151
|
Jiang L, Jiang Y, Li L, Zheng K, Yu S, Li J, Yuan C, Huang M. A supramolecular nanocarrier for efficient cancer imaging and therapy by targeting at matriptase. J Control Release 2021; 334:153-163. [PMID: 33894302 DOI: 10.1016/j.jconrel.2021.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/30/2021] [Accepted: 04/18/2021] [Indexed: 11/26/2022]
Abstract
Human serum albumin (HSA), a versatile protein carrier for endogenous and exogenous compounds, is a proven macromolecule to form nanoparticles for drug delivery. To render HSA carrier specificity toward tumors, we designed a recombinant HSA protein fused with Kunitz domain 1 (KD1) of hepatocyte growth factor activator inhibitor type 1, which targets to matriptase, a type II transmembrane serine protease overexpressed on tumor cell surface. The carrier was thus named matriptase targeting carrier (MTC). In this study, we showed that MTC displayed the same inhibitory potency as the KD1 againast matriptase, demonstrating the HSA fusion did not affect the KD1 targeting potency. For tumor optical imaging and ablation, MTC was prepared as nanoparticle drug carrier by a novel method via denaturation and refolding to incorporate photosensitizer, CPZ. This matriptase targeting nanoparticles, CPZ:MTC@NPs, showed high specificity and cytotoxicity for matriptase-overexpressing cancer cells in vitro. In tumor-bearing mice, CPZ:MTC@NPs demonstrated selective accumulation and high retention in matriptase-overexpressing tumor. Under illumination, the nanoparticles significantly reduced tumor volumes (79.6%) as compared to saline control. These findings showed that this supramolecular nanocarrier, a new type of tumor targeting self-assembly nanoparticle, had potential as a highly efficient tumor targeting drug carrier for imaging and therapy.
Collapse
Affiliation(s)
- Libin Jiang
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Yunbin Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Linlin Li
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Ke Zheng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061, China
| | - Shujuan Yu
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Jinyu Li
- College of Chemistry, Fuzhou University, Fujian 350116, China
| | - Cai Yuan
- College of Biological Science and Engineering, Fuzhou University, Fujian 350116, China.
| | - Mingdong Huang
- College of Chemistry, Fuzhou University, Fujian 350116, China.
| |
Collapse
|
152
|
Xue Y, Gao Y, Meng F, Luo L. Recent progress of nanotechnology-based theranostic systems in cancer treatments. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0510. [PMID: 33861527 PMCID: PMC8185860 DOI: 10.20892/j.issn.2095-3941.2020.0510] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/30/2020] [Indexed: 12/19/2022] Open
Abstract
Theranostics that integrates therapy and diagnosis in one system to achieve accurate cancer diagnosis and treatment has attracted tremendous interest, and has been recognized as a potential breakthrough in overcoming the challenges of conventional oncotherapy. Nanoparticles are ideal candidates as carriers for theranostic agents, which is attributed to their extraordinary physicochemical properties, including nanoscale sizes, functional properties, prolonged blood circulation, active or passive tumor targeting, specific cellular uptake, and in some cases, excellent optical properties that ideally meet the needs of phototherapy and imaging at the same time. Overall, with the development of nanotechnology, theranostics has become a reality, and is now in the transition stage of "bench to bedside." In this review, we summarize recent progress on nanotechnology-based theranostics, i.e., nanotheranostics, that has greatly assisted traditional therapies, and has provided therapeutic strategies emerging in recent decades, as well as "cocktail" theranostics mixing various treatment modalities.
Collapse
Affiliation(s)
- Ying Xue
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuting Gao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518057, China
| |
Collapse
|
153
|
Neha Desai, Momin M, Khan T, Gharat S, Ningthoujam RS, Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin Drug Deliv 2021; 18:1261-1290. [PMID: 33793359 DOI: 10.1080/17425247.2021.1912008] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The targeted delivery of anticancer agents to tumor is a major challenge because most of the drugs show off-target effect resulting in nonspecific cell death. Multifunctionalized metallic nanoparticles (NPs) are explored as new carrier system in the era of cancer therapeutics. Researchers investigated the potential of metallic NPs to target tumor cells by active and passive mechanisms, thereby reducing off-target effects of anticancer agents. Moreover, photocatalytic activity of upconversion nanoparticles (UCNPs) and the enhanced permeation and retention (EPR) effect have also gained wide potential in cancer treatment. Recent advancement in the field of nanotechnology highlights their potency for cancer therapy. AREAS COVERED This review summarizes the types of gold and silver metallic NPs with targeting mechanisms and their potentiality in cancer therapy. EXPERT OPINION Recent advances in the field of nanotechnology for cancer therapy offer high specificity and targeting efficiency. Targeting tumor cells through mechanistic pathways using metallic NPs for the disruption/alteration of molecular profile and survival rate of the tumor cells has led to an effective approach for cancer therapeutics. This alteration in the survival rate of the tumor cells might decrease the proliferation thereby resulting in more efficient management in the treatment of cancer.
Collapse
Affiliation(s)
- Neha Desai
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Munira Momin
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | - Sankalp Gharat
- Department of Pharmaceutics, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, University of Mumbai, Mumbai, India
| | | | - Abdelwahab Omri
- The Novel Drug and Vaccine Delivery Systems Facility, Department of Chemistry and Biochemistry, Laurentian University, Sudbury, Canada
| |
Collapse
|
154
|
Yu Y, Ngo HV, Jin G, Tran PHL, Tran TTD, Nguyen VH, Park C, Lee BJ. Double-Controlled Release of Poorly Water-Soluble Paliperidone Palmitate from Self-Assembled Albumin-Oleic Acid Nanoparticles in PLGA in situ Forming Implant. Int J Nanomedicine 2021; 16:2819-2831. [PMID: 33888982 PMCID: PMC8056066 DOI: 10.2147/ijn.s302514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Purpose To investigate the effects of solvents on the formation of self-assembled nanonization of albumin-oleic acid conjugates (AOCs) using a solvent exchange mechanism for the construction of in situ forming implants (ISFI). Methods A poorly water-soluble drug, paliperidone palmitate (PPP), was chosen as the model drug. AOC was synthesized with the 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC) reaction. Dichloromethane, tetrahydrofuran, ethanol, N-methyl-2-pyrrolidone, dimethyl sulfoxide, and deionized water were selected to investigate the formation of self-assembled AOC nanoparticles (AONs). The volume ratios of organic solvents against water could determine the miscibility, injectability, and in situ nanonizing capability without aggregation. Results As the polarity of the organic solvents increased, the AONs exhibited a spherical shape, and the larger the volume of the solvent, the smaller the size of the AONs. To use AOC in ISFI for controlled release of PPP, poly(d,l-lactide-co-glycolide) (PLGA) was combined with the AOC in 2 mL of N-methyl-2-pyrrolidone and water solution (1.8/0.2 ratio). The release rates of all formulations exhibited similar curve patterns overall but were more controlled in decreasing order as follows: AOC, PLGA, and AOC/PLGA for 14 days. Conclusion A combined formulation of AOC and PLGA was found to effectively control the initial burst release of the drug.
Collapse
Affiliation(s)
- Yongjun Yu
- College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Hai V Ngo
- College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | - Gang Jin
- College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| | | | - Thao T D Tran
- Institute of Research and Development, Duy Tan University, Danang, 550000, Vietnam.,The Faculty of Pharmacy, Duy Tan University, Danang, 550000, Vietnam
| | - Van Hong Nguyen
- Pharmaceutical Engineering Laboratory, Biomedical Engineering Department, International University, Vietnam National University, Ho Chi Minh City, 70000, Vietnam
| | - Chulhun Park
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon, 16499, Republic of Korea
| |
Collapse
|
155
|
Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int J Biol Macromol 2021; 182:115-128. [PMID: 33836188 DOI: 10.1016/j.ijbiomac.2021.04.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 01/02/2023]
Abstract
With people's increasing awareness of diseases treatment, the researchers began to focus on drug delivery to the exact site of action at the optimal rate. Some researchers have proved that many nanostructures loaded with drugs are significantly better than conventional nanostructures. However, the materials from which the nanostructure determines its performance. To use it as a pharmaceutical ingredient, it must meet strict safety regulatory standards worldwide. Therefore, people's attention has paid to easily available natural substances. As far as we know, bioactive polysaccharides are excellent candidates for realizing these purposes. To be precise, due to the natural availability of polysaccharides, it has been widely used in the research of Nano-biocarriers loaded with drugs. Based on the above analysis, the nanomaterials developed through the laboratory have great potential for upgrading to market products. Therefore, it is of great significance to review the latest progress of polysaccharide-based Nano-biocarriers in drug delivery and their application in diseases treatment. In this work, we focused on the preparation of polysaccharides-based Nano-biocarriers, commonly used polysaccharides for preparing Nano-biocarriers, and drugs loaded on polysaccharides-based Nano-biocarriers to treat diseases. Shortly, polysaccharide-based Nano-biocarriers will be increasingly used in drug delivery and treatment of diseases.
Collapse
|
156
|
Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed Engl 2021; 60:12446-12454. [DOI: 10.1002/anie.202100369] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Tsung‐Che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Chemical Laboratory, A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russia
| |
Collapse
|
157
|
Chang T, Vong K, Yamamoto T, Tanaka K. Prodrug Activation by Gold Artificial Metalloenzyme‐Catalyzed Synthesis of Phenanthridinium Derivatives via Hydroamination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tsung‐Che Chang
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Tomoya Yamamoto
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry Laboratory RIKEN Cluster for Pioneering Research, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- GlycoTargeting Research Laboratory RIKEN Baton Zone Program, RIKEN 2-1 Hirosawa Wako-shi Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology 2-12-1 Ookayama Meguro-ku Tokyo 152-8552 Japan
- Biofunctional Chemical Laboratory, A. Butlerov Institute of Chemistry Kazan Federal University 18 Kremlyovskaya Street 420008 Kazan Russia
| |
Collapse
|
158
|
Wang W, Wang J, Ding Y. Gold nanoparticle-conjugated nanomedicine: design, construction, and structure-efficacy relationship studies. J Mater Chem B 2021; 8:4813-4830. [PMID: 32227036 DOI: 10.1039/c9tb02924a] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In comparison with conventional therapies, nanomedicine shows prominent clinical performance, with better therapeutic efficacy and less off-target toxicity. As an important component of nanomedicine, gold nanoparticle (GNP)-based nanodrugs have attracted considerable interest because of their excellent performance given by the unique structure. Although no pharmaceutical formulations of GNP-associated nanodrugs have been officially marketed yet, a substantial amount of research on this aspect is being carried out, producing numerous GNP-based drug delivery systems with potential clinical applications. In this review, we present an overview of our progress on GNP-based nanodrugs combined with other achievements in biomedical applications, including drug-conjugated GNPs prepared for disease treatments and specific tumour targeting, structure-efficacy relationship (SER) studies on GNP-conjugated nanodrugs, and therapeutic hybrid nanosystems composed of GNPs. In addition, we also put forward some proposals to guide future work in developing GNP-based nanomedicine. We hope that this review will offer some useful experience for our peers and GNP-based nanodrugs will be utilized in the clinic with further persistent efforts.
Collapse
Affiliation(s)
- Wenjie Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jing Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
159
|
Spada A, Emami J, Tuszynski JA, Lavasanifar A. The Uniqueness of Albumin as a Carrier in Nanodrug Delivery. Mol Pharm 2021; 18:1862-1894. [PMID: 33787270 DOI: 10.1021/acs.molpharmaceut.1c00046] [Citation(s) in RCA: 263] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Albumin is an appealing carrier in nanomedicine because of its unique features. First, it is the most abundant protein in plasma, endowing high biocompatibility, biodegradability, nonimmunogenicity, and safety for its clinical application. Second, albumin chemical structure and conformation allows interaction with many different drugs, potentially protecting them from elimination and metabolism in vivo, thus improving their pharmacokinetic properties. Finally, albumin can interact with receptors overexpressed in many diseased tissues and cells, providing a unique feature for active targeting of the disease site without the addition of specific ligands to the nanocarrier. For this reason, albumin, characterized by an extended serum half-life of around 19 days, has the potential of promoting half-life extension and targeted delivery of drugs. Therefore, this article focuses on the importance of albumin as a nanodrug delivery carrier for hydrophobic drugs, taking advantage of the passive as well as active targeting potential of this nanocarrier. Particular attention is paid to the breakthrough NAB-Technology, with emphasis on the advantages of Nab-Paclitaxel (Abraxane), compared to the solvent-based formulations of Paclitaxel, i.e., CrEL-paclitaxel (Taxol) in a clinical setting. Finally, the role of albumin in carrying anticancer compounds is depicted, with a particular focus on the albumin-based formulations that are currently undergoing clinical trials. The article sheds light on the power of an endogenous substance, such as albumin, as a drug delivery system, signifies the importance of the drug vehicle in drug performance in the biological systems, and highlights the possible future trends in the use of this drug delivery system.
Collapse
Affiliation(s)
- Alessandra Spada
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Jaber Emami
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada.,Department of Pharmaceutics, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Jack A Tuszynski
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada.,DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi 24, Turin 10129, Italy
| | - Afsaneh Lavasanifar
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
160
|
Han W, Du Y, Song M, Sun K, Xu B, Yan F, Tian W. Fluorescent nanorods based on 9,10-distyrylanthracene (DSA) derivatives for efficient and long-term bioimaging. J Mater Chem B 2021; 8:9544-9554. [PMID: 33000780 DOI: 10.1039/c9tb02883h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fluorescent nanoparticles based on 9,10-distyrylanthracene (DSA) derivatives (4,4'-((1E,1'E)-anthracene-9,10-diylbis(ethene-2,1-diyl))bis(N,N-dimethylaniline) (NDSA) and 4,4'-((1E,1'E)-anthracene-9,10-diylbis(ethene-2,1-diyl))dibenzonitrile (CNDSA)) were prepared using an ultrasound aided nanoprecipitation method. The morphologies of the fluorescent nanoparticles could be controlled by adjusting the external ultrasonication time. NDSA or CNDSA could form spherical nanodots (NDSA NDs, CNDSA NDs) in a THF-H2O mixture with an 80% or 70% water fraction when the ultrasonication time was 30 s. When the ultrasonication time was prolonged to 10 min, NDSA and CNDSA could assemble into nanorods (NDSA NRs, CNDSA NRs). Meanwhile, the sizes of NDSA NRs and CNDSA NRs could be controlled by adjusting the water content in the mixture. As the water fraction was increased from 60% to 80%, the sizes of NDSA and CNDSA nanorods or nanodots reduced from 238.4 nm to 140.3 nm, and 482 nm to 198.4 nm, respectively. When the water fraction was up to 90%, irregular morphologies of NDSA and CNDSA could be observed. The nanoparticles exhibited intense fluorescence emission, good anti-photobleaching properties, as well as excellent stability and biocompatibility. In vitro cell imaging experiments indicated that the nanorods prepared by this simple method had the potential to be used for efficient and noninvasive long-term bioimaging.
Collapse
Affiliation(s)
- Wenkun Han
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.
| | | | | | | | | | | | | |
Collapse
|
161
|
Controlled Formation of a Protein Corona Composed of Denatured BSA on Upconversion Nanoparticles Improves Their Colloidal Stability. MATERIALS 2021; 14:ma14071657. [PMID: 33800633 PMCID: PMC8037850 DOI: 10.3390/ma14071657] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/04/2021] [Accepted: 03/22/2021] [Indexed: 01/13/2023]
Abstract
In the natural fluidic environment of a biological system, nanoparticles swiftly adsorb plasma proteins on their surface forming a “protein corona”, which profoundly and often adversely affects their residence in the systemic circulation in vivo and their interaction with cells in vitro. It has been recognized that preformation of a protein corona under controlled conditions ameliorates the protein corona effects, including colloidal stability in serum solutions. We report on the investigation of the stabilizing effects of a denatured bovine serum albumin (dBSA) protein corona formed on the surface of upconversion nanoparticles (UCNPs). UCNPs were chosen as a nanoparticle model due to their unique photoluminescent properties suitable for background-free biological imaging and sensing. UCNP surface was modified with nitrosonium tetrafluoroborate (NOBF4) to render it hydrophilic. UCNP-NOBF4 nanoparticles were incubated in dBSA solution to form a dBSA corona followed up by lyophilization. As produced dBSA-UCNP-NOBF4 demonstrated high photoluminescence brightness, sustained colloidal stability after long-term storage and the reduced level of serum protein surface adsorption. These results show promise of dBSA-based nanoparticle pretreatment to improve the amiability to biological environments towards theranostic applications.
Collapse
|
162
|
Taguchi K, Okamoto Y, Matsumoto K, Otagiri M, Chuang VTG. When Albumin Meets Liposomes: A Feasible Drug Carrier for Biomedical Applications. Pharmaceuticals (Basel) 2021; 14:ph14040296. [PMID: 33810483 PMCID: PMC8065628 DOI: 10.3390/ph14040296] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Albumin, the most abundant protein in plasma, possesses some inherent beneficial structural and physiological characteristics that make it suitable for use as a drug delivery agent, such as an extraordinary drug-binding capacity and long blood retention, with a high biocompatibility. The use of these characteristics as a nanoparticle drug delivery system (DDS) offers several advantages, including a longer circulation time, lower toxicity, and more significant drug loading. To date, many innovative liposome preparations have been developed in which albumin is involved as a DDS. These novel albumin-containing liposome preparations show superior deliverability for genes, hydrophilic/hydrophobic substances and proteins/peptides to the targeting area compared to original liposomes by virtue of their high biocompatibility, stability, effective loading content, and the capacity for targeting. This review summarizes the current status of albumin applications in liposome-based DDS, focusing on albumin-coated liposomes and albumin-encapsulated liposomes as a DDS carrier for potential medical applications.
Collapse
Affiliation(s)
- Kazuaki Taguchi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (K.M.)
| | - Yuko Okamoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan; (Y.O.); (M.O.)
| | - Kazuaki Matsumoto
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan; (K.T.); (K.M.)
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan; (Y.O.); (M.O.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 862-0082, Japan
| | - Victor Tuan Giam Chuang
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Correspondence:
| |
Collapse
|
163
|
Bessone F, Dianzani C, Argenziano M, Cangemi L, Spagnolo R, Maione F, Giraudo E, Cavalli R. Albumin nanoformulations as an innovative solution to overcome doxorubicin chemoresistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:192-207. [PMID: 35582009 PMCID: PMC9019188 DOI: 10.20517/cdr.2020.65] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023]
Abstract
Aim: Resistance to chemotherapy is a major limiting factor that hamper the effectiveness of anticancer therapies. Doxorubicin is an antineoplastic agent used in the treatment of a wide range of cancers. However, it presents several limitations such as dose-dependent cardiotoxicity, lack of selectivity for tumor cells, and induced cell resistance. Nanotechnology represents a promising strategy to avoid these drawbacks. In this work, new albumin-based nanoparticles were formulated for the intracellular delivery of doxorubicin with the aim to overcome cancer drug resistance. Methods: Glycol chitosan-coated and uncoated albumin nanoparticles were prepared with a tuned coacervation method. The nanoformulations were in vitro characterized evaluating the physicochemical parameters, morphology, and in vitro release kinetics. Biological assays were performed on A2780res and EMT6 cells from human ovarian carcinoma and mouse mammary cell lines resistant for doxorubicin, respectively. Results: Cell viability assays showed that nanoparticles have higher cytotoxicity than the free drug. Moreover, at low concentrations, both doxorubicin-loaded nanoparticles inhibited the cell colony formation in a greater extent than drug solution. In addition, the cell uptake of the different formulations was investigated by confocal microscopy and by the HPLC determination of doxorubicin intracellular accumulation. The nanoparticles were rapidly internalized in greater extent compared to the free drug. Conclusion: Based on these results, doxorubicin-loaded albumin nanoparticles might represent a novel platform to overcome the mechanism of drug resistance in cancer cell lines and improve the drug efficacy.
Collapse
Affiliation(s)
- Federica Bessone
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy.,Laboratory of Tumor microenvironment, Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Italy
| | - Chiara Dianzani
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Luigi Cangemi
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Rita Spagnolo
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| | - Federica Maione
- Laboratory of Tumor microenvironment, Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Italy
| | - Enrico Giraudo
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy.,Laboratory of Tumor microenvironment, Candiolo Cancer Institute - FPO, IRCCS, Candiolo 10060, Italy
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Turin 10125, Italy
| |
Collapse
|
164
|
Borlan R, Focsan M, Maniu D, Astilean S. Interventional NIR Fluorescence Imaging of Cancer: Review on Next Generation of Dye-Loaded Protein-Based Nanoparticles for Real-Time Feedback During Cancer Surgery. Int J Nanomedicine 2021; 16:2147-2171. [PMID: 33746512 PMCID: PMC7966856 DOI: 10.2147/ijn.s295234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/13/2021] [Indexed: 12/13/2022] Open
Abstract
The use of fluorescence imaging technique for visualization, resection and treatment of cancerous tissue, attained plenty of interest once the promise of whole body and deep tissue near-infrared (NIR) imaging emerged. Why is NIR so desired? Contrast agents with optical properties in the NIR spectral range offer an upgrade for the diagnosis and treatment of cancer, by dint of the deep tissue penetration of light in the NIR region of the electromagnetic spectrum, also known as the optical window in biological tissue. Thus, the development of a new generation of NIR emitting and absorbing contrast agents able to overcome the shortcomings of the basic free dye administration is absolutely essential. Several examples of nanoparticles (NPs) have been successfully implemented as carriers for NIR dye molecules to the tumour site owing to their prolonged blood circulation time and enhanced accumulation within the tumour, as well as their increased fluorescence signal relative to free fluorophore emission and active targeting of cancerous cells. Due to their versatile structure, good biocompatibility and capability to efficiently load dyes and bioconjugate with diverse cancer-targeting ligands, the research area of developing protein-based NPs encapsulated or conjugated with NIR dyes is highly promising but still in its infancy. The current review aims to provide an up-to-date overview on the biocompatibility, specific targeting and versatility offered by protein-based NPs loaded with different classes of NIR dyes as next-generation fluorescent agents. Moreover, this study brings to light the newest and most relevant advances involving the state-of-the-art NIR fluorescent agents for the real-time interventional NIR fluorescence imaging of cancer in clinical trials.
Collapse
Affiliation(s)
- Raluca Borlan
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Monica Focsan
- Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Dana Maniu
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| | - Simion Astilean
- Biomolecular Physics Department, Faculty of Physics, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania.,Nanobiophotonics and Laser Microspectroscopy Centre, Interdisciplinary Research Institute in Bio-Nano-Sciences, Babeș-Bolyai University, Cluj-Napoca, Cluj, Romania
| |
Collapse
|
165
|
Wang Z, Chen M, Liu JJ, Chen RH, Yu Q, Wang GM, Nie LM, Huang WH, Zhang GJ. Human Serum Albumin Decorated Indocyanine Green Improves Fluorescence-Guided Resection of Residual Lesions of Breast Cancer in Mice. Front Oncol 2021; 11:614050. [PMID: 33763353 PMCID: PMC7983674 DOI: 10.3389/fonc.2021.614050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/28/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Achieving negative resection margin is critical but challenging in breast-conserving surgery. Fluorescence-guided surgery allows the surgeon to visualize the tumor bed in real-time and to facilitate complete resection. We envisioned that intraoperative real-time fluorescence imaging with a human serum albumin decorated indocyanine green probe could enable complete surgical removal of breast cancer in a mouse model. Methods We prepared the probe by conjugating indocyanine green (ICG) with human serum albumin (HSA). In vitro uptake of the HSA-ICG probe was compared between human breast cancer cell line MDA-MB-231 and normal breast epithelial cell line MCF 10A. In vivo probe selectivity for tumors was examined in nude mice bearing MDA-MB-231-luc xenografts and the FVB/N-Tg (MMTV-PyMT) 634Mul/J mice model with spontaneous breast cancer. A positive-margin resection mice model bearing MDA-MB-231-luc xenograft was established and the performance of the probe in assisting surgical resection of residual lesions was examined. Results A significantly stronger fluorescence intensity was detected in MDA-MB-231 cells than MCF 10A cells incubated with HSA-ICG. In vivo fluorescence imaging showed that HSA-ICG had an obvious accumulation at tumor site at 24 h with tumor-to-normal tissue ratio of 8.19 ± 1.30. The same was true in the transgenic mice model. The fluorescence intensity of cancer tissues was higher than that of non-cancer tissues (58.53 ± 18.15 vs 32.88 ± 11.34). During the surgical scenarios, the residual tumors on the surgical bed were invisible with the naked eye, but were detected and resected with negative margin under HSA-ICG guidance in all the mice (8/8). Recurrence rate among mice that underwent resection with HSA-ICG (0/8) was significantly lower than the rates among mice with ICG (4/8), as well as the control group under white light (7/7). Conclusions This study suggests that real-time in vivo visualization of breast cancer with an HSA-ICG fluorescent probe facilitates complete surgical resection of breast cancer in a mouse xenograft model.
Collapse
Affiliation(s)
- Zun Wang
- ChangJiang Scholar's Laboratory, Medical College, Shantou University, Shantou, China
| | - Min Chen
- Clinical Central Research Core, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China.,Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China
| | - Jing-Jing Liu
- Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Rong-He Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Qian Yu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Gui-Mei Wang
- Department of Pathology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Ming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Wen-He Huang
- Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Guo-Jun Zhang
- ChangJiang Scholar's Laboratory, Medical College, Shantou University, Shantou, China.,Key Laboratory for Endocrine-Related Cancer Precision Medicine of Xiamen, Xiang'an Hospital of Xiamen University, Xiamen, China.,Cancer Research Center, School of Medicine, Xiamen University, Xiamen, China.,Cancer Center & Department of Breast and Thyroid Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
166
|
Guo D, Ji X, Luo J. Rational nanocarrier design towards clinical translation of cancer nanotherapy. Biomed Mater 2021; 16. [DOI: 10.1088/1748-605x/abe35a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023]
|
167
|
Melo BL, Lima-Sousa R, Alves CG, Ferreira P, Moreira AF, Correia IJ, de Melo-Diogo D. Sulfobetaine methacrylate-albumin-coated graphene oxide incorporating IR780 for enhanced breast cancer phototherapy. Nanomedicine (Lond) 2021; 16:453-464. [PMID: 33660547 DOI: 10.2217/nnm-2020-0460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: Enhance the colloidal stability and photothermal capacity of graphene oxide (GO) by functionalizing it with sulfobetaine methacrylate (SBMA)-grafted bovine serum albumin (BSA; i.e., SBMA-g-BSA) and by loading IR780, respectively. Materials & methods: SBMA-g-BSA coating and IR780 loading into GO was achieved through a simple sonication process. Results: SBMA-g-BSA-functionalized GO (SBMA-BSA/GO) presented an adequate size distribution and cytocompatibility. When in contact with biologically relevant media, the size of the SBMA-BSA/GO only increased by 8%. By loading IR780 into SBMA-BSA/GO, its photothermal capacity increased by twofold. The combination of near infrared light with SBMA-BSA/GO did not induce photocytotoxicity on breast cancer cells. In contrast, the interaction of IR780-loaded SBMA-BSA/GO with near infrared light caused the ablation of cancer cells. Conclusion: IR780-loaded SBMA-BSA/GO displayed an improved colloidal stability and phototherapeutic capacity.
Collapse
Affiliation(s)
- Bruna L Melo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Rita Lima-Sousa
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Cátia G Alves
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Paula Ferreira
- CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, Coimbra 3030-790, Portugal
| | - André F Moreira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| | - Ilídio J Correia
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal.,CIEPQPF - Departamento de Engenharia Química, Universidade de Coimbra, Rua Silvio Lima, Coimbra 3030-790, Portugal
| | - Duarte de Melo-Diogo
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Avenida Infante D. Henrique, Covilhã 6200-506, Portugal
| |
Collapse
|
168
|
Lotfalian S, Nematollahzadeh A, Ghasemi S. Hierarchically structured protein-based hollow-nanospheres for drug delivery. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104821] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
169
|
Curcio M, Diaz-Gomez L, Cirillo G, Nicoletta FP, Leggio A, Iemma F. Dual-Targeted Hyaluronic Acid/Albumin Micelle-Like Nanoparticles for the Vectorization of Doxorubicin. Pharmaceutics 2021; 13:pharmaceutics13030304. [PMID: 33652648 PMCID: PMC7996918 DOI: 10.3390/pharmaceutics13030304] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Drug targeting of tumor cells is one of the great challenges in cancer therapy; nanoparticles based on natural polymers represent valuable tools to achieve this aim. The ability to respond to environmental signals from the pathological site (e.g., altered redox potential), together with the specific interaction with membrane receptors overexpressed on cancer cells membrane (e.g., CD44 receptors), represent the main features of actively targeted nanoparticles. In this work, redox-responsive micelle-like nanoparticles were prepared by self-assembling of a hyaluronic acid–human serum albumin conjugate containing cystamine moieties acting as a functional spacer. The conjugation procedure consisted of a reductive amination step of hyaluronic acid followed by condensation with albumin. After self-assembling, nanoparticles with a mean size of 70 nm and able to be destabilized in reducing media were obtained. Doxorubicin-loaded nanoparticles modulated drug release rate in response to different redox conditions. Finally, the viability and uptake experiments on healthy (BALB-3T3) and metastatic cancer (MDA-MB-231) cells proved the potential applicability of the proposed system as a drug vector in cancer therapy.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (G.C.); (F.P.N.); (A.L.); (F.I.)
- Correspondence: ; Tel.: +39-0984493011
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma Group, Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (G.C.); (F.P.N.); (A.L.); (F.I.)
| | - Fiore Pasquale Nicoletta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (G.C.); (F.P.N.); (A.L.); (F.I.)
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (G.C.); (F.P.N.); (A.L.); (F.I.)
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende (CS), Italy; (G.C.); (F.P.N.); (A.L.); (F.I.)
| |
Collapse
|
170
|
Albumin-stabilized layered double hydroxide nanoparticles synergized combination chemotherapy for colorectal cancer treatment. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102369. [PMID: 33636347 DOI: 10.1016/j.nano.2021.102369] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/19/2020] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
Combination chemotherapy with two or more complimentary drugs has been widely used for clinical cancer treatment. However, the efficacy and side effects of combination chemotherapy still remain a challenge. Here, we constructed an albumin-stabilized layered double hydroxide nanoparticle (BLDH) system to simultaneously load and deliver two widely used anti-tumor drugs, i.e. 5-fluorouracil (5FU) and albumin-bound PTX (Abraxane, ABX) for colorectal cancer treatment. The cellular uptake test has revealed that 5FU-ABX encapsulated BLDH (BLDH/5FU-ABX) nanoparticles were efficiently internalized by the colorectal cancer cell (HCT-116), synergistically inducing apoptosis of colon cancer cells. The in vivo test has demonstrated that BLDH/5FU-ABX nanomedicine significantly inhibited the tumor growth after three intravenous injections, without any detectable side effects. The enhanced therapeutic effectiveness is attributed to efficient accumulation of BLDH/5FU-ABX at tumor sites and acid-sensitive release of co-loaded drugs. Thus, combination chemotherapy based on BLDH/5FU-ABX nanomedicine would be a new strategy for colorectal cancer treatment.
Collapse
|
171
|
Saif B, Yang P. Metal-Protein Hybrid Materials with Desired Functions and Potential Applications. ACS APPLIED BIO MATERIALS 2021; 4:1156-1177. [PMID: 35014472 DOI: 10.1021/acsabm.0c01375] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metal nanohybrids are fast emerging functional nanomaterials with advanced structures, intriguing physicochemical properties, and a broad range of important applications in current nanoscience research. Significant efforts have been devoted toward design and develop versatile metal nanohybrid systems. Among numerous biological components, diverse proteins offer avenues for making advanced multifunctional systems with unusual properties, desired functions, and potential applications. This review discusses the rational design, properties, and applications of metal-protein nanohybrid materials fabricated from proteins and inorganic components. The construction of functional biomimetic nanohybrid materials is first briefly introduced. The properties and functions of these hybrid materials are then discussed. After that, an overview of promising application of biomimetic metal-protein nanohybrid materials is provided. Finally, the key challenges and outlooks related to this fascinating research area are also outlined.
Collapse
Affiliation(s)
- Bassam Saif
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, P.R. China
| |
Collapse
|
172
|
Chen F, Wang Y, Gao J, Saeed M, Li T, Wang W, Yu H. Nanobiomaterial-based vaccination immunotherapy of cancer. Biomaterials 2021; 270:120709. [PMID: 33581608 DOI: 10.1016/j.biomaterials.2021.120709] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/27/2021] [Accepted: 01/31/2021] [Indexed: 12/15/2022]
Abstract
Cancer immunotherapies including cancer vaccines, immune checkpoint blockade or chimeric antigen receptor T cells have been exploited as the attractive treatment modalities in recent years. Among these approaches, cancer vaccines that designed to deliver tumor antigens and adjuvants to activate the antigen presenting cells (APCs) and induce antitumor immune responses, have shown significant efficacy in inhibiting tumor growth, preventing tumor relapse and metastasis. Despite the potential of cancer vaccination strategies, the therapeutic outcomes in preclinical trials are failed to promote their clinical translation, which is in part due to their inefficient vaccination cascade of five critical steps: antigen identification, antigen encapsulation, antigen delivery, antigen release and antigen presentation to T cells. In recent years, it has been demonstrated that various nanobiomaterials hold great potential to enhance cancer vaccination cascade and improve their antitumor performance and reduce the off-target effect. We summarize the cutting-edge advances of nanobiomaterials-based vaccination immunotherapy of cancer in this review. The various cancer nanovaccines including antigen peptide/adjuvant-based nanovaccines, nucleic acid-based nanovaccines as well as biomimetic nanobiomaterials-based nanovaccines are discussed in detail. We also provide some challenges and perspectives associated with the clinical translation of cancer nanovaccines.
Collapse
Affiliation(s)
- Fangmin Chen
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yingjie Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, 215123, China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Madiha Saeed
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Tianliang Li
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weiqi Wang
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
173
|
Gagliardi A, Giuliano E, Venkateswararao E, Fresta M, Bulotta S, Awasthi V, Cosco D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front Pharmacol 2021; 12:601626. [PMID: 33613290 PMCID: PMC7887387 DOI: 10.3389/fphar.2021.601626] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Advances in nanotechnology have favored the development of novel colloidal formulations able to modulate the pharmacological and biopharmaceutical properties of drugs. The peculiar physico-chemical and technological properties of nanomaterial-based therapeutics have allowed for several successful applications in the treatment of cancer. The size, shape, charge and patterning of nanoscale therapeutic molecules are parameters that need to be investigated and modulated in order to promote and optimize cell and tissue interaction. In this review, the use of polymeric nanoparticles as drug delivery systems of anticancer compounds, their physico-chemical properties and their ability to be efficiently localized in specific tumor tissues have been described. The nanoencapsulation of antitumor active compounds in polymeric systems is a promising approach to improve the efficacy of various tumor treatments.
Collapse
Affiliation(s)
- Agnese Gagliardi
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Elena Giuliano
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Eeda Venkateswararao
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Massimo Fresta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Stefania Bulotta
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| | - Vibhudutta Awasthi
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Donato Cosco
- Department of Health Sciences, University “Magna Græcia” of Catanzaro, Catanzaro, Italy
| |
Collapse
|
174
|
Esim O, Hascicek C. Albumin-based Nanoparticles as Promising Drug Delivery Systems for Cancer Treatment. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200421142008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Albumin is an ideal material for the production of drug carrier nanoparticular systems since
it is a versatile and functional protein that has been proven to be biodegradable and biocompatible,
non-toxic, and immunogenic. Albumin nanoparticles are of great interest as they have the high binding
capacity to many drugs with different physicochemical and structural properties and are well tolerated
without any side effects. In this review, different types of albumin, special nanotechnological techniques
for the production of albumin nanoparticles, such as desolvation, emulsification, thermal gelation,
nano-spray drying, and self-assembly, as well as the characterization of albumin nanoparticles,
such as particle size, surface charge, morphological properties, drug content, and release profile have
been discussed. In addition, the in vitro and in vivo studies of albumin nanoparticles intended both diagnostic
and therapeutic usage have been investigated.
Collapse
Affiliation(s)
- Ozge Esim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Canan Hascicek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| |
Collapse
|
175
|
Al-Zharani M, Qurtam AA, Daoush WM, Eisa MH, Aljarba NH, Alkahtani S, Nasr FA. Antitumor effect of copper nanoparticles on human breast and colon malignancies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:1587-1595. [PMID: 32851522 DOI: 10.1007/s11356-020-09843-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Breast and colon carcinomas are two types of common cancers which lead to cancer-related deaths. Due to their cytotoxic potential against cancer cells, recently many studies of copper nanoparticles (CuNPs) have been conducted. In the current work, we aim to evaluate the cytotoxic and apoptosis-inducing effects of CuNPs on the human breast (MCF-7) and colon (LoVo) cancer cells. CuNPs were prepared in starch-stabilizing aqueous solution by electroless deposition technique in alkaline tartrate bath using formaldehyde as the reducing agent of copper sulfate. The obtained CuNPs were characterized by SEM, TEM, and XRD to confirm the particle size, morphology, and chemical composition. Standard colorimetric MTT and LDH assays were used to estimate the cytotoxic effect of CuNPs on MCF-7 and LoVo cells. Furthermore, CuNP-treated cells undergoing apoptosis were assessed based on the expression of apoptosis-related genes using qRT-PCR. The results indicate that the mean particle size of the synthesized CuNPs was ~ 50-60 nm, and they were spherical in shape with mainly the chemical structure of the copper metallic phase. MTT assay revealed that CuNPs induced cytotoxicity in tested cells with IC50 rates of 16.4 (in MCF-7) and 21.6 μg/ml (in LoVo). Moreover, qRT-PCR analysis showed that CuNPs caused a significant increment of Bax, P53, and Caspases 9, 8, and 3 genes. Overall, the anticancer potential of prepared CuNPs were reported through apoptotic induction which highlight the potential use of CuNPs as an efficient anticancer agent.
Collapse
Affiliation(s)
- Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia.
| | - Ashraf Ahmed Qurtam
- Biology Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
| | - Walid Mohamed Daoush
- Chemistry Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Department of Production Technology, Faculty of Technology and Education, Helwan University, Saray-El Qoupa, El Sawah Street, Cairo, 11281, Egypt
| | - Mohamed Hassan Eisa
- Physics Department, College of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, 11623, Saudi Arabia
- Physics Department, College of Science, Sudan University of Science and Technology, 11113, Khartoum, Sudan
| | - Nada Hamad Aljarba
- Biology Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Saad Alkahtani
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A Nasr
- Medicinal Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
176
|
Chakravarty R, Guleria A, Jadhav S, Kumar C, Debnath AK, Sarma HD, Chakraborty S. Bioinspired Synthesis of Intrinsically 177Lu-Labeled Hybrid Nanoparticles for Potential Cancer Therapy. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rubel Chakravarty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Apurav Guleria
- Radiation and Photochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sachin Jadhav
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Anil Krishna Debnath
- Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Haladhar Dev Sarma
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Sudipta Chakraborty
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
177
|
Tsukigawa K, Imoto S, Yamasaki K, Nishi K, Tsutsumi T, Yokoyama S, Ishima Y, Otagiri M. Synthesis and In Vitro Assessment of pH-Sensitive Human Serum Albumin Conjugates of Pirarubicin. Pharmaceuticals (Basel) 2020; 14:ph14010022. [PMID: 33396604 PMCID: PMC7823624 DOI: 10.3390/ph14010022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 12/15/2022] Open
Abstract
In a previous study, we reported on the development of a synthetic polymer conjugate of pirarubicin (THP) that was formed via an acid-labile hydrazone bond between the polymer and the THP. However, the synthetic polymer itself was non-biodegradable, which could lead to unexpected adverse effects. Human serum albumin (HSA), which has a high biocompatibility and good biodegradability, is also a potent carrier for delivering antitumor drugs. The objective of this study was to develop pH-sensitive HSA conjugates of THP (HSA-THP), and investigate the release of THP and the cytotoxicity under acidic conditions in vitro for further clinical development. HSA-THP was synthesized by conjugating maleimide hydrazone derivatives of THP with poly-thiolated HSA using 2-iminothiolane, via a thiol-maleimide coupling reaction. We synthesized two types of HSA-THP that contained different amounts of THP (HSA-THP2 and HSA-THP4). Free THP was released from both of the HSA conjugates more rapidly at an acidic pH, and the rates of release for HSA-THP2 and HSA-THP4 were similar. Moreover, both HSA-THPs exhibited a higher cytotoxicity at acidic pH than at neutral pH, which is consistent with the effective liberation of free THP under acidic conditions. These findings suggest that these types of HSA-THPs are promising candidates for further development.
Collapse
Affiliation(s)
- Kenji Tsukigawa
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (K.T.); (S.I.); (K.Y.); (K.N.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Shuhei Imoto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (K.T.); (S.I.); (K.Y.); (K.N.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keishi Yamasaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (K.T.); (S.I.); (K.Y.); (K.N.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Koji Nishi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (K.T.); (S.I.); (K.Y.); (K.N.)
| | - Toshihiko Tsutsumi
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka, Miyazaki 882-8508, Japan; (T.T.); (S.Y.)
| | - Shoko Yokoyama
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka, Miyazaki 882-8508, Japan; (T.T.); (S.Y.)
| | - Yu Ishima
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan; (K.T.); (S.I.); (K.Y.); (K.N.)
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
- Correspondence: ; Tel.: +81-96-326-3887
| |
Collapse
|
178
|
Islam W, Matsumoto Y, Fang J, Harada A, Niidome T, Ono K, Tsutsuki H, Sawa T, Imamura T, Sakurai K, Fukumitsu N, Yamamoto H, Maeda H. Polymer-conjugated glucosamine complexed with boric acid shows tumor-selective accumulation and simultaneous inhibition of glycolysis. Biomaterials 2020; 269:120631. [PMID: 33450582 DOI: 10.1016/j.biomaterials.2020.120631] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/04/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
We synthesized unique water-soluble synthetic-polymer, styrene-maleic acid copolymer (SMA) conjugated glucosamine (SG); which formed a stable complex with boric acid (BA). This complex had a mean particle size of 15 nm by light scattering, and single peak in gel permeation chromatography. The particles were taken up by tumor cells five times faster than free BA in vitro and liberated BA at acidic tumor pH (5-7). Liberated BA inhibited glycolysis and resulted in tumor suppression in vivo. Intravenously injected SGB-complex did bind with albumin, and plasma half-life was about 8 h in mice, and accumulated to tumor tissues about 10 times more than in normal organs. IC50 of SGB-complex for HeLa cells under pO2 of 6-9% was about 20 μg/ml (free BA equivalent), 150 times more potent than free BA. Neutron irradiation of human oral cancer cells with SGB-complex resulted in 16 times greater cell-killing than that without SGB-complex. In vivo antitumor effect was evaluated after neutron irradiation only once in SCC VII tumor bearing mice and significant tumor suppression was confirmed. These results indicate that SGB-complex is a unique multifunctional anticancer agent with much more potent activity under low pO2 conditions as in large advanced cancers.
Collapse
Affiliation(s)
- Waliul Islam
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; BioDynamics Research Foundation, Kumamoto, 862-0954, Japan
| | - Yoshitaka Matsumoto
- Radiation Oncology, Clinical Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan and Proton Medical Research Center, University of Tsukuba Hospital, Tsukuba, Japan
| | - Jun Fang
- Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Ayaka Harada
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Takuro Niidome
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Katsuhiko Ono
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Hiroyasu Tsutsuki
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Takahisa Imamura
- Department of Nutritional Science, Shokei University and Department of Molecular Pathology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, Kitakyushu, Japan
| | | | - Hirofumi Yamamoto
- Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan and Department of Molecular Pathology, Division of Health Sciences, And Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Maeda
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan; Department of Surgery, Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan and Department of Molecular Pathology, Division of Health Sciences, And Graduate School of Medicine, Osaka University, Osaka, Japan; BioDynamics Research Foundation, Kumamoto, 862-0954, Japan; Tohoku University, Sendai, Japan.
| |
Collapse
|
179
|
Hao L, Zhou Q, Piao Y, Zhou Z, Tang J, Shen Y. Albumin-binding prodrugs via reversible iminoboronate forming nanoparticles for cancer drug delivery. J Control Release 2020; 330:362-371. [PMID: 33359484 DOI: 10.1016/j.jconrel.2020.12.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022]
Abstract
Albumin-based nanomedicines are important nanoplatforms for cancer drug delivery. The drugs are either physically encapsulated or covalently conjugated to albumin or albumin-based nanosystems. Physical encapsulation is advantageous due to requiring no chemical modification of drug molecules, but many drugs, for instance, camptothecin (CPT) and curcumin (CCM), though very hydrophobic, can't be loaded in or form nanoformulations with albumin. Herein, we demonstrate prodrugs readily binding to proteins via iminoboronates and forming nanoparticles for cancer drug delivery. CPT and CCM were functionalized with 2-acetylphenylboronic acid (2-APBA) to produce prodrugs CPT-SS-APBA and CCM- APBA. The prodrugs bound to bovine serum albumin (BSA) via formation of iminoboronates and the produced BSA/prodrug readily self-assembled into well-defined nanoparticles with high loading efficiency, improved colloidal stability, and much-improved pharmacokinetics. The nanoparticles effectively released drugs in the intracellular acidic environment or the cytosol rich in glutathione (GSH). In vivo, the nanoparticles showed enhanced anticancer efficacy compared with clinically used irinotecan or sorafenib in subcutaneous 4 T1 or HepG2 tumor models. This work demonstrates a versatile protein-binding prodrug platform applicable to protein-based drug formulations and even antibody-drug conjugates.
Collapse
Affiliation(s)
- Lingqiao Hao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Quan Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Ying Piao
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China
| | - Jianbin Tang
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, Hangzhou 310007, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311215, China.
| |
Collapse
|
180
|
Zhang M, Du Y, Wang S, Chen B. A Review of Biomimetic Nanoparticle Drug Delivery Systems Based on Cell Membranes. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5495-5503. [PMID: 33363358 PMCID: PMC7753887 DOI: 10.2147/dddt.s282368] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022]
Abstract
Cancers have always been an intractable problem because of recurrence and drug resistance. In the past few decades, nanoparticles have been explored intensely to diagnose, prevent and treat malignancy due to their good penetrability and better targeting. However, most nanocarriers have poor biodegradation and can be discharged out of the body quickly or cleared by immune cells while failing to obtain effective drug concentration at the specific sites. The emergence of biological membrane encapsulation technology relieves the fast clearance of antitumor drugs and reduces toxicity in vivo. This review will discuss the advantages and disadvantages of several blood cell membrane-coated nanoparticles and further introduce exosome-carried drugs to evidence the promising prospect of biomimetic nanoparticle drug delivery systems.
Collapse
Affiliation(s)
- Meilin Zhang
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Ying Du
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| | - Shujun Wang
- Jinling Hospital Department of Blood Transfusion, School of Medicine, Nanjing University, Nanjing, Jiangsu Province 210002, People's Republic of China
| | - Baoan Chen
- Department of Hematology and Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, People's Republic of China
| |
Collapse
|
181
|
Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv Drug Deliv Rev 2020; 167:170-188. [PMID: 32622022 DOI: 10.1016/j.addr.2020.06.030] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
The widespread development of nanocarriers to deliver chemotherapeutics to specific tumor sites has been motivated by the lack of selective targeting during chemotherapy inducing serious side effects and low therapeutic efficacy. The utmost challenge in targeted cancer therapies is the ineffective drug delivery system, in which the drug-loaded nanocarriers are hindered by multiple complex biological barriers that compromise the therapeutic efficacy. Despite considerable progress engineering novel nanoplatforms for the delivery of chemotherapeutics, there has been limited success in a clinical setting. In this review, we identify and analyze design strategies for improved therapeutic efficacy and unique properties of nanoplatforms, including liposomes, polymeric micelles, nanogels, and dendrimers. We provide a comprehensive and integral description of key biological barriers that nanoplatforms are exposed to during their in vivo journey and discuss associated strategies to overcome these barriers based on the latest research and information available in the field. We expect this review to provide constructive information for the rational design of more effective nanoplatforms to advance precision therapies and accelerate their clinical translation.
Collapse
|
182
|
Fereig SA, El-Zaafarany GM, Arafa MG, Abdel-Mottaleb MMA. Tackling the various classes of nano-therapeutics employed in topical therapy of psoriasis. Drug Deliv 2020; 27:662-680. [PMID: 32393082 PMCID: PMC7269080 DOI: 10.1080/10717544.2020.1754527] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022] Open
Abstract
Psoriasis is a dermatological chronic skin condition with underlying autoimmune etiology. It deeply affects patients' quality of life. Therefore, it was an interesting target for researchers throughout the past years. Conventionally, the treatment options include anti-inflammatory agents, immune suppressants, biologic treatment, and phototherapy. Nanotechnology offers promising characteristics that allow for tailoring a drug carrier to achieve dermal targeting, improved efficacy and minimize undesirable effects. Being the safest route, the first line of treatment and a targeted approach, we solely discussed the use of the topical route, combined with advanced drug delivery systems for the management of psoriasis in this article. Advanced systems include polymeric, metallic, lipidic and hybrid nanocarriers incorporating different active agents. All formerly mentioned types of drug delivery systems were investigated through the past decades for the purpose of topical application on psoriatic plaques. Scientists' efforts are promising to reach an optimized formula with a convenient dosage form to improve efficacy, safety, and compliance for the treatment of psoriasis. Accordingly, it will offer a better quality of life for patients.
Collapse
Affiliation(s)
- Salma A. Fereig
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt (BUE), El Sherouk City, Egypt
| | - Ghada M. El-Zaafarany
- Faculty of Pharmacy, Department of pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona G. Arafa
- Faculty of Pharmacy, Department of Pharmaceutics and Pharmaceutical Technology, The British University in Egypt (BUE), El Sherouk City, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
| | - Mona M. A. Abdel-Mottaleb
- Faculty of Pharmacy, Department of pharmaceutics and Industrial Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
183
|
Liu X, Mohanty RP, Maier EY, Peng X, Wulfe S, Looney AP, Aung KL, Ghosh D. Controlled loading of albumin-drug conjugates ex vivo for enhanced drug delivery and antitumor efficacy. J Control Release 2020; 328:1-12. [DOI: 10.1016/j.jconrel.2020.08.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/31/2020] [Accepted: 08/10/2020] [Indexed: 12/22/2022]
|
184
|
Kumari P, Paul M, Bobde Y, Soniya K, Kiran Rompicharla SV, Ghosh B, Biswas S. Albumin-based lipoprotein nanoparticles for improved delivery and anticancer activity of curcumin for cancer treatment. Nanomedicine (Lond) 2020; 15:2851-2869. [DOI: 10.2217/nnm-2020-0232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: To prepare curcumin (CUR)-loaded, dioleoyl phosphoethanolamine-conjugated human serum albumin nanoparticles (NPs) and to evaluate their effectiveness in breast cancer therapy. Materials & methods: The CUR-loaded NPs were physicochemically characterized and evaluated for their cytotoxicity in murine (4T1) and human breast cancer (MDA-MB-231) cell lines. The antitumor efficacy of the nanomedicine was evaluated in 4T1 tumor bearing mice. Results: The prepared NPs exhibited encapsulation and drug loading efficiencies of approximately 79 and 21%, respectively. The NPs were taken up efficiently and markedly hindered the proliferation of breast cancer cells compared with free drug. NPs exhibited greater suppression of tumor growth in 4T1 tumor bearing mice. Conclusion: CUR-human serum albumin-dioleoyl phosphoethanolamine NPs could be a potential treatment alternative for solid tumors, including breast cancer.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Milan Paul
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Yamini Bobde
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Kumbham Soniya
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Sri Vishnu Kiran Rompicharla
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Medchal, Hyderabad 500078, Telangana, India
| |
Collapse
|
185
|
Starosta R, Santos FC, de Almeida RF. Human and bovine serum albumin time-resolved fluorescence: Tryptophan and tyrosine contributions, effect of DMSO and rotational diffusion. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128805] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
186
|
Photosensitizer-Laden Neutrophils Are Controlled Remotely for Cancer Immunotherapy. Cell Rep 2020; 33:108499. [PMID: 33326787 DOI: 10.1016/j.celrep.2020.108499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 08/18/2020] [Accepted: 11/18/2020] [Indexed: 02/08/2023] Open
Abstract
By incorporating an artificial reactive oxygen species (ROS) generation mechanism, a biotic/abiotic integration is designed to improve the anti-tumor effect of neutrophils by artificially potentiating their ROS effector mechanism in a remotely controlled route. Specifically, the photosensitizer Ce6 is nano-packaged by the albumin BSA to achieve biocompatible and efficient integration with neutrophils (NEs). Reinfusion of the engineered NEs into 4T1 tumor-bearing mice led to more Ce6 accumulation in tumors relative to Ce6 nanoformulation. At the peak of accumulation, tumor illumination activates the embedded Ce6 for ROS generation and NETosis formation. Because of the ROS-intensified cytolytic effect, the growth of 4T1 tumors is inhibited significantly. The photo-controlled process largely avoids the off-target effects observed frequently in current cell therapies. The strategy directly generates ROS effector molecules with spatiotemporal precision. This engineering approach is able to potentiate the native capacity of immune cells independent of the tumor microenvironment.
Collapse
|
187
|
Hassanin I, Elzoghby A. Albumin-based nanoparticles: a promising strategy to overcome cancer drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:930-946. [PMID: 35582218 PMCID: PMC8992568 DOI: 10.20517/cdr.2020.68] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/28/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022]
Abstract
Circumvention of cancer drug resistance is one of the major investigations in nanomedicine. In this regard, nanotechnology-based drug delivery has offered various implications. However, protein-based nanocarriers have been a versatile choice compared to other nanomaterials, provided by their favorable characteristics and safety profiles. Specifically, albumin-based nanoparticles have been demonstrated to be an effective drug delivery system, owing to the inherent targeting modalities of albumin, through gp60- and SPARC-mediated receptor endocytosis. Furthermore, surface functionalization was exploited for active targeting, due to albumin’s abundance of carboxylic and amino groups. Stimuli-responsive drug release has also been pertained to albumin nano-systems. Therefore, albumin-based nanocarriers could potentially overcome cancer drug resistance through bypassing drug efflux, enhancing drug uptake, and improving tumor accumulation. Moreover, albumin nanocarriers improve the stability of various therapeutic cargos, for instance, nucleic acids, which allows their systemic administration. This review highlights the recent applications of albumin nanoparticles to overcome cancer drug resistance, the nano-fabrication techniques, as well as future perspectives and challenges.
Collapse
Affiliation(s)
- Islam Hassanin
- Department of Biotechnology, Institute of Graduate studies and Research, Alexandria University, Alexandria 21526, Egypt.,Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Ahmed Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.,Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| |
Collapse
|
188
|
Usman A. Nanoparticle enhanced optical biosensing technologies for Prostate Specific Antigen biomarker detection. IEEE Rev Biomed Eng 2020; 15:122-137. [PMID: 33136544 DOI: 10.1109/rbme.2020.3035273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Prostate Cancer (PCa) is one of the deadliest forms of Cancer among men. Early screening process for PCa is primarily conducted with the help of a FDA approved biomarker known as Prostate Specific Antigen (PSA). The PSA-based screening is challenged with the inability to differentiate between the cancerous PSA and Benign Prostatic Hyperplasia (BPH), resulting in high rates of false-positives. Optical techniques such as optical absorbance, scattering, surface plasmon resonance (SPR), and fluorescence have been extensively employed for Cancer diagnostic applications. One of the most important diagnostic applications involves utilization of nanoparticles (NPs) for highly specific, sensitive, rapid, multiplexed, and high performance Cancer detection and quantification. The incorporation of NPs with these optical biosensing techniques allow realization of low cost, point-of-care, highly sensitive, and specific early cancer detection technologies, especially for PCa. In this work, the current state-of-the-art, challenges, and efforts made by the researchers for realization of low cost, point-of-care (POC), highly sensitive, and specific NP enhanced optical biosensing technologies for PCa detection using PSA biomarker are discussed and analyzed.
Collapse
|
189
|
Application of gelatin nanoconjugates as potential internal stimuli-responsive platforms for cancer drug delivery. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114053] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
190
|
Kalashnikova I, Chung SJ, Nafiujjaman M, Hill ML, Siziba ME, Contag CH, Kim T. Ceria-based nanotheranostic agent for rheumatoid arthritis. Theranostics 2020; 10:11863-11880. [PMID: 33204316 PMCID: PMC7667692 DOI: 10.7150/thno.49069] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that affects 1-2% of the human population worldwide, and effective therapies with targeted delivery for local immune suppression have not been described. We address this problem by developing a novel theranostic nanoparticle for RA and assessed its therapeutic and targeting effects under image-guidance. Methods: Albumin-cerium oxide nanoparticles were synthesized by the biomineralization process and further conjugated with near-infrared, indocyanine green (ICG) dye. Enzymatic-like properties and reactive oxygen species (ROS) scavenging activities, as well as the ability to reprogram macrophages, were determined on a monocyte cell line in culture. The therapeutic effect and systemic targeting potential were evaluated in collagen-induced arthritis (CIA) mouse model using optical/optoacoustic tomographic imaging. Results: Small nanotheranostics with narrow size distribution and high colloidal stability were fabricated and displayed high ROS scavenging and enzymatic-like activity, as well as advanced efficacy in a converting pro-inflammatory macrophage phenotype into anti-inflammatory phenotype. When administrated into affected animals, these nanoparticles accumulated in inflamed joints and revealed a therapeutic effect similar to the gold-standard therapy for RA, methotrexate. Conclusions: The inflammation-targeting, inherent contrast and therapeutic activity of this new albumin-cerium oxide nanoparticle may make it a relevant agent for assessing severity in RA, and other inflammatory diseases, and controlling inflammation with image-guidance. The design of these nanotheranostics will enable potential clinical translation as systemic therapy for RA.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/administration & dosage
- Antirheumatic Agents/chemistry
- Antirheumatic Agents/pharmacokinetics
- Arthritis, Experimental/diagnosis
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/pathology
- Arthritis, Rheumatoid/diagnosis
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Cerium/administration & dosage
- Cerium/chemistry
- Cerium/pharmacokinetics
- Collagen/administration & dosage
- Collagen/immunology
- Coloring Agents/administration & dosage
- Coloring Agents/chemistry
- Drug Compounding/methods
- Drug Monitoring/methods
- Freund's Adjuvant/administration & dosage
- Freund's Adjuvant/immunology
- Half-Life
- Humans
- Indocyanine Green/administration & dosage
- Indocyanine Green/chemistry
- Injections, Intra-Articular
- Joints/diagnostic imaging
- Joints/drug effects
- Joints/immunology
- Joints/pathology
- Mice
- Nanoparticles/administration & dosage
- Nanoparticles/chemistry
- Photoacoustic Techniques/methods
- RAW 264.7 Cells
- Serum Albumin, Bovine/chemistry
- Severity of Illness Index
- THP-1 Cells
- Theranostic Nanomedicine/methods
- Tomography/methods
Collapse
Affiliation(s)
- Irina Kalashnikova
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Seock-Jin Chung
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Md Nafiujjaman
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Meghan L. Hill
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Mzingaye E. Siziba
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| | - Christopher H. Contag
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | - Taeho Kim
- Department of Biomedical Engineering and the Institute for Quantitative Health Science & Engineering
| |
Collapse
|
191
|
Iqbal H, Yang T, Li T, Zhang M, Ke H, Ding D, Deng Y, Chen H. Serum protein-based nanoparticles for cancer diagnosis and treatment. J Control Release 2020; 329:997-1022. [PMID: 33091526 DOI: 10.1016/j.jconrel.2020.10.030] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/15/2022]
Abstract
Serum protein as naturally essential biomacromolecules has recently emerged as a versatile carrier for diagnostic and therapeutic drug delivery for cancer nanomedicine with superior biocompatibility, improved pharmacokinetics and enhanced targeting capacity. A variety of serum proteins have been utilized for drug delivery, mainly including albumin, ferritin/apoferritin, transferrin, low-density lipoprotein, high-density lipoprotein and hemoglobin. As evidenced by the success of paclitaxel-bound albumin nanoparticles (AbraxaneTM), serum protein-based nanoparticles have gained attractive attentions for precise biological design and potential clinical application. In this review, we summarize the general design strategies, targeting mechanisms and recent development of serum protein-based nanoparticles in the field of cancer nanomedicine. Moreover, we also concisely specify the current challenges to be addressed for a bright future of serum protein-based nanomedicines.
Collapse
Affiliation(s)
- Haroon Iqbal
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ting Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Miya Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Hengte Ke
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Dawei Ding
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China.
| | - Huabing Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China.
| |
Collapse
|
192
|
Ahmadabad LE, Kalantari FS, Liu H, Hasan A, Gamasaee NA, Edis Z, Attar F, Ale-Ebrahim M, Rouhollah F, Babadaei MMN, Sharifi M, Shahpasand K, Akhtari K, Falahati M, Cai Y. Hydrothermal method-based synthesized tin oxide nanoparticles: Albumin binding and antiproliferative activity against K562 cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 119:111649. [PMID: 33321685 DOI: 10.1016/j.msec.2020.111649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022]
Abstract
The interaction of nanoparticles with protein and cells may provide important information regarding their biomedical implementations. Herein, after synthesis of tin oxide (SnO2) nanoparticles by hydrothermal method, their interaction with human serum albumin (HSA) was evaluated by multispectroscopic and molecular docking (MD) approaches. Furthermore, the selective antiproliferative impact of SnO2 nanoparticles against leukemia K562 cells was assessed by different cellular assays, whereas lymphocytes were used as control cells. TEM, DLS, zeta potential and XRD techniques showed that crystalline SnO2 nanoparticles have a size of less than 50 nm with a good colloidal stability. Fluorescence and CD spectroscopy analysis indicated that the HSA undergoes some slight conformational changes after interaction with SnO2 nanoparticles, whereas the secondary structure of HSA remains intact. Moreover, MD outcomes revealed that the charged residues of HSA preferentially bind to SnO2 nanoclusters in the binding pocket. Antiproliferative examinations displayed that SnO2 nanoparticles can selectively cause the mortality of K562 cells through induction of cell membrane leakage, activation of caspase-9, -8, -3, down regulation of Bcl-2 mRNA, the elevation of ROS level, S phase arrest, and apoptosis. In conclusion, this data may indicate that SnO2 nanoparticles can be used as promising particles to be integrated into therapeutic platforms.
Collapse
Affiliation(s)
- Leila Ebrahimi Ahmadabad
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Firoozeh Samia Kalantari
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hui Liu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Centre, Qatar University, Doha 2713, Qatar.
| | - Niusha Abbasi Gamasaee
- Department of Genetics, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Farnoosh Attar
- Department of Food Toxicology, Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), Karaj, Iran
| | - Mahsa Ale-Ebrahim
- Department of Physiology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rouhollah
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology (RI-SCBT), Tehran, Iran
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Yu Cai
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China; Cancer Institute of Jinan University, Guangzhou, Guangdong 510632, China; International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), School of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, China.
| |
Collapse
|
193
|
Shah JV, Gonda A, Pemmaraju R, Subash A, Bobadilla Mendez C, Berger M, Zhao X, He S, Riman RE, Tan MC, Pierce MC, Moghe PV, Ganapathy V. Shortwave Infrared-Emitting Theranostics for Breast Cancer Therapy Response Monitoring. Front Mol Biosci 2020; 7:569415. [PMID: 33134314 PMCID: PMC7575924 DOI: 10.3389/fmolb.2020.569415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Therapeutic drug monitoring (TDM) in cancer, while imperative, has been challenging due to inter-patient variability in drug pharmacokinetics. Additionally, most pharmacokinetic monitoring is done by assessments of the drugs in plasma, which is not an accurate gauge for drug concentrations in target tumor tissue. There exists a critical need for therapy monitoring tools that can provide real-time feedback on drug efficacy at target site to enable alteration in treatment regimens early during cancer therapy. Here, we report on theranostic optical imaging probes based on shortwave infrared (SWIR)-emitting rare earth-doped nanoparticles encapsulated with human serum albumin (abbreviated as ReANCs) that have demonstrated superior surveillance capability for detecting micro-lesions at depths of 1 cm in a mouse model of breast cancer metastasis. Most notably, ReANCs previously deployed for detection of multi-organ metastases resolved bone lesions earlier than contrast-enhanced magnetic resonance imaging (MRI). We engineered tumor-targeted ReANCs carrying a therapeutic payload as a potential theranostic for evaluating drug efficacy at the tumor site. In vitro results demonstrated efficacy of ReANCs carrying doxorubicin (Dox), providing sustained release of Dox while maintaining cytotoxic effects comparable to free Dox. Significantly, in a murine model of breast cancer lung metastasis, we demonstrated the ability for therapy monitoring based on measurements of SWIR fluorescence from tumor-targeted ReANCs. These findings correlated with a reduction in lung metastatic burden as quantified via MRI-based volumetric analysis over the course of four weeks. Future studies will address the potential of this novel class of theranostics as a preclinical pharmacological screening tool.
Collapse
Affiliation(s)
- Jay V Shah
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Amber Gonda
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Rahul Pemmaraju
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Aishwarya Subash
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | | | - Marissa Berger
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Xinyu Zhao
- Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore
| | - Shuqing He
- Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore
| | - Richard E Riman
- Department of Materials Science and Engineering, Rutgers University, Piscataway, NJ, United States
| | - Mei Chee Tan
- Engineering Product Development, Singapore University of Technology and Design, Tampines, Singapore
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Prabhas V Moghe
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States.,Department of Chemical & Biochemical Engineering, Rutgers University, Piscataway, NJ, United States
| | - Vidya Ganapathy
- Department of Biomedical Engineering, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
194
|
Khadka B, Lee JY, Park DH, Kim KT, Bae JS. The Role of Natural Compounds and their Nanocarriers in the Treatment of CNS Inflammation. Biomolecules 2020; 10:E1401. [PMID: 33019651 PMCID: PMC7601486 DOI: 10.3390/biom10101401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/16/2022] Open
Abstract
Neuroinflammation, which is involved in various inflammatory cascades in nervous tissues, can result in persistent and chronic apoptotic neuronal cell death and programmed cell death, triggering various degenerative disorders of the central nervous system (CNS). The neuroprotective effects of natural compounds against neuroinflammation are mainly mediated by their antioxidant, anti-inflammatory, and antiapoptotic properties that specifically promote or inhibit various molecular signal transduction pathways. However, natural compounds have several limitations, such as their pharmacokinetic properties and stability, which hinder their clinical development and use as medicines. This review discusses the molecular mechanisms of neuroinflammation and degenerative diseases of CNS. In addition, it emphasizes potential natural compounds and their promising nanocarriers for overcoming their limitations in the treatment of neuroinflammation. Moreover, recent promising CNS inflammation-targeted nanocarrier systems implementing lesion site-specific active targeting strategies for CNS inflammation are also discussed.
Collapse
Affiliation(s)
- Bikram Khadka
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
| | - Jae-Young Lee
- College of Pharmacy, Chungnam National University, Daejeon 34134, Korea;
| | - Dong Ho Park
- Department of Ophthalmology, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Korea;
| | - Ki-Taek Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Mokpo National University, Muan-gun, Jeonnam 58554, Korea;
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan-gun, Jeonnam 58554, Korea
| | - Jong-Sup Bae
- College of Pharmacy, CMR1, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
195
|
Combination Therapy with Doxorubicin-Loaded Reduced Albumin Nanoparticles and Focused Ultrasound in Mouse Breast Cancer Xenografts. Pharmaceuticals (Basel) 2020; 13:ph13090235. [PMID: 32906686 PMCID: PMC7557944 DOI: 10.3390/ph13090235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/01/2020] [Accepted: 09/03/2020] [Indexed: 12/02/2022] Open
Abstract
Because chemotherapeutic drugs are often associated with serious side effects, the central topic in modern drug delivery is maximizing the localization of drugs at the target while minimizing non-specific drug interactions at unwanted regions. To address this issue, biocompatible nanoparticles have been developed to enhance the drug half-life while minimizing the associated toxicity. Nevertheless, relying solely on the enhanced half-life and enhanced permeability and retention (EPR) effects has been ineffective, and designing stimulus-sensitive nanoparticles to introduce the precise control of drug release has been desired. In this paper, we introduce a pH-sensitive, reduced albumin nanoparticle in combination with focused ultrasound treatment. Not only did these nanoparticles have superior therapeutic efficacy and toxicity profiles when compared to the free drugs in xenograft mouse models, but we were also able to show that the albumin nanoparticles reported in this paper were more suitable than other types of non-reduced albumin nanoparticles as vehicles for drug delivery. As such, we believe that the albumin nanoparticles presented in this paper with desirable characteristics including the induction of strong anti-tumor response, precise control, and superior safety profiles hold strong potential for preclinical and clinical anticancer therapy.
Collapse
|
196
|
Hasanpoor Z, Mostafaie A, Nikokar I, Hassan ZM. Curcumin-human serum albumin nanoparticles decorated with PDL1 binding peptide for targeting PDL1-expressing breast cancer cells. Int J Biol Macromol 2020; 159:137-153. [DOI: 10.1016/j.ijbiomac.2020.04.130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 04/11/2020] [Accepted: 04/18/2020] [Indexed: 12/15/2022]
|
197
|
Liu J, Miao L, Sui J, Hao Y, Huang G. Nanoparticle cancer vaccines: Design considerations and recent advances. Asian J Pharm Sci 2020; 15:576-590. [PMID: 33193861 PMCID: PMC7610208 DOI: 10.1016/j.ajps.2019.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022] Open
Abstract
Vaccines therapeutics manipulate host's immune system and have broad potential for cancer prevention and treatment. However, due to poor immunogenicity and limited safety, fewer cancer vaccines have been successful in clinical trials. Over the past decades, nanotechnology has been exploited to deliver cancer vaccines, eliciting long-lasting and effective immune responses. Compared to traditional vaccines, cancer vaccines delivered by nanomaterials can be tuned towards desired immune profiles by (1) optimizing the physicochemical properties of the nanomaterial carriers, (2) modifying the nanomaterials with targeting molecules, or (3) co-encapsulating with immunostimulators. In order to develop vaccines with desired immunogenicity, a thorough understanding of parameters that affect immune responses is required. Herein, we discussed the effects of physicochemical properties on antigen presentation and immune response, including but not limited to size, particle rigidity, intrinsic immunogenicity. Furthermore, we provided a detailed overview of recent preclinical and clinical advances in nanotechnology for cancer vaccines, and considerations for future directions in advancing the vaccine platform to widespread anti-cancer applications.
Collapse
Affiliation(s)
- Jingjing Liu
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Lei Miao
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge MA 02139, USA
| | - Jiying Sui
- Affiliated Hospital of Shandong Academy of Medical Sciences, Ji'nan 250012, China
| | - Yanyun Hao
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| | - Guihua Huang
- The School of Pharmaceutical Sciences, Shandong University, Ji'nan 250012, China
| |
Collapse
|
198
|
Hornok V, Juhász Á, Paragi G, Kovács AN, Csapó E. Thermodynamic and kinetic insights into the interaction of kynurenic acid with human serum albumin: Spectroscopic and calorimetric approaches. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112869] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
199
|
Rational evaluation of human serum albumin coated mesoporous silica nanoparticles for xenogenic-free stem cell therapies. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
200
|
Sun Y, Lee RJ, Meng F, Wang G, Zheng X, Dong S, Teng L. Microfluidic self-assembly of high cabazitaxel loading albumin nanoparticles. NANOSCALE 2020; 12:16928-16933. [PMID: 32776029 DOI: 10.1039/c9nr10941b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cabazitaxel (CTX) is a promising anticancer drug. In this study, CTX-loaded human serum albumin (HSA) nanoparticles (MF-NPs-CTX) were prepared by a microfluidic (MF) method and were evaluated for tumor inhibition in PC-3 and HeLa cells in vitro and in vivo. The in vitro experiments showed that MF-NPs-CTX had higher drug loading content (DLC) as compared with NPs prepared by the bottom-up (BU) method (BU-NPs-CTX). Besides, MF-NPs-CTX exhibited uniform particle size distribution, high stability, sustained drug release, and high biosafety, in vivo imaging studies demonstrated that MF-NPs-CTX accumulated preferentially at the tumor site, compared to BU-NPs-CTX. The enhanced tumor uptake also increased the therapeutic efficacy of MF-NPs-CTX. Both MF-NPs-CTX and tween-CTX exhibited good tumor inhibition effect in vivo. MF-NPs-CTX had better biosafety and biocompatibility than tween-CTX. These results demonstrated that high CTX loading of MF-NPs-CTX has potential in the clinical treatment of tumors.
Collapse
Affiliation(s)
- Yating Sun
- Jilin University, School of Life Sciences, Changchun, Jilin, China.
| | | | | | | | | | | | | |
Collapse
|