151
|
Therapeutic protein purity and fragmented species characterization by capillary electrophoresis sodium dodecyl sulfate using systematic hybrid cleavage and forced degradation. Anal Bioanal Chem 2019; 411:5617-5629. [DOI: 10.1007/s00216-019-01942-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
152
|
Xu CA, Feng AZ, Ramineni CK, Wallace MR, Culyba EK, Guay KP, Mehta K, Mabry R, Farrand S, Xu J, Feng J. L 445P mutation on heavy chain stabilizes IgG 4 under acidic conditions. MAbs 2019; 11:1289-1299. [PMID: 31199179 DOI: 10.1080/19420862.2019.1631116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
IgG4, a common type of therapeutic antibody, is less stable during manufacturing processes compared with IgG1. Aggregation and fragmentation are the two main challenges. Here, we report instability of the heavy chain (HC) C-terminal region under acidic conditions, which leads to cleavage and aggregation. Leu445, at the C-terminal region of the HC in IgG4, plays a critical role in its acid-induced fragmentation and subsequent aggregation. We found that mutating HC C-terminal Leu445 to Pro (the corresponding residue in IgG1) in IgG4_CDR-X significantly reduces fragmentation and aggregation, while mutating Pro445 to Leu in IgG1_CDR-X promotes fragmentation and aggregation. HC C-terminal Gly446 cleavage was observed in low pH citrate buffer and resulted in further fragmentation and aggregation, whereas, glycine buffer can completely inhibit the cleavage and aggregation. It is proposed that cleavages occur through acid-induced hydrolysis under acidic conditions and glycine stabilizes IgG4 via two main mechanisms: 1) product feedback inhibition of the hydrolysis reaction, and 2) stabilization of protein conformation by direct interaction with the peptide backbone and charged side chains. Experiments using IgG4 molecules IgG4_CDR-Y and IgG4_CDR-Z with the same CH domains as IgG4_CDR-X, but different complementarity-determining regions (CDRs), indicate that the stability of the HC C-terminal region is also closely related to the sequence of the CDRs. The stability of IgG4_CDR-X is significantly improved when binding to its target. Both observations suggest that there are potential interactions between Fab and CH2-CH3 domains, which could be the key factor affecting the stability of IgG antibodies.
Collapse
Affiliation(s)
| | - Andrew Z Feng
- Chemistry Department, University of Massachusetts Lowell , Lowell , MA , USA
| | - Charan K Ramineni
- Chemistry Department, University of Massachusetts Lowell , Lowell , MA , USA
| | | | | | | | | | - Robert Mabry
- Jounce Therapeutics , Cambridge , MA , USA.,Global Biologics , Cambridge , MA , USA
| | | | - Jin Xu
- Chemistry Department, University of Massachusetts Lowell , Lowell , MA , USA
| | - Jianwen Feng
- Jounce Therapeutics , Cambridge , MA , USA.,MassBiologics, University of Massachusetts Medical School , Mattapan , MA , USA
| |
Collapse
|
153
|
Sänger–van de Griend CE. CE‐SDS method development, validation, and best practice—An overview. Electrophoresis 2019; 40:2361-2374. [DOI: 10.1002/elps.201900094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/10/2019] [Accepted: 05/22/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Cari E. Sänger–van de Griend
- Kantisto BV Baarn The Netherlands
- Faculty of PharmacyDepartment of Medicinal ChemistryUppsala University Uppsala Sweden
| |
Collapse
|
154
|
Uncommon Peptide Bond Cleavage of Glucagon from a Specific Vendor under near Neutral to Basic Conditions. Pharm Res 2019; 36:118. [DOI: 10.1007/s11095-019-2647-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/15/2019] [Indexed: 10/26/2022]
|
155
|
Application of a label-free and domain-specific free thiol method in monoclonal antibody characterization. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1114-1115:93-99. [DOI: 10.1016/j.jchromb.2019.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 12/17/2022]
|
156
|
Alam ME, Barnett GV, Slaney TR, Starr CG, Das TK, Tessier PM. Deamidation Can Compromise Antibody Colloidal Stability and Enhance Aggregation in a pH-Dependent Manner. Mol Pharm 2019; 16:1939-1949. [DOI: 10.1021/acs.molpharmaceut.8b01311] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Magfur E. Alam
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Gregory V. Barnett
- Biologics Development, Bristol-Myers Squibb, Pennington, New Jersey 08534, United States
| | - Thomas R. Slaney
- Biologics Development, Bristol-Myers Squibb, Pennington, New Jersey 08534, United States
| | - Charles G. Starr
- Departments of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tapan K. Das
- Biologics Development, Bristol-Myers Squibb, Pennington, New Jersey 08534, United States
| | - Peter M. Tessier
- Isermann Department of Chemical & Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Departments of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
157
|
Assessing the Extended In-Use Stability of the Infliximab Biosimilar PF-06438179/GP1111 Following Preparation for Intravenous Infusion. Drugs R D 2019; 19:127-140. [PMID: 30810925 PMCID: PMC6544699 DOI: 10.1007/s40268-019-0264-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective PF-06438179/GP1111 (PF-SZ-IFX) is an infliximab biosimilar. We evaluated the extended in-use physicochemical and biological stability of PF-SZ-IFX upon preparation for intravenous infusion. Methods Two batches of PF-SZ-IFX were reconstituted to a concentration of 10 mg/mL and subsequently diluted to 0.4 and 4.0 mg/mL, representing the clinically relevant range for intravenous infusion. Dilution was performed in polyethylene saline infusion bags, which are commonly used in clinical practice. To simulate product handling under worst-case conditions, reconstituted solutions were stored for up to 30 days at 5 ± 3 °C and up to 14 days at 25 ± 2 °C (60 ± 5% relative humidity); diluted solutions were stored for up to 30 days under the same sets of conditions. Physicochemical and biological stability were evaluated according to pH, osmolality, appearance, particulate content, protein concentration, proportions of molecular weight variants and charge variants and potency. Standard and state-of-the-art analytical techniques were employed, including imaged isoelectric focusing, size exclusion chromatography, reducing sodium dodecyl sulphate capillary electrophoresis and functional cell-based bioassay. Results Across batches and concentrations of PF-SZ-IFX, all parameters resided within the predefined acceptance criteria, including pH, osmolality, particulate content, clarity, protein concentration, molecular weight variants, charge variants and potency, for up to 30 days under both storage conditions tested (up to 14 days for reconstituted samples stored at 25 ± 2 °C). Conclusions Physicochemical and biological analyses demonstrated that the infliximab biosimilar PF-SZ-IFX was not affected by extended storage of the diluted preparations used for intravenous infusion.
Collapse
|
158
|
Yang B, Li W, Zhao H, Wang A, Lei Y, Xie Q, Xiong S. Discovery and characterization of CHO host cell protease-induced fragmentation of a recombinant monoclonal antibody during production process development. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1112:1-10. [PMID: 30836312 DOI: 10.1016/j.jchromb.2019.02.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/16/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
Monoclonal antibody (mAb) fragmentation is a widespread issue of protein stability that needs to be carefully monitored for critical mAb quality control during the production process development. This study describes here the discovery and characterization of CHO host cell protease-induced fragmentation of a therapeutic mAb-X in the formulation samples from an early production process. The fragmentation was observed in the sodium dodecyl sulfate capillary electrophoresis (CE-SDS) analysis of mAb-X formulation samples incubated at elevated temperature. Size exclusion liquid chromatography (SEC-HPLC) was used to analyze and collect these cleaved fragments derived from mAb-X. Reversed phase liquid chromatography mass spectrometry (RP-LC-MS) and tandem mass (MS/MS) analysis demonstrated that the fragment was generated mainly due to the hinge region cleavage of mAb-X. The fragmentation rate was characterized in the mAb-X formulation samples at pH from 4.0 to 6.0 using CE-SDS and SDS-PAGE analysis. The percentage of the main fragment increased dramatically from 2.8% to 31.2% as pH decreased from 6.0 to 4.0 at 40 °C for 28 days, which indicated the fragmentation was highly pH-dependent. The SDS-PAGE analysis further verified the pH-dependent property of the framentation of mAb-X. Moreover, the fragmentation was characterized in the presence and absence of pepstatin A, an inhibitor of acidic proteases. Significant inhibition of mAb-X fragmentation was observed with the addition of pepstatin A to mAb-X formulation samples. These results suggested residual acidic host cell protease(s) in the formulation samples from an early production process caused the fragmentation of mAb-X. To prove evidence, we developed an optimized protein A chromatography to enhance the residual host cell protease(s) removal capability of mAb-X purification process and consequently eliminate the above described cleaved fragment of mAb-X, which further supported the hypothesis that the fragmentation of mAb-X was catalyzed by the residual host cell protease(s) in the formulation samples from the early production process. This case study reiterated that residual host cell protease is a critical quality attribute (CQA) that should be carefully controlled and evaluated to guarantee successful manufacture processes for mAb products.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, F/7, 2nd Building of Science & Technology, 601 W Huangpu Ave, Guangzhou, Guangdong 510630, PR China
| | - Wenhua Li
- Sunshine Lake Pharma Co., Ltd, Dongguan 523867, PR China
| | - Hui Zhao
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, F/7, 2nd Building of Science & Technology, 601 W Huangpu Ave, Guangzhou, Guangdong 510630, PR China
| | - Anling Wang
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, F/7, 2nd Building of Science & Technology, 601 W Huangpu Ave, Guangzhou, Guangdong 510630, PR China
| | - Yuanjun Lei
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, F/7, 2nd Building of Science & Technology, 601 W Huangpu Ave, Guangzhou, Guangdong 510630, PR China
| | - Qiuling Xie
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, F/7, 2nd Building of Science & Technology, 601 W Huangpu Ave, Guangzhou, Guangdong 510630, PR China
| | - Sheng Xiong
- Institute of Biomedicine & National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, F/7, 2nd Building of Science & Technology, 601 W Huangpu Ave, Guangzhou, Guangdong 510630, PR China.
| |
Collapse
|
159
|
In-Use Stability of the Rituximab Biosimilar CT-P10 (Truxima®) Following Preparation for Intravenous Infusion and Storage. BioDrugs 2019; 33:221-228. [DOI: 10.1007/s40259-019-00336-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
160
|
Mitchell DE, Fayter AER, Deller RC, Hasan M, Gutierrez-Marcos J, Gibson MI. Ice-recrystallization inhibiting polymers protect proteins against freeze-stress and enable glycerol-free cryostorage. MATERIALS HORIZONS 2019; 6:364-368. [PMID: 30931129 PMCID: PMC6394881 DOI: 10.1039/c8mh00727f] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/19/2018] [Indexed: 05/19/2023]
Abstract
Proteins are ubiquitous in molecular biotechnology, biotechnology and as therapeutics, but there are significant challenges in their storage and distribution, with freezing often required. This is traditionally achieved by the addition of cryoprotective agents such as glycerol (or trehalose) or covalent modification of mutated proteins with cryoprotectants. Here, ice recrystallization inhibiting polymers, inspired by antifreeze proteins, are used synergistically with poly(ethylene glycol) as an alternative to glycerol. The primary mechanism of action appears to be preventing irreversible aggregation due to ice growth. The polymer formulation is successfully used to cryopreserve a range of important proteins including insulin, Taq DNA polymerase and an IgG antibody. The polymers do not require covalent conjugation, nor modification of the protein and are already used in a wide range of biomedical applications, which will facilitate translation to a range of biologics.
Collapse
Affiliation(s)
- Daniel E Mitchell
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
| | - Alice E R Fayter
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
| | - Robert C Deller
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
| | - Muhammad Hasan
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
| | | | - Matthew I Gibson
- Department of Chemistry , University of Warwick , Coventry , CV47AL , UK .
- Warwick Medical School , University of Warwick , CV47AL , UK
| |
Collapse
|
161
|
Kinman AWL, Pompano RR. Optimization of Enzymatic Antibody Fragmentation for Yield, Efficiency, and Binding Affinity. Bioconjug Chem 2019; 30:800-807. [PMID: 30649877 DOI: 10.1021/acs.bioconjchem.8b00912] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzymatic antibody fragmentation has been well studied for various hosts and isotypes, but fragmentation patterns also vary unpredictably by clone, and optimizing Fab or F(ab')2 production by trial and error consumes large quantities of antibodies. Here, we report a systematic strategy for optimizing functional F(ab')2 production via pepsin digestion from small quantities of IgG. We tested three key parameters that affect fragmentation, pH, enzyme concentration (% pepsin w/w), and reaction time, and found that pH had the greatest impact on fragmentation yield and efficiency. We then developed a systematic approach to obtaining acceptable yields, digestion efficiency, and binding affinity. Three case studies are described to illustrate the approach. We anticipate that this work will provide a quick and cost-effective method for researchers to produce antibody fragments from whole IgG, avoiding haphazard trial and error.
Collapse
Affiliation(s)
- Andrew W L Kinman
- Department of Chemistry , University of Virginia , P.O. Box 400319, Charlottesville , Virginia 22904 , United States
| | - Rebecca R Pompano
- Department of Chemistry , University of Virginia , P.O. Box 400319, Charlottesville , Virginia 22904 , United States.,Department of Biomedical Engineering , University of Virginia , Charlottesville , Virginia 22904 , United States
| |
Collapse
|
162
|
Carvalho AM, Montes CV, Schneider RJ, Madder A. An Anticaffeine Antibody-Oligonucleotide Conjugate for DNA-Directed Immobilization in Environmental Immunoarrays. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14834-14841. [PMID: 30089211 DOI: 10.1021/acs.langmuir.8b01347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The development of fast and cheap high-throughput platforms for the detection of environmental contaminants is of particular importance to understand the human-related impact on the environment. The application of DNA-directed immobilization (DDI) of IgG molecules is currently limited to the clinical diagnostics scenario, possibly because of the high costs of production of such addressable platforms. We here describe the efficient and specific hybridization of an antibody-oligonucleotide conjugate to a short 12-mer capture probe. The specific antibody used is a monoclonal antibody against caffeine, a stimulant and important anthropogenic marker. With this work, we hope to contribute to broadening the application potential of DDI to environmental markers in order to develop cheaper and more stable high-throughput screening platforms for standard routine analysis of pollutants in a variety of complex matrices.
Collapse
Affiliation(s)
- Ana Margarida Carvalho
- Ghent University , Faculty of Sciences, Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group , Krijgslaan 281 (S4) , 9000 Ghent , Belgium
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Cinthya Véliz Montes
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing , Department of Analytical Chemistry; Reference Materials , Richard-Willstätter-Str. 11 , D-12489 Berlin , Germany
| | - Annemieke Madder
- Ghent University , Faculty of Sciences, Department of Organic and Macromolecular Chemistry, Organic and Biomimetic Chemistry Research Group , Krijgslaan 281 (S4) , 9000 Ghent , Belgium
| |
Collapse
|
163
|
Engineering the hinge region of human IgG1 Fc-fused bispecific antibodies to improve fragmentation resistance. Sci Rep 2018; 8:17253. [PMID: 30467410 PMCID: PMC6250740 DOI: 10.1038/s41598-018-35489-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 11/06/2018] [Indexed: 11/08/2022] Open
Abstract
Fc domain fusion can improve the therapeutic effects of relatively small biological molecules such as peptides, cytokines, and antibody fragments. Fc fusion proteins can also be used to enhance the cytotoxic effects of small bispecific antibodies (bsAbs). However, fragmentation of Fc fusion proteins, which mainly occurs around the hinge regions during production, storage, and circulation in the blood, is a major issue. In this study, we first investigated the mechanisms of fragmentation around the hinge region during storage using Fc-fused bsAbs with specificity for epidermal growth factor receptor and CD3 as a model. The fragmentation peaks generated by gel filtration analysis indicated that both contaminating proteases and dissolved active oxygen should be considered causes of fragmentation. We designed and constructed variants by introducing a point mutation into the upper hinge region, which reduced the cleavage caused by dissolved active oxygen, and shortened the hinge region to restrict access of proteases. These hinge modifications improved fragmentation resistance and did not affect the biological activity of the bsAbs in vitro. We confirmed the versatility of the hinge modifications using another Fc-fused bsAb. Our results show that hinge modifications to the Fc fusion protein, especially the introduction of a point mutation into the upper hinge region, can reduce fragmentation substantially, and these modifications can be used to improve the fragmentation resistance of other recombinant Fc fusion proteins.
Collapse
|
164
|
Füssl F, Trappe A, Cook K, Scheffler K, Fitzgerald O, Bones J. Comprehensive characterisation of the heterogeneity of adalimumab via charge variant analysis hyphenated on-line to native high resolution Orbitrap mass spectrometry. MAbs 2018; 11:116-128. [PMID: 30296204 PMCID: PMC6343805 DOI: 10.1080/19420862.2018.1531664] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Charge variant analysis is a widely used tool to monitor changes in product quality during the manufacturing process of monoclonal antibodies (mAbs). Although it is a powerful technique for revealing mAb heterogeneity, an unexpected outcome, for example the appearance of previously undetected isoforms, requires further, time-consuming analysis. The process of identifying these unknowns can also result in unwanted changes to the molecule that are not attributable to the manufacturing process. To overcome this, we recently reported a method combining highly selective cation exchange chromatography-based charge variant analysis with on-line mass spectrometric (MS) detection. We further explored and adapted the chromatographic buffer system to expand the application range. Moreover, we observed no salt adducts on the native protein, also supported by the optimal choice of MS parameters, resulting in increased data quality and mass accuracy. Here, we demonstrate the utility of this improved method by performing an in-depth analysis of adalimumab before and after forced degradation. By combining molecular mass and retention time information, we were able to identify multiple modifications on adalimumab, including lysine truncation, glycation, deamidation, succinimide formation, isomerisation, N-terminal aspartic acid loss or C-terminal proline amidation and fragmentation along with the N-glycan distribution of each of these identified proteoforms. Host cell protein (HCP) analysis was performed using liquid chromatography-mass spectrometry that verified the presence of the protease Cathepsin L. Based on the presence of trace HCPs with catalytic activity, it can be questioned if fragmentation is solely driven by spontaneous hydrolysis or possibly also by enzymatic degradation.
Collapse
Affiliation(s)
- Florian Füssl
- a Characterisation and Comparability Lab , NIBRT - The National Institute for Bioprocessing Research and Training , Co , Dublin , Ireland
| | - Anne Trappe
- a Characterisation and Comparability Lab , NIBRT - The National Institute for Bioprocessing Research and Training , Co , Dublin , Ireland.,b School of Biotechnology , Dublin City University , Dublin 9 , Ireland
| | - Ken Cook
- c Thermo Fisher Scientific , Hemel Hempstead , UK
| | | | - Oliver Fitzgerald
- e St. Vincent's University Hospital , Dublin 4 , Ireland.,f Conway Institute of Biomolecular and Biomedical Research , University College Dublin , Dublin 4 , Ireland
| | - Jonathan Bones
- a Characterisation and Comparability Lab , NIBRT - The National Institute for Bioprocessing Research and Training , Co , Dublin , Ireland.,g School of Chemical and Bioprocess Engineering, University College Dublin , Dublin 4 , Ireland
| |
Collapse
|
165
|
Yan Y, Liu AP, Wang S, Daly TJ, Li N. Ultrasensitive Characterization of Charge Heterogeneity of Therapeutic Monoclonal Antibodies Using Strong Cation Exchange Chromatography Coupled to Native Mass Spectrometry. Anal Chem 2018; 90:13013-13020. [DOI: 10.1021/acs.analchem.8b03773] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yuetian Yan
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Anita P. Liu
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Shunhai Wang
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Thomas J. Daly
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry Group, Regeneron Pharmaceuticals Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
166
|
Yang Y, Mah A, Yuk IH, Grewal PS, Pynn A, Cole W, Gao D, Zhang F, Chen J, Gennaro L, Schöneich C. Investigation of Metal-Catalyzed Antibody Carbonylation With an Improved Protein Carbonylation Assay. J Pharm Sci 2018; 107:2570-2580. [DOI: 10.1016/j.xphs.2018.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/07/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
|
167
|
Keenan J, Horgan K, Clynes M, Sinkunaite I, Ward P, Murphy R, O’Sullivan F. Unexpected fluctuations of trace element levels in cell culture medium in vitro: caveat emptor. In Vitro Cell Dev Biol Anim 2018; 54:555-558. [DOI: 10.1007/s11626-018-0285-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 07/26/2018] [Indexed: 11/30/2022]
|
168
|
Ehkirch A, Hernandez-Alba O, Colas O, Beck A, Guillarme D, Cianférani S. Hyphenation of size exclusion chromatography to native ion mobility mass spectrometry for the analytical characterization of therapeutic antibodies and related products. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1086:176-183. [DOI: 10.1016/j.jchromb.2018.04.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/05/2018] [Accepted: 04/06/2018] [Indexed: 01/06/2023]
|
169
|
Kinetics and Characterization of Non-enzymatic Fragmentation of Monoclonal Antibody Therapeutics. Pharm Res 2018; 35:142. [PMID: 29761239 DOI: 10.1007/s11095-018-2415-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 04/22/2018] [Indexed: 01/17/2023]
Abstract
PURPOSE To understand non-enzymatic hydrolytic fragmentation of a monoclonal antibody therapeutic under temperature stressed conditions and investigating possible mechanism for the same. METHODS The mAb therapeutic was incubated at 50°C in phosphate buffer at pH 6.5 and fragmentation was monitored at different ionic strengths under stressed conditions. The incubated mAb was sampled at regular time intervals by analytical Size Exclusion Chromatography (SEC). RESULTS It was observed that 57% of the mAb product fragmented over 4 days into two fragment species - Fc-Fab and Fab with molecular weights of 97 KDa and 47 KDa, respectively, as measured by mass spectrometry (MS) and sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The fragmentation rate was slow initially and then accelerated with time. No change in % aggregate level was observed in this duration, implying that degradation was primarily via fragmentation at high temperature. Kinetics of hydrolytic fragmentation was hypothesized and SEC data was fitted to estimate the kinetic rate constants. While degradation of the monomer into fragment species was non-Arrhenius with a negative activation energy, further degradation of Fab-Fc fragments into Fab or Fc fragments followed Arrhenius Law with an activation energy of 2.1 and 15.38 kcal/mol, respectively. CONCLUSION High temperature (50°C) causes mAb to cleave at the hinge region to form Fab-Fc and Fab/Fc, as confirmed by dynamic light scattering, SDS-PAGE, SEC, and MS. A kinetic model for hydrolytic fragmentation has been proposed. The results are expected to assist end users in formulation development as well as in monitoring stability of biotherapeutic products.
Collapse
|
170
|
Characterization of product-related low molecular weight impurities in therapeutic monoclonal antibodies using hydrophilic interaction chromatography coupled with mass spectrometry. J Pharm Biomed Anal 2018; 154:468-475. [DOI: 10.1016/j.jpba.2018.03.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/21/2022]
|
171
|
Lee YF, Jöhnck M, Frech C. Evaluation of differences between dual salt-pH gradient elution and mono gradient elution using a thermodynamic model: Simultaneous separation of six monoclonal antibody charge and size variants on preparative-scale ion exchange chromatographic resin. Biotechnol Prog 2018; 34:973-986. [DOI: 10.1002/btpr.2626] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/02/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Yi Feng Lee
- Institute of Biochemistry, Department of Biotechnology; University of Applied Sciences Mannheim; Mannheim Germany
| | - Matthias Jöhnck
- Department of Process Solutions, Actives & Formulation; Merck KGaA; Darmstadt Germany
| | - Christian Frech
- Institute of Biochemistry, Department of Biotechnology; University of Applied Sciences Mannheim; Mannheim Germany
| |
Collapse
|
172
|
Kers JA, Sharp RE, Defusco AW, Park JH, Xu J, Pulse ME, Weiss WJ, Handfield M. Mutacin 1140 Lantibiotic Variants Are Efficacious Against Clostridium difficile Infection. Front Microbiol 2018; 9:415. [PMID: 29615987 PMCID: PMC5864910 DOI: 10.3389/fmicb.2018.00415] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/21/2018] [Indexed: 12/13/2022] Open
Abstract
Lantibiotics offer an untapped pipeline for the development of novel antibiotics to treat serious Gram-positive (+) infections including Clostridium difficile. Mutacin 1140 (MU1140) is a lantibiotic produced by Streptococcus mutans and acts via a novel mechanism of action, which may limit the development of resistance. This study sought to identify a lead compound for the treatment of C. difficile associated diarrhea (CDAD). Compounds were selected from a saturation mutagenesis library of 418 single amino acid variants of MU1140. Compounds were produced by small scale fermentation, purified, characterized and then subjected to a panel of assays aimed at identifying the best performers. The screening assays included: in vitro susceptibility testing [MIC against Micrococcus luteus, Clostridium difficile, vancomycin-resistant enterococci (VRE), Staphylococcus aureus, Streptococcus pneumonia, Mycobacterium phlei, and Pseudomonas aeruginosa; cytotoxicity screening on HepG2 hepatocytes; in vitro pharmacological profiling with the Safety Screen 44TM, metabolic and chemical stability in biologically relevant fluids (FaSSGF, FaSSIF and serum); and efficacy in vivo]. Several lantibiotic compounds had better MIC against C. difficile, compared to vancomycin, but not against other bacterial species tested. The Safety Screen 44TMin vitro pharmacological profiling assay suggested that this class of compounds has relatively low overall toxicity and that compound OG253 (MU1140, Phe1Ile) is not likely to present inadvertent off-target effects, as evidenced by a low promiscuity score. The in vitro cytotoxicity assay also indicated that this class of compounds was characterized by low toxicity; the EC50 of OG253 was 636 mg/mL on HepG2 cells. The half-life in simulated gastric fluid was >240 min. for all compound tested. The stability in simulated intestinal fluid ranged between a half-life of 5 min to >240 min, and paralleled the half-life in serum. OG253 ultimately emerged as the lead compound based on superior in vivo efficacy along with an apparent lack of relapse in a hamster model of infection. The lessons learned from this report are applicable to therapeutic lanthipeptides in general and may assist in the design of novel molecules with improved pharmacological, therapeutic and physicochemical profiles. The data presented also support the continued clinical development of OG253 as a novel antibiotic against CDAD that could prevent recurrence of the infection.
Collapse
Affiliation(s)
- Johan A Kers
- Industrial Products Division, Intrexon Corp., South San Francisco, CA, United States
| | - Robert E Sharp
- Industrial Products Division, Intrexon Corp., South San Francisco, CA, United States
| | | | - Jae H Park
- Oragenics, Inc., Tampa, FL, United States
| | - Jin Xu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, United States
| | - Mark E Pulse
- PreClinical Services, UNT System College of Pharmacy, Fort Worth, TX, United States
| | - William J Weiss
- PreClinical Services, UNT System College of Pharmacy, Fort Worth, TX, United States
| | | |
Collapse
|
173
|
Liu-Shin L, Fung A, Malhotra A, Ratnaswamy G. Influence of disulfide bond isoforms on drug conjugation sites in cysteine-linked IgG2 antibody-drug conjugates. MAbs 2018; 10:583-595. [PMID: 29436897 PMCID: PMC5973704 DOI: 10.1080/19420862.2018.1440165] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cysteine-linked antibody-drug conjugates (ADCs) produced from IgG2 monoclonal antibodies (mAbs) are more heterogeneous than ADCs generated from IgG1 mAbs, as IgG2 ADCs are composed of a wider distribution of molecules, typically containing 0 – 12 drug-linkers per antibody. The three disulfide isoforms (A, A/B, and B) of IgG2 antibodies confer differences in solvent accessibilities of the interchain disulfides and contribute to the structural heterogeneity of cysteine-linked ADCs. ADCs derived from either IgG2-A or IgG2-B mAbs were compared to better understand the role of disulfide isoforms on attachment sites and distribution of conjugated species. Our characterization of these ADCs demonstrated that the disulfide configuration affects the kinetics of disulfide bond reduction, but has minimal effect on the primary sites of reduction. The IgG2-A mAbs yielded ADCs with higher drug-to-antibody ratios (DARs) due to the easier reduction of its interchain disulfides. However, hinge-region cysteines were the primary conjugation sites for both IgG2-A and IgG2-B mAbs.
Collapse
Affiliation(s)
- Lily Liu-Shin
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA.,b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL
| | - Adam Fung
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA
| | - Arun Malhotra
- b Department of Biochemistry and Molecular Biology , University of Miami Miller School of Medicine , Miami , FL
| | - Gayathri Ratnaswamy
- a Analytical and Formulation Development, Agensys, Inc., an affiliate of Astellas, Inc. , Santa Monica , CA
| |
Collapse
|
174
|
Bern M, Caval T, Kil YJ, Tang W, Becker C, Carlson E, Kletter D, Sen KI, Galy N, Hagemans D, Franc V, Heck AJR. Parsimonious Charge Deconvolution for Native Mass Spectrometry. J Proteome Res 2018; 17:1216-1226. [PMID: 29376659 PMCID: PMC5838638 DOI: 10.1021/acs.jproteome.7b00839] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Indexed: 12/20/2022]
Abstract
Charge deconvolution infers the mass from mass over charge (m/z) measurements in electrospray ionization mass spectra. When applied over a wide input m/z or broad target mass range, charge-deconvolution algorithms can produce artifacts, such as false masses at one-half or one-third of the correct mass. Indeed, a maximum entropy term in the objective function of MaxEnt, the most commonly used charge deconvolution algorithm, favors a deconvolved spectrum with many peaks over one with fewer peaks. Here we describe a new "parsimonious" charge deconvolution algorithm that produces fewer artifacts. The algorithm is especially well-suited to high-resolution native mass spectrometry of intact glycoproteins and protein complexes. Deconvolution of native mass spectra poses special challenges due to salt and small molecule adducts, multimers, wide mass ranges, and fewer and lower charge states. We demonstrate the performance of the new deconvolution algorithm on a range of samples. On the heavily glycosylated plasma properdin glycoprotein, the new algorithm could deconvolve monomer and dimer simultaneously and, when focused on the m/z range of the monomer, gave accurate and interpretable masses for glycoforms that had previously been analyzed manually using m/z peaks rather than deconvolved masses. On therapeutic antibodies, the new algorithm facilitated the analysis of extensions, truncations, and Fab glycosylation. The algorithm facilitates the use of native mass spectrometry for the qualitative and quantitative analysis of protein and protein assemblies.
Collapse
Affiliation(s)
- Marshall Bern
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - Tomislav Caval
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Yong J. Kil
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - Wilfred Tang
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | | | - Eric Carlson
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - Doron Kletter
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - K. Ilker Sen
- Protein
Metrics, Inc., San Carlos, California 94070, United States
| | - Nicolas Galy
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Dominique Hagemans
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Vojtech Franc
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Albert J. R. Heck
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Science4Life, Utrecht University and Netherlands Proteomics Centre, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
175
|
Turner A, Yandrofski K, Telikepalli S, King J, Heckert A, Filliben J, Ripple D, Schiel JE. Development of orthogonal NISTmAb size heterogeneity control methods. Anal Bioanal Chem 2018; 410:2095-2110. [PMID: 29428991 PMCID: PMC5830496 DOI: 10.1007/s00216-017-0819-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/03/2017] [Accepted: 12/08/2017] [Indexed: 12/13/2022]
Abstract
The NISTmAb is a monoclonal antibody Reference Material from the National Institute of Standards and Technology; it is a class-representative IgG1κ intended to serve as a pre-competitive platform for harmonization and technology development in the biopharmaceutical industry. The publication series of which this paper is a part describes NIST's overall control strategy to ensure NISTmAb quality and availability over its lifecycle. In this paper, the development of a control strategy for monitoring NISTmAb size heterogeneity is described. Optimization and qualification of size heterogeneity measurement spanning a broad size range are described, including capillary electrophoresis-sodium dodecyl sulfate (CE-SDS), size exclusion chromatography (SEC), dynamic light scattering (DLS), and flow imaging analysis. This paper is intended to provide relevant details of NIST's size heterogeneity control strategy to facilitate implementation of the NISTmAb as a test molecule in the end user's laboratory. Graphical abstract Representative size exclusion chromatogram of the NIST monoclonal antibody (NISTmAb). The NISTmAb is a publicly available research tool intended to facilitate advancement of biopharmaceutical analytics. HMW = high molecular weight (trimer and dimer), LMW = low molecular weight (2 fragment peaks). Peak labeled buffer is void volume of the column from L-histidine background buffer.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/analysis
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal, Humanized/analysis
- Antibodies, Monoclonal, Humanized/chemistry
- Chromatography, Gel/methods
- Chromatography, Gel/standards
- Dynamic Light Scattering/methods
- Dynamic Light Scattering/standards
- Electrophoresis, Capillary/methods
- Electrophoresis, Capillary/standards
- Humans
- Immunoglobulin G/analysis
- Immunoglobulin G/chemistry
- Limit of Detection
- Mice
- Models, Molecular
- Protein Aggregates
- Quality Control
- Reference Standards
- Sodium Dodecyl Sulfate/chemistry
Collapse
Affiliation(s)
- Abigail Turner
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
- MedImmune, LLC, 55 Watkins Mill Rd, Gaithersburg, MD, 20878, USA
| | - Katharina Yandrofski
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA
| | - Srivalli Telikepalli
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Jason King
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Alan Heckert
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - James Filliben
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - Dean Ripple
- National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA
| | - John E Schiel
- National Institute of Standards and Technology, Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Dr, Rockville, MD, 20850, USA.
| |
Collapse
|
176
|
Isothermal chemical denaturation as a complementary tool to overcome limitations of thermal differential scanning fluorimetry in predicting physical stability of protein formulations. Eur J Pharm Biopharm 2018; 125:106-113. [PMID: 29329817 DOI: 10.1016/j.ejpb.2018.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 12/18/2022]
Abstract
Various stability indicating techniques find application in the early stage development of novel therapeutic protein candidates. Some of these techniques are used to select formulation conditions that provide high protein physical stability. Such approach is highly dependent on the reliability of the stability indicating technique used. In this work, we present a formulation case study in which we evaluate the ability of differential scanning fluorimetry (DSF) and isothermal chemical denaturation (ICD) to predict the physical stability of a model monoclonal antibody during accelerated stability studies. First, we show that a thermal denaturation technique like DSF can provide misleading physical stability rankings due to buffer specific pH shifts during heating. Next, we demonstrate how isothermal chemical denaturation can be used to tackle the above-mentioned challenge. Subsequently, we show that the concentration dependence of the Gibbs free energy of unfolding determined by ICD provides better predictions for the protein physical stability in comparison to the often-used Tm (melting temperature of the protein determined with DSF) and Cm (concentration of denaturant needed to unfold 50% of the protein determined with ICD). Finally, we give a suggestion for a rational approach which includes a combination of DSF and ICD to obtain accurate and reliable protein physical stability ranking in different formulations.
Collapse
|
177
|
Wagh A, Song H, Zeng M, Tao L, Das TK. Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs 2018; 10:222-243. [PMID: 29293399 DOI: 10.1080/19420862.2017.1412025] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are a growing class of biotherapeutics in which a potent small molecule is linked to an antibody. ADCs are highly complex and structurally heterogeneous, typically containing numerous product-related species. One of the most impactful steps in ADC development is the identification of critical quality attributes to determine product characteristics that may affect safety and efficacy. However, due to the additional complexity of ADCs relative to the parent antibodies, establishing a solid understanding of the major quality attributes and determining their criticality are a major undertaking in ADC development. Here, we review the development challenges, especially for reliable detection of quality attributes, citing literature and new data from our laboratories, highlight recent improvements in major analytical techniques for ADC characterization and control, and discuss newer techniques, such as two-dimensional liquid chromatography, that have potential to be included in analytical control strategies.
Collapse
Affiliation(s)
- Anil Wagh
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Hangtian Song
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Ming Zeng
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Li Tao
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| | - Tapan K Das
- a Molecular & Analytical Development , Bristol-Myers Squibb , New Jersey , USA
| |
Collapse
|
178
|
Manning MC, Liu J, Li T, Holcomb RE. Rational Design of Liquid Formulations of Proteins. THERAPEUTIC PROTEINS AND PEPTIDES 2018; 112:1-59. [DOI: 10.1016/bs.apcsb.2018.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
179
|
The state-of-play and future of antibody therapeutics. Adv Drug Deliv Rev 2017; 122:2-19. [PMID: 27916504 DOI: 10.1016/j.addr.2016.11.004] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/26/2016] [Accepted: 11/28/2016] [Indexed: 12/22/2022]
Abstract
It has been over four decades since the development of monoclonal antibodies (mAbs) using a hybridoma cell line was first reported. Since then more than thirty therapeutic antibodies have been marketed, mostly as oncology, autoimmune and inflammatory therapeutics. While antibodies are very efficient, their cost-effectiveness has always been discussed owing to their high costs, accumulating to more than one billion dollars from preclinical development through to market approval. Because of this, therapeutic antibodies are inaccessible to some patients in both developed and developing countries. The growing interest in biosimilar antibodies as affordable versions of therapeutic antibodies may provide alternative treatment options as well potentially decreasing costs. As certain markets begin to capitalize on this opportunity, regulatory authorities continue to refine the requirements for demonstrating quality, efficacy and safety of biosimilar compared to originator products. In addition to biosimilars, innovations in antibody engineering are providing the opportunity to design biobetter antibodies with improved properties to maximize efficacy. Enhancing effector function, antibody drug conjugates (ADC) or targeting multiple disease pathways via multi-specific antibodies are being explored. The manufacturing process of antibodies is also moving forward with advancements relating to host cell production and purification processes. Studies into the physical and chemical degradation pathways of antibodies are contributing to the design of more stable proteins guided by computational tools. Moreover, the delivery and pharmacokinetics of antibody-based therapeutics are improving as optimized formulations are pursued through the implementation of recent innovations in the field.
Collapse
|
180
|
Angkawinitwong U, Awwad S, Khaw PT, Brocchini S, Williams GR. Electrospun formulations of bevacizumab for sustained release in the eye. Acta Biomater 2017; 64:126-136. [PMID: 29030303 DOI: 10.1016/j.actbio.2017.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 11/29/2022]
Abstract
Medicines based on vascular endothelial growth factor (VEGF) neutralising antibodies such as bevacizumab have revolutionized the treatment of age related macular degeneration (AMD), a common blinding disease, and have great potential in preventing scarring after surgery or accelerating the healing of corneal injuries. However, at present frequent invasive injections are required to deliver these antibodies. Such administration is uncomfortable for patients and expensive for health service providers. Much effort is thus focused on developing dosage forms that can be administered less frequently. Here we use electrospinning to prepare a solid form of bevacizumab designed for prolonged release while maintaining antibody stability. Electrospun fibers were prepared with bevacizumab encapsulated in the core, surrounded by a poly-ε-caprolactone sheath. The fibers were generated using aqueous bevacizumab solutions buffered at two different pH values: 6.2 (the pH of the commercial product; Fbeva) and 8.3 (the isoelectric point of bevacizumab; FbevaP). The fibers had smooth and cylindrical morphologies, with diameters of ca. 500nm. Both sets of bevacizumab loaded fibers gave sustained release profiles in an in vitro model of the subconjunctival space of the eye. Fbeva displayed first order kinetics with t1/2 of 11.4±4.4 days, while FbevaP comprises a zero-order reservoir type release system with t1/2 of 52.9±14.8 days. Both SDS-PAGE and surface plasmon resonance demonstrate that the bevacizumab in FbevaP did not undergo degradation during fiber fabrication or release. In contrast, the antibody released from Fbeva had degraded, and failed to bind to VEGF. Our results demonstrate that pH control is crucial to maintain antibody stability during the fabrication of core/shell fibers and ensure release of functional protein. STATEMENT OF SIGNIFICANCE Bevacizumab is a potent protein drug which is highly effective in the treatment of degenerative conditions in the eye. To be effective, frequent injections into the eye are required, which is deeply unpleasant for patients and expensive for healthcare providers. Alternative methods of administration are thus highly sought after. In our work, we use the electrospinning technique to prepare fiber-based formulations loaded with bevacizumab. By careful control of the experimental parameters we are able to stabilize the protein during processing and ensure a constant rate of release over more than two months in vitro. These fibers could thus be used to reduce the frequency of dosing required, reducing cost and improving patient outcomes.
Collapse
Affiliation(s)
- Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Sahar Awwad
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; NIHR Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Peng T Khaw
- NIHR Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Steve Brocchini
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; NIHR Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 9EL, UK; UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
181
|
Bezabeh B, Fleming R, Fazenbaker C, Zhong H, Coffman K, Yu XQ, Leow CC, Gibson N, Wilson S, Stover CK, Wu H, Gao C, Dimasi N. Insertion of scFv into the hinge domain of full-length IgG1 monoclonal antibody results in tetravalent bispecific molecule with robust properties. MAbs 2017; 9:240-256. [PMID: 27981887 DOI: 10.1080/19420862.2016.1270492] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
By simultaneous binding two disease mediators, bispecific antibodies offer the opportunity to broaden the utility of antibody-based therapies. Herein, we describe the design and characterization of Bs4Ab, an innovative and generic bispecific tetravalent antibody platform. The Bs4Ab format comprises a full-length IgG1 monoclonal antibody with a scFv inserted into the hinge domain. The Bs4Ab design demonstrates robust manufacturability as evidenced by MEDI3902, which is currently in clinical development. To further demonstrate the applicability of the Bs4Ab technology, we describe the molecular engineering, biochemical, biophysical, and in vivo characterization of a bispecific tetravalent Bs4Ab that, by simultaneously binding vascular endothelial growth factor and angiopoietin-2, inhibits their function. We also demonstrate that the Bs4Ab platform allows Fc-engineering similar to that achieved with IgG1 antibodies, such as mutations to extend half-life or modulate effector functions.
Collapse
Affiliation(s)
- Binyam Bezabeh
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Ryan Fleming
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | | | | | - Karen Coffman
- c Clinical Pharmacology and DMPK , Gaithersburg , MA , USA
| | - Xiang-Qing Yu
- c Clinical Pharmacology and DMPK , Gaithersburg , MA , USA
| | | | - Nerea Gibson
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Susan Wilson
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | | | - Herren Wu
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Changshou Gao
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| | - Nazzareno Dimasi
- a Antibody Discovery and Protein Engineering , Gaithersburg , MA , USA
| |
Collapse
|
182
|
Tassi M, De Vos J, Chatterjee S, Sobott F, Bones J, Eeltink S. Advances in native high-performance liquid chromatography and intact mass spectrometry for the characterization of biopharmaceutical products. J Sep Sci 2017; 41:125-144. [DOI: 10.1002/jssc.201700988] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Marco Tassi
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Jelle De Vos
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| | - Sneha Chatterjee
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
| | - Frank Sobott
- Biomolecular & Analytical Mass Spectrometry; Antwerp University; Antwerp Belgium
- Astbury Centre for Structural Molecular Biology; University of Leeds; Leeds UK
- School of Molecular and Cellular Biology; University of Leeds; Leeds UK
| | - Jonathan Bones
- The National Institute for Bioprocessing Research and Training (NIBRT); Dublin Ireland
| | - Sebastiaan Eeltink
- Department of Chemical Engineering; Vrije Universiteit Brussel (VUB); Brussels Belgium
| |
Collapse
|
183
|
Dada OO, Rao R, Jones N, Jaya N, Salas-Solano O. Comparison of SEC and CE-SDS methods for monitoring hinge fragmentation in IgG1 monoclonal antibodies. J Pharm Biomed Anal 2017; 145:91-97. [DOI: 10.1016/j.jpba.2017.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/01/2017] [Accepted: 06/03/2017] [Indexed: 10/19/2022]
|
184
|
Bansal R, Dhawan S, Chattopadhyay S, Maurya GP, Haridas V, Rathore AS. Peptide Dendrons as Thermal-Stability Amplifiers for Immunoglobulin G1 Monoclonal Antibody Biotherapeutics. Bioconjug Chem 2017; 28:2549-2559. [DOI: 10.1021/acs.bioconjchem.7b00389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Rohit Bansal
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Sameer Dhawan
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Soumili Chattopadhyay
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Govind P. Maurya
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - V. Haridas
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Anurag S. Rathore
- Department of Chemistry and ‡Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| |
Collapse
|
185
|
Lamanna WC, Heller K, Schneider D, Guerrasio R, Hampl V, Fritsch C, Schiestl M. The in-use stability of the rituximab biosimilar Rixathon®/Riximyo® upon preparation for intravenous infusion. J Oncol Pharm Pract 2017; 25:269-278. [PMID: 28950806 PMCID: PMC6348458 DOI: 10.1177/1078155217731506] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose The purpose of this study was to evaluate the in-use physicochemical and biological stability of the Sandoz rituximab biosimilar, marketed under the trade names Rixathon® and Riximyo® in the European Union, upon preparation for intravenous infusion. Methods Three batches of Rixathon®/Riximyo® in the final month of their 36 month shelf life were exposed to room temperature and light for 14 days to recapitulate a major temperature excursion. Samples were diluted to the lowest allowable concentration of 1 mg/mL in 0.9% NaCl solution in either polypropylene or polyethylene infusion bags and stored for 14 or 30 days at 5 ± 3℃ followed by an additional 24 h at room temperature to simulate product handling. Samples stored in infusion bags were analyzed using SEC, CEX, non-reducing CE-SDS, peptide mapping and CDC to assess physicochemical and biological stability. Results Analysis of Rixathon®/Riximyo® diluted to the lowest allowable concentration in 0.9% sodium chloride in either polypropylene or polyethylene infusion bags revealed no change in molecular weight variants, charge variants, deamidation, oxidation, overall composition or potency over a 31-day period. Conclusion Physicochemical and biological analyses demonstrate that Rixathon®/Riximyo® stability is not impacted by dilution and formulation conditions required for intravenous infusion, even under worst case conditions with regard to product shelf life, temperature excursion, light exposure, dilution factor and infusion bag storage time over a 31-day period.
Collapse
Affiliation(s)
| | - Katharina Heller
- 2 Biopharmaceuticals Process and Product Development, Biologics Technical Development and Manufacturing, Novartis, Sandoz GmbH, Kundl, Austria
| | - Daniel Schneider
- 2 Biopharmaceuticals Process and Product Development, Biologics Technical Development and Manufacturing, Novartis, Sandoz GmbH, Kundl, Austria
| | - Raffaele Guerrasio
- 3 Technical Development Biosimilars, Biologics Technical Development and Manufacturing, Novartis, Sandoz GmbH, Kundl, Austria
| | - Veronika Hampl
- 2 Biopharmaceuticals Process and Product Development, Biologics Technical Development and Manufacturing, Novartis, Sandoz GmbH, Kundl, Austria
| | | | | |
Collapse
|
186
|
Fully automated 5-plex fluorescent immunohistochemistry with tyramide signal amplification and same species antibodies. J Transl Med 2017; 97:873-885. [PMID: 28504684 DOI: 10.1038/labinvest.2017.37] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/20/2022] Open
Abstract
The ability to simultaneously visualize the presence, abundance, location and functional state of many targets in cells and tissues has been described as a true next-generation approach in immunohistochemistry (IHC). A typical requirement for multiplex IHC (mIHC) is the use of different animal species for each primary (1°Ab) and secondary (2°Ab) antibody pair. Although 1°Abs from different species have been used with differently labeled species-specific 2°Abs, quite often the appropriate combination of antibodies is not available. More recently, sequential detection of multiple antigens using 1°Abs from the same species used a microwaving treatment between successive antigen detection cycles to elute previously bound 1°Ab/2°Ab complex and therefore to prevent the cross-reactivity of anti-species 2°Abs used in subsequent detection cycles. We present here a fully automated 1°Ab/2°Ab complex heat deactivation (HD) method on Ventana's BenchMark ULTRA slide stainer. This method is applied to detection using fluorophore-conjugated tyramide deposited on the tissue and takes advantage of the strong covalent bonding of the detection substrate to the tissue, preventing its elution in the HD process. The HD process was characterized for (1) effectiveness in preventing Ab cross-reactivity, (2) impact on the epitopes and (3) impact on the fluorophores. An automated 5-plex fluorescent IHC assay was further developed using the HD method and rabbit 1°Abs for CD3, CD8, CD20, CD68 and FoxP3 immune biomarkers in human tissue specimens. The fluorophores were carefully chosen and the narrow-band filters were designed to allow visualization of the staining under fluorescent microscope with minimal bleed through. The automated 5-plex fluorescent IHC assay achieved staining results comparable to the respective single-plex chromogenic IHC assays. This technology enables automated mIHC using unmodified 1°Abs from same species and the corresponding anti-species 2°Ab on a clinically established automated platform to ensure staining quality, reliability and reproducibility.
Collapse
|
187
|
Identification of a host cell protein impurity in therapeutic protein, P1. J Pharm Biomed Anal 2017; 141:32-38. [DOI: 10.1016/j.jpba.2017.03.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 11/20/2022]
|
188
|
Torkashvand F, Vaziri B. Main Quality Attributes of Monoclonal Antibodies and Effect of Cell Culture Components. IRANIAN BIOMEDICAL JOURNAL 2017; 21:131-41. [PMID: 28176518 PMCID: PMC5392216 DOI: 10.18869/acadpub.ibj.21.3.131] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 11/05/2016] [Accepted: 11/08/2016] [Indexed: 11/09/2022]
Abstract
The culture media optimization is an inevitable part of upstream process development in therapeutic monoclonal antibodies (mAbs) production. The quality by design (QbD) approach defines the assured quality of the final product through the development stage. An important step in QbD is determination of the main quality attributes. During the media optimization, some of the main quality attributes such as glycosylation pattern, charge variants, aggregates, and low-molecular-weight species, could be significantly altered. Here, we provide an overview of how cell culture medium components affects the main quality attributes of the mAbs. Knowing the relationship between the culture media components and the main quality attributes could be successfully utilized for a rational optimization of mammalian cell culture media for industrial mAbs production.
Collapse
Affiliation(s)
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
189
|
Gold nanomaterials for the selective capturing and SERS diagnosis of toxins in aqueous and biological fluids. Biosens Bioelectron 2017; 91:664-672. [DOI: 10.1016/j.bios.2017.01.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/12/2017] [Accepted: 01/14/2017] [Indexed: 01/02/2023]
|
190
|
Smith MT, Zhang S, Adams T, DiPaolo B, Dally J. Establishment and validation of a microfluidic capillary gel electrophoresis platform method for purity analysis of therapeutic monoclonal antibodies. Electrophoresis 2017; 38:1353-1365. [DOI: 10.1002/elps.201600519] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/10/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Michael T. Smith
- Biopharmaceutical Analytical Sciences; GlaxoSmithKline LLC; King of Prussia PA USA
| | - Shu Zhang
- Statistical Sciences; GlaxoSmithKline LLC; King of Prussia PA USA
| | - Troy Adams
- Biopharmaceutical Analytical Sciences; GlaxoSmithKline LLC; King of Prussia PA USA
| | - Byron DiPaolo
- Biopharmaceutical Analytical Sciences; GlaxoSmithKline LLC; King of Prussia PA USA
| | - Jennifer Dally
- Biopharmaceutical Analytical Sciences; GlaxoSmithKline LLC; King of Prussia PA USA
| |
Collapse
|
191
|
Griaud F, Denefeld B, Lang M, Hensinger H, Haberl P, Berg M. Unbiased in-depth characterization of CEX fractions from a stressed monoclonal antibody by mass spectrometry. MAbs 2017; 9:820-830. [PMID: 28379786 DOI: 10.1080/19420862.2017.1313367] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Characterization of charge-based variants by mass spectrometry (MS) is required for the analytical development of a new biologic entity and its marketing approval by health authorities. However, standard peak-based data analysis approaches are time-consuming and biased toward the detection, identification, and quantification of main variants only. The aim of this study was to characterize in-depth acidic and basic species of a stressed IgG1 monoclonal antibody using comprehensive and unbiased MS data evaluation tools. Fractions collected from cation ion exchange (CEX) chromatography were analyzed as intact, after reduction of disulfide bridges, and after proteolytic cleavage using Lys-C. Data of both intact and reduced samples were evaluated consistently using a time-resolved deconvolution algorithm. Peptide mapping data were processed simultaneously, quantified and compared in a systematic manner for all MS signals and fractions. Differences observed between the fractions were then further characterized and assigned. Time-resolved deconvolution enhanced pattern visualization and data interpretation of main and minor modifications in 3-dimensional maps across CEX fractions. Relative quantification of all MS signals across CEX fractions before peptide assignment enabled the detection of fraction-specific chemical modifications at abundances below 1%. Acidic fractions were shown to be heterogeneous, containing antibody fragments, glycated as well as deamidated forms of the heavy and light chains. In contrast, the basic fractions contained mainly modifications of the C-terminus and pyroglutamate formation at the N-terminus of the heavy chain. Systematic data evaluation was performed to investigate multiple data sets and comprehensively extract main and minor differences between each CEX fraction in an unbiased manner.
Collapse
Affiliation(s)
- François Griaud
- a Phys.-Chem. Analytics, Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing , Novartis Pharma AG, Postfach , Basel , Switzerland
| | - Blandine Denefeld
- a Phys.-Chem. Analytics, Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing , Novartis Pharma AG, Postfach , Basel , Switzerland
| | - Manuel Lang
- a Phys.-Chem. Analytics, Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing , Novartis Pharma AG, Postfach , Basel , Switzerland
| | - Héloïse Hensinger
- a Phys.-Chem. Analytics, Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing , Novartis Pharma AG, Postfach , Basel , Switzerland
| | | | - Matthias Berg
- a Phys.-Chem. Analytics, Analytical Development and Characterization NBEs, Biopharmaceutical Product and Process Development, Biologics Technical Development and Manufacturing , Novartis Pharma AG, Postfach , Basel , Switzerland
| |
Collapse
|
192
|
Moritz B, Stracke JO. Assessment of disulfide and hinge modifications in monoclonal antibodies. Electrophoresis 2017; 38:769-785. [PMID: 27982442 PMCID: PMC5413849 DOI: 10.1002/elps.201600425] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/25/2016] [Accepted: 12/04/2016] [Indexed: 01/06/2023]
Abstract
During the last years there was a substantial increase in the use of antibodies and related proteins as therapeutics. The emphasis of the pharmaceutical industry is on IgG1, IgG2, and IgG4 antibodies, which are therefore in the focus of this article. In order to ensure appropriate quality control of such biopharmaceuticals, deep understanding of their chemical degradation pathways and the resulting impact on potency, pharmacokinetics, and safety is required. Criticality of modifications may be specific for individual antibodies and has to be assessed for each molecule. However, some modifications of conserved structure elements occur in all or at least most IgGs. In these cases, criticality assessment may be applicable to related molecules or molecule formats. The relatively low dissociation energy of disulfide bonds and the high flexibility of the hinge region frequently lead to modifications and cleavages. Therefore, the hinge region and disulfide bonds require specific consideration during quality assessment of mAbs. In this review, available literature knowledge on underlying chemical reaction pathways of modifications, analytical methods for quantification and criticality are discussed. The hinge region is prone to cleavage and is involved in pathways that lead to thioether bond formation, cysteine racemization, and iso‐Asp (Asp, aspartic acid) formation. Disulfide or sulfhydryl groups were found to be prone to reductive cleavage, trisulfide formation, cysteinylation, glutathionylation, disulfide bridging to further light chains, and disulfide scrambling. With regard to potency, disulfide cleavage, hinge cleavage, disulfide bridging to further light chains, and cysteinylation were found to influence antigen binding and fragment crystallizable (Fc) effector functionalities. Renal clearance of small fragments may be faster, whereas clearance of larger fragments appears to depend on their neonatal Fc receptor (FcRn) functionality, which in turn may be impeded by disulfide bond cleavage. Certain modifications such as disulfide induced aggregation and heterodimers from different antibodies are generally regarded critical with respect to safety. However, the detection of some modifications in endogenous antibodies isolated from human blood and the possibility of in vivo repair mechanisms may reduce some safety concerns.
Collapse
|
193
|
Charge variants characterization of a monoclonal antibody by ion exchange chromatography coupled on-line to native mass spectrometry: Case study after a long-term storage at +5 °C. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:130-139. [DOI: 10.1016/j.jchromb.2017.02.017] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/20/2017] [Accepted: 02/14/2017] [Indexed: 01/20/2023]
|
194
|
Identification and characterization of monoclonal antibody fragments cleaved at the complementarity determining region using orthogonal analytical methods. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1048:121-129. [DOI: 10.1016/j.jchromb.2017.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/14/2017] [Accepted: 02/18/2017] [Indexed: 11/20/2022]
|
195
|
Wasik D, Mulchandani A, Yates MV. A heparin-functionalized carbon nanotube-based affinity biosensor for dengue virus. Biosens Bioelectron 2017; 91:811-816. [PMID: 28152487 DOI: 10.1016/j.bios.2017.01.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 01/24/2023]
Abstract
Dengue virus is an arthropod-borne virus transmitted primarily by Aedes mosquitos and is major cause of disease in tropical and subtropical regions. Colloquially known as Dengue Fever, infection can cause hemorrhagic disorders and death in humans and non-human primates. We report a novel electronic biosensor based on a single-walled carbon nanotube network chemiresistive transducer that is functionalized with heparin for low-cost, label-free, ultra-sensitive, and rapid detection of whole dengue virus (DENV). Heparin, an analog of the heparan sulfate proteoglycans that are receptors for dengue virus during infection of Vero cells and hepatocytes, was used for the first time in a biosensor as a biorecognition element instead of traditional antibody. Detection of DENV in viral culture supernatant has similar sensitivity as the corresponding viral titer in phosphate buffer despite the presence of growth media and Vero cell lysate. The biosensor demonstrated sensitivity within the clinically relevant range for humans and infected Aedes aegypti. It has potential application in clinical diagnosis and can improve point-of-care diagnostics of dengue infection.
Collapse
Affiliation(s)
- Daniel Wasik
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Ashok Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA.
| | - Marylynn V Yates
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
196
|
Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC. Role of Buffers in Protein Formulations. J Pharm Sci 2016; 106:713-733. [PMID: 27894967 DOI: 10.1016/j.xphs.2016.11.014] [Citation(s) in RCA: 139] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined.
Collapse
Affiliation(s)
| | - Ryan E Holcomb
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Derrick S Katayama
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Brian M Murphy
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Robert W Payne
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Mark Cornell Manning
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523.
| |
Collapse
|
197
|
Khalili H, Lee RW, Khaw PT, Brocchini S, Dick AD, Copland DA. An anti-TNF-α antibody mimetic to treat ocular inflammation. Sci Rep 2016; 6:36905. [PMID: 27874029 PMCID: PMC5118814 DOI: 10.1038/srep36905] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/20/2016] [Indexed: 12/14/2022] Open
Abstract
Infliximab is an antibody that neutralizes TNF-α and is used principally by systemic administration to treat many inflammatory disorders. We prepared the antibody mimetic Fab-PEG-Fab (FpFinfliximab) for direct intravitreal injection to assess whether such formulations have biological activity and potential utility for ocular use. FpFinfliximab was designed to address side effects caused by antibody degradation and the presence of the Fc region. Surface plasmon resonance analysis indicated that infliximab and FpFinfliximab maintained binding affinity for both human and murine recombinant TNF-α. No Fc mediated RPE cellular uptake was observed for FpFinfliximab. Both Infliximab and FpFinfliximab suppressed ocular inflammation by reducing the number of CD45+ infiltrate cells in the EAU mice after a single intravitreal injection at the onset of peak disease. These results offer an opportunity to develop and formulate for ocular use, FpF molecules designed for single and potentially multiple targets using bi-specific FpFs.
Collapse
Affiliation(s)
- Hanieh Khalili
- UCL School of Pharmacy, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,University of East London, School of Health, Sport and Bioscience, Water lane, Stratford campus, London, E15 4LZ, UK
| | - Richard W Lee
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Steve Brocchini
- UCL School of Pharmacy, London, UK.,National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Andrew D Dick
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| | - David A Copland
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK.,School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
198
|
Bobály B, Sipkó E, Fekete J. Challenges in liquid chromatographic characterization of proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:3-22. [DOI: 10.1016/j.jchromb.2016.04.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 04/07/2016] [Accepted: 04/22/2016] [Indexed: 01/11/2023]
|
199
|
Zhang B, Jeong J, Burgess B, Jazayri M, Tang Y, Taylor Zhang Y. Development of a rapid RP-UHPLC–MS method for analysis of modifications in therapeutic monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1032:172-181. [DOI: 10.1016/j.jchromb.2016.05.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/20/2022]
|
200
|
Implementation of USP antibody standard for system suitability in capillary electrophoresis sodium dodecyl sulfate (CE-SDS) for release and stability methods. J Pharm Biomed Anal 2016; 128:447-454. [DOI: 10.1016/j.jpba.2016.06.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 11/20/2022]
|