediating several of the pathophysiological features of these neurological disorders as well as being implicated in regulating various brain functions. Several experimental KKS models revealed that the inhibition or stimulation of the two receptors of the KKS system (B1R and B2R) can exhibit neuroprotective and/or adverse pathological outcomes. This updated review provides background details of the KKS components and their functions in different neurological disorders including temporal lobe epilepsy, traumatic brain injury, stroke, spinal cord injury, Alzheimer's disease, multiple sclerosis and glioma. Finally, this work will highlight the putative roles of the KKS components as potential neurotherapeutic targets and provide future perspectives on the possibility of translating these findings into potential clinical biomarkers in neurological disease.
Collapse
Affiliation(s)
- Amaly Nokkari
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon
| | - Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Mark S Kindy
- Department of Pharmaceutical Science, College of Pharmacy, University of South Florida, Tampa, FL, USA; James A. Haley VA Medical Center, Tampa, FL, USA
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Department of Medicine, Medical University of South, Charleston, SC, USA.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Lebanon; Center for Neuroproteomics & Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
160
|
Jackson L, Eldahshan W, Fagan SC, Ergul A. Within the Brain: The Renin Angiotensin System. Int J Mol Sci 2018; 19:E876. [PMID: 29543776 PMCID: PMC5877737 DOI: 10.3390/ijms19030876] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/10/2018] [Accepted: 03/11/2018] [Indexed: 02/07/2023] Open
Abstract
For many years, modulators of the renin angiotensin system (RAS) have been trusted by clinicians for the control of essential hypertension. It was recently demonstrated that these modulators have other pleiotropic properties independent of their hypotensive effects, such as enhancement of cognition. Within the brain, different components of the RAS have been extensively studied in the context of neuroprotection and cognition. Interestingly, a crosstalk between the RAS and other systems such as cholinergic, dopaminergic and adrenergic systems have been demonstrated. In this review, the preclinical and clinical evidence for the impact of RAS modulators on cognitive impairment of multiple etiologies will be discussed. In addition, the expression and function of different receptor subtypes within the RAS such as: Angiotensin II type I receptor (AT1R), Angiotensin II type II receptor (AT2R), Angiotensin IV receptor (AT4R), Mas receptor (MasR), and Mas-related-G protein-coupled receptor (MrgD), on different cell types within the brain will be presented. We aim to direct the attention of the scientific community to the plethora of evidence on the importance of the RAS on cognition and to the different disease conditions in which these agents can be beneficial.
Collapse
Affiliation(s)
- LaDonya Jackson
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - Wael Eldahshan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
| | - Susan C Fagan
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
- Department of Neurology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| | - Adviye Ergul
- Program in Clinical and Experimental Therapeutics, College of Pharmacy, University of Georgia, Augusta, GA 30912, USA.
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
- Charlie Norwood Veterans Affairs Medical Center, Augusta, GA 30904, USA.
| |
Collapse
|
161
|
Torika N, Asraf K, Apte RN, Fleisher-Berkovich S. Candesartan ameliorates brain inflammation associated with Alzheimer's disease. CNS Neurosci Ther 2018; 24:231-242. [PMID: 29365370 DOI: 10.1111/cns.12802] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/05/2017] [Accepted: 12/24/2017] [Indexed: 01/08/2023] Open
Abstract
AIMS Alzheimer's disease (AD) pathology is associated with brain inflammation involving microglia and astrocytes. The renin-angiotensin system contributes to brain inflammation associated with AD pathology. This study aimed to investigate the role of candesartan, an angiotensin II type 1 receptor blocker, in modulation of glial functions associated with AD. METHODS Focusing on the role of candesartan in glial inflammation, we evaluated inflammatory mediators' levels, secreted by lipopolysaccharide-induced microglia following candesartan treatment. Also, short-term intranasal candesartan effects on amyloid burden and microglial activation were investigated in 5 familial AD mice. RESULTS Candesartan showed anti-inflammatory effects and shifted microglial activation toward a more neuroprotective phenotype. Candesartan decreased the lipopolysaccharide-induced nitric oxide synthase and cyclooxygenase-2 expression levels, which was accompanied by an induction of arginase-1 expression levels and enhanced Aβ1-42 uptake by microglia. Moreover, intranasally administered candesartan to AD mice model significantly reduced the amyloid burden and microglia activation in the hippocampus. CONCLUSIONS These results thus shed light on the neuroprotective role of candesartan in the early stage of AD, which might relate to modulation of microglial activation states.
Collapse
Affiliation(s)
- Nofar Torika
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Keren Asraf
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Ron N Apte
- Department of Microbiology and Immunology, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Sigal Fleisher-Berkovich
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
162
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2018. [PMID: 29311911 DOI: 10.3389/fnagi.2017.00430/xml/nlm] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
163
|
Abstract
The classical renin-angiotensin system (RAS) in the body has been studied intensively in the last decades, since it is known that this system is involved in the regulation of blood pressure. Since nearly all members of the classical RAS have also been identified within the brain in the last decades and due to the existence of the blood-brain barrier, a RAS within the brain (bRAS) that is largely independent from the peripheral RAS has been postulated. All members of the angiotensin family as e.g., angiotensin II, angiotensin IV and angiotensin II (1-7) along with the respective receptors (e.g., angiotensin II receptor type 1 (AT1), angiotensin II receptor type 2 (AT2), angiotensin IV receptor (AT4), angiotensin II (1-7) receptor (Mas)) have been identified within the brain. Moreover, a receptor capable of binding renin and the renin precursor prorenin with high affinity has also been detected within the brain. This protein functions as a membrane receptor for (pro)renin and also represents a V-ATPase subunit and is therefore termed (P)RR or Atp6ap2, respectively. In this review we shed light on the (known as well as putative) roles and functions of Atp6ap2 in the brain under physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Alexander Bracke
- Institute of Anatomy and Cell Biology, Universitätsmedizin Greifswald, Greifswald, Germany
| | | |
Collapse
|
164
|
Zárate S, Stevnsner T, Gredilla R. Role of Estrogen and Other Sex Hormones in Brain Aging. Neuroprotection and DNA Repair. Front Aging Neurosci 2017; 9:430. [PMID: 29311911 PMCID: PMC5743731 DOI: 10.3389/fnagi.2017.00430] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable biological process characterized by a progressive decline in physiological function and increased susceptibility to disease. The detrimental effects of aging are observed in all tissues, the brain being the most important one due to its main role in the homeostasis of the organism. As our knowledge about the underlying mechanisms of brain aging increases, potential approaches to preserve brain function rise significantly. Accumulating evidence suggests that loss of genomic maintenance may contribute to aging, especially in the central nervous system (CNS) owing to its low DNA repair capacity. Sex hormones, particularly estrogens, possess potent antioxidant properties and play important roles in maintaining normal reproductive and non-reproductive functions. They exert neuroprotective actions and their loss during aging and natural or surgical menopause is associated with mitochondrial dysfunction, neuroinflammation, synaptic decline, cognitive impairment and increased risk of age-related disorders. Moreover, loss of sex hormones has been suggested to promote an accelerated aging phenotype eventually leading to the development of brain hypometabolism, a feature often observed in menopausal women and prodromal Alzheimer's disease (AD). Although data on the relation between sex hormones and DNA repair mechanisms in the brain is still limited, various investigations have linked sex hormone levels with different DNA repair enzymes. Here, we review estrogen anti-aging and neuroprotective mechanisms, which are currently an area of intense study, together with the effect they may have on the DNA repair capacity in the brain.
Collapse
Affiliation(s)
- Sandra Zárate
- Instituto de Investigaciones Biomédicas (INBIOMED, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Histología, Embriología, Biología Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tinna Stevnsner
- Danish Center for Molecular Gerontology and Danish Aging Research Center, Department of Molecular Biology and Genetics, University of Aarhus, Aarhus, Denmark
| | - Ricardo Gredilla
- Department of Physiology, Faculty of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
165
|
Labandeira-Garcia JL, Costa-Besada MA, Labandeira CM, Villar-Cheda B, Rodríguez-Perez AI. Insulin-Like Growth Factor-1 and Neuroinflammation. Front Aging Neurosci 2017; 9:365. [PMID: 29163145 PMCID: PMC5675852 DOI: 10.3389/fnagi.2017.00365] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 10/23/2017] [Indexed: 12/15/2022] Open
Abstract
Insulin-like growth factor-1 (IGF-1) effects on aging and neurodegeneration is still controversial. However, it is widely admitted that IGF-1 is involved in the neuroinflammatory response. In peripheral tissues, several studies showed that IGF-1 inhibited the expression of inflammatory markers, although other studies concluded that IGF-1 has proinflammatory functions. Furthermore, proinflammatory cytokines such as TNF-α impaired IGF-1 signaling. In the brain, there are controversial results on effects of IGF-1 in neuroinflammation. In addition to direct protective effects on neurons, several studies revealed anti-inflammatory effects of IGF-1 acting on astrocytes and microglia, and that IGF-1 may also inhibit blood brain barrier permeability. Altogether suggests that the aging-related decrease in IGF-1 levels may contribute to the aging-related pro-inflammatory state. IGF-1 inhibits the astrocytic response to inflammatory stimuli, and modulates microglial phenotype (IGF-1 promotes the microglial M2 and inhibits of M1 phenotype). Furthermore, IGF-1 is mitogenic for microglia. IGF-1 and estrogen interact to modulate the neuroinflammatory response and microglial and astrocytic phenotypes. Brain renin-angiotensin and IGF-1 systems also interact to modulate neuroinflammation. Induction of microglial IGF-1 by angiotensin, and possibly by other pro-inflammatory inducers, plays a major role in the repression of the M1 microglial neurotoxic phenotype and the enhancement of the transition to an M2 microglial repair/regenerative phenotype. This mechanism is impaired in aged brains. Aging-related decrease in IGF-1 may contribute to the loss of capacity of microglia to undergo M2 activation. Fine tuning of IGF-1 levels may be critical for regulating the neuroinflammatory response, and IGF-1 may be involved in inflammation in a context-dependent mode.
Collapse
Affiliation(s)
- Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Carmen M Labandeira
- Department of Clinical Neurology, Hospital Alvaro Cunqueiro, University Hospital Complex, Vigo, Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Ana I Rodríguez-Perez
- Laboratory of Neuroanatomy and Experimental Neurology, Department of Morphological Sciences, CIMUS, University of Santiago de Compostela, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
166
|
Costa-Besada MA, Valenzuela R, Garrido-Gil P, Villar-Cheda B, Parga JA, Lanciego JL, Labandeira-Garcia JL. Paracrine and Intracrine Angiotensin 1-7/Mas Receptor Axis in the Substantia Nigra of Rodents, Monkeys, and Humans. Mol Neurobiol 2017; 55:5847-5867. [PMID: 29086247 PMCID: PMC7102204 DOI: 10.1007/s12035-017-0805-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/17/2017] [Indexed: 02/01/2023]
Abstract
In addition to the classical hormonal (tissue-to-tissue) renin-angiotensin system (RAS), there are a paracrine (cell-to-cell) and an intracrine (intracellular/nuclear) RAS. A local paracrine brain RAS has been associated with several brain disorders, including Parkinson’s disease (PD). Classically, angiotensin II (Ang II) is the main RAS effector peptide and acts through two major receptors: Ang II type 1 and 2 (AT1 and AT2) receptors. It has been shown that enhanced activation of the Ang II/AT1 axis exacerbates dopaminergic cell death. Several new components of the RAS have more recently been discovered. However, the role of new Ang 1-7/Mas receptor RAS component was not investigated in the brain and particularly in the dopaminergic system. In the present study, we observed Mas receptor labeling in dopaminergic neurons and glial cells in rat mesencephalic primary cultures; substantia nigra of rats, monkeys, and humans; and human induced pluripotent stem (iPS) cells derived from healthy controls and sporadic PD patients. The present data support a neuroprotective role of the Ang 1-7/Mas receptor axis in the dopaminergic system. We observed that this axis is downregulated with aging, which may contribute to the aging-related vulnerability to neurodegeneration. We have also identified an intracellular Ang 1-7/Mas axis that modulates mitochondrial and nuclear levels of superoxide. The present data suggest that nuclear RAS receptors regulate the adequate balance between the detrimental and the protective arms of the cell RAS. The results further support that the brain RAS should be taken into account for the design of new therapeutic strategies for PD.
Collapse
Affiliation(s)
- Maria A Costa-Besada
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Rita Valenzuela
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Pablo Garrido-Gil
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Begoña Villar-Cheda
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Juan A Parga
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jose L Lanciego
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.,Neurosciences Division, CIMA, University of Navarra, Pamplona, Spain
| | - Jose L Labandeira-Garcia
- Laboratory of Neuroanatomy and Experimental Neurology, Dept. of Morphological Sciences, CIMUS, Faculty of Medicine, University of Santiago de Compostela, 15782, Santiago de Compostela, Spain. .,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Madrid, Spain.
| |
Collapse
|
167
|
Guo X, Namekata K, Kimura A, Harada C, Harada T. The Renin-Angiotensin System Regulates Neurodegeneration in a Mouse Model of Optic Neuritis. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2876-2885. [PMID: 28919108 DOI: 10.1016/j.ajpath.2017.08.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/19/2017] [Accepted: 08/01/2017] [Indexed: 01/13/2023]
Abstract
The major role of the renin-angiotensin system (RAS), including that of angiotensin II (Ang II), the principal effector molecule, in the cardiovascular system is well known. Increasing evidence suggests that the RAS also plays a role in the development of autoimmune diseases. Optic neuritis (ie, inflammation of the optic nerve, with retinal ganglion cell loss) is strongly associated with multiple sclerosis. We investigated the effects of candesartan, an Ang II receptor antagonist, on optic neuritis in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. The Ang II concentration was increased in the early phase of EAE. Oral administration of candesartan markedly attenuated demyelination of the optic nerve and spinal cord and reduced retinal ganglion cell loss and visual impairment in mice with EAE. In vitro analyses revealed that Ang II up-regulated the expression of Toll-like receptor (TLR)-4 in astrocytes via the NF-κB pathway. In addition, Ang II treatment enhanced lipopolysaccharide-induced production of monocyte chemoattractant protein 1 in astrocytes, and pretreatment with candesartan or SN50, an NF-κB inhibitor, suppressed the effects of Ang II. The novel pathway of RAS-NF-κB-TLR4 in glial cells identified in the present study may be a valid therapeutic target for neurodegeneration in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Atsuko Kimura
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Chikako Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| |
Collapse
|