151
|
Mankuzhy PD, Ramesh ST, Thirupathi Y, Mohandas PS, Chandra V, Sharma TG. The preclinical and clinical implications of fetal adnexa derived mesenchymal stromal cells in wound healing therapy. Wound Repair Regen 2021; 29:347-369. [PMID: 33721373 DOI: 10.1111/wrr.12911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 03/01/2021] [Indexed: 11/28/2022]
Abstract
Mesenchymal stromal cells (MSCs) isolated from fetal adnexa namely amniotic membrane/epithelium, amniotic fluid and umbilical cord have hogged the limelight in recent times, as a proposed alternative to MSCs from conventional sources. These cells which are identified as being in a developmentally primitive state have many advantages, the most important being the non-invasive nature of their isolation procedures, absence of ethical concerns, proliferation potential, differentiation abilities and low immunogenicity. In the present review, we are focusing on the potential preclinical and clinical applications of different cell types of fetal adnexa, in wound healing therapy. We also discuss the isolation-culture methods, cell surface marker expression, multi-lineage differentiation abilities, immune-modulatory capabilities and their homing property. Different mechanisms involved in the wound healing process and the role of stromal cells in therapeutic wound healing are highlighted. Further, we summarize the findings of the cell delivery systems in skin lesion models and paracrine functions of their secretome in the wound healing process. Overall, this holistic review outlines the research findings of fetal adnexa derived MSCs, their usefulness in wound healing therapy in human as well as in veterinary medicine.
Collapse
Affiliation(s)
- Pratheesh D Mankuzhy
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Sreekumar T Ramesh
- Department of Physiology, Kerala Veterinary and Animal Sciences University, Pookode, Wayanad, Kerala, India
| | - Yasotha Thirupathi
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Ponny S Mohandas
- Consultant Gynecologist, Department of Gynecology and Obstetrics, Meditrina Hospital, Ayathil, Kollam, Kerala, India
| | - Vikash Chandra
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| | - Taru Guttula Sharma
- Physiology & Climatology Division, ICAR-Indian Veterinary Research Institute (Deemed University), Izatnagar, Uttar Pradesh, India
| |
Collapse
|
152
|
Lou S, Duan Y, Nie H, Cui X, Du J, Yao Y. Mesenchymal stem cells: Biological characteristics and application in disease therapy. Biochimie 2021; 185:9-21. [PMID: 33711361 DOI: 10.1016/j.biochi.2021.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells. In addition to the capacity for self-renewal and multipotential differentiation, MSCs also have the following characteristics. MSCs can exert immunomodulatory functions through interaction with innate or adaptive immune cells, MSCs with poor immunogenicity can be used for allogeneic transplantation, and MSCs can "home" to inflammation and tumour sites. Based on these biological properties, MSCs demonstrate broad clinical application prospects in the treatment of tissue injury, autoimmune diseases, transplantation, cancer and other inflammation-related diseases. In this review we describe the biological characteristics of MSCs and discuss the research advances of MSCs in regenerative medicine, immunomodulation, oncology, and COVID-19, to fully understand the range of diseases in which MSC therapy may be beneficial.
Collapse
Affiliation(s)
- Songyue Lou
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China.
| | - Huizong Nie
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xujie Cui
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Jialing Du
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Henan, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
153
|
Cruz-Samperio R, Jordan M, Perriman A. Cell augmentation strategies for cardiac stem cell therapies. Stem Cells Transl Med 2021; 10:855-866. [PMID: 33660953 PMCID: PMC8133336 DOI: 10.1002/sctm.20-0489] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myocardial infarction (MI) has been the primary cause of death in developed countries, resulting in a major psychological and financial burden for society. Current treatments for acute MI are directed toward rapid restoration of perfusion to limit damage to the myocardium, rather than promoting tissue regeneration and subsequent contractile function recovery. Regenerative cell therapies (CTs), in particular those using multipotent stem cells (SCs), are in the spotlight for treatment post‐MI. Unfortunately, the efficacy of CTs is somewhat limited by their poor long‐term viability, homing, and engraftment to the myocardium. In response, a range of novel SC‐based technologies are in development to provide additional cellular modalities, bringing CTs a step closer to the clinic. In this review, the current landscape of emerging CTs and their augmentation strategies for the treatment post‐MI are discussed. In doing so, we highlight recent advances in cell membrane reengineering via genetic modifications, recombinant protein immobilization, and the utilization of soft biomimetic scaffold interfaces.
Collapse
Affiliation(s)
| | - Millie Jordan
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Adam Perriman
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
154
|
Wong KU, Zhang A, Akhavan B, Bilek MM, Yeo GC. Biomimetic Culture Strategies for the Clinical Expansion of Mesenchymal Stromal Cells. ACS Biomater Sci Eng 2021. [PMID: 33599471 DOI: 10.1021/acsbiomaterials.0c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mesenchymal stromal/stem cells (MSCs) typically require significant ex vivo expansion to achieve the high cell numbers required for research and clinical applications. However, conventional MSC culture on planar (2D) plastic surfaces has been shown to induce MSC senescence and decrease cell functionality over long-term proliferation, and usually, it has a high labor requirement, a high usage of reagents, and therefore, a high cost. In this Review, we describe current MSC-based therapeutic strategies and outline the important factors that need to be considered when developing next-generation cell expansion platforms. To retain the functional value of expanded MSCs, ex vivo culture systems should ideally recapitulate the components of the native stem cell microenvironment, which include soluble cues, resident cells, and the extracellular matrix substrate. We review the interplay between these stem cell niche components and their biological roles in governing MSC phenotype and functionality. We discuss current biomimetic strategies of incorporating biochemical and biophysical cues in MSC culture platforms to grow clinically relevant cell numbers while preserving cell potency and stemness. This Review summarizes the current state of MSC expansion technologies and the challenges that still need to be overcome for MSC clinical applications to be feasible and sustainable.
Collapse
Affiliation(s)
- Kuan Un Wong
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Anyu Zhang
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Behnam Akhavan
- School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Marcela M Bilek
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Physics, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia.,The University of Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Giselle C Yeo
- Charles Perkins Center, The University of Sydney, Sydney, New South Wales 2006, Australia.,School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
155
|
Alishahi M, Anbiyaiee A, Farzaneh M, Khoshnam SE. Human Mesenchymal Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2021; 15:340-348. [PMID: 32178619 DOI: 10.2174/1574888x15666200316164051] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 08/03/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
Abstract
Spinal Cord Injury (SCI), as a devastating and life-altering neurological disorder, is one of the most serious health issues. Currently, the management of acute SCI includes pharmacotherapy and surgical decompression. Both the approaches have been observed to have adverse physiological effects on SCI patients. Therefore, novel therapeutic targets for the management of SCI are urgently required for developing cell-based therapies. Multipotent stem cells, as a novel strategy for the treatment of tissue injury, may provide an effective therapeutic option against many neurological disorders. Mesenchymal stem cells (MSCs) or multipotent stromal cells can typically self-renew and generate various cell types. These cells are often isolated from bone marrow (BM-MSCs), adipose tissues (AD-MSCs), umbilical cord blood (UCB-MSCs), and placenta (PMSCs). MSCs have remarkable potential for the development of regenerative therapies in animal models and humans with SCI. Herein, we summarize the therapeutic potential of human MSCs in the treatment of SCI.
Collapse
Affiliation(s)
- Masoumeh Alishahi
- Department of Biology, Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Surgery, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Maryam Farzaneh
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed E Khoshnam
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
156
|
Nguyen B, Alpagot T, Oh H, Ojcius D, Xiao N. Comparison of the effect of cigarette smoke on mesenchymal stem cells and dental stem cells. Am J Physiol Cell Physiol 2021; 320:C175-C181. [PMID: 33175571 DOI: 10.1152/ajpcell.00217.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The persistent prevalence of cigarette smoking continues to contribute to preventable disease and death in the United States. Although much is known about the deleterious systemic effects of cigarette smoke and nicotine, some clinically relevant areas, such as the impact of cigarette smoke and nicotine on stem cells and the subsequent implications in regenerative medicine, still remain unclear. This review focuses on recent studies on the effect of cigarette smoke and one of its deleterious components, nicotine, on mesenchymal stem cells, with an emphasis on dental stem cells.
Collapse
Affiliation(s)
- Brandon Nguyen
- Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Tamer Alpagot
- Department of Periodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Heesoo Oh
- Department of Orthodontics, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - David Ojcius
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| | - Nan Xiao
- Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, California
| |
Collapse
|
157
|
Ono‐Uruga Y, Ikeda Y, Matsubara Y. Platelet production using adipose-derived mesenchymal stem cells: Mechanistic studies and clinical application. J Thromb Haemost 2021; 19:342-350. [PMID: 33217130 PMCID: PMC7898515 DOI: 10.1111/jth.15181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/29/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022]
Abstract
Megakaryocytes (MKs) are platelet progenitor stem cells found in the bone marrow. Platelets obtained from blood draws can be used for therapeutic applications, especially platelet transfusion. The needs for platelet transfusions for clinical situation is increasing, due in part to the growing number of patients undergoing chemotherapy. Platelets obtained from donors, however, have the disadvantages of a limited storage lifespan and the risk of donor-related infection. Extensive effort has therefore been directed at manufacturing platelets ex vivo. Here, we review ex vivo technologies for MK development, focusing on human adipose tissue-derived mesenchymal stem/stromal cell line (ASCL)-based strategies and their potential clinical application. Bone marrow and adipose tissues contain mesenchymal stem/stromal cells that have an ability to differentiate into MKs, which release platelets. Taking advantage of this mechanism, we developed a donor-independent system for manufacturing platelets for clinical application using ASCL established from adipose-derived mesenchymal stem/stromal cells (ASCs). Culture of ASCs with endogenous thrombopoietin and its receptor c-MPL, and endogenous genes such as p45NF-E2 leads to MK differentiation and subsequent platelet production. ASCs compose heterogeneous cells, however, and are not suitable for clinical application. Thus, we established ASCLs, which expand into a more homogeneous population, and fulfill the criteria for mesenchymal stem cells set by the International Society for Cellular Therapy. Using our ASCL culture system with MK lineage induction medium without recombinant thrombopoietin led to peak production of platelets within 12 days, which may be sufficient for clinical application.
Collapse
Affiliation(s)
- Yukako Ono‐Uruga
- Clinical and Translational Research CenterKeio University School of MedicineTokyoJapan
| | - Yasuo Ikeda
- Department of HematologyKeio University School of MedicineTokyoJapan
- Life Science and Medical BioscienceWaseda UniversityTokyoJapan
| | - Yumiko Matsubara
- Clinical and Translational Research CenterKeio University School of MedicineTokyoJapan
- Department of Laboratory MedicineKeio University School of MedicineTokyoJapan
| |
Collapse
|
158
|
Song L, Gou W, Wang J, Wei H, Lee J, Strange C, Wang H. Overexpression of alpha-1 antitrypsin in mesenchymal stromal cells improves their intrinsic biological properties and therapeutic effects in nonobese diabetic mice. Stem Cells Transl Med 2021; 10:320-331. [PMID: 32945622 PMCID: PMC7848369 DOI: 10.1002/sctm.20-0122] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023] Open
Abstract
Islet/β cell dysfunction and death caused by autoimmune-mediated injuries are major features of type 1 diabetes (T1D). Mesenchymal stromal cells (MSCs) have been used for the treatment of T1D in animal models and clinical trials. Based on the anti-inflammatory effects of alpha-1 antitrypsin (AAT), we generated human AAT engineered MSCs (hAAT-MSCs) by infecting human bone marrow-derived MSCs with the pHAGE CMV-a1aT-UBC-GFP-W lentiviral vector. We compared the colony forming, differentiation, and migration capacity of empty virus-treated MSCs (hMSC) and hAAT-MSCs and tested their protective effects in the prevention of onset of T1D in nonobese diabetic (NOD) mice. hAAT-MSCs showed increased self-renewal, better migration and multilineage differentiation abilities compared to hMSCs. In addition, polymerase chain reaction array for 84 MSC-related genes showed that 23 genes were upregulated, and 3 genes were downregulated in hAAT-MSCs compared to hMSCs. Upregulated genes include those critical for the stemness (ie, Wnt family member 3A [WNT3A], kinase insert domain receptor [KDR]), migration (intercellular adhesion molecule 1 [ICAM-1], vascular cell adhesion protein 1 [VICAM-1], matrix metalloproteinase-2 [MMP2]), and survival (insulin-like growth factor 1 [IGF-1]) of MSCs. Pathway analysis showed that changed genes were related to growth factor activity, positive regulation of cell migration, and positive regulation of transcription. In vivo, a single intravenous infusion of hAAT-MSCs significantly limited inflammatory infiltration into islets and delayed diabetes onset in the NOD mice compared with those receiving vehicle or hMSCs. Taken together, overexpression of hAAT in MSCs improved intrinsic biological properties of MSCs needed for cellular therapy for the treatment of T1D.
Collapse
Affiliation(s)
- Lili Song
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Wenyu Gou
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jingjing Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hua Wei
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Jennifer Lee
- Academic Magnet High SchoolNorth CharlestonSouth CarolinaUSA
| | - Charlie Strange
- Department of MedicineMedical University of South CarolinaCharlestonSouth CarolinaUSA
| | - Hongjun Wang
- Department of SurgeryMedical University of South CarolinaCharlestonSouth CarolinaUSA
- Ralph H. Johnson Veterans Affairs Medical CenterCharlestonSouth CarolinaUSA
| |
Collapse
|
159
|
Mukhamedshina Y, Zhuravleva M, Sergeev M, Zakirova E, Gracheva O, Mukhutdinova D, Rizvanov A. Improving Culture Conditions, Proliferation, and Migration of Porcine Mesenchymal Stem Cells on Spinal Cord Contusion Injury Model in vitro. Cells Tissues Organs 2021; 209:236-247. [PMID: 33508824 DOI: 10.1159/000511865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/22/2020] [Indexed: 11/19/2022] Open
Abstract
Adipose tissue-derived mesenchymal stem cells (AD-MSCs) are promising for cell therapy in spinal cord injury (SCI). The pig is one of the most approximate models of many human diseases, including SCI. In our study, we selected the optimal conditions for the culture of porcine AD-MSCs and developed an in vitro SCI model based on the culture of cells in injured spinal cord extracts (SCE) 3 days and 6 weeks after SCI. We show that Dulbecco's Modified Eagle Medium (DMEM) with 20% serum content, supplemented with a combination of 5 mM L-ascorbate-2-phosphate and nonessential amino acids, stimulated a typical fibroblast-like morphology and high proliferation of porcine AD-MSCs. SCE caused a higher proliferation of porcine AD-MSCs compared with extracts from an intact spinal cord. The optimal proliferating effect was achieved using rostral 3 days SCE, and proliferation was lower in caudal and central SCE. Porcine AD-MSCs migration to the 3 days and 6 weeks SCE was higher than to an intact one and preferred the rostral SCE, avoiding central and caudal SCE. We also studied 13 cytokines contained in SCE but did not observe any definite relationship between some analyte concentrations and a change in the behavior of AD-MSCs.
Collapse
Affiliation(s)
- Yana Mukhamedshina
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation, .,Department of Histology, Cytology, and Embryology, Kazan State Medical University, Kazan, Russian Federation,
| | - Margarita Zhuravleva
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Mikhail Sergeev
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation.,Department of Veterinary Surgery, Obstetrics and Small Animal Pathology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Elena Zakirova
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| | - Olga Gracheva
- Department of Therapy and Clinical Diagnostics with Radiology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Dina Mukhutdinova
- Department of Therapy and Clinical Diagnostics with Radiology, Kazan State Academy of Veterinary, Kazan, Russian Federation
| | - Albert Rizvanov
- Clinical Research Center for Precision and Regenerative Medicine, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russian Federation
| |
Collapse
|
160
|
Liang W, Chen X, Zhang S, Fang J, Chen M, Xu Y, Chen X. Mesenchymal stem cells as a double-edged sword in tumor growth: focusing on MSC-derived cytokines. Cell Mol Biol Lett 2021; 26:3. [PMID: 33472580 PMCID: PMC7818947 DOI: 10.1186/s11658-020-00246-5] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 12/27/2020] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) show homing capacity towards tumor sites. Numerous reports indicate that they are involved in multiple tumor-promoting processes through several mechanisms, including immunosuppression; stimulation of angiogenesis; transition to cancer-associated fibroblasts; inhibition of cancer cell apoptosis; induction of epithelial-mesenchymal transition (EMT); and increase metastasis and chemoresistance. However, other studies have shown that MSCs suppress tumor growth by suppressing angiogenesis, incrementing inflammatory infiltration, apoptosis and cell cycle arrest, and inhibiting the AKT and Wnt signaling pathways. In this review, we discuss the supportive and suppressive impacts of MSCs on tumor progression and metastasis. We also discuss MSC-based therapeutic strategies for cancer based on their potential for homing to tumor sites.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, 355 Xinqiao Road, Dinghai District, Zhoushan, 316000, Zhejiang, People's Republic of China.
| | - Xiaozhen Chen
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Songou Zhang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Jian Fang
- College of Medicine, Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Meikai Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Yifan Xu
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| | - Xuerong Chen
- Department of Orthopaedics, Shaoxing People's Hospital, The First Affiliated Hospital of Shaoxing University, Shaoxing, 312000, Zhejiang, People's Republic of China
| |
Collapse
|
161
|
Maldonado-Lasunción I, O’Neill N, Umland O, Verhaagen J, Oudega M. Macrophage-Derived Inflammation Induces a Transcriptome Makeover in Mesenchymal Stromal Cells Enhancing Their Potential for Tissue Repair. Int J Mol Sci 2021; 22:E781. [PMID: 33466704 PMCID: PMC7828776 DOI: 10.3390/ijms22020781] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/15/2022] Open
Abstract
Pre-clinical and clinical studies revealed that mesenchymal stromal cell (MSC) transplants elicit tissue repair. Conditioning MSC prior to transplantation may boost their ability to support repair. We investigated macrophage-derived inflammation as a means to condition MSC by comprehensively analyzing their transcriptome and secretome. Conditioning MSC with macrophage-derived inflammation resulted in 3208 differentially expressed genes, which were annotated with significantly enriched GO terms for 1085 biological processes, 85 cellular components, and 79 molecular functions. Inflammation-mediated conditioning increased the secretion of growth factors that are key for tissue repair, including vascular endothelial growth factor, hepatocyte growth factor, nerve growth factor and glial-derived neurotrophic factor. Furthermore, we found that inflammation-mediated conditioning induces transcriptomic changes that challenge the viability and mobility of MSC. Our data support the notion that macrophage-derived inflammation stimulates MSC to augment their paracrine repair-supporting activity. The results suggest that inflammatory pre-conditioning enhances the therapeutic potential of MSC transplants.
Collapse
Affiliation(s)
- Inés Maldonado-Lasunción
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands;
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movements Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Nick O’Neill
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136, USA;
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Oliver Umland
- Diabetes Research Institute, University of Miami, Miami, FL 33136, USA;
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands;
| | - Martin Oudega
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movements Sciences, Northwestern University, Chicago, IL 60611, USA
- Department of Physiology, Northwestern University, Chicago, IL 60611, USA
- Edward Hines Jr. VA Hospital, Hines, IL 60141, USA
| |
Collapse
|
162
|
Wang L, Li H, Lin J, He R, Chen M, Zhang Y, Liao Z, Zhang C. CCR2 improves homing and engraftment of adipose-derived stem cells in dystrophic mice. Stem Cell Res Ther 2021; 12:12. [PMID: 33413615 PMCID: PMC7791736 DOI: 10.1186/s13287-020-02065-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/02/2020] [Indexed: 02/17/2023] Open
Abstract
Background Dystrophinopathy, a common neuromuscular disorder caused by the absence of dystrophin, currently lacks effective treatments. Systemic transplantation of adipose-derived stem cells (ADSCs) is a promising treatment approach, but its low efficacy remains a challenge. Chemokine system-mediated stem cell homing plays a critical role in systemic transplantation. Here, we investigated whether overexpression of a specific chemokine receptor could improve muscle homing and therapeutic effects of ADSC systemic transplantation in dystrophic mice. Methods We analysed multiple microarray datasets from the Gene Expression Omnibus to identify a candidate chemokine receptor and then evaluated the protein expression of target ligands in different tissues and organs of dystrophic mice. The candidate chemokine receptor was overexpressed using the lentiviral system in mouse ADSCs, which were used for systemic transplantation into the dystrophic mice, followed by evaluation of motor function, stem cell muscle homing, dystrophin expression, and muscle pathology. Results Chemokine-profile analysis identified C–C chemokine receptor (CCR)2 as the potential target for improving ADSC homing. We found that the levels of its ligands C–C chemokine ligand (CCL)2 and CCL7 were higher in muscles than in other tissues and organs of dystrophic mice. Additionally, CCR2 overexpression improved ADSC migration ability and maintained their multilineage-differentiation potentials. Compared with control ADSCs, transplantation of those overexpressing CCR2 displayed better muscle homing and further improved motor function, dystrophin expression, and muscle pathology in dystrophic mice. Conclusions These results demonstrated that CCR2 improved ADSC muscle homing and therapeutic effects following systemic transplantation in dystrophic mice.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Huan Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Jinfu Lin
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Ruojie He
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Menglong Chen
- Department of Neurology, Guangzhou Overseas Chinese Hospital, No. 613 Huangpu Road, Guangzhou, GD, 510630, China
| | - Yu Zhang
- Department of Neurology, Guangzhou Overseas Chinese Hospital, No. 613 Huangpu Road, Guangzhou, GD, 510630, China
| | - Ziyu Liao
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China.,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China
| | - Cheng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, GD, China. .,National Key Clinical Department and Key Discipline of Neurology, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, No. 58 Zhongshan Road 2, Guangzhou, GD, 510080, China.
| |
Collapse
|
163
|
Ilie DS, Mitroi G, Păun I, Ţenea-Cojan TŞ, Neamţu C, Totolici BD, Sapalidis K, Mogoantă SŞ, Murea A. Pathological and immunohistochemical study of colon cancer. Evaluation of markers for colon cancer stem cells. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:117-124. [PMID: 34609414 PMCID: PMC8597393 DOI: 10.47162/rjme.62.1.11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022]
Abstract
Colorectal cancer is a major public health problem worldwide with increasing morbidity and mortality. Numerous exogenous and endogenous factors are involved in colorectal carcinogenesis: age, sex, diet, smoking, alcohol consumption, exposure to harmful environmental factors, intestinal microbiota, bacterial and viral infections, the ability of the host immune system to respond, genetic factors, etc. The present study analyzed histopathologically and immunohistochemically a number of 36 cases of colorectal adenocarcinomas. The existence of an accentuated cell pleomorphism was noted, which corresponds to different clones of tumor cells, in the same tumor coexisting aspects of tubular adenocarcinoma, mucinous areas and even signet-ring cell. The tumor stroma was mainly of the desmoplastic type, but also of the lax type, more or less infiltrated with inflammatory cells. Evaluation of immunomarkers for cancer stem cells (CSCs) showed that none of the markers used alone [cluster of differentiation (CD)133, CD44, aldehyde dehydrogenase 1 family member A1 (ALDH1A1), CD24, CD26] show CSCs.
Collapse
Affiliation(s)
- Daniel Sorin Ilie
- Doctoral School, Department of Histology, University of Medicine and Pharmacy of Craiova, Romania;
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Bui TVA, Hwang JW, Lee JH, Park HJ, Ban K. Challenges and Limitations of Strategies to Promote Therapeutic Potential of Human Mesenchymal Stem Cells for Cell-Based Cardiac Repair. Korean Circ J 2021; 51:97-113. [PMID: 33525065 PMCID: PMC7853896 DOI: 10.4070/kcj.2020.0518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) represent a population of adult stem cells residing in many tissues, mainly bone marrow, adipose tissue, and umbilical cord. Due to the safety and availability of standard procedures and protocols for isolation, culturing, and characterization of these cells, MSCs have emerged as one of the most promising sources for cell-based cardiac regenerative therapy. Once transplanted into a damaged heart, MSCs release paracrine factors that nurture the injured area, prevent further adverse cardiac remodeling, and mediate tissue repair along with vasculature. Numerous preclinical studies applying MSCs have provided significant benefits following myocardial infarction. Despite promising results from preclinical studies using animal models, MSCs are not up to the mark for human clinical trials. As a result, various approaches have been considered to promote the therapeutic potency of MSCs, such as genetic engineering, physical treatments, growth factor, and pharmacological agents. Each strategy has targeted one or multi-potentials of MSCs. In this review, we will describe diverse approaches that have been developed to promote the therapeutic potential of MSCs for cardiac regenerative therapy. Particularly, we will discuss major characteristics of individual strategy to enhance therapeutic efficacy of MSCs including scientific principles, advantages, limitations, and improving factors. This article also will briefly introduce recent novel approaches that MSCs enhanced therapeutic potentials of other cells for cardiac repair.
Collapse
Affiliation(s)
- Thi Van Anh Bui
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Ji Won Hwang
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea.,Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea
| | - Jung Hoon Lee
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Hun Jun Park
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Korea.,Division of Cardiology, Department of Internal Medicine, Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea.,Cell Death Disease Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea.
| | - Kiwon Ban
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
165
|
Um S, Ha J, Choi SJ, Oh W, Jin HJ. Prospects for the therapeutic development of umbilical cord blood-derived mesenchymal stem cells. World J Stem Cells 2020; 12:1511-1528. [PMID: 33505598 PMCID: PMC7789129 DOI: 10.4252/wjsc.v12.i12.1511] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/23/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Umbilical cord blood (UCB) is a primitive and abundant source of mesenchymal stem cells (MSCs). UCB-derived MSCs have a broad and efficient therapeutic capacity to treat various diseases and disorders. Despite the high latent self-renewal and differentiation capacity of these cells, the safety, efficacy, and yield of MSCs expanded for ex vivo clinical applications remains a concern. However, immunomodulatory effects have emerged in various disease models, exhibiting specific mechanisms of action, such as cell migration and homing, angiogenesis, anti-apoptosis, proliferation, anti-cancer, anti-fibrosis, anti-inflammation and tissue regeneration. Herein, we review the current literature pertaining to the UCB-derived MSC application as potential treatment strategies, and discuss the concerns regarding the safety and mass production issues in future applications.
Collapse
Affiliation(s)
- Soyoun Um
- Research Team for Immune Cell Therapy, Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Jueun Ha
- Research Team for Osteoarthritis, Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Soo Jin Choi
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Wonil Oh
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| | - Hye Jin Jin
- Biomedical Research Institute, MEDIPOST Co., Ltd., Seongnam 13494, South Korea
| |
Collapse
|
166
|
Harada S, Mabuchi Y, Kohyama J, Shimojo D, Suzuki S, Kawamura Y, Araki D, Suyama T, Kajikawa M, Akazawa C, Okano H, Matsuzaki Y. FZD5 regulates cellular senescence in human mesenchymal stem/stromal cells. Stem Cells 2020; 39:318-330. [PMID: 33338299 PMCID: PMC7986096 DOI: 10.1002/stem.3317] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
Human mesenchymal stem/stromal cells (hMSCs) have garnered enormous interest as a potential resource for cell‐based therapies. However, the molecular mechanisms regulating senescence in hMSCs remain unclear. To elucidate these mechanisms, we performed gene expression profiling to compare clonal immature MSCs exhibiting multipotency with less potent MSCs. We found that the transcription factor Frizzled 5 (FZD5) is expressed specifically in immature hMSCs. The FZD5 cell surface antigen was also highly expressed in the primary MSC fraction (LNGFR+THY‐1+) and cultured MSCs. Treatment of cells with the FZD5 ligand WNT5A promoted their proliferation. Upon FZD5 knockdown, hMSCs exhibited markedly attenuated proliferation and differentiation ability. The observed increase in the levels of senescence markers suggested that FZD5 knockdown promotes cellular senescence by regulating the noncanonical Wnt pathway. Conversely, FZD5 overexpression delayed cell cycle arrest during the continued culture of hMSCs. These results indicated that the intrinsic activation of FZD5 plays an essential role in negatively regulating senescence in hMSCs and suggested that controlling FZD5 signaling offers the potential to regulate hMSC quality and improve the efficacy of cell‐replacement therapies using hMSCs.
Collapse
Affiliation(s)
- Seiko Harada
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yo Mabuchi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Haematology, University of Cambridge, Cambridge, UK
| | - Jun Kohyama
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Daisuke Shimojo
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Sadafumi Suzuki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Kawamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Aging and Longevity Research, Faculty of Life Sciences, Kumamoto University, Kumamoto, Kumamoto, Japan
| | - Daisuke Araki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Takashi Suyama
- Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| | | | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Intractable Disease Research Centre, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Yumi Matsuzaki
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.,Department of Life Science, Shimane University Faculty of Medicine, Izumo, Shimane, Japan
| |
Collapse
|
167
|
Harman RM, Patel RS, Fan JC, Park JE, Rosenberg BR, Van de Walle GR. Single-cell RNA sequencing of equine mesenchymal stromal cells from primary donor-matched tissue sources reveals functional heterogeneity in immune modulation and cell motility. Stem Cell Res Ther 2020; 11:524. [PMID: 33276815 PMCID: PMC7716481 DOI: 10.1186/s13287-020-02043-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The efficacy of mesenchymal stromal cell (MSC) therapy is thought to depend on the intrinsic heterogeneity of MSC cultures isolated from different tissue sources as well as individual MSCs isolated from the same tissue source, neither of which is well understood. To study this, we used MSC cultures isolated from horses. The horse is recognized as a physiologically relevant large animal model appropriate for translational MSC studies. Moreover, due to its large size the horse allows for the simultaneous collection of adequate samples from multiple tissues of the same animal, and thus, for the unique collection of donor matched MSC cultures from different sources. The latter is much more challenging in mice and humans due to body size and ethical constraints, respectively. METHODS In the present study, we performed single-cell RNA sequencing (scRNA-seq) on primary equine MSCs that were collected from three donor-matched tissue sources; adipose tissue (AT), bone marrow (BM), and peripheral blood (PB). Based on transcriptional differences detected with scRNA-seq, we performed functional experiments to examine motility and immune regulatory function in distinct MSC populations. RESULTS We observed both inter- and intra-source heterogeneity across the three sources of equine MSCs. Functional experiments demonstrated that transcriptional differences correspond with phenotypic variance in cellular motility and immune regulatory function. Specifically, we found that (i) differential expression of junctional adhesion molecule 2 (JAM2) between MSC cultures from the three donor-matched tissue sources translated into altered cell motility of BM-derived MSCs when RNA interference was used to knock down this gene, and (ii) differences in C-X-C motif chemokine ligand 6 (CXCL6) expression in clonal MSC lines derived from the same tissue source correlated with the chemoattractive capacity of PB-derived MSCs. CONCLUSIONS Ultimately, these findings will enhance our understanding of MSC heterogeneity and will lead to improvements in the therapeutic potential of MSCs, accelerating the transition from bench to bedside.
Collapse
Affiliation(s)
- Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jennifer C Fan
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Jee E Park
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
168
|
Elrashidy RA, Hasan RA. Stromal cell-derived factor-1α predominantly mediates the ameliorative effect of linagliptin against cisplatin-induced testicular injury in adult male rats. Cytokine 2020; 136:155260. [DOI: 10.1016/j.cyto.2020.155260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
|
169
|
Boika A, Aleinikava N, Chyzhyk V, Zafranskaya M, Nizheharodava D, Ponomarev V. Mesenchymal stem cells in Parkinson's disease: Motor and nonmotor symptoms in the early posttransplant period. Surg Neurol Int 2020; 11:380. [PMID: 33408914 PMCID: PMC7771400 DOI: 10.25259/sni_233_2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/20/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Treatment of patients with Parkinson disease (PD) using autologous mesenchymal stem cells (MSCs) is a promising method to influence the pathogenesis of the disease. The aim of this study was to assess the immediate results of the introduction of MSCs on the effectiveness of motor and nonmotor symptoms in patients with PD. METHODS MSCs were transplanted to 12 patients with PD through intravenous and tandem (intranasal + intravenous) injections. Effectiveness of the therapy was evaluated 1 and 3 months posttransplantation. Neurological examination of the intensity of motor symptoms was carried out in the morning after a 12 or 24 h break in taking antiparkinsonian drugs, then 1 h after they were taken. The intensity of motor symptoms was assessed with the help of Section III of the Unified PD Rating Scale of the International Society for Movement Disorders (UPDRS). The intensity of nonmotor symptoms was assessed with the help of the following scales: Hamilton Depression Rating Scale, the Pittsburgh Sleep Quality Index, the Epworth Sleepiness Scale, Nonmotor Symptoms Scale, and the 39-item Parkinson's Disease Questionnaire. RESULTS We found a statistically significant decrease in the severity of motor and nonmotor symptoms in the study group in the posttransplant period. CONCLUSION Positive results allow us to consider MSCs transplantation as a disease-modifying therapeutic strategy in PD. However, this method of PD treatment is not a fully understood process, which requires additional studies and a longer follow-up period to monitor the patients' condition posttransplantation.
Collapse
Affiliation(s)
- Aliaksandr Boika
- Department of Neurology and Neurosurgery, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Natallia Aleinikava
- Department of Neurology and Neurosurgery, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Veranika Chyzhyk
- Department of Neurology and Neurosurgery, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Marina Zafranskaya
- Department of Immunology and Biomedical Technology, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Darya Nizheharodava
- Department of Immunology and Biomedical Technology, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| | - Vladimir Ponomarev
- Department of Neurology and Neurosurgery, Belarusian Medical Academy of Postgraduate Education, Minsk, Belarus
| |
Collapse
|
170
|
Khang MK, Kuriakose AE, Nguyen T, Co CMD, Zhou J, Truong TTD, Nguyen KT, Tang L. Enhanced Endothelial Cell Delivery for Repairing Injured Endothelium via Pretargeting Approach and Bioorthogonal Chemistry. ACS Biomater Sci Eng 2020; 6:6831-6841. [PMID: 33320611 DOI: 10.1021/acsbiomaterials.0c00957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arterial wall injury often leads to endothelium cell activation, endothelial detachment, and atherosclerosis plaque formation. While abundant research efforts have been placed on treating the end stages of the disease, no cure has been developed to repair injured and denude endothelium often occurred at an early stage of atherosclerosis. Here, a pretargeting cell delivery strategy using combined injured endothelial targeting nanoparticles and bioorthogonal click chemistry approach was developed to deliver endothelial cells to replenish the injured endothelium via a two-step process. First, nanoparticles bearing glycoprotein 1b α (Gp1bα) proteins and tetrazine (Tz) were fabricated to provide a homogeneous nanoparticle coating on an injured arterial wall via the interactions between Gp1bα and von Willebrand factor (vWF), a ligand that is present on denuded endothelium. Second, transplanted endothelium cells bearing transcyclooctene (TCO) would be quickly immobilized on the surfaces of nanoparticles via TCO:Tz reactions. In vitro binding studies under both static and flow conditions confirmed that our novel Tz-labeled Gp1bα-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles can successfully pretargeted toward the injured site and support rapid adhesion of endothelial cells from the circulation. Ex vivo results also confirm that such an approach is highly efficient in mediating the local delivery of endothelial cells at the sites of arterial injury. The results support that this pretargeting cell delivery approach may be used for repairing injured endothelium in situ at its early stage.
Collapse
Affiliation(s)
- Min Kyung Khang
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States.,Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, Texas 76010, United States
| | - Aneetta Elizabeth Kuriakose
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Tam Nguyen
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Cynthia My-Dung Co
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Jun Zhou
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Thuy Thi Dang Truong
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Kytai Truong Nguyen
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| | - Liping Tang
- Department of Bioengineering, University of Texas at Arlington, P.O. Box 19138, Arlington, Texas 76010, United States
| |
Collapse
|
171
|
Ren Z, Qi Y, Sun S, Tao Y, Shi R. Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair. Stem Cells Dev 2020; 29:1467-1478. [PMID: 33045910 DOI: 10.1089/scd.2020.0133] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating medical condition with profound social and economic impacts. Although research is ongoing, current treatment options are limited and do little to restore functionality. However, recent studies suggest that mesenchymal stem cell-derived exosomes (MSC-exosomes) may hold the key to exciting new treatment options for SCI patients. MSCs are self-renewing multipotent stem cells with multi-directional differentiation and can secrete a large number of exosomes (vesicles secreted into the extracellular environment through endocytosis, called MSC-exosomes). These MSC-exosomes play a critical role in repairing SCI through promoting angiogenesis and axonal growth, regulating inflammation and the immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be utilized to transport genetic material or drugs to target cells, and their relatively small size makes them able to permeate the blood-brain barrier. In this review, we summarize recent advances in MSC-exosome themed SCI treatments and cell-free therapies to better understand this newly emerging methodology.
Collapse
Affiliation(s)
- Zhihua Ren
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Yao Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Siyuan Sun
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Department of Orthopedics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Tao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
172
|
Carstens M, Haq I, Martinez-Cerrato J, Dos-Anjos S, Bertram K, Correa D. Sustained clinical improvement of Parkinson's disease in two patients with facially-transplanted adipose-derived stromal vascular fraction cells. J Clin Neurosci 2020; 81:47-51. [PMID: 33222965 DOI: 10.1016/j.jocn.2020.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
Abstract
Cell-based therapy has been studied as an alternative for Parkinson's Disease (PD), with different routes of administration. The superficial fascia and facial muscles possess a rich blood supply, while venous and lymphatic access via the orbit and the cribriform plate provide a route to cerebral circulation. We here document positive clinical effects in two patients with PD treated with autologous adipose-derived stromal vascular fraction (SVF) cell preparation, implanted into the face and nasal cavity. Two patients with PD were transplanted with 60 million total nucleated cells in processed SVF into the facial muscles and nose. Serial evaluations were carried out up to 5 years (patient 1) and 1 year (patient 2), using the PDQ-39, the UPDRS, and serial videos. Video scoring was reviewed in a blinded fashion. Both patients reported qualitative improvement in motor and nonmotor symptoms following injection. Quantitatively, PDQ-39 scores decreased in all categories for both. On-medication UPDRS motor scores decreased in both (20 to 4 in patient 1, 18 to 3 in patient 2) despite taking the same or less medication (LEDD 350 to 350 in patient 1, LEDD 1175 to 400 in pt2). Both subjects had off-medication UPDRS scores similar to their pretreatment on-medication scores (20 to 14 in patient 1, 18 to 23 in patient 2). These preliminary findings describe local facial and nasal injections of SVF preparation followed by prolonged clinical benefit in two patients. Despite an unknown mechanism of action, this potential therapy warrants careful verification and investigation.
Collapse
Affiliation(s)
- Michael Carstens
- Wake Forest University Institute of Regenerative Medicine, Winston-Salem, NC, USA; Department of Plastic Surgery, Hospital Escuela Oscar Danilo Rosales Argüello, Leon, Nicaragua.
| | - Ihtsham Haq
- Department of Neurology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Ken Bertram
- Wake Forest University Institute of Regenerative Medicine, Winston-Salem, NC, USA
| | - Diego Correa
- Department of Orthopaedics, UHealth Sports Medicine Institute, University of Miami, Miller School of Medicine, Miami, FL, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
173
|
Agrahari V, Agrahari V, Chou ML, Chew CH, Noll J, Burnouf T. Intelligent micro-/nanorobots as drug and cell carrier devices for biomedical therapeutic advancement: Promising development opportunities and translational challenges. Biomaterials 2020; 260:120163. [DOI: 10.1016/j.biomaterials.2020.120163] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/01/2020] [Accepted: 05/29/2020] [Indexed: 02/08/2023]
|
174
|
Dregalla RC, Uribe Y, Bodor M. Human mesenchymal stem cells respond differentially to platelet preparations and synthesize hyaluronic acid in nucleus pulposus extracellular matrix. Spine J 2020; 20:1850-1860. [PMID: 32565315 DOI: 10.1016/j.spinee.2020.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT In recent years, autologous platelet-rich plasma (PRP) and bone marrow aspirate concentrate (BMAC) have been used as treatments for disc-related pain. A better understanding of the effects of leukocyte-rich (LR) versus leukocyte poor (LP-) PRP on bone marrow derived human mesenchymal stem/progenitor cells (hMSCs) is likely to improve future research studies, clinical practice and care for patients with chronic discogenic back pain. PURPOSE The primary aim of this study is to determine the effects of LR-PRP and LP-PRP on the proliferation and migration of hMSCs in pig nucleus pulposus (NP) extracellular matrix (ECM). The secondary aim is to characterize hMSC-dependent expression of the matrix remodeling enzymes metalloproteinases MMP-2, MMP-3, MMP-9 and tissue inhibitor of metalloproteinases TIMP-2, and to determine whether transplanted hMSCs can synthesize hyaluronic acid (HA). STUDY DESIGN Controlled laboratory study. METHODS Bone marrow-derived culture expanded hMSCs were seeded onto pig NP and cultured with LR-PRP, LP-PRP or serum/platelet releasate (PR). The same conditions without hMSCs were used as controls. hMSC proliferation, migration and dispersion was assessed via fluorescent microscopy, while HA synthesis, MMP-2, MMP-3, MMP-9, and TIMP-2 protein levels were assessed via enzyme linked immunosorbent assay. All funding was provided by a 501c(3) research foundation and does not have any commercial or sponsorship interests. RESULTS LP-PRP and PR cultures resulted in higher hMSC proliferation, migration, dispersion, and MMP-2 expression. LP-PRP cultures resulted in the highest HA production. LR-PRP cultures resulted in lower hMSC proliferation, negligible migration and dispersion, increased MMP-9 expression and lower HA production. CONCLUSIONS Human bone marrow-derived hMSCs seeded onto pig NP ECM are capable of synthesizing HA, indicating a transition towards a NP cell phenotype. This process was most enhanced by LP-PRP and marked by increased hMSC proliferation, MMP-2 production, HA synthesis and reduced MMP-9 levels. CLINICAL SIGNIFICANCE LP-PRP and PR, with or without hMSCs, may provide better outcomes than LR-PRP in lab investigations and clinical trials for discogenic pain. Bone marrow-derived hMSCs may hold promise as a treatment for disc degeneration.
Collapse
Affiliation(s)
- Ryan C Dregalla
- Napa Medical Research Foundation, 3421 Villa Lane, Suite 2C, Napa, CA, USA
| | - Yvette Uribe
- Napa Medical Research Foundation, 3421 Villa Lane, Suite 2C, Napa, CA, USA
| | - Marko Bodor
- Napa Medical Research Foundation, 3421 Villa Lane, Suite 2C, Napa, CA, USA; Bodor Clinic, 3421 Villa Lane, Suite 2B, Napa, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA; Department of Physical Medicine and Rehabilitation, University of California Davis, Sacramento, CA, USA.
| |
Collapse
|
175
|
Regional Hyperthermia Enhances Mesenchymal Stem Cell Recruitment to Tumor Stroma: Implications for Mesenchymal Stem Cell-Based Tumor Therapy. Mol Ther 2020; 29:788-803. [PMID: 33068779 DOI: 10.1016/j.ymthe.2020.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/22/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
The tropism of mesenchymal stem cells (MSCs) for tumors forms the basis for their use as delivery vehicles for the tumor-specific transport of therapeutic genes, such as the theranostic sodium iodide symporter (NIS). Hyperthermia is used as an adjuvant for various tumor therapies and has been proposed to enhance leukocyte recruitment. Here, we describe the enhanced recruitment of adoptively applied NIS-expressing MSCs to tumors in response to regional hyperthermia. Hyperthermia (41°C, 1 h) of human hepatocellular carcinoma cells (HuH7) led to transiently increased production of immunomodulatory factors. MSCs showed enhanced chemotaxis to supernatants derived from heat-treated cells in a 3D live-cell tracking assay and was validated in vivo in subcutaneous HuH7 mouse xenografts. Cytomegalovirus (CMV)-NIS-MSCs were applied 6-48 h after or 24-48 h before hyperthermia treatment. Using 123I-scintigraphy, thermo-stimulation (41°C, 1 h) 24 h after CMV-NIS-MSC injection resulted in a significantly increased uptake of 123I in heat-treated tumors compared with controls. Immunohistochemical staining and real-time PCR confirmed tumor-selective, temperature-dependent MSC migration. Therapeutic efficacy was significantly enhanced by combining CMV-NIS-MSC-mediated 131I therapy with regional hyperthermia. We demonstrate here for the first time that hyperthermia can significantly boost tumoral MSC recruitment, thereby significantly enhancing therapeutic efficacy of MSC-mediated NIS gene therapy.
Collapse
|
176
|
Sekuła-Stryjewska M, Noga S, Dźwigońska M, Adamczyk E, Karnas E, Jagiełło J, Szkaradek A, Chytrosz P, Boruczkowski D, Madeja Z, Kotarba A, Lipińska L, Zuba-Surma EK. Graphene-based materials enhance cardiomyogenic and angiogenic differentiation capacity of human mesenchymal stem cells in vitro - Focus on cardiac tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111614. [PMID: 33321657 DOI: 10.1016/j.msec.2020.111614] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/28/2020] [Accepted: 10/05/2020] [Indexed: 12/22/2022]
Abstract
Cell-based therapies have recently emerged as promising strategies for the treatment of cardiovascular disease. Mesenchymal stem cells (MSCs) are a promising cell type that represent a class of adult stem cells characterized by multipotency, high proliferative capacity, paracrine activity, and low immunogenicity. To improve the functional and therapeutic efficacy of MSCs, novel biomaterials are considered as scaffolds/surfaces that promote MSCs growth and differentiation. One of them are graphene-based materials, including graphene oxide (GO) and reduced graphene oxide (rGO). Due to the unique physical, chemical, and biological properties of graphene, scaffolds comprising GO/rGO have been examined as novel platforms to improve the differentiation potential of human MSCs in vitro. We verified different i) size of GO flakes, ii) reduction level, and iii) layer thickness to select the most suitable artificial niche for MSCs culture. The results revealed that graphene-based substrates constitute non-toxic substrates for MSCs. Surfaces with large flakes of GO as well as low reduced rGO are the most biocompatible for MSCs propagation and do not affect their proliferation and survival. Interestingly, small GO flakes and highly reduced rGO decreased MSCs proliferation and induced their apoptosis. We also found that GO and rGO substrates did not alter the MSCs phenotype, cell cycle progression and might modulate the adhesive capabilities of these cells. Importantly, we demonstrated that both materials promoted the cardiomyogenic and angiogenic differentiation capacity of MSCs in vitro. Thus, our data indicates that graphene-based surfaces represent promising materials that may influence the therapeutic application of MSCs via supporting their pro-regenerative potential.
Collapse
Affiliation(s)
- Małgorzata Sekuła-Stryjewska
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sylwia Noga
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Dźwigońska
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Edyta Adamczyk
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Elżbieta Karnas
- Laboratory of Stem Cell Biotechnology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Jagiełło
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, Warsaw, Poland
| | - Agnieszka Szkaradek
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | | | | - Zbigniew Madeja
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Andrzej Kotarba
- Faculty of Chemistry, Jagiellonian University, Krakow, Poland
| | - Ludwika Lipińska
- Department of Chemical Synthesis and Flake Graphene, Łukasiewicz Research Network - Institute of Electronic Materials Technology, Warsaw, Poland
| | - Ewa K Zuba-Surma
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
177
|
Zhang X, Chen J, Jiang Q, Ding X, Li Y, Chen C, Yang W, Chen S. Highly biosafe biomimetic stem cell membrane-disguised nanovehicles for cartilage regeneration. J Mater Chem B 2020; 8:8884-8893. [PMID: 33026410 DOI: 10.1039/d0tb01686a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cartilage injury is very common and results in considerable pain and osteoarthritis. Owing to its low self-renewal capability, cartilage regeneration is still a great challenge for clinicians. Stem cell therapy has been treated as the most promising treatment for cartilage regeneration in recent decades. However, increasing concerns about the potential biosafety of stem cell products such as immune rejection and neoplastic transformation restrict their further application in clinic. Herein, biomimetic stem cell membrane-disguised nanovehicles without biosafety risks are designed and prepared for cartilage regeneration. In this study, based on the disguise of the natural bone marrow mesenchymal stem cell (BMSC) membrane, Kartogenin (KGN) as a drug for cartilage regeneration was encapsulated into Fe3O4 nanoparticles as the core of biomimetic stem cell nanovehicles. In the core-shell structure of biomimetic stem cell nanovehicles, the fabricated KGN-loaded BMSC membrane-disguised Fe3O4 nanoparticles (KGN-MNPs) showed a stable hybrid structure with a uniform size and morphology in the physiological environments. Moreover, the prepared KGN-MNPs exhibited excellent biocompatibility when disguised with the natural membrane of BMSCs and good biosafety by eliminating the nuclei of BMSCs. In a cartilage defect rat model, compared with pure KGN, the intra-articularly injected KGN-MNPs were capable of regenerating an integrated organized structure with a layer of hyaline-like cartilage in a shorter time due to the retained natural activities of the BMSC membrane. In a word, KGN-MNPs as one kind of our designed biomimetic stem cell nanovehicles enable rapid and high quality cartilage regeneration, and provide a novel and standardized strategy for stem cell therapy in the future.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Qin Jiang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Xiaoquan Ding
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Yunxia Li
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Chen Chen
- Department of Sports Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Wuli Yang
- State Key Laboratory of Molecular Engineering of Polymers & Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
178
|
Bauza G, Pasto A, Mcculloch P, Lintner D, Brozovich A, Niclot FB, Khan I, Francis LW, Tasciotti E, Taraballi F. Improving the immunosuppressive potential of articular chondroprogenitors in a three-dimensional culture setting. Sci Rep 2020; 10:16610. [PMID: 33024130 PMCID: PMC7538570 DOI: 10.1038/s41598-020-73188-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cartilage repair in osteoarthritic patients remains a challenge. Identifying resident or donor stem/progenitor cell populations is crucial for augmenting the low intrinsic repair potential of hyaline cartilage. Furthermore, mediating the interaction between these cells and the local immunogenic environment is thought to be critical for long term repair and regeneration. In this study we propose articular cartilage progenitor/stem cells (CPSC) as a valid alternative to bone marrow-derived mesenchymal stem cells (BMMSC) for cartilage repair strategies after trauma. Similar to BMMSC, CPSC isolated from osteoarthritic patients express stem cell markers and have chondrogenic, osteogenic, and adipogenic differentiation ability. In an in vitro 2D setting, CPSC show higher expression of SPP1 and LEP, markers of osteogenic and adipogenic differentiation, respectively. CPSC also display a higher commitment toward chondrogenesis as demonstrated by a higher expression of ACAN. BMMSC and CPSC were cultured in vitro using a previously established collagen-chondroitin sulfate 3D scaffold. The scaffold mimics the cartilage niche, allowing both cell populations to maintain their stem cell features and improve their immunosuppressive potential, demonstrated by the inhibition of activated PBMC proliferation in a co-culture setting. As a result, this study suggests articular cartilage derived-CPSC can be used as a novel tool for cellular and acellular regenerative medicine approaches for osteoarthritis (OA). In addition, the benefit of utilizing a biomimetic acellular scaffold as an advanced 3D culture system to more accurately mimic the physiological environment is demonstrated.
Collapse
Affiliation(s)
- Guillermo Bauza
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Anna Pasto
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Patrick Mcculloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - David Lintner
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Texas A&M College of Medicine, 8447 Highway 47, Bryan, TX, 77807, USA
| | - Federica Banche Niclot
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Department of Applied Science and Technology, Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Ilyas Khan
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
| | - Lewis W Francis
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
| | - Ennio Tasciotti
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
179
|
Golinelli G, Mastrolia I, Aramini B, Masciale V, Pinelli M, Pacchioni L, Casari G, Dall'Ora M, Soares MBP, Damasceno PKF, Silva DN, Dominici M, Grisendi G. Arming Mesenchymal Stromal/Stem Cells Against Cancer: Has the Time Come? Front Pharmacol 2020; 11:529921. [PMID: 33117154 PMCID: PMC7553050 DOI: 10.3389/fphar.2020.529921] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Since mesenchymal stromal/stem cells (MSCs) were discovered, researchers have been drawn to study their peculiar biological features, including their immune privileged status and their capacity to selectively migrate into inflammatory areas, including tumors. These properties make MSCs promising cellular vehicles for the delivery of therapeutic molecules in the clinical setting. In recent decades, the engineering of MSCs into biological vehicles carrying anticancer compounds has been achieved in different ways, including the loading of MSCs with chemotherapeutics or drug functionalized nanoparticles (NPs), genetic modifications to force the production of anticancer proteins, and the use of oncolytic viruses. Recently, it has been demonstrated that wild-type and engineered MSCs can release extracellular vesicles (EVs) that contain therapeutic agents. Despite the enthusiasm for MSCs as cyto-pharmaceutical agents, many challenges, including controlling the fate of MSCs after administration, must still be considered. Preclinical results demonstrated that MSCs accumulate in lung, liver, and spleen, which could prevent their engraftment into tumor sites. For this reason, physical, physiological, and biological methods have been implemented to increase MSC concentration in the target tumors. Currently, there are more than 900 registered clinical trials using MSCs. Only a small fraction of these are investigating MSC-based therapies for cancer, but the number of these clinical trials is expected to increase as technology and our understanding of MSCs improve. This review will summarize MSC-based antitumor therapies to generate an increasing awareness of their potential and limits to accelerate their clinical translation.
Collapse
Affiliation(s)
- Giulia Golinelli
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Ilenia Mastrolia
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Masciale
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimo Pinelli
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Lucrezia Pacchioni
- Division of Plastic Surgery, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Casari
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Massimiliano Dall'Ora
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Patrícia Kauanna Fonseca Damasceno
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Daniela Nascimento Silva
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil.,Health Institute of Technology, SENAI-CIMATEC, Salvador, Brazil
| | - Massimo Dominici
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Modena, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapy, Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy.,Rigenerand srl, Modena, Italy
| |
Collapse
|
180
|
Li M, Cong R, Yang L, Yang L, Zhang Y, Fu Q. A novel lncRNA LNC_000052 leads to the dysfunction of osteoporotic BMSCs via the miR-96-5p-PIK3R1 axis. Cell Death Dis 2020; 11:795. [PMID: 32968049 PMCID: PMC7511361 DOI: 10.1038/s41419-020-03006-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) in postmenopausal osteoporosis models exhibit loss of viability and multipotency. Identification of the differentially expressed RNAs in osteoporotic BMSCs could reveal the mechanisms underlying BMSC dysfunction under physiological conditions, which might improve stem cell therapy and tissue regeneration. In this study, we performed high-throughput RNA sequencing and showed that the novel long non-coding RNA (lncRNA) LNC_000052 and its co-expressed mRNA PIK3R1 were upregulated in osteoporotic BMSCs. Knockdown of LNC_000052 could promote BMSC proliferation, migration, osteogenesis, and inhibit apoptosis via the PI3K/Akt signaling pathway. We found that both LNC_000052 and PIK3R1 shared a miRNA target, miR-96-5p, which was downregulated in osteoporotic BMSCs. Their binding sites were confirmed by dual-luciferase assays. Downregulation of miR-96-5p could restrain the effects of LNC_000052 knockdown while upregulation of miR-96-5p together with LNC_000052 knockdown could improve the therapeutic effects of BMSCs. In summary, the LNC_000052-miR-96-5p-PIK3R1 axis led to dysfunction of osteoporotic BMSCs and might be a novel therapeutic target for stem cell therapy and tissue regeneration.
Collapse
Affiliation(s)
- Mingyang Li
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Rong Cong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Liyu Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lei Yang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yiqi Zhang
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qin Fu
- Department of Orthopedics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
181
|
Park Y, Lee YJ, Koh JH, Lee J, Min HK, Kim MY, Kim KJ, Lee SJ, Rhie JW, Kim WU, Park SH, Moon SH, Kwok SK. Clinical Efficacy and Safety of Injection of Stromal Vascular Fraction Derived from Autologous Adipose Tissues in Systemic Sclerosis Patients with Hand Disability: A Proof-Of-Concept Trial. J Clin Med 2020; 9:jcm9093023. [PMID: 32961802 PMCID: PMC7565930 DOI: 10.3390/jcm9093023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/15/2020] [Accepted: 09/16/2020] [Indexed: 12/22/2022] Open
Abstract
Background: Stromal vascular fraction (SVF) has recently emerged as a potential therapeutic modality, due to its multipotent cellular components in tissue regeneration. Systemic sclerosis (SSc) is a progressive autoimmune disease that results in hand disability by skin fibrosis and microangiopathies. We performed an open-label study to investigate the efficacy and safety of SVF injection in SSc patients (Clinical Trial number: NCT03060551). Methods: We gathered 20 SSc patients with hand disability, planning for a 24-week follow-up period. SVF was extracted from autologous adipose tissues, processed by the closed system kit, and injected into each finger of SSc patients. We observed various efficacy and safety profiles at each follow-up visit. Results: Among the 20 initially enrolled patients, eighteen received SVF injection, and were completely followed-up for the whole study period. Patients received 3.61 × 106 mesenchymal stem cells into each finger on average. Skin fibrosis, hand edema, and quality of life were significantly improved, and 31.6% of active ulcers were healed at 24 weeks after injections. Semiquantitative results of nailfold capillary microscopy were ameliorated. There was no single serious adverse event related to the procedure. Conclusions: Injection of SVF derived from autologous adipose tissues is tolerable, and shows clinical efficacy in SSc patients.
Collapse
Affiliation(s)
- Youngjae Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.P.); (J.L.); (W.-U.K.); (S.-H.P.)
| | - Yoon Jae Lee
- Department of Plastic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 07345, Korea;
| | - Jung Hee Koh
- Division of Rheumatology, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, the Catholic University of Korea, Bucheon 14647, Korea;
| | - Jennifer Lee
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.P.); (J.L.); (W.-U.K.); (S.-H.P.)
| | - Hong-Ki Min
- Division of Rheumatology, Department of Internal Medicine, Konkuk University Medical Centre, Konkuk University School of Medicine, Seoul 05030, Korea;
| | - Moon Young Kim
- Division of Rheumatology, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Korea;
| | - Ki Joo Kim
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (K.J.K.); (S.J.L.)
| | - Su Jin Lee
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (K.J.K.); (S.J.L.)
| | - Jong Won Rhie
- Department of Plastic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
| | - Wan-Uk Kim
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.P.); (J.L.); (W.-U.K.); (S.-H.P.)
| | - Sung-Hwan Park
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.P.); (J.L.); (W.-U.K.); (S.-H.P.)
| | - Suk-Ho Moon
- Department of Plastic Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea;
- Correspondence: (S.-H.M.); (S.-K.K.)
| | - Seung-Ki Kwok
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.P.); (J.L.); (W.-U.K.); (S.-H.P.)
- Correspondence: (S.-H.M.); (S.-K.K.)
| |
Collapse
|
182
|
Mandpe P, Prabhakar B, Shende P. Role of Liposomes-Based Stem Cell for Multimodal Cancer Therapy. Stem Cell Rev Rep 2020; 16:103-117. [PMID: 31786749 DOI: 10.1007/s12015-019-09933-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The utilization of stem cells as novel carriers to target tissues or organs of interest is a challenging task in delivery system. The composite cellular delivery with diverse signalling molecules as therapeutics increases stem cell capability and possesses the promising potential to augment, modify or commence localized or systemic restoration for vital applications in regenerative medicine. The inherent potential of stem cells to immigrate and reside at wounded site facilitates transportation of genes, polypeptides or nanosized molecules. Liposomes are micro- to nano-lipidic vesicles formed in aqueous solutions to encapsulate complex hydrophilic and lipophilic chemical substances. Moreover, these novel nanocarriers provide safer and efficient delivery of bioactives together with their potential applications in vaccine production, cosmeceuticals, imaging and diagnostic purpose. Tissue engineering promotes rejuvenation process and involves the synchronized utilization of cells with 3D bio-material scaffolds to fabricate living structures. This strategy requires regulated stimulus of cultured cells through combined mechanical signals and bioactive agents. This review highlights and summarizes the mechanism involved in stem cell migration, strategies to enhance homing, safety and efficacy studies of stem cells in various disease models and discusses the potential role of liposomes in prolonged and localized delivery of bioactives for regenerative medicines and tissue engineering techniques. Graphical Abstract Role of PEGylated liposomes in cancer stem cell therapy.
Collapse
Affiliation(s)
- Pankaj Mandpe
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India
| | - Bala Prabhakar
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V. L. Mehta road, Vile Parle (W), Mumbai, India.
| |
Collapse
|
183
|
Abdel Halim AS, Ahmed HH, Aglan HA, Abdel Hamid FF, Mohamed MR. Role of bone marrow-derived mesenchymal stem cells in alleviating pulmonary epithelium damage and extracellular matrix remodeling in a rat model of lung fibrosis induced by amiodarone. Biotech Histochem 2020; 96:418-430. [PMID: 32909452 DOI: 10.1080/10520295.2020.1814966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The therapeutic role of mesenchymal stem cells (MSCs) in cases of amiodarone (AD) induced pulmonary fibrosis (PF) has not been well studied. Also, the period required by MSCs to attain full therapeutic effectiveness has not yet been assessed. We investigated the potential curative effect of bone marrow-derived MSCs (BM-MSCs) and conditioned media (CM) from BM-MSCs on AD induced PF by focusing on pulmonary epithelium injury and repair, and extracellular matrix (ECM) remodeling. We used 64 Wistar rats divided into eight groups: negative control group; PF group; three PF groups treated with BM-MSCs for 1, 2 or 4 months; and three PF groups treated with CM for 1, 2 and 4 months. Serum levels of Clara cell secretory protein (CC16) and keratinocyte growth factor (KGF) were measured. Gene expression of type I collagen (COL1A1) and connective tissue growth factor (CTGF) was evaluated in pulmonary tissue. Treatment of PF challenged rats with BM-MSCs or CM caused reduced CC16 levels, increased KGF levels, reduced expression of COL1A1 and CTGF, histological improvement following lung injury, and decreased collagen accumulation. Treatment with BM-MSCs exhibited greater amelioration of PF than CM. BM-MSCs or CM treatment for 2 and 4 months exhibited better resolution of fibrosis than treatment for 1 month. BM-MSCs are promising for treating PF due to their attenuation of ECM deposition in addition to alleviating pulmonary epithelium damage and initiating its repair.
Collapse
Affiliation(s)
- Alyaa S Abdel Halim
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research Division, National Research Centre, Giza, Egypt.,Stem Cells Lab, Center of Excellence for Advanced Sciences, National Research Centre, Giza, Egypt
| | - Fatma F Abdel Hamid
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed R Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
184
|
Jung YD, Park SK, Kang D, Hwang S, Kang MH, Hong SW, Moon JH, Shin JS, Jin DH, You D, Lee JY, Park YY, Hwang JJ, Kim CS, Suh N. Epigenetic regulation of miR-29a/miR-30c/DNMT3A axis controls SOD2 and mitochondrial oxidative stress in human mesenchymal stem cells. Redox Biol 2020; 37:101716. [PMID: 32961441 PMCID: PMC7509080 DOI: 10.1016/j.redox.2020.101716] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/19/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023] Open
Abstract
The use of human mesenchymal stem cells (hMSCs) in clinical applications requires large-scale cell expansion prior to administration. However, the prolonged culture of hMSCs results in cellular senescence, impairing their proliferation and therapeutic potentials. To understand the role of microRNAs (miRNAs) in regulating cellular senescence in hMSCs, we globally depleted miRNAs by silencing the DiGeorge syndrome critical region 8 (DGCR8) gene, an essential component of miRNA biogenesis. DGCR8 knockdown hMSCs exhibited severe proliferation defects and senescence-associated alterations, including increased levels of reactive oxygen species (ROS). Transcriptomic analysis revealed that the antioxidant gene superoxide dismutase 2 (SOD2) was significantly downregulated in DGCR8 knockdown hMSCs. Moreover, we found that DGCR8 silencing in hMSCs resulted in hypermethylation in CpG islands upstream of SOD2. 5-aza-2'-deoxycytidine treatment restored SOD2 expression and ROS levels. We also found that these effects were dependent on the epigenetic regulator DNA methyltransferase 3 alpha (DNMT3A). Using computational and experimental approaches, we demonstrated that DNMT3A expression was regulated by miR-29a-3p and miR-30c-5p. Overexpression of miR-29a-3p and/or miR-30c-5p reduced ROS levels in DGCR8 knockdown hMSCs and rescued proliferation defects, mitochondrial dysfunction, and premature senescence. Our findings provide novel insights into hMSCs senescence regulation by the miR-29a-3p/miR-30c-5p/DNMT3A/SOD2 axis.
Collapse
Affiliation(s)
- Yi-Deun Jung
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Personalized Genomic Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Seul-Ki Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea; Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea; Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Dayeon Kang
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea
| | - Supyong Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Myoung-Hee Kang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Seung-Woo Hong
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jai-Hee Moon
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jae-Sik Shin
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Dong-Hoon Jin
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Dalsan You
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Joo-Yong Lee
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Yun-Yong Park
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jung Jin Hwang
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Choung Soo Kim
- Department of Urology, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nayoung Suh
- Department of Pharmaceutical Engineering, College of Medical Sciences, Soon Chun Hyang University, Asan, 31538, Republic of Korea.
| |
Collapse
|
185
|
Ye D, Chen C, Wang Q, Zhang Q, Li S, Liu H. Short-wave enhances mesenchymal stem cell recruitment in fracture healing by increasing HIF-1 in callus. Stem Cell Res Ther 2020; 11:382. [PMID: 32894200 PMCID: PMC7487968 DOI: 10.1186/s13287-020-01888-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/12/2020] [Accepted: 08/17/2020] [Indexed: 01/14/2023] Open
Abstract
Background As a type of high-frequency electrotherapy, a short-wave can promote the fracture healing process; yet, its underlying therapeutic mechanisms remain unclear. Purpose To observe the effect of Short-Wave therapy on mesenchymal stem cell (MSC) homing and relative mechanisms associated with fracture healing. Materials and methods For in vivo study, the effect of Short-Wave therapy to fracture healing was examined in a stabilized femur fracture model of 40 SD rats. Radiography was used to analyze the morphology and microarchitecture of the callus. Additionally, fluorescence assays were used to analyze the GFP-labeled MSC homing after treatment in 20 nude mice with a femoral fracture. For in vitro study, osteoblast from newborn rats simulated fracture site was first irradiated by the Short-Wave; siRNA targeting HIF-1 was used to investigate the role of HIF-1. Osteoblast culture medium was then collected as chemotaxis content of MSC, and the migration of MSC from rats was evaluated using wound healing assay and trans-well chamber test. The expression of HIF-1 and its related factors were quantified by q RT-PCR, ELISA, and Western blot. Results Our in vivo experiment indicated that Short-Wave therapy could promote MSC migration, increase local and serum HIF-1 and SDF-1 levels, induce changes in callus formation, and improve callus microarchitecture and mechanical properties, thus speeding up the healing process of the fracture site. Moreover, the in vitro results further indicated that Short-Wave therapy upregulated HIF-1 and SDF-1 expression in osteoblast and its cultured medium, as well as the expression of CXCR-4, β-catenin, F-actin, and phosphorylation levels of FAK in MSC. On the other hand, the inhibition of HIF-1α was significantly restrained by the inhibition of HIF-1α in osteoblast, and it partially inhibited the migration of MSC. Conclusions These results suggested that Short-Wave therapy could increase HIF-1 in callus, which is one of the crucial mechanisms of chemotaxis MSC homing in fracture healing.
Collapse
Affiliation(s)
- Dongmei Ye
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.
| | - Chen Chen
- Department of Anatomy, Medical College of Dalian University, Dalian, China
| | - Qiwen Wang
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China.,Department of Rehabilitation, The people's Hospital of Longhua District, Shenzhen, China
| | - Qi Zhang
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Sha Li
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Hongwei Liu
- Department of Rehabilitation, Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| |
Collapse
|
186
|
Senthilkumar S, Venugopal C, Parveen S, K S, Rai KS, Kutty BM, Dhanushkodi A. Remarkable migration propensity of dental pulp stem cells towards neurodegenerative milieu: An in vitro analysis. Neurotoxicology 2020; 81:89-100. [PMID: 32905802 DOI: 10.1016/j.neuro.2020.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 07/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Stem cell therapy provides a ray of hope for treating neurodegenerative diseases (ND). Bone marrow mesenchymal stem cells (BM-MSC) were extensively investigated for their role in neuroregeneration. However, drawbacks like painful bone marrow extraction, less proliferation and poor CNS engraftment following systemic injections of BM-MSC prompt us to search for alternate/appropriate source of MSC for treating ND. In this context, dental pulp stem cells (DPSC) could be an alternative to BM-MSC as it possess both mesenchymal and neural characteristic features due to its origin from ectoderm, ease of isolation, higher proliferation index and better neuroprotection. A study on the migration potential of DPSC compared to BM-MSC in a neurodegenerative condition is warranted. Given the neural crest origin, we hypothesize that DPSC possess better migration towards neurodegenerative milieu as compared to BM-MSC. In this prospect, we investigated the migration potential of DPSC in an in vitro neurodegenerative condition. Towards this, transwell, Matrigel and chorioallantoic membrane (CAM) migration assays were carried-out by seeding hippocampal neurons in the lower chamber and treated with 300 μM kainic acid (KA) for 6 h to induce neurodegeneration. Subsequently, the upper chamber of transwell was loaded with DPSC/BM-MSC and their migration potential was assessed following 24 h of incubation. Our results revealed that the migration potential of DPSC/BM-MSC was comparable in non-degenerative condition. However, following injury the migration potential of DPSC towards the degenerating site was significantly higher as compared to BM-MSC. Furthermore, upon exposure of naïve DPSC/BM-MSCs to culture medium derived from neurodegenerative milieu resulted in significant upregulation of homing factors like SDF-1alpha, CXCR-4, VCAM-1, VLA-4, CD44, MMP-2 suggesting that the superior migration potential of DPSC might be due to prompt expression of homing factors in DPSC compared to BM-MSCs.
Collapse
Affiliation(s)
- Sivapriya Senthilkumar
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
| | - Chaitra Venugopal
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
| | - Shagufta Parveen
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
| | - Shobha K
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India
| | - Kiranmai S Rai
- Dept. of Physiology, Melaka Manipal Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Bindu M Kutty
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Anandh Dhanushkodi
- Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education, Bangalore, Karnataka, India.
| |
Collapse
|
187
|
Steens J, Unger K, Klar L, Neureiter A, Wieber K, Hess J, Jakob HG, Klump H, Klein D. Direct conversion of human fibroblasts into therapeutically active vascular wall-typical mesenchymal stem cells. Cell Mol Life Sci 2020; 77:3401-3422. [PMID: 31712992 PMCID: PMC7426315 DOI: 10.1007/s00018-019-03358-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/27/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
Cell-based therapies using adult stem cells are promising options for the treatment of a number of diseases including autoimmune and cardiovascular disorders. Among these, vascular wall-derived mesenchymal stem cells (VW-MSCs) might be particularly well suited for the protection and curative treatment of vascular damage because of their tissue-specific action. Here we report a novel method for the direct conversion of human skin fibroblasts towards MSCs using a VW-MSC-specific gene code (HOXB7, HOXC6 and HOXC8) that directs cell fate conversion bypassing pluripotency. This direct programming approach using either a self-inactivating (SIN) lentiviral vector expressing the VW-MSC-specific HOX-code or a tetracycline-controlled Tet-On system for doxycycline-inducible gene expressions of HOXB7, HOXC6 and HOXC8 successfully mediated the generation of VW-typical MSCs with classical MSC characteristics in vitro and in vivo. The induced VW-MSCs (iVW-MSCs) fulfilled all criteria of MSCs as defined by the International Society for Cellular Therapy (ISCT). In terms of multipotency and clonogenicity, which are important specific properties to discriminate MSCs from fibroblasts, iVW-MSCs behaved like primary ex vivo isolated VW-MSCs and shared similar molecular and DNA methylation signatures. With respect to their therapeutic potential, these cells suppressed lymphocyte proliferation in vitro, and protected mice against vascular damage in a mouse model of radiation-induced pneumopathy in vivo, as well as ex vivo cultured human lung tissue. The feasibility to obtain patient-specific VW-MSCs from fibroblasts in large amounts by a direct conversion into induced VW-MSCs could potentially open avenues towards novel, MSC-based therapies.
Collapse
Affiliation(s)
- Jennifer Steens
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Kristian Unger
- Research Unit Radiation Cytogenetics and Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Lea Klar
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Anika Neureiter
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Karolin Wieber
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany
| | - Julia Hess
- Research Unit Radiation Cytogenetics and Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Neuherberg, Germany
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Heinz G Jakob
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University Duisburg-Essen, Essen, Germany
| | - Hannes Klump
- Institute for Transfusion Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, Medical Faculty, University of Duisburg-Essen, Virchowstr. 173, Ger-45122, Essen, Germany.
| |
Collapse
|
188
|
Liubaviciute A, Ivaskiene T, Biziuleviciene G. Modulated mesenchymal stromal cells improve skin wound healing. Biologicals 2020; 67:1-8. [DOI: 10.1016/j.biologicals.2020.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/26/2020] [Accepted: 08/04/2020] [Indexed: 12/20/2022] Open
|
189
|
Wu X, Jiang J, Gu Z, Zhang J, Chen Y, Liu X. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem Cell Res Ther 2020; 11:345. [PMID: 32771052 PMCID: PMC7414268 DOI: 10.1186/s13287-020-01855-9] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/09/2020] [Accepted: 07/27/2020] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a subset of heterogeneous non-hematopoietic fibroblast-like cells that can differentiate into cells of multiple lineages, such as chondrocytes, osteoblasts, adipocytes, myoblasts, and others. These multipotent MSCs can be found in nearly all tissues but mostly located in perivascular niches, playing a significant role in tissue repair and regeneration. Additionally, MSCs interact with immune cells both in innate and adaptive immune systems, modulating immune responses and enabling immunosuppression and tolerance induction. Understanding the biology of MSCs and their roles in clinical treatment is crucial for developing MSC-based cellular therapy for a variety of pathological conditions. Here, we review the progress in the study on the mechanisms underlying the immunomodulatory and regenerative effects of MSCs; update the medical translation of MSCs, focusing on the registration trials leading to regulatory approvals; and discuss how to improve therapeutic efficacy and safety of MSC applications for future.
Collapse
Affiliation(s)
- Xiaomo Wu
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
- Department of Biomedicine, University of Basel, Klingelbergstr 70, CH-4056, Basel, Switzerland
| | - Ju Jiang
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Zhongkai Gu
- The Institute of Biomedical Sciences, Fudan University, Mingdao Building, Dongan Road 131, Shanghai, 200032, China
| | - Jinyan Zhang
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China
| | - Yang Chen
- Dermatology Institute of Fuzhou, Dermatology Hospital of Fuzhou, Xihong Road 243, Fuzhou, 350025, China.
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Xihong Road 312, Fuzhou, 350025, China.
| |
Collapse
|
190
|
Liu DD, Ullah M, Concepcion W, Dahl JJ, Thakor AS. The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Transl Med 2020; 9:850-866. [PMID: 32157802 PMCID: PMC7381806 DOI: 10.1002/sctm.19-0391] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been a popular platform for cell-based therapy in regenerative medicine due to their propensity to home to damaged tissue and act as a repository of regenerative molecules that can promote tissue repair and exert immunomodulatory effects. Accordingly, a great deal of research has gone into optimizing MSC homing and increasing their secretion of therapeutic molecules. A variety of methods have been used to these ends, but one emerging technique gaining significant interest is the use of ultrasound. Sound waves exert mechanical pressure on cells, activating mechano-transduction pathways and altering gene expression. Ultrasound has been applied both to cultured MSCs to modulate self-renewal and differentiation, and to tissues-of-interest to make them a more attractive target for MSC homing. Here, we review the various applications of ultrasound to MSC-based therapies, including low-intensity pulsed ultrasound, pulsed focused ultrasound, and extracorporeal shockwave therapy, as well as the use of adjunctive therapies such as microbubbles. At a molecular level, it seems that ultrasound transiently generates a local gradient of cytokines, growth factors, and adhesion molecules that facilitate MSC homing. However, the molecular mechanisms underlying these methods are far from fully elucidated and may differ depending on the ultrasound parameters. We thus put forth minimal criteria for ultrasound parameter reporting, in order to ensure reproducibility of studies in the field. A deeper understanding of these mechanisms will enhance our ability to optimize this promising therapy to assist MSC-based approaches in regenerative medicine.
Collapse
Affiliation(s)
- Daniel D. Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | | | - Jeremy J. Dahl
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| |
Collapse
|
191
|
Dadheech N, Srivastava A, Vakani M, Shrimali P, Bhonde R, Gupta S. Direct lineage tracing reveals Activin-a potential for improved pancreatic homing of bone marrow mesenchymal stem cells and efficient ß-cell regeneration in vivo. Stem Cell Res Ther 2020; 11:327. [PMID: 32731883 PMCID: PMC7393856 DOI: 10.1186/s13287-020-01843-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/07/2020] [Accepted: 07/20/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Despite the potential, bone marrow-derived mesenchymal stem cells (BMSCs) show limitations for beta (ß)-cell replacement therapy due to inefficient methods to deliver BMSCs into pancreatic lineage. In this study, we report TGF-ß family member protein, Activin-a potential to stimulate efficient pancreatic migration, enhanced homing and accelerated ß-cell differentiation. METHODS Lineage tracing of permanent green fluorescent protein (GFP)- tagged donor murine BMSCs transplanted either alone or in combination with Activin-a in diabetic mice displayed potential ß-cell regeneration and reversed diabetes. RESULTS Pancreatic histology of Activin-a treated recipient mice reflected high GFP+BMSC infiltration into damaged pancreas with normalized fasting blood glucose and elevated serum insulin. Whole pancreas FACS profiling of GFP+ cells displayed significant homing of GFP+BMSC with Activin-a treatment (6%) compared to BMSCs alone transplanted controls (0.5%). Within islets, approximately 5% GFP+ cells attain ß-cell signature (GFP+ Ins+) with Activin-a treatment versus controls. Further, double immunostaining for mesenchymal stem cell markers CD44+/GFP+ in infiltrated GFP+BMSC deciphers substantial endocrine reprogramming and ß-cell differentiation (6.4% Ins+/GFP+) within 15 days. CONCLUSION Our investigation thus presents a novel pharmacological approach for stimulating direct migration and homing of therapeutic BMSCs that re-validates BMSC potential for autologous stem cell transplantation therapy in diabetes.
Collapse
Affiliation(s)
- Nidheesh Dadheech
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India.,Department of Surgery, Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Abhay Srivastava
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Mitul Vakani
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Paresh Shrimali
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India
| | - Ramesh Bhonde
- Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Sarita Gupta
- Molecular Endocrinology and Stem Cell Research Laboratory, Department of Biochemistry, Faculty of Science, The M.S. University of Baroda, Vadodara, Gujarat, India.
| |
Collapse
|
192
|
Lorsung RM, Rosenblatt RB, Cohen G, Frank JA, Burks SR. Acoustic Radiation or Cavitation Forces From Therapeutic Ultrasound Generate Prostaglandins and Increase Mesenchymal Stromal Cell Homing to Murine Muscle. Front Bioeng Biotechnol 2020; 8:870. [PMID: 32850728 PMCID: PMC7399074 DOI: 10.3389/fbioe.2020.00870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 12/13/2022] Open
Abstract
Non-ablative ultrasound (US)-based techniques to improve targeted tropism of systemically infused cell therapies, particularly mesenchymal stromal cell (MSC), have gained attention in recent years. Mechanotransduction following targeted US sonications have been shown to modulate tissue microenvironments by upregulating cytokines, chemokines, and trophic factors in addition to vascular cell adhesion molecules (CAM) that are necessary to promote tropism of MSC. While numerous US treatment parameters have demonstrated increased MSC homing, it remains unclear how the different mechanical US forces [i.e., acoustic radiation forces (ARF) or cavitation forces] influence tissue microenvironments. This study sonicated murine muscle tissue with pulsed focused ultrasound (pFUS) at 0.5 or 1.15 MHz each over a range of US intensities. Following sonication, tissue was assayed for the prostaglandins (PG) PGH2 and PGE2 as indicators of microenvironmental changes that would support MSC tropism. PGH2 and PGE2 levels were correlated to physical pFUS parameters and acoustic emissions measured by hydrophone. While ARF (pFUS with absence of cavitation signatures) was sufficient to increase PGH2 and PGE2, non-linear curve fitting revealed a frequency-independent relationship between prostaglandin production and mechanical index (MI), which accounts for increased cavitation probabilities of lower frequencies. The prostaglandin data suggested molecular changes in muscle would be particularly sensitive to cavitation. Therefore, low-intensity pulsed ultrasound (LIPUS) at 1 MHz was administered with low ARF (MI = 0.2) in combination with intravenous (IV) infusions of microbubble (MB) contrast agents. This combination upregulated prostaglandins and CAM without ultrasound-mediated microbubble destruction and ultimately promoted tropism of IV-infused MSC. This study revealed that accentuating non-destructive MB cavitation by US using parameters similar to diagnostic US contrast imaging increased MSC homing. Such approaches are particularly attractive to overcome clinical translation barriers of many still-experimental US parameters used in previous stem cell tropism studies.
Collapse
Affiliation(s)
- Rebecca M Lorsung
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States
| | - Robert B Rosenblatt
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States
| | - Gadi Cohen
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States
| | - Joseph A Frank
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States.,Intramural Research Program, National Institute of Biomedical Imaging and Bioengineering, Bethesda, MD, United States
| | - Scott R Burks
- Frank Laboratory, Department of Radiology and Imaging Sciences, NIH Clinical Center, Bethesda, MD, United States
| |
Collapse
|
193
|
Chen L, Wang CT, Forsyth NR, Wu P. Transcriptional profiling reveals altered biological characteristics of chorionic stem cells from women with gestational diabetes. Stem Cell Res Ther 2020; 11:319. [PMID: 32711583 PMCID: PMC7382800 DOI: 10.1186/s13287-020-01828-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/30/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
Background Gestational diabetes (GDM) is a common complication of pregnancy. The impact of pregnancy complications on placental function suggests that extraembryonic stem cells in the placenta may also be affected during pregnancy. Neonatal tissue-derived stem cells, with the advantages of their differentiation capacity and non-invasive isolation processes, have been proposed as a promising therapeutic avenue for GDM management through potential cell therapy approaches. However, the influence of GDM on autologous stem cells remains unclear. Thus, studies that provide comprehensive understanding of stem cells isolated from women with GDM are essential to guide future clinical applications. Methods Human chorionic membrane-derived stem cells (CMSCs) were isolated from placentas of healthy and GDM pregnancies. Transcriptional profiling was performed by DNA microarray, and differentially regulated genes between GDM- and Healthy-CMSCs were used to analyse molecular functions, differentiation, and pathway enrichment. Altered genes and biological functions were validated via real-time PCR and in vitro assays. Results GDM-CMSCs displayed, vs. Healthy-CMSCs, 162 upregulated genes associated with increased migration ability, epithelial development, and growth factor-associated signal transduction while the 269 downregulated genes were strongly linked to angiogenesis and cellular metabolic processes. Notably, significantly reduced expression of detoxification enzymes belonging to the aldehyde dehydrogenase gene families (ALDH1A1/1A2, ALDH2, ALDH3) accounted for downregulation across several metabolic pathways. ALDH activity and inhibitor assays indicated that reduced gene expression of ALDHs affected ALDH enzymatic functions and resulted in oxidative stress dysregulation in GDM-CMSCs. Conclusion Our combined transcriptional analysis and in vitro functional characterisation have provided novel insights into fundamental biological differences in GDM- and Healthy-CMSCs. Enhanced mobility of GDM-CMSCs may promote MSC migration toward injured sites; however, impaired cellular metabolic activity may negatively affect any perceived benefit.
Collapse
Affiliation(s)
- Liyun Chen
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK.,Department of Radiation Oncology, Washington University School of Medicine, St Louis, MO, USA
| | - Chung-Teng Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Nicholas R Forsyth
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK. .,School of Life Science, Guangzhou University, Guangzhou, 510006, China.
| | - Pensee Wu
- Guy Hilton Research Centre, School of Pharmacy and Bioengineering, Keele University, Thornburrow Drive, Stoke-on-Trent, UK.,Academic Unit of Obstetrics and Gynaecology, University Hospital of North Midlands, Stoke-on-Trent, UK.,Keele Cardiovascular Research Group, School of Primary, Community, and Social Care, Keele University, Stoke-on-Trent, UK
| |
Collapse
|
194
|
Liu D, Cheng F, Pan S, Liu Z. Stem cells: a potential treatment option for kidney diseases. Stem Cell Res Ther 2020; 11:249. [PMID: 32586408 PMCID: PMC7318741 DOI: 10.1186/s13287-020-01751-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
The prevalence of kidney diseases is emerging as a public health problem. Stem cells (SCs), currently considered as a promising tool for therapeutic application, have aroused considerable interest and expectations. With self-renewal capabilities and great potential for proliferation and differentiation, stem cell therapy opens new avenues for the development of renal function and structural repair in kidney diseases. Mounting evidence suggests that stem cells exert a therapeutic effect mainly by replacing damaged tissues and paracrine pathways. The benefits of various types of SCs in acute kidney disease and chronic kidney disease have been demonstrated in preclinical studies, and preliminary results of clinical trials present its safety and tolerability. This review will focus on the stem cell-based therapy approaches for the treatment of kidney diseases, including various cell sources used, possible mechanisms involved, and outcomes that are generated so far, along with prospects and challenges in clinical application.
Collapse
Affiliation(s)
- Dongwei Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Fei Cheng
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Shaokang Pan
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China
| | - Zhangsuo Liu
- Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, 450052, People's Republic of China.
- Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, 450052, People's Republic of China.
- Core Unit of National Clinical Medical Research Center of Kidney Disease, Zhengzhou, 450052, People's Republic of China.
| |
Collapse
|
195
|
Maeda A. Recruitment of Mesenchymal Stem Cells to Damaged Sites by Plant-Derived Components. Front Cell Dev Biol 2020; 8:437. [PMID: 32582713 PMCID: PMC7295908 DOI: 10.3389/fcell.2020.00437] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are capable of differentiating into a limited number of diverse cells and secrete regenerative factors that contribute to the repair of damaged tissue. In response to signals emitted by tissue damage, MSCs migrate from the bone marrow and area surrounding blood vessels within tissues into the circulating blood, and accumulate at the site of damage. Hence, MSC transplantation therapy is beginning to be applied to the treatment of various intractable human diseases. Recent medicinal plants studies have shown that plant-derived components can activate cell functions. For example, several plant-derived components activate cell signaling pathways, such as phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK), enhance expression of the CXCL12/CXCR4 axis, stimulate extracellular matrix remodeling, and consequently, promote cell migration of MSCs. Moreover, plant-derived components have been shown to promote recruitment of MSCs to damaged tissues and enhance healing in disease models, potentially advancing their therapeutic use. This article provides a comprehensive review of several plant-derived components that activate MSC migration and homing to damaged sites to promote tissue repair.
Collapse
Affiliation(s)
- Akito Maeda
- Skin Regeneration, PIAS Collaborative Research, Graduate School of Pharmaceutical Science, Osaka University, Suita, Japan
| |
Collapse
|
196
|
Liu Y, Xu L, Hu L, Chen D, Yu L, Li X, Chen H, Zhu J, Chen C, Luo Y, Wang B, Li G. Stearic acid methyl ester promotes migration of mesenchymal stem cells and accelerates cartilage defect repair. J Orthop Translat 2020; 22:81-91. [PMID: 32440503 PMCID: PMC7231966 DOI: 10.1016/j.jot.2019.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/22/2019] [Accepted: 09/25/2019] [Indexed: 01/07/2023] Open
Abstract
Background Mesenchymal stem cells (MSCs) can be easily expanded without losing the ability of multilineage differentiation, including oesteogenic, chondrogenic and adipogenic differentiation. These characters make MSCs a promising cell resource for cartilage defect repair. MSCs could be recruited by inflammatory stimulation, then home to the injury tissues. However, its capacity of homing is extremely limited. Thus, it has become extremely necessary to develop an agent or a method, which can be used to enhance the efficiency of MSCs homing. This study investigates the effect of stearic acid methyl ester (SAME) on MSCs mobilisation and cartilage regeneration. Methods MSCs were isolated from femurs of Sprague-Dawley (SD) rats. MTT assay was used to detect effect of SAME on viability of MSCs. Transwell assay and wound healing assay were used to detect effect of SAME on migration of MSCs. RNA-seq, quantitative real-time PCR and western blot were performed to analyze the expression of RNAs and proteins. Colony forming assay and flow cytometry were used to evaluate the effect of SAME on MSCs mobilisation in vivo. A rat cartilage defect model was created to evaluate the effect of SAME on cartilage regeneration. Results We found that SAME could promote the migration of MSCs. Interestingly, we found SAME significantly increased the expression levels of Vav1 in MSCs. On the other hand, the enhanced migration ability of MSCs induced by SAME was retarded by Vav1 small interfering RNA (siRNA) and Rho-associated protein kinase 2 (ROCK2) inhibitor. In addition, we also checked the effect of SAME on mobilisation of MSCs in vivo. The results showed that SAME increased the number of MSCs in peripheral blood and enhanced the capacity of colony formation. Finally, using a cartilage defect model in rats, we found SAME could improve cartilage repair. Conclusion Our study demonstrates that SAME can enhance MSCs migration ability mainly through the Vav1/ROCK2 signaling pathway, which could contribute to the accelerated cartilage regeneration. The translational potential of this article These findings provide evidence that SAME could be used as a therapeutic reagent for MSCs mobilisation and cartilage regeneration.
Collapse
Affiliation(s)
- Yamei Liu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Liangliang Xu
- Key Laboratory of Orthopaedics & Traumatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Laboratory of Orthopaedics & Traumatology, Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Liuchao Hu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Dongfeng Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lijuan Yu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xican Li
- School of Chinese Herbal Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hongtai Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Junlang Zhu
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Chen Chen
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yiwen Luo
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Bin Wang
- School of Basic Medical Science, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.,Department of Traumatology, The Third Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong 510240, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China.,Stem Cells and Regenerative Medicine Laboratory, Lui Che Woo Institute of Innovative Medicine, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong, China
| |
Collapse
|
197
|
Zhu Q, Ding W, Li S, Li F, Hu Y, Ya S, Luo T, Gao D, Qiu B. On-Chip Sonoporation-Based Flow Cytometric Magnetic Labeling. ACS Biomater Sci Eng 2020; 6:3187-3196. [PMID: 33463290 DOI: 10.1021/acsbiomaterials.9b01986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tracing magnetically labeled cells with magnetic resonance imaging (MRI) is an emerging and promising approach to uncover in vivo behaviors of cells in cell therapy. Today, existing methods for the magnetic labeling of cells are cumbersome and time-consuming, which has greatly limited the progress of such studies on cell therapy. Thus, in this study, using the flow cytometric loading technology, we develop a sonoporation-based microfluidic chip (i.e., a microfluidic chip integrated with ultrasound; MCU), to achieve the safe, instant, convenient, and continuous magnetic labeling of cells. For the MCU we designed, a suitable group of operating conditions for safely and efficiently loading superparamagnetic iron oxide (SPIO) nanoparticles into DC2.4 cells was identified experimentally. Under the identified operating conditions, the DC2.4 cells could be labeled in approximately 2 min with high viability (94%) and a high labeling quantity of SPIO nanoparticles (19 pg of iron per cell). In addition, the proliferative functions of the cells were also well maintained after labeling. Furthermore, the in vivo imaging ability of the DC2.4 cells labeled using the MCU was verified by injecting the labeled cells into the leg muscle of the C57BL/6 mice. The results show that the excellent imaging outcome can be continuously achieved for 7 days at a density of 106 cells/mL. This work can provide insight for the design of magnetic cell labeling devices and promote the MRI-based study of cell therapies.
Collapse
Affiliation(s)
- Qianwei Zhu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shibo Li
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Fenfen Li
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yi Hu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shengnan Ya
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Tianzhi Luo
- Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Dayong Gao
- Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China.,Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
198
|
Assessment of proliferation, migration and differentiation potentials of bone marrow mesenchymal stem cells labeling with silica-coated and amine-modified superparamagnetic iron oxide nanoparticles. Cytotechnology 2020; 72:513-525. [PMID: 32394163 DOI: 10.1007/s10616-020-00397-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/04/2020] [Indexed: 10/24/2022] Open
Abstract
Superparamagnetic iron oxide nanoparticles have been widely used for cell labeling in preclinical and clinical studies, to improve labeling efficiency, particle conjugation and surface modifications are developed, but some modified SPIONs exert side-effect on physiological activity of cells, which cannot be served as ideal cell tracker. In this study, amine-modified silica-coated SPIO (SPIO@SiO2-NH2, SPIO@S-N) nanoparticles were used to label bone marrow derived mesenchymal stem cells (BM-MSCs), then the stem cell potentials were evaluated. It was found BM-MSCs could be efficiently labeled by SPIO@S-N nanoparticles. After labeling, the BM-MSCs viability kept well and the migration ability increased, but the osteogenesis and adipogenesis potentials were not impaired. In steroid associated osteonecrosis (SAON) bone defect model, stem cell implantation was performed by injection of SPIO@S-N labeled BM-MSCs into marrow cavity locally, it was found the SPIO positive cells homed to the periphery of defect region in control group, but were recruited to the defect region in poly lactic-coglycolic acid/tricalcium phosphate (PLGA/TCP) scaffold implantation group. In conclusion, SPIO@S-N nanoparticles promoted migration while retained proliferation and differentiation ability of BM-MSCs, implying this kind of nanoparticles could be served not only an ideal tracking marker but also an accelerator for stem cell homing during tissue repair.
Collapse
|
199
|
Zhou L, Yau A, Zhang W, Chen Y. Fabrication of a Biomimetic Nano-Matrix with Janus Base Nanotubes and Fibronectin for Stem Cell Adhesion. J Vis Exp 2020. [PMID: 32449715 DOI: 10.3791/61317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A biomimetic NM was developed to serve as a tissue-engineering biological scaffold, which can enhance stem cell anchorage. The biomimetic NM is formed from JBNTs and FN through self-assembly in an aqueous solution. JBNTs measure 200-300 µm in length with inner hydrophobic hollow channels and outer hydrophilic surfaces. JBNTs are positively charged and FNs are negatively charged. Therefore, when injected into a neutral aqueous solution, they are bonded together via noncovalent bonding to form the NM bundles. The self-assembly process is completed within a few seconds without any chemical initiators, heat source, or UV light. When the pH of the NM solution is lower than the isoelectric point of FNs (pI 5.5-6.0), the NM bundles will self-release due to the presence of positively charged FN. NM is known to mimic the extracellular matrix (ECM) morphologically and hence, can be used as an injectable scaffold, which provides an excellent platform to enhance hMSC adhesion. Cell density analysis and fluorescence imaging experiments indicated that the NMs significantly increased the anchorage of hMSCs compared to the negative control.
Collapse
Affiliation(s)
- Libo Zhou
- Department of Biomedical Engineering, University of Connecticut
| | - Anne Yau
- Department of Biomedical Engineering, University of Connecticut
| | - Wuxia Zhang
- Department of Biomedical Engineering, University of Connecticut
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut;
| |
Collapse
|
200
|
Fahmy HM, Abd El-Daim TM, Mohamed HAAENE, Mahmoud EAAEQ, Abdallah EAS, Mahmoud Hassan FEZ, Maihop DI, Amin AEAE, Mustafa ABE, Hassan FMA, Mohamed DME, Shams-Eldin EMM. Multifunctional nanoparticles in stem cell therapy for cellular treating of kidney and liver diseases. Tissue Cell 2020; 65:101371. [PMID: 32746989 DOI: 10.1016/j.tice.2020.101371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/13/2022]
Abstract
The review gives an overview of the mechanisms of internalization and distribution of nanoparticles in stem cells this is achieved via providing analysis of the methods used in exploring the migration routes of stem cells, and their reciprocity. In addition, exploring microenvironment target in the body, and tracking the fate of exogenously transplanted stem cells by using innovative and non-invasive techniques will also be discussed. Such techniques like magnetic resonance imaging (MRI), multimodality tracking, optical imaging, and nuclear medicine imaging, which were designed to follow up stem cell migration. This review will explain the various distinctive strategies to enhance homing of labeled stem cells with nanoparticles into damaged hepatic and renal tissues, this purpose was obtained by inducing a specific gene into stem cells, various chemokines, and applying an external magnetic field. Also, this work illustrates how to improve nanoparticles uptake by using transfection agents or covalently binding an exogenous protein (i.e., Human immunodeficiency virus-Tat protein) or conjugating a receptor-specific monoclonal antibody or make modifications to iron coat. It contains stem cell labeling methods such as extracellular labeling and internalization approaches. Ultimately, our review indicates trails of researchers in nanoparticles utilization in stem cell therapy in both kidney and liver diseases.
Collapse
|