151
|
Hoogi S, Eisenberg V, Mayer S, Shamul A, Barliya T, Cohen CJ. A TIGIT-based chimeric co-stimulatory switch receptor improves T-cell anti-tumor function. J Immunother Cancer 2019; 7:243. [PMID: 31500665 PMCID: PMC6734436 DOI: 10.1186/s40425-019-0721-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022] Open
Abstract
Background Tumors can employ different mechanisms to evade immune surveillance and function. Overexpression of co-inhibitory ligands that bind to checkpoint molecules on the surface of T-cells can greatly impair the function of latter. TIGIT (T cell immunoreceptor with Ig and ITIM domains) is such a co-inhibitory receptor expressed by T and NK cells which, upon binding to its ligand (e.g., CD155), can diminish cytokine production and effector function. Additionally, the absence of positive co-stimulation at the tumor site can further dampen T-cell response. Methods As T-cell genetic engineering has become clinically-relevant in the recent years, we devised herein a strategy aimed at enhancing T-cell anti-tumor function by diverting T-cell coinhibitory signals into positive ones using a chimeric costimulatory switch receptor (CSR) composed of the TIGIT exodomain fused to the signaling domain of CD28. Results After selecting an optimized TIGIT-28 CSR, we co-transduced it along with tumor-specific TCR or CAR into human T-cells. TIGIT-28-equipped T-cells exhibited enhanced cytokine secretion and upregulation of activation markers upon co-culture with tumor cells. TIGIT-28 enhancing capability was also demonstrated in an original in vitro model of T-cell of hypofunction induction upon repetitive antigen exposure. Finally, we tested the function of this molecule in the context of a xenograft model of established human melanoma tumors and showed that TIGIT-28-engineered human T-cells demonstrated superior anti-tumor function. Conclusion Overall, we propose that TIGIT-based CSR can substantially enhance T-cell function and thus contribute to the improvement of engineered T cell-based immunotherapy. Electronic supplementary material The online version of this article (10.1186/s40425-019-0721-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shiran Hoogi
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Vasyl Eisenberg
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Shimrit Mayer
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Astar Shamul
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Tilda Barliya
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel
| | - Cyrille J Cohen
- The Laboratory of Tumor Immunology and Immunotherapy, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900-02, Ramat Gan, Israel.
| |
Collapse
|
152
|
Wing JB, Tanaka A, Sakaguchi S. Human FOXP3 + Regulatory T Cell Heterogeneity and Function in Autoimmunity and Cancer. Immunity 2019; 50:302-316. [PMID: 30784578 DOI: 10.1016/j.immuni.2019.01.020] [Citation(s) in RCA: 488] [Impact Index Per Article: 81.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/22/2022]
Abstract
Regulatory T (Treg) cells expressing the transcription factor Foxp3 have a critical role in the maintenance of immune homeostasis and prevention of autoimmunity. Recent advances in single cell analyses have revealed a range of Treg cell activation and differentiation states in different human pathologies. Here we review recent progress in the understanding of human Treg cell heterogeneity and function. We discuss these findings within the context of concepts in Treg cell development and function derived from preclinical models and insight from approaches targeting Treg cells in clinical settings. Distinguishing functional Treg cells from other T cells and understanding the context-dependent function(s) of different Treg subsets will be crucial to the development of strategies toward the selective therapeutic manipulation of Treg cells in autoimmunity and cancer.
Collapse
Affiliation(s)
- James B Wing
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Atsushi Tanaka
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan; Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
153
|
Tundo GR, Sbardella D, Lacal PM, Graziani G, Marini S. On the Horizon: Targeting Next-Generation Immune Checkpoints for Cancer Treatment. Chemotherapy 2019; 64:62-80. [PMID: 31387102 DOI: 10.1159/000500902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Immune checkpoints are critical regulatory pathways of the immune system which finely tune the response to biological threats. Among them, the CD-28/CTLA-4 and PD-1/PD-L1 axes play a key role in tumour immune escape and are well-established targets of cancer immunotherapy. SUMMARY The clinical experience accumulated to date provides unequivocal evidence that anti-CTLA-4, PD-1, or PD-L1 monoclonal antibodies, used as monotherapy or in combination regimes, are effective in a variety of advanced/metastatic types of cancer, with improved clinical outcomes compared to conventional chemotherapy. However, the therapeutic success is currently restricted to a limited subset of patients and reliable predictive biomarkers are still lacking. Key Message: The identification and characterization of additional co-inhibitory pathways as novel pharmacological targets to improve the clinical response in refractory patients has led to the development of different immune checkpoint inhibitors, the activities of which are currently under investigation. In this review, we discuss recent literature data concerning the mechanisms of action of next-generation monoclonal antibodies targeting LAG-3, TIM-3, and TIGIT co-inhibitory molecules that are being explored in clinical trials, as single agents or in combination with other immune-stimulating agents.
Collapse
Affiliation(s)
- Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy,
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
154
|
Boden EK, Canavan JB, Moran CJ, McCann K, Dunn WA, Farraye FA, Ananthakrishnan AN, Yajnik V, Gandhi R, Nguyen DD, Bhan AK, Weiner HL, Korzenik JR, Snapper SB. Immunologic Alterations Associated With Oral Delivery of Anti-CD3 (OKT3) Monoclonal Antibodies in Patients With Moderate-to-Severe Ulcerative Colitis. CROHNS & COLITIS 360 2019; 1:otz009. [PMID: 31423487 PMCID: PMC6690423 DOI: 10.1093/crocol/otz009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Indexed: 01/01/2023]
Abstract
Aim The aim of this study was to determine the immunologic effects and safety of oral anti-CD3 in patients with ulcerative colitis (UC). Methods An open-label pilot study of orally delivered anti-CD3 was performed in patients with moderate-to-severe UC. The primary end points were changes in immunologic parameters and evaluation for safety. Results Six subjects received oral OKT3. Biologic effects of oral anti-CD3 included significantly increased proliferation in response to anti-CD3 and anti-inflammatory gene expression profile in peripheral blood mononuclear cells. No serious treatment-related adverse events occurred. Conclusion Orally delivered anti-CD3 resulted in immunologic changes in patients with UC.
Collapse
Affiliation(s)
- Elisa K Boden
- Division of Gastroenterology, Virginia Mason Medical Center, Seattle, WA.,Benaroya Research Institute, Seattle, WA
| | - James B Canavan
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Christopher J Moran
- Division of Pediatric Gastroenterology, MassGeneral Hospital for Children, Boston, MA.,Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA
| | - Katelyn McCann
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA
| | - William A Dunn
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Francis A Farraye
- Section of Gastroenterology, Boston Medical Center, Boston University School of Medicine, Boston, MA
| | - Ashwin N Ananthakrishnan
- Department of Medicine, Harvard Medical School, Boston, MA.,Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA
| | - Vijay Yajnik
- Department of Medicine, Harvard Medical School, Boston, MA.,Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA
| | - Roopali Gandhi
- Department of Medicine, Harvard Medical School, Boston, MA.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA
| | - Deanna D Nguyen
- Department of Medicine, Harvard Medical School, Boston, MA.,Gastrointestinal Unit, Massachusetts General Hospital, Boston, MA
| | - Atul K Bhan
- Department of Pathology, Massachusetts General Hospital, Boston, MA.,Department of Pathology, Harvard Medical School, Boston, MA
| | - Howard L Weiner
- Department of Medicine, Harvard Medical School, Boston, MA.,Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA
| | - Joshua R Korzenik
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Boston, MA.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA.,Department of Medicine, Harvard Medical School, Boston, MA
| |
Collapse
|
155
|
Hope CM, Welch J, Mohandas A, Pederson S, Hill D, Gundsambuu B, Eastaff-Leung N, Grosse R, Bresatz S, Ang G, Papademetrios M, Zola H, Duhen T, Campbell D, Brown CY, Krumbiegel D, Sadlon T, Couper JJ, Barry SC. Peptidase inhibitor 16 identifies a human regulatory T-cell subset with reduced FOXP3 expression over the first year of recent onset type 1 diabetes. Eur J Immunol 2019; 49:1235-1250. [PMID: 31127857 DOI: 10.1002/eji.201948094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/21/2019] [Accepted: 05/23/2019] [Indexed: 01/04/2023]
Abstract
CD4+ T-cell subsets play a major role in the host response to infection, and a healthy immune system requires a fine balance between reactivity and tolerance. This balance is in part maintained by regulatory T cells (Treg), which promote tolerance, and loss of immune tolerance contributes to autoimmunity. As the T cells which drive immunity are diverse, identifying and understanding how these subsets function requires specific biomarkers. From a human CD4 Tconv/Treg cell genome wide analysis we identified peptidase inhibitor 16 (PI16) as a CD4 subset biomarker and we now show detailed analysis of its distribution, phenotype and links to Treg function in type 1 diabetes. To determine the clinical relevance of Pi16 Treg, we analysed PI16+ Treg cells from type 1 diabetes patient samples. We observed that FOXP3 expression levels declined with disease progression, suggesting loss of functional fitness in these Treg cells in Type 1 diabetes, and in particular the rate of loss of FOXP3 expression was greatest in the PI16+ve Treg. We propose that PI16 has utility as a biomarker of functional human Treg subsets and may be useful for tracking loss of immune function in vivo. The ability to stratify at risk patients so that tailored interventions can be applied would open the door to personalised medicine for Type 1 diabetes.
Collapse
Affiliation(s)
- Christoper M Hope
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA, Australia
| | - John Welch
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia.,Robinson Research Institute, University of Adelaide, SA, Australia
| | - Arunesh Mohandas
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Stephen Pederson
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Bioinformatics Hub, School of Biological Sciences, University of Adelaide, SA, Australia
| | - Danika Hill
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia
| | - Batjargal Gundsambuu
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Nicola Eastaff-Leung
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Randall Grosse
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Suzanne Bresatz
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Grace Ang
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Michael Papademetrios
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Heddy Zola
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia.,Robinson Research Institute, University of Adelaide, SA, Australia
| | | | | | - Cheryl Y Brown
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia
| | - Doreen Krumbiegel
- Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| | - Timothy Sadlon
- Department of Gastroenterology, Women's and Children's Hospital, SA, Australia
| | | | - Simon C Barry
- Molecular Immunology, Robinson Research Institute, University of Adelaide, SA, Australia.,Department of Gastroenterology, Women's and Children's Hospital, SA, Australia.,Cooperative Research Centre for Biomarker Translation, La Trobe University Research and Development Park, Bundoora, Melbourne, Australia
| |
Collapse
|
156
|
Haller MJ, Long SA, Blanchfield JL, Schatz DA, Skyler JS, Krischer JP, Bundy BN, Geyer SM, Warnock MV, Miller JL, Atkinson MA, Becker DJ, Baidal DA, DiMeglio LA, Gitelman SE, Goland R, Gottlieb PA, Herold KC, Marks JB, Moran A, Rodriguez H, Russell WE, Wilson DM, Greenbaum CJ. Low-Dose Anti-Thymocyte Globulin Preserves C-Peptide, Reduces HbA 1c, and Increases Regulatory to Conventional T-Cell Ratios in New-Onset Type 1 Diabetes: Two-Year Clinical Trial Data. Diabetes 2019; 68:1267-1276. [PMID: 30967424 PMCID: PMC6610026 DOI: 10.2337/db19-0057] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/23/2019] [Indexed: 12/19/2022]
Abstract
A three-arm, randomized, double-masked, placebo-controlled phase 2b trial performed by the Type 1 Diabetes TrialNet Study Group previously demonstrated that low-dose anti-thymocyte globulin (ATG) (2.5 mg/kg) preserved β-cell function and reduced HbA1c for 1 year in new-onset type 1 diabetes. Subjects (N = 89) were randomized to 1) ATG and pegylated granulocyte colony-stimulating factor (GCSF), 2) ATG alone, or 3) placebo. Herein, we report 2-year area under the curve (AUC) C-peptide and HbA1c, prespecified secondary end points, and potential immunologic correlates. The 2-year mean mixed-meal tolerance test-stimulated AUC C-peptide, analyzed by ANCOVA adjusting for baseline C-peptide, age, and sex (n = 82) with significance defined as one-sided P < 0.025, was significantly higher in subjects treated with ATG versus placebo (P = 0.00005) but not ATG/GCSF versus placebo (P = 0.032). HbA1c was significantly reduced at 2 years in subjects treated with ATG (P = 0.011) and ATG/GCSF (P = 0.022) versus placebo. Flow cytometry analyses demonstrated reduced circulating CD4:CD8 ratio, increased regulatory T-cell:conventional CD4 T-cell ratios, and increased PD-1+CD4+ T cells following low-dose ATG and ATG/GCSF. Low-dose ATG partially preserved β-cell function and reduced HbA1c 2 years after therapy in new-onset type 1 diabetes. Future studies should determine whether low-dose ATG might prevent or delay the onset of type 1 diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Jay S Skyler
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | | | - Dorothy J Becker
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
- University of Pittsburgh, Pittsburgh, PA
| | - David A Baidal
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | - Peter A Gottlieb
- University of Colorado Barbara Davis Center for Childhood Diabetes, Aurora, CO
| | | | - Jennifer B Marks
- Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | | | | | | | |
Collapse
|
157
|
Yang M, Liu Y, Mo B, Xue Y, Ye C, Jiang Y, Bi X, Liu M, Wu Y, Wang J, Olsen N, Pan Y, Zheng SG. Helios but not CD226, TIGIT and Foxp3 is a Potential Marker for CD4 + Treg Cells in Patients with Rheumatoid Arthritis. Cell Physiol Biochem 2019; 52:1178-1192. [PMID: 30990587 PMCID: PMC6943339 DOI: 10.33594/000000080] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND/AIMS Rheumatoid arthritis (RA) is a progressive, chronic, even disabling systemic autoimmune disease. Imbalance between pathogenic immune cells and immunosuppressive cells is associated with the pathogenesis and development of RA and other autoimmune diseases. As Foxp3 is also expressed on activated CD4+ cells in the presence of inflammation, the identification of Treg cells in patients with RA remains a challenge. METHODS Comprehensive analyses were carried out by Flow cytometry. Expression of Helios, CD226, T cell immunoreceptor with Ig and ITIM domains clinical samples and healthy controls. RESULTS We have systemically examined three potential markers, Helios, CD226 and TIGIT, that are possibly related to Treg identification, and found that Helios expression on CD4+Foxp3+cells was decreased and negatively correlated with the disease activity of RA patients, while CD226 and TIGIT both showed elevated expression levels in CD4+Foxp3+cells in RA patients and they were not associated with disease activity of RA patients. CONCLUSION Taken together, our findings indicate that CD4+CD25hiCD127low/-Foxp3+Helios+ may represent the real Treg cell population in patients with RA.
Collapse
Affiliation(s)
- Mengru Yang
- Division of Rheumatology, Department of Internal Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Center for Clinical Immunology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yan Liu
- Center for Clinical Immunology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Biyao Mo
- Division of Rheumatology, Department of Internal Medicine, Hainan General Hospital, Haikou, China
| | - Youqiu Xue
- Center for Clinical Immunology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Congxiu Ye
- Center for Clinical Immunology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yutong Jiang
- Division of Rheumatology, Department of Internal Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xuan Bi
- Division of Rheumatology, Department of Internal Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meng Liu
- Division of Rheumatology, Department of Internal Medicine, Guangdong Second Provincial Central Hospital, Guangzhou, China
| | - Yunting Wu
- Center for Clinical Immunology, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Julie Wang
- Division of Rheumatology, Department of Medicine, Penn State University Hershey College of Medicine, Hershey, PA, United States
| | - Nancy Olsen
- Division of Rheumatology, Department of Medicine, Penn State University Hershey College of Medicine, Hershey, PA, United States
| | - Yunfeng Pan
- Division of Rheumatology, Department of Internal Medicine, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China,
| | - Song Guo Zheng
- Department of Internal Medicine, Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, United States,
| |
Collapse
|
158
|
Lucca LE, Axisa PP, Singer ER, Nolan NM, Dominguez-Villar M, Hafler DA. TIGIT signaling restores suppressor function of Th1 Tregs. JCI Insight 2019; 4:124427. [PMID: 30728325 DOI: 10.1172/jci.insight.124427] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/03/2019] [Indexed: 12/28/2022] Open
Abstract
Th1 Tregs are characterized by the acquisition of proinflammatory cytokine secretion and reduced suppressor activity. Th1 Tregs are found at increased frequency in autoimmune diseases, including type 1 diabetes and multiple sclerosis (MS). We have previously reported that in vitro stimulation with IL-12 recapitulates the functional and molecular features of MS-associated Th1 Tregs, revealing a central role for hyperactivation of the Akt pathway in their induction. TIGIT is a newly identified coinhibitory receptor that marks Tregs that specifically control Th1 and Th17 responses. Here, we report that signaling through TIGIT counteracts the action of IL-12 in inducing the Th1 program. Specifically, TIGIT signaling represses production of IFN-γ and T-bet expression and restores suppressor function in Tregs treated with IL-12. FoxO1 functional inhibition abolishes the protective effect of TIGIT, indicating that TIGIT signaling promotes FoxO1 nuclear localization. Consistent with this observation, signaling through TIGIT leads to a rapid suppression of Akt function and FoxO1 phosphorylation. Finally, TIGIT stimulation reduces the production of IFN-γ and corrects the suppressor defect of Tregs from patients with MS. Our results indicate an important role for TIGIT in controlling the functional stability of Tregs through repression of Akt, suggesting that the TIGIT pathway could be targeted for immunomodulatory therapies in human autoimmune disorders.
Collapse
Affiliation(s)
- Liliana E Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Pierre-Paul Axisa
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Emily R Singer
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Neal M Nolan
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
159
|
Wing JB, Tay C, Sakaguchi S. Control of Regulatory T Cells by Co-signal Molecules. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1189:179-210. [DOI: 10.1007/978-981-32-9717-3_7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
160
|
Tipping the balance: inhibitory checkpoints in intestinal homeostasis. Mucosal Immunol 2019; 12:21-35. [PMID: 30498201 DOI: 10.1038/s41385-018-0113-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/28/2018] [Accepted: 11/07/2018] [Indexed: 02/04/2023]
Abstract
The small intestinal and colonic lamina propria are populated with forkhead box P3 (FOXP3)+CD4+ regulatory T cells (Tregs) and interleukin-10-producing T cells that orchestrate intestinal tolerance to harmless microbial and food antigens. Expression of co-inhibitory receptors such as CTLA-4 and PD-1 serve as checkpoints to these cells controlling their T-cell receptor (TCR)-mediated and CD28-mediated activation and modulating the phenotype of neighboring antigen presenting cells. Recent discoveries on the diversity of co-inhibitory receptors and their selective cellular expression has shed new light on their tissue-dependent function. In this review, we provide an overview of the co-inhibitory pathways and checkpoints of Treg and effector T cells and their mechanisms of action in intestinal homeostasis. Better understanding of these inhibitory checkpoints is desired as their blockade harbors clinical potential for the treatment of cancer and their stimulation may offer new opportunities to treat chronic intestinal inflammation such as inflammatory bowel disease.
Collapse
|
161
|
Nowatzky J, Stagnar C, Manches O. OMIP-053: Identification, Classification, and Isolation of Major FoxP3 Expressing Human CD4 + Treg Subsets. Cytometry A 2018; 95:264-267. [PMID: 30584695 DOI: 10.1002/cyto.a.23704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 11/03/2018] [Accepted: 12/03/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Johannes Nowatzky
- NYU School of Medicine, Medicine, Division of Rheumatology, New York, New York
| | - Cristy Stagnar
- NYU School of Medicine, Medicine, Division of Rheumatology, New York, New York
| | - Olivier Manches
- INSERM French National Institute of Health and Medical Research, Institute for Advanced Biosciences - Immunobiology and Immunotherapy in Chronic Diseases, Grenoble, Auvergne-Rhône-Alpes, France
| |
Collapse
|
162
|
A long-lived IL-2 mutein that selectively activates and expands regulatory T cells as a therapy for autoimmune disease. J Autoimmun 2018; 95:1-14. [PMID: 30446251 PMCID: PMC6284106 DOI: 10.1016/j.jaut.2018.10.017] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
Susceptibility to multiple autoimmune diseases is associated with common gene polymorphisms influencing IL-2 signaling and Treg function, making Treg-specific expansion by IL-2 a compelling therapeutic approach to treatment. As an in vivo IL-2 half-life enhancer we used a non-targeted, effector-function-silent human IgG1 as a fusion protein. An IL-2 mutein (N88D) with reduced binding to the intermediate affinity IL-2Rβγ receptor was engineered with a stoichiometry of two IL-2N88D molecules per IgG, i.e. IgG-(IL-2N88D)2. The reduced affinity of IgG-(IL-2N88D)2 for the IL-2Rβγ receptor resulted in a Treg-selective molecule in human whole blood pSTAT5 assays. Treatment of cynomolgus monkeys with single low doses of IgG-(IL-2N88D)2 induced sustained preferential activation of Tregs accompanied by a corresponding 10–14-fold increase in CD4+ and CD8+ CD25+FOXP3+ Tregs; conditions that had no effect on CD4+ or CD8+ memory effector T cells. The expanded cynomolgus Tregs had demethylated FOXP3 and CTLA4 epigenetic signatures characteristic of functionally suppressive cells. Humanized mice had similar selective in vivo responses; IgG-(IL-2N88D)2 increased Tregs while wild-type IgG-IL-2 increased NK cells in addition to Tregs. The expanded human Tregs had demethylated FOXP3 and CTLA4 signatures and were immunosuppressive. These results describe a next-generation immunotherapy using a long-lived and Treg-selective IL-2 that activates and expands functional Tregsin vivo. Patients should benefit from restored immune homeostasis in a personalized fashion to the extent that their autoimmune disease condition dictates opening up the possibility for remissions and cures. A human IL-2 molecule mutated to decrease binding to the intermediate affinity IL-2 receptor preferentially activates Tregs. Two IL-2 muteins fused to human IgG1 allow for sustained, preferential expansion of Tregs in cynomolgus and humanized mice. As compared to the wild type IL-2 fusion protein, humanized mice expand fewer NK cells in response to the mutein. The dynamic range of Treg increase based on dose suggests the ability to individualize dosing for particular diseases.
Collapse
|
163
|
Interaction of PVR/PVRL2 with TIGIT/DNAM-1 as a novel immune checkpoint axis and therapeutic target in cancer. Mamm Genome 2018; 29:694-702. [PMID: 30132062 DOI: 10.1007/s00335-018-9770-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/04/2018] [Indexed: 02/08/2023]
Abstract
Avoiding immune surveillance and inducing a tumor-promoting inflammatory milieu found entry into the new generation of the hallmarks of cancer. Cancer cells hijack immune mechanisms which physiologically protect the body from the development of autoimmune diseases and excessive tissue damage during inflammation by downregulating immune responses. This is frequently achieved by upregulation of immune checkpoints. Therefore, the blocking of immune checkpoint ligand-receptor interactions can reinstall the immune systems capability to fight cancer cells as shown for CTLA4 and PD-1 inhibitors in a clinical setting. Newly described checkpoint antigens are currently under investigation in cancer immunotherapy. Preclinical data emphasize the immune checkpoint axis TIGIT-PVR/PVRL2 as very promising target. This axis includes additional receptors such as DNAM-1, CD96, and CD112R. In this review, we discuss the recent findings of the relevance of this complex receptor ligand system in hematologic and solid cancers. Emphasis is also laid on the discussion of potential combinations with other immunotherapeutic approaches.
Collapse
|
164
|
Alsahebfosoul F, Rahimpourkoldeh S, Eskandari N, Shaygannejad V, Ganjalikhani Hakemi M, Dabiri A, Jafarnia M, Mirmossayeb O. Gene Expression of CD226 and Its Serum Levels in Patients With Multiple Sclerosis. CASPIAN JOURNAL OF NEUROLOGICAL SCIENCES 2018. [DOI: 10.29252/cjns.4.14.91] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
165
|
Fourcade J, Sun Z, Chauvin JM, Ka M, Davar D, Pagliano O, Wang H, Saada S, Menna C, Amin R, Sander C, Kirkwood JM, Korman AJ, Zarour HM. CD226 opposes TIGIT to disrupt Tregs in melanoma. JCI Insight 2018; 3:121157. [PMID: 30046006 PMCID: PMC6124410 DOI: 10.1172/jci.insight.121157] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
CD4+ Tregs impede T cell responses to tumors. They express multiple inhibitory receptors that support their suppressive functions, including T cell Ig and ITIM domain (TIGIT). In melanoma patients, we show that Tregs exhibit increased TIGIT expression and decreased expression of its competing costimulatory receptor CD226 as compared with CD4+ effector T cells, resulting in an increased TIGIT/CD226 ratio. Tregs failed to upregulate CD226 upon T cell activation. TIGIT+ Tregs are highly suppressive, stable, and enriched in tumors. TIGIT and CD226 oppose each other to augment or disrupt, respectively, Treg suppression and stability. A high TIGIT/CD226 ratio in Tregs correlates with increased Treg frequencies in tumors and poor clinical outcome upon immune checkpoint blockade. Altogether, our findings show that a high TIGIT/CD226 ratio in Tregs regulates their suppressive function and stability in melanoma. They provide the rationale for novel immunotherapies to activate CD226 in Tregs together with TIGIT blockade to counteract Treg suppression in cancer patients.
Collapse
Affiliation(s)
- Julien Fourcade
- Department of Medicine and Division of Hematology/Oncology and
| | - Zhaojun Sun
- Department of Medicine and Division of Hematology/Oncology and
| | | | - Mignane Ka
- Department of Medicine and Division of Hematology/Oncology and
| | - Diwakar Davar
- Department of Medicine and Division of Hematology/Oncology and
| | | | - Hong Wang
- Department of Biostatistics, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sofiane Saada
- Department of Medicine and Division of Hematology/Oncology and
| | - Carmine Menna
- Department of Medicine and Division of Hematology/Oncology and
| | - Rada Amin
- Department of Medicine and Division of Hematology/Oncology and
| | - Cindy Sander
- Department of Medicine and Division of Hematology/Oncology and
| | | | - Alan J. Korman
- Bristol-Myers Squibb, Biologics Discovery California, Redwood City, California, USA
| | - Hassane M. Zarour
- Department of Medicine and Division of Hematology/Oncology and
- Department of Immunology, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
166
|
TIGIT + iTregs elicited by human regulatory macrophages control T cell immunity. Nat Commun 2018; 9:2858. [PMID: 30030423 PMCID: PMC6054648 DOI: 10.1038/s41467-018-05167-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/08/2018] [Indexed: 01/06/2023] Open
Abstract
Human regulatory macrophages (Mreg) have shown early clinical promise as a cell-based adjunct immunosuppressive therapy in solid organ transplantation. It is hypothesised that recipient CD4+ T cell responses are actively regulated through direct allorecognition of donor-derived Mregs. Here we show that human Mregs convert allogeneic CD4+ T cells to IL-10-producing, TIGIT+ FoxP3+-induced regulatory T cells that non-specifically suppress bystander T cells and inhibit dendritic cell maturation. Differentiation of Mreg-induced Tregs relies on multiple non-redundant mechanisms that are not exclusive to interaction of Mregs and T cells, including signals mediated by indoleamine 2,3-dioxygenase, TGF-β, retinoic acid, Notch and progestagen-associated endometrial protein. Preoperative administration of donor-derived Mregs to living-donor kidney transplant recipients results in an acute increase in circulating TIGIT+ Tregs. These results suggest a feed-forward mechanism by which Mreg treatment promotes allograft acceptance through rapid induction of direct-pathway Tregs. Regulatory macrophages (Mreg) can directly suppress T effector cell responses. Here the authors show that human Mreg also elicit TIGIT+ regulatory T cells by integrating multiple differentiation signals, and that donor Mreg-induced recipient Tregs may promote kidney transplant acceptance in patients.
Collapse
|
167
|
Gaud G, Roncagalli R, Chaoui K, Bernard I, Familiades J, Colacios C, Kassem S, Monsarrat B, Burlet-Schiltz O, de Peredo AG, Malissen B, Saoudi A. The costimulatory molecule CD226 signals through VAV1 to amplify TCR signals and promote IL-17 production by CD4 + T cells. Sci Signal 2018; 11:11/538/eaar3083. [PMID: 29991650 DOI: 10.1126/scisignal.aar3083] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The activation of T cells requires the guanine nucleotide exchange factor VAV1. Using mice in which a tag for affinity purification was attached to endogenous VAV1 molecules, we analyzed by quantitative mass spectrometry the signaling complex that assembles around activated VAV1. Fifty VAV1-binding partners were identified, most of which had not been previously reported to participate in VAV1 signaling. Among these was CD226, a costimulatory molecule of immune cells. Engagement of CD226 induced the tyrosine phosphorylation of VAV1 and synergized with T cell receptor (TCR) signals to specifically enhance the production of interleukin-17 (IL-17) by primary human CD4+ T cells. Moreover, co-engagement of the TCR and a risk variant of CD226 that is associated with autoimmunity (rs763361) further enhanced VAV1 activation and IL-17 production. Thus, our study reveals that a VAV1-based, synergistic cross-talk exists between the TCR and CD226 during both physiological and pathological T cell responses and provides a rational basis for targeting CD226 for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Guillaume Gaud
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Romain Roncagalli
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France
| | - Karima Chaoui
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Isabelle Bernard
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Julien Familiades
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Céline Colacios
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Sahar Kassem
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France
| | - Bernard Monsarrat
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS UMR 5089, 31077 Toulouse Cedex, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France.,Centre d'Immunophénomique, Aix-Marseille Université, Inserm, CNRS, 13288 Marseille, France
| | - Abdelhadi Saoudi
- Centre de Physiopathologie de Toulouse Purpan, Université de Toulouse, CNRS, Inserm, Toulouse 31300, France.
| |
Collapse
|
168
|
Urbano PCM, Koenen HJPM, Joosten I, He X. An Autocrine TNFα-Tumor Necrosis Factor Receptor 2 Loop Promotes Epigenetic Effects Inducing Human Treg Stability In Vitro. Front Immunol 2018; 9:573. [PMID: 29619032 PMCID: PMC5871762 DOI: 10.3389/fimmu.2018.00573] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
A crucial issue for Treg-based immunotherapy is to maintain a bona fide Treg phenotype as well as suppressive function during and after ex vivo expansion. Several strategies have been applied to harness Treg lineage stability. For instance, CD28 superagonist stimulation in vitro, in the absence of CD3 ligation, is more efficient in promoting Treg proliferation, and prevention of pro-inflammatory cytokine expression, such as IL-17, as compared to CD3/CD28-stimulated Treg. Addition of the mTOR inhibitor rapamycin to Treg cultures enhances FOXP3 expression and Treg stability, but does impair proliferative capacity. A tumor necrosis factor receptor 2 (TNFR2) agonist antibody was recently shown to favor homogenous expansion of Treg in vitro. Combined stimulation with rapamycin and TNFR2 agonist antibody enhanced hypo-methylation of the FOXP3 gene, and thus promoting Treg stability. To further explore the underlying mechanisms of rapamycin and TNFR2 agonist-mediated Treg stability, we here stimulated FACS-sorted human Treg with a CD28 superagonist, in the presence of rapamycin and a TNFR2 agonist. Phenotypic analysis of expanded Treg revealed an autocrine loop of TNFα-TNFR2 underlying the maintenance of Treg stability in vitro. Addition of rapamycin to CD28 superagonist-stimulated Treg led to a high expression of TNFR2, the main TNFR expressed on Treg, and additional stimulation with a TNFR2 agonist enhanced the production of soluble as well as membrane-bound TNFα. Moreover, our data showed that the expression of histone methyltransferase EZH2, a crucial epigenetic modulator for potent Treg suppressor function, was enhanced upon stimulation with CD28 superagonist. Interestingly, rapamycin seemed to downregulate CD28 superagonist-induced EZH2 expression, which could be rescued by the additional addition of TNFR2 agonist antibody. This process appeared TNFα-dependent manner, since depletion of TNFα using Etanercept inhibited EZH2 expression. To summarize, we propose that an autocrine TNFα-TNFR2 loop plays an important role in endorsing Treg stability.
Collapse
Affiliation(s)
- Paulo C M Urbano
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans J P M Koenen
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Irma Joosten
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Xuehui He
- Laboratory of Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,College of Computer Science, Qinghai Normal University, Xining, China
| |
Collapse
|
169
|
Sadlon T, Brown CY, Bandara V, Hope CM, Schjenken JE, Pederson SM, Breen J, Forrest A, Beyer M, Robertson S, Barry SC. Unravelling the molecular basis for regulatory T-cell plasticity and loss of function in disease. Clin Transl Immunology 2018; 7:e1011. [PMID: 29497530 PMCID: PMC5827651 DOI: 10.1002/cti2.1011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/14/2022] Open
Abstract
Regulatory T cells (Treg) are critical for preventing autoimmunity and curtailing responses of conventional effector T cells (Tconv). The reprogramming of T‐cell fate and function to generate Treg requires switching on and off of key gene regulatory networks, which may be initiated by a subtle shift in expression levels of specific genes. This can be achieved by intermediary regulatory processes that include microRNA and long noncoding RNA‐based regulation of gene expression. There are well‐documented microRNA profiles in Treg and Tconv, and these can operate to either reinforce or reduce expression of a specific set of target genes, including FOXP3 itself. This type of feedforward/feedback regulatory loop is normally stable in the steady state, but can alter in response to local cues or genetic risk. This may go some way to explaining T‐cell plasticity. In addition, in chronic inflammation or autoimmunity, altered Treg/Tconv function may be influenced by changes in enhancer–promoter interactions, which are highly cell type‐specific. These interactions are impacted by genetic risk based on genome‐wide association studies and may cause subtle alterations to the gene regulatory networks controlled by or controlling FOXP3 and its target genes. Recent insights into the 3D organisation of chromatin and the mapping of noncoding regulatory regions to the genes they control are shedding new light on the direct impact of genetic risk on T‐cell function and susceptibility to inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Timothy Sadlon
- Women's and Children's Health Network North Adelaide SA Australia.,Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | - Cheryl Y Brown
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | - Veronika Bandara
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | | | - John E Schjenken
- Reproductive Immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | - Stephen M Pederson
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia.,University of Adelaide Bioinformatics Hub University of Adelaide Adelaide SA Australia
| | - James Breen
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia.,University of Adelaide Bioinformatics Hub University of Adelaide Adelaide SA Australia
| | - Alistair Forrest
- Harry Perkins Institute of Medical Research University of Western Australia Perth, WA Australia
| | - Marc Beyer
- Deutsches Zentrum fur Neurodegenerative Erkrankungen Bonn Germany
| | - Sarah Robertson
- Reproductive Immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| | - Simon C Barry
- Molecular immunology Robinson Research Institute University of Adelaide Adelaide SA Australia
| |
Collapse
|
170
|
Stein N, Tsukerman P, Mandelboim O. The paired receptors TIGIT and DNAM-1 as targets for therapeutic antibodies. Hum Antibodies 2018; 25:111-119. [PMID: 28035916 DOI: 10.3233/hab-160307] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
One of the most exciting fields in modern medicine is immunotherapy, treatment which looks to harness the power of the immune system to fight disease. A particularly effective strategy uses antibodies designed to influence the activity levels of the immune system. Here we look at two receptors - TIGIT and DNAM-1 - which bind the same ligands but have opposite effects on immune cells, earning them the label `paired receptors'. Importantly, natural killer cells and cytotoxic T cells express both of these receptors, and in certain cases their effector functions are dictated by TIGIT or DNAM-1 signaling. Agonist and antagonist antibodies targeting either TIGIT or DNAM-1 present many therapeutic options for diseases spanning from cancer to auto-immunity. In this review we present cases in which the modulation of these receptors holds potential for the development of novel therapies.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/immunology
- Antineoplastic Agents, Immunological/therapeutic use
- Autoimmune Diseases/drug therapy
- Autoimmune Diseases/genetics
- Autoimmune Diseases/immunology
- Autoimmune Diseases/pathology
- Gene Expression Regulation
- Humans
- Immunotherapy/methods
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/pathology
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/immunology
- Neoplasms/pathology
- Protein Binding
- Receptor Cross-Talk/immunology
- Receptors, Immunologic/agonists
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Signal Transduction
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/pathology
Collapse
|
171
|
Mohr A, Malhotra R, Mayer G, Gorochov G, Miyara M. Human FOXP3 + T regulatory cell heterogeneity. Clin Transl Immunology 2018; 7:e1005. [PMID: 29484183 PMCID: PMC5822410 DOI: 10.1002/cti2.1005] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
FOXP3-expressing CD4+ T regulatory (Treg) cells are instrumental for the maintenance of self-tolerance. They are also involved in the prevention of allergy, allograft rejection, foetal rejection during pregnancy and of exaggerated immune response towards commensal pathogens in mucosal tissues. They can also prevent immune responses against tumors and promote tumor progression. FOXP3-expressing Treg cells are not a homogenous population. The different subsets of Treg cells can have different functions or roles in the maintenance of immune homeostasis and can therefore be differentially targeted in the management of autoimmune diseases or in cancer. We discuss here how Treg cell subsets can be differentiated phenotypically, functionally and developmentally in humans.
Collapse
Affiliation(s)
- Audrey Mohr
- Sorbonne UniversitéInsermCentre d'immunologie et des maladies infectieuses‐Paris (Cimi‐Paris)AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Rajneesh Malhotra
- Immunity departmentRIA IMED Biotech UnitAstraZeneca GothenburgMölndalSweden
| | - Gaell Mayer
- Biometrics & Information SciencesRespiratory, Inflammation, Autoimmunity & NeurosciencesGlobal Medicine Development, AstraZenecaMölndalSweden
| | - Guy Gorochov
- Sorbonne UniversitéInsermCentre d'immunologie et des maladies infectieuses‐Paris (Cimi‐Paris)AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
- Département d'ImmunologieAP‐HP, Groupement Hospitalier Pitié‐SalpêtrièreParisFrance
| | - Makoto Miyara
- Sorbonne UniversitéInsermCentre d'immunologie et des maladies infectieuses‐Paris (Cimi‐Paris)AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
- Département d'ImmunologieAP‐HP, Groupement Hospitalier Pitié‐SalpêtrièreParisFrance
| |
Collapse
|
172
|
Noyan K, Nguyen S, Betts MR, Sönnerborg A, Buggert M. Human Immunodeficiency Virus Type-1 Elite Controllers Maintain Low Co-Expression of Inhibitory Receptors on CD4+ T Cells. Front Immunol 2018; 9:19. [PMID: 29403500 PMCID: PMC5786543 DOI: 10.3389/fimmu.2018.00019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/04/2018] [Indexed: 01/08/2023] Open
Abstract
Human immunodeficiency virus type-1 (HIV-1) elite controllers (ELCs) represent a unique population that control viral replication in the absence of antiretroviral therapy (cART). It is well established that expression of multiple inhibitory receptors on CD8+ T cells is associated with HIV-1 disease progression. However, whether reduced co-expression of inhibitory receptors on CD4+ T cells is linked to natural viral control and slow HIV-1 disease progression remains undefined. Here, we report on the expression pattern of numerous measurable inhibitory receptors, associated with T cell exhaustion (programmed cell death-1, CTLA-4, and TIGIT), on different CD4+ T cell memory populations in ELCs and HIV-infected subjects with or without long-term cART. We found that the co-expression pattern of inhibitory receptors was significantly reduced in ELCs compared with HIV-1 cART-treated and viremic subjects, and similar to healthy controls. Markers associated with T cell exhaustion varied among different memory CD4+ T cell subsets and highest levels were found mainly on transitional memory T cells. CD4+ T cells co-expressing all inhibitory markers were positively correlated to T cell activation (CD38+ HLA-DR+) as well as the transcription factors Helios and FoxP3. Finally, clinical parameters such as CD4 count, HIV-1 viral load, and the CD4/CD8 ratio all showed significant associations with CD4+ T cell exhaustion. We demonstrate that ELCs are able to maintain lower levels of CD4+ T cell exhaustion despite years of ongoing viral replication compared with successfully cART-treated subjects. Our findings suggest that ELCs harbor a “healthy” state of inhibitory receptor expression on CD4+ T cells that might play part in maintenance of their control status.
Collapse
Affiliation(s)
- Kajsa Noyan
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Son Nguyen
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Anders Sönnerborg
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
173
|
Marshall GP, Cserny J, Perry DJ, Yeh WI, Seay HR, Elsayed AG, Posgai AL, Brusko TM. Clinical Applications of Regulatory T cells in Adoptive Cell Therapies. CELL & GENE THERAPY INSIGHTS 2018; 4:405-429. [PMID: 34984106 PMCID: PMC8722436 DOI: 10.18609/cgti.2018.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Interest in adoptive T-cell therapies has been ignited by the recent clinical success of genetically-modified T cells in the cancer immunotherapy space. In addition to immune targeting for malignancies, this approach is now being explored for the establishment of immune tolerance with regulatory T cells (Tregs). Herein, we will summarize the basic science and clinical results emanating from trials directed at inducing durable immune regulation through administration of Tregs. We will discuss some of the current challenges facing the field in terms of maximizing cell purity, stability and expansion capacity, while also achieving feasibility and GMP production. Indeed, recent advances in methodologies for Treg isolation, expansion, and optimal source materials represent important strides toward these considerations. Finally, we will review the emerging genetic and biomaterial-based approaches on the horizon for directing Treg specificity to augment tissue-targeting and regenerative medicine.
Collapse
Affiliation(s)
| | - Judit Cserny
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Daniel J Perry
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Ahmed G Elsayed
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA.,Department of Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| | - Todd M Brusko
- OneVax LLC, Sid Martin Biotechnology Institute, Alachua, Florida, USA.,Department of Pathology, Immunology, and Laboratory Medicine, University of Florida Diabetes Institute, Gainesville, Florida, USA
| |
Collapse
|
174
|
Josefsson SE, Huse K, Kolstad A, Beiske K, Pende D, Steen CB, Inderberg EM, Lingjærde OC, Østenstad B, Smeland EB, Levy R, Irish JM, Myklebust JH. T Cells Expressing Checkpoint Receptor TIGIT Are Enriched in Follicular Lymphoma Tumors and Characterized by Reversible Suppression of T-cell Receptor Signaling. Clin Cancer Res 2017; 24:870-881. [PMID: 29217528 DOI: 10.1158/1078-0432.ccr-17-2337] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/10/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
Purpose: T cells infiltrating follicular lymphoma (FL) tumors are considered dysfunctional, yet the optimal target for immune checkpoint blockade is unknown. Characterizing coinhibitory receptor expression patterns and signaling responses in FL T-cell subsets might reveal new therapeutic targets.Experimental Design: Surface expression of 9 coinhibitory receptors governing T-cell function was characterized in T-cell subsets from FL lymph node tumors and from healthy donor tonsils and peripheral blood samples, using high-dimensional flow cytometry. The results were integrated with T-cell receptor (TCR)-induced signaling and cytokine production. Expression of T-cell immunoglobulin and ITIM domain (TIGIT) ligands was detected by immunohistochemistry.Results: TIGIT was a frequently expressed coinhibitory receptor in FL, expressed by the majority of CD8 T effector memory cells, which commonly coexpressed exhaustion markers such as PD-1 and CD244. CD8 FL T cells demonstrated highly reduced TCR-induced phosphorylation (p) of ERK and reduced production of IFNγ, while TCR proximal signaling (p-CD3ζ, p-SLP76) was not affected. The TIGIT ligands CD112 and CD155 were expressed by follicular dendritic cells in the tumor microenvironment. Dysfunctional TCR signaling correlated with TIGIT expression in FL CD8 T cells and could be fully restored upon in vitro culture. The costimulatory receptor CD226 was downregulated in TIGIT+ compared with TIGIT- CD8 FL T cells, further skewing the balance toward immunosuppression.Conclusions: TIGIT blockade is a relevant strategy for improved immunotherapy in FL. A deeper understanding of the interplay between coinhibitory receptors and key T-cell signaling events can further assist in engineering immunotherapeutic regimens to improve clinical outcomes of cancer patients. Clin Cancer Res; 24(4); 870-81. ©2017 AACR.
Collapse
Affiliation(s)
- Sarah E Josefsson
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kanutte Huse
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Arne Kolstad
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Klaus Beiske
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Daniela Pende
- Immunology Laboratory, Ospedale Policlinico San Martino, Genova, Italy
| | - Chloé B Steen
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.,Department of Computer Science, University of Oslo, Oslo, Norway
| | | | - Ole Christian Lingjærde
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Department of Computer Science, University of Oslo, Oslo, Norway
| | - Bjørn Østenstad
- Department of Oncology, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Erlend B Smeland
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway.,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ronald Levy
- Division of Oncology, Stanford School of Medicine, Stanford, California
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - June H Myklebust
- Centre for Cancer Biomedicine, University of Oslo, Oslo, Norway. .,Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
175
|
Sasidharan Nair V, Elkord E. Immune checkpoint inhibitors in cancer therapy: a focus on T-regulatory cells. Immunol Cell Biol 2017; 96:21-33. [PMID: 29359507 DOI: 10.1111/imcb.1003] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/13/2017] [Accepted: 09/06/2017] [Indexed: 01/02/2023]
Abstract
Regulatory T cells (Tregs) play essential roles in immune homeostasis; however, their role in tumor microenvironment (TME) is not completely evident. Several studies reported that infiltration of Tregs into various tumor tissues promotes tumor progression by limiting antitumor immunity and supporting tumor immune evasion. Furthermore, in TME, Tregs include heterogeneous subsets of cells expressing different immunosuppressive molecules favoring tumor progression. For an effective cancer therapy, it is critical to understand the Treg heterogeneity and biology in the TME. Recent studies have shown that immune checkpoint molecules promote cancer progression through various antitumor inhibitory mechanisms. Recent advances in cancer immunotherapy have shown the promising potentials of immune checkpoint inhibitors (ICIs) in inducing antitumor immune responses and clinical benefits in patients with cancer at late stages. Most studies revealed the effect of ICIs on T effector cells, and little is known about their effect on Tregs. In this review, we highlight the effects of the ICIs, including anti-CTLA-4, anti-PD-1/PD-L1, anti-LAG-3, anti-TIM-3, and anti-TIGIT, on tumor-infiltrating and peripheral Tregs to elicit effector T-cell functions against tumors. Additionally, we discuss how ICIs may target Tregs for cancer immunotherapy.
Collapse
Affiliation(s)
- Varun Sasidharan Nair
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Eyad Elkord
- Cancer Research Center, Qatar Biomedical Research Institute, College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar.,Institute of Cancer Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
176
|
Cari L, Nocentini G, Migliorati G, Riccardi C. Potential effect of tumor-specific Treg-targeted antibodies in the treatment of human cancers: A bioinformatics analysis. Oncoimmunology 2017; 7:e1387705. [PMID: 29308313 DOI: 10.1080/2162402x.2017.1387705] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/28/2017] [Accepted: 09/29/2017] [Indexed: 12/27/2022] Open
Abstract
One of the mechanisms of tumor rejection in immune-modulatory treatments is antibody-dependent cell-mediated cytotoxicity (ADCC) of regulatory T cells (Tregs) that infiltrate tumors in which cells expressing activating Fcγ receptors (FcγRs) are present. Our objective was to identify, through a bioinformatics analysis, Treg marker(s) expressed at the highest levels in nine types of human cancers, in order to determine the best targets for ADCC-inducing antitumor antibodies. We analyzed the mRNA levels of 24 surface Treg markers evaluated by the Affymetrix Human Genome U133 Plus 2.0 Array in 5728 cancer samples obtained via the Genevestigator v3 suite. Our analysis was based on overexpression of markers in tumors as compared to healthy tissues (HTs) and correlation between overexpression of the markers and the tumor suppressive microenvironment. Moreover, we evaluated tumoral infiltration of activating FcγR-expressing cells and calculated the ADCC index for each overexpressed marker, as an indicator of whether the marker was a good target for ADCC induction in tumor-infiltrating Tregs. The results demonstrated that the ADCC strategy is unlikely to succeed in colorectal, liver, prostate and ovarian cancers. Moreover, we identified nine Treg markers that could be targeted in the other tumors: 4-1BB, CD39, galectin-9, GITR, IL-21R, LAP, neuropilin-1, TIGIT and TNFR2. GITR and TIGIT were the only markers that could be potentially useful as targets for the treatment of three cancers: non-squamous and squamous NSCLC and breast infiltrating ductal carcinoma. LAP, neuropilin-1 and CD39 presented as good targets in the treatment of renal cell carcinoma. Our findings may have value for the development of new anti-tumor antibodies.
Collapse
Affiliation(s)
- Luigi Cari
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Giuseppe Nocentini
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Graziella Migliorati
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
177
|
Yeh WI, Seay HR, Newby B, Posgai AL, Moniz FB, Michels A, Mathews CE, Bluestone JA, Brusko TM. Avidity and Bystander Suppressive Capacity of Human Regulatory T Cells Expressing De Novo Autoreactive T-Cell Receptors in Type 1 Diabetes. Front Immunol 2017; 8:1313. [PMID: 29123516 PMCID: PMC5662552 DOI: 10.3389/fimmu.2017.01313] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 09/28/2017] [Indexed: 12/12/2022] Open
Abstract
The ability to alter antigen specificity by T-cell receptor (TCR) or chimeric antigen receptor (CAR) gene transfer has facilitated personalized cellular immune therapies in cancer. Inversely, this approach can be harnessed in autoimmune settings to attenuate inflammation by redirecting the specificity of regulatory T cells (Tregs). Herein, we demonstrate efficient protocols for lentiviral gene transfer of TCRs that recognize type 1 diabetes-related autoantigens with the goal of tissue-targeted induction of antigen-specific tolerance to halt β-cell destruction. We generated human Tregs expressing a high-affinity GAD555–567-reactive TCR (clone R164), as well as the lower affinity clone 4.13 specific for the same peptide. We demonstrated that de novo Treg avatars potently suppress antigen-specific and bystander responder T-cell (Tresp) proliferation in vitro in a process that requires Treg activation (P < 0.001 versus unactivated Tregs). When Tresp were also glutamic acid decarboxylase (GAD)-reactive, the high-affinity R164 Tregs exhibited increased suppression (P < 0.01) with lower Tresp-division index (P < 0.01) than the lower affinity 4.13 Tregs. These data demonstrate the feasibility of rapid expansion of antigen-specific Tregs for applications in attenuating β-cell autoimmunity and emphasize further opportunities for engineering cellular specificities, affinities, and phenotypes to tailor Treg activity in adoptive cell therapies for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Wen-I Yeh
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Howard R Seay
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Brittney Newby
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Filipa Botelho Moniz
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Aaron Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, United States
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Jeffrey A Bluestone
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
178
|
Muroyama Y, Nirschl TR, Kochel CM, Lopez-Bujanda Z, Theodros D, Mao W, Carrera-Haro MA, Ghasemzadeh A, Marciscano AE, Velarde E, Tam AJ, Thoburn CJ, Uddin M, Meeker AK, Anders RA, Pardoll DM, Drake CG. Stereotactic Radiotherapy Increases Functionally Suppressive Regulatory T Cells in the Tumor Microenvironment. Cancer Immunol Res 2017; 5:992-1004. [PMID: 28970196 DOI: 10.1158/2326-6066.cir-17-0040] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/12/2017] [Accepted: 09/26/2017] [Indexed: 01/21/2023]
Abstract
Radiotherapy (RT) enhances innate and adaptive antitumor immunity; however, the effects of radiation on suppressive immune cells, such as regulatory T cells (Treg), in the tumor microenvironment (TME) are not fully elucidated. Although previous reports suggest an increased Treg infiltration after radiation, whether these Tregs are functionally suppressive remains undetermined. To test the hypothesis that RT enhances the suppressive function of Treg in the TME, we selectively irradiated implanted tumors using the small animal radiation research platform (SARRP), which models stereotactic radiotherapy in human patients. We then analyzed tumor-infiltrating lymphocytes (TIL) with flow-cytometry and functional assays. Our data showed that RT significantly increased tumor-infiltrating Tregs (TIL-Treg), which had higher expression of CTLA-4, 4-1BB, and Helios compared with Tregs in nonirradiated tumors. This observation held true across several tumor models (B16/F10, RENCA, and MC38). We found that TIL-Tregs from irradiated tumors had equal or improved suppressive capacity compared with nonirradiated tumors. Our data also indicated that after RT, Tregs proliferated more robustly than other T-cell subsets in the TME. In addition, after RT, expansion of Tregs occurred when T-cell migration was inhibited using Fingolimod, suggesting that the increased Treg frequency was likely due to preferential proliferation of intratumoral Treg after radiation. Our data also suggested that Treg expansion after irradiation was independent of TGFβ and IL33 signaling. These data demonstrate that RT increased phenotypically and functionally suppressive Tregs in the TME. Our results suggest that RT might be combined effectively with Treg-targeting agents to maximize antitumor efficacy. Cancer Immunol Res; 5(11); 992-1004. ©2017 AACR.
Collapse
Affiliation(s)
- Yuki Muroyama
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Thomas R Nirschl
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christina M Kochel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zoila Lopez-Bujanda
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Debebe Theodros
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wendy Mao
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Maria A Carrera-Haro
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ali Ghasemzadeh
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ariel E Marciscano
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Esteban Velarde
- Department of Radiation Oncology and Molecular Radiation Sciences, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ada J Tam
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher J Thoburn
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Muniza Uddin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan K Meeker
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Charles G Drake
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
179
|
Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: Co-inhibitory Receptors with Specialized Functions in Immune Regulation. Immunity 2017; 44:989-1004. [PMID: 27192565 DOI: 10.1016/j.immuni.2016.05.001] [Citation(s) in RCA: 1529] [Impact Index Per Article: 191.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Indexed: 12/14/2022]
Abstract
Co-inhibitory receptors, such as CTLA-4 and PD-1, have an important role in regulating T cell responses and have proven to be effective targets in the setting of chronic diseases where constitutive co-inhibitory receptor expression on T cells dampens effector T cell responses. Unfortunately, many patients still fail to respond to therapies that target CTLA-4 and PD-1. The next wave of co-inhibitory receptor targets that are being explored in clinical trials include Lag-3, Tim-3, and TIGIT. These receptors, although they belong to the same class of receptors as PD-1 and CTLA-4, exhibit unique functions, especially at tissue sites where they regulate distinct aspects of immunity. Increased understanding of the specialized functions of these receptors will inform the rational application of therapies that target these receptors to the clinic.
Collapse
Affiliation(s)
- Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nicole Joller
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Vijay K Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
180
|
Ferreira RC, Simons HZ, Thompson WS, Rainbow DB, Yang X, Cutler AJ, Oliveira J, Castro Dopico X, Smyth DJ, Savinykh N, Mashar M, Vyse TJ, Dunger DB, Baxendale H, Chandra A, Wallace C, Todd JA, Wicker LS, Pekalski ML. Cells with Treg-specific FOXP3 demethylation but low CD25 are prevalent in autoimmunity. J Autoimmun 2017; 84:75-86. [PMID: 28747257 PMCID: PMC5656572 DOI: 10.1016/j.jaut.2017.07.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/06/2017] [Accepted: 07/13/2017] [Indexed: 01/22/2023]
Abstract
Identification of alterations in the cellular composition of the human immune system is key to understanding the autoimmune process. Recently, a subset of FOXP3+ cells with low CD25 expression was found to be increased in peripheral blood from systemic lupus erythematosus (SLE) patients, although its functional significance remains controversial. Here we find in comparisons with healthy donors that the frequency of FOXP3+ cells within CD127lowCD25low CD4+ T cells (here defined as CD25lowFOXP3+ T cells) is increased in patients affected by autoimmune disease of varying severity, from combined immunodeficiency with active autoimmunity, SLE to type 1 diabetes. We show that CD25lowFOXP3+ T cells share phenotypic features resembling conventional CD127lowCD25highFOXP3+ Tregs, including demethylation of the Treg-specific epigenetic control region in FOXP3, HELIOS expression, and lack of IL-2 production. As compared to conventional Tregs, more CD25lowFOXP3+HELIOS+ T cells are in cell cycle (33.0% vs 20.7% Ki-67+; P = 1.3 × 10−9) and express the late-stage inhibitory receptor PD-1 (67.2% vs 35.5%; P = 4.0 × 10−18), while having reduced expression of the early-stage inhibitory receptor CTLA-4, as well as other Treg markers, such as FOXP3 and CD15s. The number of CD25lowFOXP3+ T cells is correlated (P = 3.1 × 10−7) with the proportion of CD25highFOXP3+ T cells in cell cycle (Ki-67+). These findings suggest that CD25lowFOXP3+ T cells represent a subset of Tregs that are derived from CD25highFOXP3+ T cells, and are a peripheral marker of recent Treg expansion in response to an autoimmune reaction in tissues. FOXP3+ compartment within CD127lowCD25low T cells is expanded in autoimmune patients. Increased numbers of CD25lowFOXP3+ T cells are a circulating marker of autoimmunity. CD25lowFOXP3+ HELIOS+ T cells are fully demethylated at the FOXP3 TSDR. CD25lowFOXP3+ T cells could represent a terminal differentiation stage of regulatory T cells.
Collapse
Affiliation(s)
- Ricardo C Ferreira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Henry Z Simons
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Whitney S Thompson
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Xin Yang
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Antony J Cutler
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Joao Oliveira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Xaquin Castro Dopico
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Deborah J Smyth
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Natalia Savinykh
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Meghavi Mashar
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Tim J Vyse
- Department of Medical and Molecular Genetics, King's College Hospital, London, UK
| | - David B Dunger
- Department of Paediatrics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Helen Baxendale
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Anita Chandra
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, UK
| | - Chris Wallace
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK.
| | - Marcin L Pekalski
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust/MRC Building, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Research Campus, Cambridge, UK.
| |
Collapse
|
181
|
Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev 2017; 276:112-120. [PMID: 28258695 DOI: 10.1111/imr.12518] [Citation(s) in RCA: 335] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
Abstract
While therapies targeting the co-inhibitory or immune checkpoint receptors PD-1 and CTLA-4 have shown remarkable success in many cancers, not all patients benefit from these therapies. This has catalyzed enormous interest in the targeting of other immune checkpoint receptors. In this regard, TIGIT and CD96 have recently entered the limelight as novel immune checkpoint receptor targets. TIGIT and CD96 together with the co-stimulatory receptor CD226 form a pathway that is analogous to the CD28/CTLA-4 pathway, in which shared ligands and differential receptor:ligand affinities fine-tune the immune response. Although the roles of TIGIT and CD96 as immune checkpoint receptors in T cell and natural killer cell biology are just beginning to be uncovered, accumulating data support the targeting of these receptors for improving anti-tumor immune responses. A clear understanding of the immune cell populations regulated by TIGIT and CD96 is key to the design of immunotherapies that target these receptors in combination with other existing immune checkpoint blockade therapies.
Collapse
Affiliation(s)
| | - Sema Kurtulus
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Mark J Smyth
- QIMR Berghofer Medical Research Institute, Herston, QLD, Australia.,School of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Ana C Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
182
|
Ferreira RC, Rainbow DB, Rubio García A, Pekalski ML, Porter L, Oliveira JJ, Waldron-Lynch F, Wicker LS, Todd JA. Human IL-6R hiTIGIT - CD4 +CD127 lowCD25 + T cells display potent in vitro suppressive capacity and a distinct Th17 profile. Clin Immunol 2017; 179:25-39. [PMID: 28284938 PMCID: PMC5471606 DOI: 10.1016/j.clim.2017.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/03/2017] [Accepted: 03/07/2017] [Indexed: 12/12/2022]
Abstract
To date many clinical studies aim to increase the number and/or fitness of CD4+ CD127lowCD25+ regulatory T cells (Tregs) in vivo to harness their regulatory potential in the context of treating autoimmune disease. Here, we sought to define the phenotype and function of Tregs expressing the highest levels of IL-6 receptor (IL-6R). We have identified a population of CD4+ CD127lowCD25+ TIGIT− T cells distinguished by their elevated IL-6R expression that lacked expression of HELIOS, showed higher CTLA-4 expression, and displayed increased suppressive capacity compared to IL-6RhiTIGIT+ Tregs. IL-6RhiTIGIT− CD127lowCD25+ T cells contained a majority of cells demethylated at FOXP3 and displayed a Th17 transcriptional signature, including RORC (RORγt) and the capacity of producing both pro- and anti-inflammatory cytokines, such as IL-17, IL-22 and IL-10. We propose that in vivo, in the presence of IL-6-associated inflammation, the suppressive function of CD4+ CD127lowCD25+ FOXP3+ IL-6RhiTIGIT− T cells is temporarily disarmed allowing further activation of the effector functions and potential pathogenic tissue damage. IL-6R is highly expressed in certain Treg subsets. IL-6RhiTIGIT− CD127lowCD25+ T cells contain a subset of antigen-experienced Tregs with potent suppression capacity. IL-6RhiTIGIT− Tregs display a Th17 transcriptional profile ex vivo, and the capacity to migrate to the gut. IL-2 treatment in humans elicits the trafficking and expansion of Tregs in circulation.
Collapse
Affiliation(s)
- Ricardo C Ferreira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| | - Daniel B Rainbow
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Arcadio Rubio García
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Marcin L Pekalski
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Linsey Porter
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - João J Oliveira
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Frank Waldron-Lynch
- Experimental Medicine and Immunotherapeutics, Department of Medicine, NIHR Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK; NIHR Cambridge Clinical Trial Unit, Cambridge NHS University Hospitals Trust, Cambridge Biomedical Research Centre, University of Cambridge, Cambridge, UK
| | - Linda S Wicker
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - John A Todd
- JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Wellcome Trust Centre for Human Genetics, Nuffield Department of Medicine, NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK; JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
183
|
Duurland CL, Brown CC, O'Shaughnessy RFL, Wedderburn LR. CD161 + Tconv and CD161 + Treg Share a Transcriptional and Functional Phenotype despite Limited Overlap in TCRβ Repertoire. Front Immunol 2017; 8:103. [PMID: 28321213 PMCID: PMC5337494 DOI: 10.3389/fimmu.2017.00103] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/20/2017] [Indexed: 12/20/2022] Open
Abstract
Human regulatory T cells (Treg) are important in immune regulation, but can also show plasticity in specific settings. CD161 is a lectin-like receptor and its expression identifies an effector-like Treg population. Here, we determined how CD161+ Treg relate to CD161+ conventional T cells (Tconv). Transcriptional profiling identified a shared transcriptional signature between CD161+ Tconv and CD161+ Treg, which is associated with T helper (Th)1 and Th17 cells, and tissue homing, including high expression of gut-homing receptors. Upon retinoic acid (RA) exposure, CD161+ T cells were more enriched for CCR9+ and integrin α4+β7+ cells than CD161- T cells. In addition, CD161+ Tconv and CD161+ Treg were enriched at the inflamed site in autoimmune arthritis, and both CD161+ and CD161- Treg from the inflamed site were suppressive in vitro. CD161+ T cells from the site of autoimmune arthritis showed a diminished gut-homing phenotype and blunted response to RA suggesting prior imprinting by RA in the gut or at peripheral sites rather than during synovial inflammation. TCRβ repertoires of CD161+ and CD161- Tconv and Treg from blood showed limited overlap whereas there was clear overlap between CD161+ and CD161- Tconv, and CD161+ and CD161- Treg from the inflamed site suggesting that the inflamed environment may alter CD161 levels, potentially contributing to disease pathogenesis.
Collapse
Affiliation(s)
- Chantal L Duurland
- Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL) , London , UK
| | - Chrysothemis C Brown
- Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL) , London , UK
| | - Ryan F L O'Shaughnessy
- Immunobiology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL) , London , UK
| | - Lucy R Wedderburn
- Infection, Inflammation and Rheumatology Section, Infection, Immunity and Inflammation Programme, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK; Arthritis Research UK Centre for Adolescent Rheumatology, UCL Great Ormond Street Institute of Child Health, University College London (UCL), London, UK; UK National Institute for Health Research (NIHR) GOSH Biomedical Research Centre, London, UK
| |
Collapse
|
184
|
Ansari AW, Khan MA, Schmidt RE, Broering DC. Harnessing the immunotherapeutic potential of T-lymphocyte co-signaling molecules in transplantation. Immunol Lett 2017; 183:8-16. [PMID: 28119073 DOI: 10.1016/j.imlet.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 12/12/2022]
Abstract
Alloantigen-specific T-cell triggered immunopathological events are responsible for rapid allograft rejection. The co-signaling pathways orchestrated by co-stimulatory and co-inhibitory molecules are critical for optimal T-cell effector function. Therefore, selective blockade of pathways that control T-cell immunity may offer an attractive therapeutic strategy to manipulate cell mediated allogenic responses. For example, CD28, CTLA-4 and CD154 receptor blockade have proven beneficial in maintaining T-cell tolerance against transplanted organs in experimental animal models as well as in clinical trials. Conversely, induction of co-inhibitory molecules may result in suppressed effector function. There are several other potential molecules that are known to induce immune tolerance are currently under consideration for clinical studies. In this review, we provide a comprehensive and updated analysis of co-stimulatory and co-inhibitory molecules, their therapeutic potential to prevent graft rejection, and to further improve their long-term survival.
Collapse
Affiliation(s)
- Abdul W Ansari
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| | - Mohammad A Khan
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia
| | - Reinhold E Schmidt
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Carl-Neuberg Str.1, D-30625 Hannover, Germany
| | - Dieter C Broering
- Organ Transplant Research Section, Department of Comparative Medicine, MBC03, King Faisal Specialist Hospital & Research Centre, Riyadh 11211, Saudi Arabia.
| |
Collapse
|
185
|
Romano M, Tung SL, Smyth LA, Lombardi G. Treg therapy in transplantation: a general overview. Transpl Int 2017; 30:745-753. [PMID: 28012226 DOI: 10.1111/tri.12909] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/26/2016] [Accepted: 12/19/2016] [Indexed: 12/23/2022]
Abstract
Solid organ transplantation remains the treatment of choice for end-stage organ failure. Whilst the short-term outcomes post-transplant have improved in the last decades, chronic rejection and immunosuppressant side effects remain an ongoing concern. Hematopoietic stem cell transplantation is a well-established procedure for the treatment of patients with haematological disorders. However, donor T cells are continually primed and activated to react against the host causing graft-versus-host disease (GvHD) that leads to tissue damages and death. Regulatory T cells (Tregs) play an essential role in maintaining tolerance to self-antigens, preventing excessive immune responses and abrogating autoimmunity. Due to their suppressive properties, Tregs have been extensively studied for their use as a cellular therapy aiming to treat GvHD and limit immune responses responsible for graft rejection. Several clinical trials have been conducted or are currently ongoing to investigate safety and feasibility of Treg-based therapy. This review summarizes the general understanding of Treg biology and presents the methods used to isolate and expand Tregs. Furthermore, we describe data from the first clinical trials using Tregs, explaining the limitations and future application of these cells.
Collapse
Affiliation(s)
- Marco Romano
- Immunoregulation Laboratory, Division of Transplantation Immunology & Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Sim Lai Tung
- Immunoregulation Laboratory, Division of Transplantation Immunology & Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| | - Lesley Ann Smyth
- Immunoregulation Laboratory, Division of Transplantation Immunology & Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK.,School of Health Sport and Bioscience, University of East London, London, UK
| | - Giovanna Lombardi
- Immunoregulation Laboratory, Division of Transplantation Immunology & Mucosal Biology, MRC Centre for Transplantation, King's College London, Guy's Hospital, London, UK
| |
Collapse
|
186
|
TIGIT: A Key Inhibitor of the Cancer Immunity Cycle. Trends Immunol 2017; 38:20-28. [DOI: 10.1016/j.it.2016.10.002] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/02/2016] [Accepted: 10/05/2016] [Indexed: 11/21/2022]
|
187
|
Abstract
Co-inhibitory receptors play a key role in regulating T cell responses and maintaining immune homeostasis. Their inhibitory function prevents autoimmune responses but also restricts the ability of T cells to mount effective immune responses against tumors or persistent pathogens. T cells express a module of co-inhibitory receptors, which display great diversity in expression, structure, and function. Here, we focus on the co-inhibitory receptors Tim-3, Lag-3, and TIGIT and how they regulate T cell function, maintenance of self-tolerance, their role in regulating ongoing T cell responses at peripheral tissues, and their synergistic effects in regulating autoimmunity and antitumor responses.
Collapse
Affiliation(s)
- Nicole Joller
- Institute for Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Vijay K Kuchroo
- Harvard Medical School and Brigham & Women's Hospital, Evergrande Center for Immunologic Diseases, Boston, MA, USA.
| |
Collapse
|
188
|
Seay HR, Putnam AL, Cserny J, Posgai AL, Rosenau EH, Wingard JR, Girard KF, Kraus M, Lares AP, Brown HL, Brown KS, Balavage KT, Peters LD, Bushdorf AN, Atkinson MA, Bluestone JA, Haller MJ, Brusko TM. Expansion of Human Tregs from Cryopreserved Umbilical Cord Blood for GMP-Compliant Autologous Adoptive Cell Transfer Therapy. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 4:178-191. [PMID: 28345003 PMCID: PMC5363324 DOI: 10.1016/j.omtm.2016.12.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 12/16/2016] [Indexed: 12/29/2022]
Abstract
Umbilical cord blood is a traditional and convenient source of cells for hematopoietic stem cell transplantation. Thymic regulatory T cells (Tregs) are also present in cord blood, and there is growing interest in the use of autologous Tregs to provide a low-risk, fully human leukocyte antigen (HLA)-matched cell product for treating autoimmune diseases, such as type 1 diabetes. Here, we describe a good manufacturing practice (GMP)-compatible Treg expansion protocol using fluorescence-activated cell sorting, resulting in a mean 2,092-fold expansion of Tregs over a 16-day culture for a median yield of 1.26 × 109 Tregs from single-donor cryopreserved units. The resulting Tregs passed prior clinical trial release criteria for Treg purity and sterility, including additional rigorous assessments of FOXP3 and Helios expression and epigenetic analysis of the FOXP3 Treg-specific demethylated region (TSDR). Compared with expanded adult peripheral blood Tregs, expanded cord blood Tregs remained more naive, as assessed by continued expression of CD45RA, produced reduced IFN-γ following activation, and effectively inhibited responder T cell proliferation. Immunosequencing of the T cell receptor revealed a remarkably diverse receptor repertoire within cord blood Tregs that was maintained following in vitro expansion. These data support the feasibility of generating GMP-compliant Tregs from cord blood for adoptive cell transfer therapies and highlight potential advantages in terms of safety, phenotypic stability, autoantigen specificity, and tissue distribution.
Collapse
Affiliation(s)
- Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Amy L Putnam
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Judit Cserny
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Amanda L Posgai
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Emma H Rosenau
- Division of Hematology and Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - John R Wingard
- Division of Hematology and Oncology, Department of Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | | - Angela P Lares
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | | | - Kristi T Balavage
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Leeana D Peters
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Ashley N Bushdorf
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA; Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jeffrey A Bluestone
- Diabetes Center and Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael J Haller
- Department of Pediatrics, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
189
|
Affiliation(s)
- Xin-guang Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Ming Hou
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | - Yu Liu
- Department of Hematology, Qilu Hospital, Shandong University, Jinan, P. R. China
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, P. R. China
| |
Collapse
|
190
|
Park J, Kwon M, Shin EC. Immune checkpoint inhibitors for cancer treatment. Arch Pharm Res 2016; 39:1577-1587. [PMID: 27770382 DOI: 10.1007/s12272-016-0850-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/15/2016] [Indexed: 12/22/2022]
Abstract
During immune responses antigen-specific T cells are regulated by several mechanisms, including through inhibitory receptors and regulatory T cells, to avoid excessive or persistent immune responses. These regulatory mechanisms, which are called 'immune checkpoints', suppress T cell responses, particularly in patients with chronic viral infections and cancer where viral antigens or tumor antigens persist for a long time and contribute to T cell exhaustion. Among these regulatory mechanisms, cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed cell death 1 (PD-1) are the most well-known receptors and both have been targeted for drug development. As a result, anti-CTLA-4 and anti-PD-1 (or anti-PD-L1) antibodies were recently developed as immune checkpoint inhibitors for use in cancer treatments. In this review we describe several receptors that function as immunological checkpoints as well as the pharmaceuticals that target them.
Collapse
Affiliation(s)
- Junsik Park
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Minsuk Kwon
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
191
|
|
192
|
Lowther DE, Goods BA, Lucca LE, Lerner BA, Raddassi K, van Dijk D, Hernandez AL, Duan X, Gunel M, Coric V, Krishnaswamy S, Love JC, Hafler DA. PD-1 marks dysfunctional regulatory T cells in malignant gliomas. JCI Insight 2016; 1. [PMID: 27182555 DOI: 10.1172/jci.insight.85935] [Citation(s) in RCA: 171] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Immunotherapies targeting the immune checkpoint receptor programmed cell death protein 1 (PD-1) have shown remarkable efficacy in treating cancer. CD4+CD25hiFoxP3+ Tregs are critical regulators of immune responses in autoimmunity and malignancies, but the functional status of human Tregs expressing PD-1 remains unclear. We examined functional and molecular features of PD-1hi Tregs in healthy subjects and patients with glioblastoma multiforme (GBM), combining functional assays, RNA sequencing, and cytometry by time of flight (CyTOF). In both patients with GBM and healthy subjects, circulating PD-1hi Tregs displayed reduced suppression of CD4+ effector T cells, production of IFN-γ, and molecular signatures of exhaustion. Transcriptional profiling of tumor-resident Tregs revealed that several genes coexpressed with PD-1 and associated with IFN-γ production and exhaustion as well as enrichment in exhaustion signatures compared with circulating PD-1hi Tregs. CyTOF analysis of circulating and tumor-infiltrating Tregs from patients with GBM treated with PD-1-blocking antibodies revealed that treatment shifts the profile of circulating Tregs toward a more exhausted phenotype reminiscent of that of tumor-infiltrating Tregs, further increasing IFN-γ production. Thus, high PD-1 expression on human Tregs identifies dysfunctional, exhausted Tregs secreting IFN-γ that exist in healthy individuals and are enriched in tumor infiltrates, possibly losing function as they attempt to modulate the antitumoral immune responses.
Collapse
Affiliation(s)
- Daniel E Lowther
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Brittany A Goods
- Departments of Biological Engineering and Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Liliana E Lucca
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Benjamin A Lerner
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Khadir Raddassi
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - David van Dijk
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Amanda L Hernandez
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiangguo Duan
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Murat Gunel
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA; Department of Neurosurgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vlad Coric
- Bristol-Myers Squibb, Wallingford, Connecticut, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - J Christopher Love
- Departments of Biological Engineering and Chemical Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - David A Hafler
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA; Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
193
|
Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 2016; 16:149-63. [PMID: 26875830 DOI: 10.1038/nri.2015.18] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
CD4(+) T cells differentiate and acquire distinct functions to combat specific pathogens but can also adapt their functions in response to changing circumstances. Although this phenotypic plasticity can be potentially deleterious, driving immune pathology, it also provides important benefits that have led to its evolutionary preservation. Here, we review CD4(+) T cell plasticity by examining the molecular mechanisms that regulate it - from the extracellular cues that initiate and drive cells towards varying phenotypes, to the cytosolic signalling cascades that decipher these cues and transmit them into the cell and to the nucleus, where these signals imprint specific gene expression programmes. By understanding how this functional flexibility is achieved, we may open doors to new therapeutic approaches that harness this property of T cells.
Collapse
|
194
|
Perdigoto AL, Chatenoud L, Bluestone JA, Herold KC. Inducing and Administering Tregs to Treat Human Disease. Front Immunol 2016; 6:654. [PMID: 26834735 PMCID: PMC4722090 DOI: 10.3389/fimmu.2015.00654] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/21/2015] [Indexed: 12/17/2022] Open
Abstract
Regulatory T cells (Tregs) control unwanted immune responses, including those that mediate tolerance to self as well as to foreign antigens. Their mechanisms of action include direct and indirect effects on effector T cells and important functions in tissue repair and homeostasis. Tregs express a number of cell surface markers and transcriptional factors that have been instrumental in defining their origins and potentially their function. A number of immune therapies, such as rapamycin, IL-2, and anti-T cell antibodies, are able to induce Tregs and are being tested for their efficacy in diverse clinical settings with exciting preliminary results. However, a balance exists with the use of some, such as IL-2, that may have effects on unwanted populations as well as promoting expansion and survival of Tregs requiring careful selection of dose for clinical use. The use of cell surface markers has enabled investigators to isolate and expand ex vivo Tregs more than 500-fold routinely. Clinical trials have begun, administering these expanded Tregs to patients as a means of suppressing autoimmune and alloimmune responses and potentially inducing immune tolerance. Studies in the future are likely to build on these initial technical achievements and use combinations of agents to improve the survival and functional capacity of Tregs.
Collapse
Affiliation(s)
- Ana Luisa Perdigoto
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Lucienne Chatenoud
- Université Paris Descartes, Sorbonne Paris Cité, F-75475, Paris, France; INSERM U1151, CNRS UMR 8253, Hôpital Necker-Enfants Malades, Paris, France
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco , San Francisco, CA , USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
195
|
Kurtulus S, Sakuishi K, Ngiow SF, Joller N, Tan DJ, Teng MW, Smyth MJ, Kuchroo VK, Anderson AC. TIGIT predominantly regulates the immune response via regulatory T cells. J Clin Invest 2015; 125:4053-62. [PMID: 26413872 PMCID: PMC4639980 DOI: 10.1172/jci81187] [Citation(s) in RCA: 433] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 08/17/2015] [Indexed: 12/22/2022] Open
Abstract
Coinhibitory receptors are critical for the maintenance of immune homeostasis. Upregulation of these receptors on effector T cells terminates T cell responses, while their expression on Tregs promotes their suppressor function. Understanding the function of coinhibitory receptors in effector T cells and Tregs is crucial, as therapies that target coinhibitory receptors are currently at the forefront of treatment strategies for cancer and other chronic diseases. T cell Ig and ITIM domain (TIGIT) is a recently identified coinhibitory receptor that is found on the surface of a variety of lymphoid cells, and its role in immune regulation is just beginning to be elucidated. We examined TIGIT-mediated immune regulation in different murine cancer models and determined that TIGIT marks the most dysfunctional subset of CD8+ T cells in tumor tissue as well as tumor-tissue Tregs with a highly active and suppressive phenotype. We demonstrated that TIGIT signaling in Tregs directs their phenotype and that TIGIT primarily suppresses antitumor immunity via Tregs and not CD8+ T cells. Moreover, TIGIT+ Tregs upregulated expression of the coinhibitory receptor TIM-3 in tumor tissue, and TIM-3 and TIGIT synergized to suppress antitumor immune responses. Our findings provide mechanistic insight into how TIGIT regulates immune responses in chronic disease settings.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Colonic Neoplasms/immunology
- Colonic Neoplasms/pathology
- DNA-Binding Proteins/deficiency
- Female
- Gene Expression Regulation, Neoplastic
- Hepatitis A Virus Cellular Receptor 2
- Immunophenotyping
- Lymphocytes, Tumor-Infiltrating/immunology
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Receptors, Chemokine/biosynthesis
- Receptors, Chemokine/genetics
- Receptors, Immunologic/deficiency
- Receptors, Immunologic/physiology
- Receptors, Virus/biosynthesis
- Receptors, Virus/genetics
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Regulatory/immunology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
Collapse
Affiliation(s)
- Sema Kurtulus
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kaori Sakuishi
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Shin-Foong Ngiow
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Nicole Joller
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dewar J. Tan
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Michele W.L. Teng
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Mark J. Smyth
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- School of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Vijay K. Kuchroo
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Ana C. Anderson
- Evergrande Center for Immunologic Diseases and Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
196
|
Hua J, Davis SP, Hill JA, Yamagata T. Diverse Gene Expression in Human Regulatory T Cell Subsets Uncovers Connection between Regulatory T Cell Genes and Suppressive Function. THE JOURNAL OF IMMUNOLOGY 2015; 195:3642-53. [PMID: 26371251 DOI: 10.4049/jimmunol.1500349] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/16/2015] [Indexed: 12/19/2022]
Abstract
Regulatory T (Treg) cells have a critical role in the control of immunity, and their diverse subpopulations may allow adaptation to different types of immune responses. In this study, we analyzed human Treg cell subpopulations in the peripheral blood by performing genome-wide expression profiling of 40 Treg cell subsets from healthy donors. We found that the human peripheral blood Treg cell population is comprised of five major genomic subgroups, represented by 16 tractable subsets with a particular cell surface phenotype. These subsets possess a range of suppressive function and cytokine secretion and can exert a genomic footprint on target effector T (Teff) cells. Correlation analysis of variability in gene expression in the subsets identified several cell surface molecules associated with Treg suppressive function, and pharmacological interrogation revealed a set of genes having causative effect. The five genomic subgroups of Treg cells imposed a preserved pattern of gene expression on Teff cells, with a varying degree of genes being suppressed or induced. Notably, there was a cluster of genes induced by Treg cells that bolstered an autoinhibitory effect in Teff cells, and this induction appears to be governed by a different set of genes than ones involved in counteracting Teff activation. Our work shows an example of exploiting the diversity within human Treg cell subpopulations to dissect Treg cell biology.
Collapse
Affiliation(s)
- Jing Hua
- Tempero Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline Research and Development, Cambridge, MA 02139
| | - Scott P Davis
- Tempero Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline Research and Development, Cambridge, MA 02139
| | - Jonathan A Hill
- Tempero Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline Research and Development, Cambridge, MA 02139
| | - Tetsuya Yamagata
- Tempero Discovery Performance Unit, Immuno-Inflammation Therapy Area, GlaxoSmithKline Research and Development, Cambridge, MA 02139
| |
Collapse
|
197
|
Le Mercier I, Lines JL, Noelle RJ. Beyond CTLA-4 and PD-1, the Generation Z of Negative Checkpoint Regulators. Front Immunol 2015; 6:418. [PMID: 26347741 PMCID: PMC4544156 DOI: 10.3389/fimmu.2015.00418] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022] Open
Abstract
In the last two years, clinical trials with blocking antibodies to the negative checkpoint regulators CTLA-4 and PD-1 have rekindled the hope for cancer immunotherapy. Multiple negative checkpoint regulators protect the host against autoimmune reactions but also restrict the ability of T cells to effectively attack tumors. Releasing these brakes has emerged as an exciting strategy for cancer treatment. Conversely, these pathways can be manipulated to achieve durable tolerance for treatment of autoimmune diseases and transplantation. In the future, treatment may involve combination therapy to target multiple cell types and stages of the adaptive immune responses. In this review, we describe the current knowledge on the recently discovered negative checkpoint regulators, future targets for immunotherapy.
Collapse
Affiliation(s)
- Isabelle Le Mercier
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - J Louise Lines
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
198
|
Development and Function of Effector Regulatory T Cells. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:155-74. [DOI: 10.1016/bs.pmbts.2015.08.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|