151
|
Lin R, Ma M, Han B, Zheng Y, Wang Y, Zhou Y. Esophageal cancer stem cells reduce hypoxia-induced apoptosis by inhibiting the GRP78-perk-eIF2α-ATF4-CHOP pathway in vitro. J Gastrointest Oncol 2023; 14:1669-1693. [PMID: 37720449 PMCID: PMC10502543 DOI: 10.21037/jgo-23-462] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/27/2023] [Indexed: 09/19/2023] Open
Abstract
Background Due to the abnormal angiogenesis, cancer stem cells (CSCs) in esophageal cancer (EC) have the characteristics of a hypoxic microenvironment. However, they can resist hypoxia-induced apoptosis. the molecular mechanism underlying the resistance of esophageal CSCs to hypoxia-induced apoptosis is currently unclear. Therefore, this study will investigate the molecular mechanism based on CHOP-mediated endoplasmic reticulum stress. Methods CD44+CD24- cells in EC9706 cells were screened by fluorescence-activated cell sorting (FACS). To clarify which apoptosis pathway esophageal CSCs resist hypoxia-induced cell apoptosis through, the effects of hypoxia on apoptosis were detected by nuclear staining, flow cytometry, and JC-1 reagent, the effects of hypoxia on the expression of apoptosis-related proteins were detected by western blotting (WB) assay and quantitative polymerase chain reaction (qPCR) assay. To clarify the mechanisms of CD44+CD24- cells resistance to hypoxia-induced apoptosis is achieved by inhibiting the activation of endoplasmic reticulum stress (ERS) pathway, silenced CHOP and PERK cell lines of EC9706 cells and overexpressed CHOP and PERK cell lines of CD44+CD24- cells were constructed, the effects of hypoxia on apoptosis, cell cycle, and mitochondrial membrane potential were detected by flow cytometry and JC-1 reagent. WB assay and qPCR assay were used to detect the expressions of apoptosis-related proteins and ERS-related proteins. Results Hypoxia significantly induce apoptosis and cycle arrest of EC9706 cells (P<0.05), but did not affect apoptosis and cycle of CD44+CD24- cells (P>0.05). Hypoxia considerably induced the activation of mitochondrial and ERS apoptosis pathways in EC9706 cells (P<0.05), but did not affect Fas receptor apoptosis pathways (P>0.05). The three apoptosis pathways were not affected by hypoxia in CD44+CD24- cells (P>0.05). Silencing the CHOP and PERK gene inhibited hypoxia-induced apoptosis of EC9706 cells (P<0.05). CHOP and PERK overexpression promoted hypoxia-induced apoptosis of CD44+CD24- cells (P<0.05), whereas mitochondrial membrane permeability inhibitors inhibited hypoxia-induced apoptosis of CD44+CD24- cells overexpressed CHOP gene. Conclusions CD44+CD24- tumor stem cells in EC resist to hypoxia-induced apoptosis by the inhibition of ERS-mediated mitochondrial apoptosis pathway, which suggested that ERS pathway can serve as a potential target for reducing EC treatment resistance in clinical treatment.
Collapse
Affiliation(s)
- Ruijiang Lin
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province International Cooperation Base for Research and Application of Key Technology of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province International Cooperation Base for Research and Application of Key Technology of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Biao Han
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
- Gansu Province International Cooperation Base for Research and Application of Key Technology of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
152
|
Chakraborty S, Mukherjee S, Basak U, Pati S, Dutta A, Dutta S, Dhar S, Sarkar T, Guin A, Sa G, Das T. Immune evasion by cancer stem cells ensures tumor initiation and failure of immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:384-405. [DOI: 10.37349/ei.2023.00108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/12/2023] [Indexed: 01/04/2025]
Abstract
Cancer stem cells (CSCs) are a small subpopulation of cells that drive the formation and progression of tumors. However, during tumor initiation, how CSCs communicate with neighbouring immune cells to overcome the powerful immune surveillance barrier in order to form, spread, and maintain the tumor, remains poorly understood. It is, therefore, absolutely necessary to understand how a small number of tumor-initiating cells (TICs) survive immune attack during (a) the “elimination phase” of “tumor immune-editing”, (b) the establishment of regional or distant tumor after metastasis, and (c) recurrence after therapy. Mounting evidence suggests that CSCs suppress the immune system through a variety of distinct mechanisms that ensure the survival of not only CSCs but also non-stem cancer cells (NSCCs), which eventually form the tumor mass. In this review article, the mechanisms via which CSCs change the immune landscape of the tissue of origin, which contains macrophages, dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), natural killer (NK) cells, and tumor-infiltrating lymphocytes, in favour of tumorigenesis were discussed. The failure of cancer immunotherapy might also be explained by such interaction between CSCs and immune cells. This review will shed light on the critical role of CSCs in tumor immune evasion and emphasize the importance of CSC-targeted immunotherapy as a cutting-edge technique for battling cancer by restricting communication between immune cells and CSCs.
Collapse
Affiliation(s)
- Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Sumon Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhadip Pati
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Saikat Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Subhanki Dhar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tania Sarkar
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Aharna Guin
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12, Calcutta Improvement Trust Scheme VII M, Kolkata 700054, India
| |
Collapse
|
153
|
Liu H, Liu M, Zhao Y, Mo R. Nanomedicine strategies to counteract cancer stemness and chemoresistance. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:630-656. [PMID: 37720349 PMCID: PMC10501898 DOI: 10.37349/etat.2023.00157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/07/2023] [Indexed: 09/19/2023] Open
Abstract
Cancer stem-like cells (CSCs) identified by self-renewal ability and tumor-initiating potential are responsible for tumor recurrence and metastasis in many cancers. Conventional chemotherapy fails to eradicate CSCs that hold a state of dormancy and possess multi-drug resistance. Spurred by the progress of nanotechnology for drug delivery and biomedical applications, nanomedicine has been increasingly developed to tackle stemness-associated chemotherapeutic resistance for cancer therapy. This review focuses on advances in nanomedicine-mediated therapeutic strategies to overcome chemoresistance by specifically targeting CSCs, the combination of chemotherapeutics with chemopotentiators, and programmable controlled drug release. Perspectives from materials and formulations at the nano-scales are specifically surveyed. Future opportunities and challenges are also discussed.
Collapse
Affiliation(s)
- Huayu Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Mingqi Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Yanan Zhao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| | - Ran Mo
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
154
|
Mekapogu AR, Suárez CA, Wang JY. Editorial: Exploring cancer stem cells signaling pathways. Front Oncol 2023; 13:1274509. [PMID: 37664073 PMCID: PMC10471960 DOI: 10.3389/fonc.2023.1274509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023] Open
Affiliation(s)
- Alpha R. Mekapogu
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Kolling Institute, Sydney, NSW, Australia
| | - Cecilia A. Suárez
- Laboratorio de Sistemas Complejos, Instituto de Física Interdisciplinaria y Aplicada (INFINA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) – Universidad de Buenos Aires, Buenos Aires, Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jenny Y. Wang
- Cancer and Stem Cell Laboratory, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Kolling Institute, Sydney, NSW, Australia
| |
Collapse
|
155
|
Sun Z, Ji J, Li Y, Cui Y, Fan L, Li J, Qu X. Identification of evolutionary mechanisms of myelomatous effusion by single-cell RNA sequencing. Blood Adv 2023; 7:4148-4159. [PMID: 37276129 PMCID: PMC10407129 DOI: 10.1182/bloodadvances.2022009477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/21/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023] Open
Abstract
Myelomatous effusion (ME) is a rare manifestation of extramedullary multiple myeloma (MM) with limited therapeutic options and poor outcomes. The molecular mechanisms underlying ME are incompletely understood. We profiled transcriptomes of bone marrow, peripheral blood (PB), and pleural effusion/ascites from 3 patients with ME using single-cell RNA sequencing analysis. We found that ME contained a higher percentage of cytotoxic T cells, whereas PB contained a higher proportion of naive T cells. Malignant cells varied within and between sites and patients in their expression of signatures. We identified a gene module highly expressed in intramedullary and extramedullary plasma cell clusters and defined cell clusters expressing this gene set as extramedullary-initiating cells (EMICs). This gene set was associated with increased cellular proliferation, involved in p53 signaling, and related to poor prognosis in MM. The transcriptional regulators E2F1, YY1, and SMAD1 were activated in EMICs. Leukocyte immunoglobulin-like receptor subfamily B4 (LILRB4) was upregulated in extramedullary EMICs. We confirmed that LILRB4 promoted MM cell migration in vitro. This study provided insight into the evolutionary mechanisms of ME and defined EMICs and LILRB4 associated with extramedullary development.
Collapse
Affiliation(s)
- Zhengxu Sun
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jiamei Ji
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yating Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Yunqi Cui
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| | - Xiaoyan Qu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Nanjing, China
| |
Collapse
|
156
|
Chen S, Du Y, Guan XY, Yan Q. The current status of tumor microenvironment and cancer stem cells in sorafenib resistance of hepatocellular carcinoma. Front Oncol 2023; 13:1204513. [PMID: 37576900 PMCID: PMC10412930 DOI: 10.3389/fonc.2023.1204513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 08/15/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous and aggressive liver cancer that presents limited treatment options. Despite being the standard therapy for advanced HCC, sorafenib frequently encounters resistance, emphasizing the need to uncover the underlying mechanisms and develop effective treatments. This comprehensive review highlights the crucial interplay between the tumor microenvironment, cancer stem cells (CSCs), and epithelial-mesenchymal transition (EMT) in the context of sorafenib resistance. The tumor microenvironment, encompassing hypoxia, immune cells, stromal cells, and exosomes, exerts a significant impact on HCC progression and therapy response. Hypoxic conditions and immune cell infiltration create an immunosuppressive milieu, shielding tumor cells from immune surveillance and hindering therapeutic efficacy. Additionally, the presence of CSCs emerges as a prominent contributor to sorafenib resistance, with CD133+ CSCs implicated in drug resistance and tumor initiation. Moreover, CSCs undergo EMT, a process intimately linked to tumor progression, CSC activation, and further promotion of sorafenib resistance, metastasis, and tumor-initiating capacity. Elucidating the correlation between the tumor microenvironment, CSCs, and sorafenib resistance holds paramount importance in the quest to develop reliable biomarkers capable of predicting therapeutic response. Novel therapeutic strategies must consider the influence of the tumor microenvironment and CSC activation to effectively overcome sorafenib resistance in HCC.
Collapse
Affiliation(s)
- Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqing Du
- Institute of Basic Medical Sciences, School of Life Sciences and Biopharmaceuticals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin-Yuan Guan
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
157
|
Shao Z, Wang H, Ren H, Sun Y, Chen X. The Anticancer Effect of Napabucasin (BBI608), a Natural Naphthoquinone. Molecules 2023; 28:5678. [PMID: 37570646 PMCID: PMC10420168 DOI: 10.3390/molecules28155678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
Napabucasin (also known as BBI608) is a natural naphthoquinone originally identified as a cancer cell stemness inhibitor. Accumulated in vitro and in vivo evidence demonstrated that napabucasin showed significant anticancer effects in various types of cancers. Napabucasin inhibits cancer cell proliferation, induces apoptosis and cell cycle arrest, and suppresses metastasis and relapse. Such anticancer activities of napabucasin mainly rely on the inhibition of cancer stemness by targeting signal transducer and activator of transcription 3 (STAT3) and its related gene inhibition. However, several novel molecular targets for napabucasin, such as NAD(P)H:quinone oxidoreductase 1 (NQO1) and thioredoxin reductase 1 (TrxR1), have been reported. Napabucasin represents a promising anticancer lead for multiple cancers. In this mini review, the anticancer potential and the molecular mechanism of napabucasin will be briefly highlighted.
Collapse
Affiliation(s)
- Zeyang Shao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Heng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Haiyan Ren
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
| | - Yinxiang Sun
- Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical, University of Macau, Macao, China; (Z.S.); (H.W.); (H.R.)
- Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macao, China
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macau Joint Laboratory for Cell Fate Regulation and Disease, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
158
|
Fan J, Yu Y, Yan L, Yuan Y, Sun B, Yang D, Liu N, Guo J, Zhang J, Zhao X. GAS6-based CAR-T cells exhibit potent antitumor activity against pancreatic cancer. J Hematol Oncol 2023; 16:77. [PMID: 37475048 PMCID: PMC10357739 DOI: 10.1186/s13045-023-01467-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/15/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The receptor tyrosine kinases TAM family (TYRO3, AXL, and MERTK) are highly expressed in multiple forms of cancer cells and tumor-associated macrophages and promote the development of cancers including pancreatic tumor. Targeting TAM receptors could be a promising therapeutic option. METHODS We designed a novel CAR based on the extracellular domain of growth arrest-specific protein 6 (GAS6), a natural ligand for all TAM members. The ability of CAR-T to kill pancreatic cancer cells is tested in vitro and in vivo, and the safety is evaluated in mice and nonhuman primate. RESULTS GAS6-CAR-T cells efficiently kill TAM-positive pancreatic cancer cell lines, gemcitabine-resistant cancer cells, and cancer stem-like cells in vitro. GAS6-CAR-T cells also significantly suppressed the growth of PANC1 xenografts and patient-derived xenografts in mice. Furthermore, these CAR-T cells did not induce obvious side effects in nonhuman primate or mice although the CAR was demonstrated to recognize mouse TAM. CONCLUSIONS Our findings indicate that GAS6-CAR-T-cell therapy may be effective for pancreatic cancers with low toxicity.
Collapse
Affiliation(s)
- Jiawei Fan
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ye Yu
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lanzhen Yan
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuncang Yuan
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bin Sun
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dong Yang
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Nan Liu
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jing Guo
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Zhang
- Core Facilities of West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xudong Zhao
- Division of Abdominal Tumor Multimodality Treatment and Laboratory of Animal Tumor Models, Cancer Center and State Key Laboratory of Biotherapy and National Clinical Research Center for Geriatrics and Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
159
|
Jiang S, Fu W, Wang S, Zhu G, Wang J, Ma Y. Bacterial Outer Membrane Vesicles Loaded with Perhexiline Suppress Tumor Development by Regulating Tumor-Associated Macrophages Repolarization in a Synergistic Way. Int J Mol Sci 2023; 24:11222. [PMID: 37446401 DOI: 10.3390/ijms241311222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor development and metastasis and are categorized into M1-like macrophages, suppressing tumor cells, and M2-like macrophages. M2-like macrophages, occupying a major role in TAMs, can be repolarized into anti-tumoral phenotypes. In this study, outer membrane vesicles (OMVs) secreted by Escherichia coli Nissle 1917 carry perhexiline (OMV@Perhx) to explore the influence of OMVs and perhexiline on TAM repolarization. OMV@Perhx was internalized by macrophages and regulated the phenotype of TAMs from M2-like to M1-like efficiently to increase the level of tumor suppressor accordingly. Re-polarized macrophages promoted apoptosis and inhibited the mobility of tumor, cells including invasion and migration. The results indicate that OMVs improve the efficacy of perhexiline and also represent a promising natural immunomodulator. Combining OMVs with perhexiline treatments shows powerfully synergistic anti-tumor effects through co-culturing with re-polarized macrophages. This work is promising to exploit the extensive applications of OMVs and chemical drugs, therefore developing a meaningful drug carrier and immunomodulator as well as expanding the purposes of traditional chemical drugs.
Collapse
Affiliation(s)
- Shoujin Jiang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Wei Fu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Sijia Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Guanshu Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Yi Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
160
|
Xu L, Wang Y, Wang G, Guo S, Yu D, Feng Q, Hu K, Chen G, Li B, Xu Z, Jia X, Lu Y, Zhang H, Gao X, Chang S, Wang H, Wu X, Song D, Yang G, Zhu H, Zhou J, Zhan F, Zhu W, Shi J. Aberrant activation of TRIP13-EZH2 signaling axis promotes stemness and therapy resistance in multiple myeloma. Leukemia 2023; 37:1576-1579. [PMID: 37157015 DOI: 10.1038/s41375-023-01925-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Affiliation(s)
- Li Xu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yingcong Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Guanli Wang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shushan Guo
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Dandan Yu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qilin Feng
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Ke Hu
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Gege Chen
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Li
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Zhijian Xu
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xinyan Jia
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yumeng Lu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hui Zhang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xuejie Gao
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Shuaikang Chang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huaping Wang
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Xiaosong Wu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Dongliang Song
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guang Yang
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Huabin Zhu
- Department of Hematology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jinfeng Zhou
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Fenghuang Zhan
- Myeloma Center, Winthrop P. Rockefeller Cancer Institute, Department of Internal Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Weiliang Zhu
- CAS Key Laboratory of Receptor Research; State Key Laboratory of Drug Research; Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jumei Shi
- Department of Hematology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
161
|
Xu Z, Jiang J, Wang S. The Critical Role of RNA m 6A Methylation in Gliomas: Targeting the Hallmarks of Cancer. Cell Mol Neurobiol 2023; 43:1697-1718. [PMID: 36104608 PMCID: PMC11412196 DOI: 10.1007/s10571-022-01283-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/04/2022] [Indexed: 11/03/2022]
Abstract
Gliomas are the most common central cancer with high aggressive-capacity and poor prognosis, remaining to be the threat of most patients. With the blood-brain barrier and highly malignant progression, the efficacy of high-intensity treatment is limited. The N6-methyladenine (m6A) modification is found in rRNA, snRNA, miRNA, lncRNA, and mRNA, influencing the metabolism and translation of these RNAs and consequently regulating the proliferation, metastasis, apoptosis, etc. of glioma cells. The key role that m6A modification in gliomas has played makes it a prospective target for diagnosis and treatment. However, with studying deeper in m6A modification and gliomas, the conclusion and mechanism are abundant and complex. This review focused on the dysregulation of m6A regulators and m6A modification of key genes and pathways in Hallmarks of gliomas. Furthermore, the potential of exploiting m6A modification for gliomas diagnosis and therapeutics was also discussed. This review will summarize the recent studies about m6A modification, revealing that m6A modification plays an important role in the malignant progression, angiogenesis, microenvironment, and genome instability in gliomas by exploring the interaction and network between m6A modification-related regulators and classical tumor-related genes. And it might provide some clue for the molecular mechanism, diagnosis, and treatment of gliomas.
Collapse
Affiliation(s)
- Zhouhan Xu
- The Second Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Jun Jiang
- Department of Neurosurgery, The Second Hospital of Shandong University, 247 Beiyuan Road, Jinan, 250012, Shandong, People's Republic of China.
| | - Shun Wang
- Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| |
Collapse
|
162
|
Abstract
Niacin (vitamin B3) is an essential nutrient that treats pellagra, and prior to the advent of statins, niacin was commonly used to counter dyslipidemia. Recent evidence has posited niacin as a promising therapeutic for several neurological disorders. In this review, we discuss the biochemistry of niacin, including its homeostatic roles in NAD+ supplementation and metabolism. Niacin also has roles outside of metabolism, largely through engaging hydroxycarboxylic acid receptor 2 (Hcar2). These receptor-mediated activities of niacin include regulation of immune responses, phagocytosis of myelin debris after demyelination or of amyloid beta in models of Alzheimer's disease, and cholesterol efflux from cells. We describe the neurological disorders in which niacin has been investigated or has been proposed as a candidate medication. These are multiple sclerosis, Alzheimer's disease, Parkinson's disease, glioblastoma and amyotrophic lateral sclerosis. Finally, we explore the proposed mechanisms through which niacin may ameliorate neuropathology. While several questions remain, the prospect of niacin as a therapeutic to alleviate neurological impairment is promising.
Collapse
Affiliation(s)
- Emily Wuerch
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Gloria Roldan Urgoiti
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada
- Arnie Charbonneau Cancer Institute, Calgary, AB, Canada
- Department of Oncology, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, AB, Canada.
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
- Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
163
|
Zhao Z, Sun C, Hou J, Yu P, Wei Y, Bai R, Yang P. Identification of STEAP3-based molecular subtype and risk model in ovarian cancer. J Ovarian Res 2023; 16:126. [PMID: 37386521 DOI: 10.1186/s13048-023-01218-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common malignancies in women. It has a poor prognosis owing to its recurrence and metastasis. Unfortunately, reliable markers for early diagnosis and prognosis of OC are lacking. Our research aimed to investigate the value of the six-transmembrane epithelial antigen of prostate family member 3 (STEAP3) as a prognostic predictor and therapeutic target in OC using bioinformatics analysis. METHODS STEAP3 expression and clinical data were acquired from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO). Unsupervised clustering was used to identify molecular subtypes. Prognosis, tumor immune microenvironment (TIME), stemness indexes, and functional enrichment analysis were compared between two definite clusters. Through the least absolute shrinkage and selection operator (LASSO) regression analysis, a STEAP3-based risk model was developed, and the predictive effectiveness of this signature was confirmed using GEO datasets. A nomogram was used to predict the survival possibility of patients. Additionally, TIME, tumor immune dysfunction and exclusion (TIDE), stemness indexes, somatic mutations, and drug sensitivity were evaluated in different risk groups with OC. STEAP3 protein expression was detected using immunohistochemistry (IHC). RESULTS STEAP3 displayed marked overexpression in OC. STEAP3 is an independent risk factor for OC. Based on the mRNA levels of STEAP3-related genes (SRGs), two distinct clusters were identified. Patients in the cluster 2 (C2) subgroup had a considerably worse prognosis, higher immune cell infiltration, and lower stemness scores. Pathways involved in tumorigenesis and immunity were highly enriched in the C2 subgroup. A prognostic model based on 13 SRGs was further developed. Kaplan-Meier analysis indicated that the overall survival (OS) of high-risk patients was poor. The risk score was significantly associated with TIME, TIDE, stemness indexes, tumor mutation burden (TMB), immunotherapy response, and drug sensitivity. Finally, IHC revealed that STEAP3 protein expression was noticeably elevated in OC, and overexpression of STEAP3 predicted poor OS and relapse-free survival (RFS) of patients. CONCLUSION In summary, this study revealed that STEAP3 reliably predicts patient prognosis and provides novel ideas for OC immunotherapy.
Collapse
Affiliation(s)
- Zouyu Zhao
- First Affiliated Hospital, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Chongfeng Sun
- First Affiliated Hospital, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jishuai Hou
- First Affiliated Hospital, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Panpan Yu
- First Affiliated Hospital, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Yan Wei
- First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Rui Bai
- First Affiliated Hospital, Shihezi University, Shihezi, China
| | - Ping Yang
- First Affiliated Hospital, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| |
Collapse
|
164
|
Song Y, Deng Z, Sun H, Zhao Y, Zhao R, Cheng J, Huang Q. Predicting tumor repopulation through the gene panel derived from radiation resistant colorectal cancer cells. J Transl Med 2023; 21:390. [PMID: 37328854 PMCID: PMC10273655 DOI: 10.1186/s12967-023-04260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/09/2023] [Indexed: 06/18/2023] Open
Abstract
BACKGROUND Tumor cells with the capability of radiation resistance can escape the fate of cell death after radiotherapy, serving as the main cause of treatment failure. Repopulation of tumors after radiotherapy is dominated by this group of residual cells, which greatly reduce the sensitivity of recurrent tumors to the therapy, resulting in poor clinical outcomes. Therefore, revealing the mechanism of radiation resistant cells participating in tumor repopulation is of vital importance for cancer patients to obtain a better prognosis. METHODS Co-expressed genes were searched by using genetic data of radiation resistant cells (from GEO database) and TCGA colorectal cancer. Univariate and multivariate Cox regression analysis were performed to define the most significant co-expressed genes for establishing prognostic indicator. Logistic analysis, WGCNA analysis, and other types of tumors were included to verify the predictive ability of the indicator. RT-qPCR was carried out to test expression level of key genes in colorectal cancer cell lines. Colongenic assay was utilized to test the radio-sensitivity and repopulation ability of key gene knockdown cells. RESULTS Prognostic indicator based on TCGA colorectal cancer patients containing four key radiation resistance genes (LGR5, KCNN4, TNS4, CENPH) was established. The indicator was shown to be significantly correlated with the prognosis of colorectal cancer patients undergoing radiotherapy, and also had an acceptable predictive effect in the other five types of cancer. RT-qPCR showed that expression level of key genes was basically consistent with the radiation resistance level of colorectal cancer cells. The clonogenic ability of all key gene knockdown cells decreased after radiation treatment compared with the control groups. CONCLUSIONS Our data suggest that LGR5, KCNN4, TNS4 and CENPH are correlated with radiation sensitivity of colorectal cancer cells, and the indicator composed by them can reflect the prognosis of colorectal cancer patients undergoing radiation therapy. Our data provide an evidence of radiation resistant tumor cells involved in tumor repopulation, and give patients undergoing radiotherapy an approving prognostic indicator with regard to tumor progression.
Collapse
Affiliation(s)
- Yanwei Song
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Zheng Deng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Haoran Sun
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yucui Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Ruyi Zhao
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
- Shanghai Key Laboratory of Pancreatic Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Jin Cheng
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Qian Huang
- Cancer Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
165
|
Wang Q, Šabanović B, Awada A, Reina C, Aicher A, Tang J, Heeschen C. Single-cell omics: a new perspective for early detection of pancreatic cancer? Eur J Cancer 2023; 190:112940. [PMID: 37413845 DOI: 10.1016/j.ejca.2023.112940] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 06/04/2023] [Indexed: 07/08/2023]
Abstract
Pancreatic cancer is one of the most lethal cancers, mostly due to late diagnosis and limited treatment options. Early detection of pancreatic cancer in high-risk populations bears the potential to greatly improve outcomes, but current screening approaches remain of limited value despite recent technological advances. This review explores the possible advantages of liquid biopsies for this application, particularly focusing on circulating tumour cells (CTCs) and their subsequent single-cell omics analysis. Originating from both primary and metastatic tumour sites, CTCs provide important information for diagnosis, prognosis and tailoring of treatment strategies. Notably, CTCs have even been detected in the blood of subjects with pancreatic precursor lesions, suggesting their suitability as a non-invasive tool for the early detection of malignant transformation in the pancreas. As intact cells, CTCs offer comprehensive genomic, transcriptomic, epigenetic and proteomic information that can be explored using rapidly developing techniques for analysing individual cells at the molecular level. Studying CTCs during serial sampling and at single-cell resolution will help to dissect tumour heterogeneity for individual patients and among different patients, providing new insights into cancer evolution during disease progression and in response to treatment. Using CTCs for non-invasive tracking of cancer features, including stemness, metastatic potential and expression of immune targets, provides important and readily accessible molecular insights. Finally, the emerging technology of ex vivo culturing of CTCs could create new opportunities to study the functionality of individual cancers at any stage and develop personalised and more effective treatment approaches for this lethal disease.
Collapse
Affiliation(s)
- Qi Wang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Berina Šabanović
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Azhar Awada
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy; Molecular Biotechnology Center, University of Turin (UniTO), Turin, Italy
| | - Chiara Reina
- Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Alexandra Aicher
- Precision Immunotherapy, Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jiajia Tang
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; South Chongqing Road 227, Shanghai, China.
| | - Christopher Heeschen
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Pancreatic Cancer Heterogeneity, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy; South Chongqing Road 227, Shanghai, China.
| |
Collapse
|
166
|
Luo Y, Xiao JH. Inflammatory auxo-action in the stem cell division theory of cancer. PeerJ 2023; 11:e15444. [PMID: 37309372 PMCID: PMC10257902 DOI: 10.7717/peerj.15444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/01/2023] [Indexed: 06/14/2023] Open
Abstract
Acute inflammation is a beneficial response to the changes caused by pathogens or injuries that can eliminate the source of damage and restore homeostasis in damaged tissues. However, chronic inflammation causes malignant transformation and carcinogenic effects of cells through continuous exposure to pro-inflammatory cytokines and activation of inflammatory signaling pathways. According to the theory of stem cell division, the essential properties of stem cells, including long life span and self-renewal, make them vulnerable to accumulating genetic changes that can lead to cancer. Inflammation drives quiescent stem cells to enter the cell cycle and perform tissue repair functions. However, as cancer likely originates from DNA mutations that accumulate over time via normal stem cell division, inflammation may promote cancer development, even before the stem cells become cancerous. Numerous studies have reported that the mechanisms of inflammation in cancer formation and metastasis are diverse and complex; however, few studies have reviewed how inflammation affects cancer formation from the stem cell source. Based on the stem cell division theory of cancer, this review summarizes how inflammation affects normal stem cells, cancer stem cells, and cancer cells. We conclude that chronic inflammation leads to persistent stem cells activation, which can accumulate DNA damage and ultimately promote cancer. Additionally, inflammation not only facilitates the progression of stem cells into cancer cells, but also plays a positive role in cancer metastasis.
Collapse
Affiliation(s)
- Yi Luo
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jian-Hui Xiao
- Institute of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology & Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
167
|
Song L, Yang J, Qin Z, Ou C, Luo R, Yang W, Wang L, Wang N, Ma S, Wu Q, Gong C. Multi-Targeted and On-Demand Non-Coding RNA Regulation Nanoplatform against Metastasis and Recurrence of Triple-Negative Breast Cancer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207576. [PMID: 36905244 DOI: 10.1002/smll.202207576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Indexed: 06/08/2023]
Abstract
Dysregulation of microRNAs (miRs) is the hallmark of triple-negative breast cancer (TNBC), which is closely involved with its growth, metastasis, and recurrence. Dysregulated miRs are promising targets for TNBC therapy, however, targeted and accurate regulation of multiple disordered miRs in tumors is still a great challenge. Here, a multi-targeting and on-demand non-coding RNA regulation nanoplatform (MTOR) is reported to precisely regulate disordered miRs, leading to dramatical suppression of TNBC growth, metastasis, and recurrence. With the assistance of long blood circulation, ligands of urokinase-type plasminogen activator peptide and hyaluronan located in multi-functional shells enable MTOR to actively target TNBC cells and breast cancer stem cell-like cells (BrCSCs). After entering TNBC cells and BrCSCs, MTOR is subjected to lysosomal hyaluronidase-induced shell detachment, leading to an explosion of the TAT-enriched core, thereby enhancing nuclear targeting. Subsequently, MTOR could precisely and simultaneously downregulate microRNA-21 expression and upregulate microRNA-205 expression in TNBC. In subcutaneous xenograft, orthotopic xenograft, pulmonary metastasis, and recurrence TNBC mouse models, MTOR shows remarkably synergetic effects on the inhibition of tumor growth, metastasis, and recurrence due to its on-demand regulation of disordered miRs. This MTOR system opens a new avenue for on-demand regulation of disordered miRs against growth, metastasis, and recurrence of TNBC.
Collapse
Affiliation(s)
- Linjiang Song
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Jin Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Zeyi Qin
- Department of Biology, Brandeis University, Waltham, MA, 02453, USA
| | - Chunqing Ou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Rui Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Wen Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Li Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Ning Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shuang Ma
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Qinjie Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Changyang Gong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
168
|
Yang Z, Liu F, Li Z, Liu N, Yao X, Zhou Y, Zhang L, Jiang P, Liu H, Kong L, Lang C, Xu X, Jia J, Nakajima T, Gu W, Zheng L, Zhang Z. Histone lysine methyltransferase SMYD3 promotes oral squamous cell carcinoma tumorigenesis via H3K4me3-mediated HMGA2 transcription. Clin Epigenetics 2023; 15:92. [PMID: 37237385 DOI: 10.1186/s13148-023-01506-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Epigenetic dysregulation is essential to the tumorigenesis of oral squamous cell carcinoma (OSCC). SET and MYND domain-containing protein 3 (SMYD3), a histone lysine methyltransferase, is implicated in gene transcription regulation and tumor development. However, the roles of SMYD3 in OSCC initiation are not fully understood. The present study investigated the biological functions and mechanisms involved in the SMYD3-mediated tumorigenesis of OSCC utilizing bioinformatic approaches and validation assays with the aim of informing the development of targeted therapies for OSCC. RESULTS 429 chromatin regulators were screened by a machine learning approach and aberrant expression of SMYD3 was found to be closely associated with OSCC formation and poor prognosis. Data profiling of single-cell and tissue demonstrated that upregulated SMYD3 significantly correlated with aggressive clinicopathological features of OSCC. Alterations in copy number and DNA methylation patterns may contribute to SMYD3 overexpression. Functional experimental results suggested that SMYD3 enhanced cancer cell stemness and proliferation in vitro and tumor growth in vivo. SMYD3 was observed to bind to the High Mobility Group AT-Hook 2 (HMGA2) promoter and elevated tri-methylation of histone H3 lysine 4 at the corresponding site was responsible for transactivating HMGA2. SMYD3 also was positively linked to HMGA2 expression in OSCC samples. Furthermore, treatment with the SMYD3 chemical inhibitor BCI-121 exerted anti-tumor effects. CONCLUSIONS Histone methyltransferase activity and transcription-potentiating function of SMYD3 were found to be essential for tumorigenesis and the SMYD3-HMGA2 is a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zongcheng Yang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Fen Liu
- Department of Clinical Laboratory, Linyi Central Hospital, Linyi, Shandong, People's Republic of China
| | - Zongkai Li
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Nianping Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xinfeng Yao
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Yu Zhou
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Liyu Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Pan Jiang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Honghong Liu
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Lingming Kong
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Chuandong Lang
- Department of Orthopedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, People's Republic of China
| | - Jihui Jia
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Takahito Nakajima
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| | - Lixin Zheng
- Department of Microbiology/Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.
| | - Zhihong Zhang
- Department of Stomatology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People's Republic of China.
| |
Collapse
|
169
|
Yang J, Teng Y. Harnessing cancer stem cell-derived exosomes to improve cancer therapy. J Exp Clin Cancer Res 2023; 42:131. [PMID: 37217932 DOI: 10.1186/s13046-023-02717-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer stem cells (CSCs) are the key "seeds" for tumor initiation and development, metastasis, and recurrence. Because of the function of CSCs in tumor development and progression, research in this field has intensified and CSCs are viewed as a new therapeutic target. Exosomes carrying a wide range of DNA, RNA, lipids, metabolites, and cytosolic and cell-surface proteins are released outside of the originating cells through the fusion of multivesicular endosomes or multivesicular bodies with the plasma membrane. It has become evident that CSC-derived exosomes play a significant role in almost all "hallmarks" of cancer. For example, exosomes from CSCs can maintain a steady state of self-renewal in the tumor microenvironment and regulate microenvironmental cells or distant cells to help cancer cells escape immune surveillance and induce immune tolerance. However, the function and therapeutic value of CSC-derived exosomes and the underlying molecular mechanisms are still largely undefined. To provide an overview of the possible role of CSC-derived exosomes and targeting strategies, we summarize relevant research progress, highlight the potential impact of detecting or targeting CSC-derived exosomes on cancer treatment, and discuss opportunities and challenges based on our experience and insights in this research area. A more thorough understanding of the characteristics and function of CSC-derived exosomes may open new avenues to the development of new clinical diagnostic/prognostic tools and therapies to prevent tumor resistance and relapse.
Collapse
Affiliation(s)
- Jianqiang Yang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, 201 Dowman Dr, Atlanta, GA, 30322, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
170
|
Rajan RG, Krutilina RI, Ignatova TN, Pavicevich ZS, Dulatova GM, Lane MA, Chatterjee AR, Rooney RJ, Antony M, Hagerty VR, Kukekov NV, Hanafy KA, Vrionis FD. Upregulation of the Oct3/4 Network in Basal Breast Cancer Is Associated with Its Metastatic Potential and Shows Tissue Dependent Variability. Int J Mol Sci 2023; 24:ijms24119142. [PMID: 37298091 DOI: 10.3390/ijms24119142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/12/2023] Open
Abstract
Adaptive plasticity of Breast Cancer stem cells (BCSCs) is strongly correlated with cancer progression and resistance, leading to a poor prognosis. In this study, we report the expression profile of several pioneer transcription factors of the Oct3/4 network associated with tumor initiation and metastasis. In the triple negative breast cancer cell line (MDA-MB-231) stably transfected with human Oct3/4-GFP, differentially expressed genes (DEGs) were identified using qPCR and microarray, and the resistance to paclitaxel was assessed using an MTS assay. The tumor-seeding potential in immunocompromised (NOD-SCID) mice and DEGs in the tumors were also assessed along with the intra-tumor (CD44+/CD24-) expression using flow cytometry. Unlike 2-D cultures, the Oct3/4-GFP expression was homogenous and stable in 3-D mammospheres developed from BCSCs. A total of 25 DEGs including Gata6, FoxA2, Sall4, Zic2, H2afJ, Stc1 and Bmi1 were identified in Oct3/4 activated cells coupled with a significantly increased resistance to paclitaxel. In mice, the higher Oct3/4 expression in tumors correlated with enhanced tumorigenic potential and aggressive growth, with metastatic lesions showing a >5-fold upregulation of DEGs compared to orthotopic tumors and variability in different tissues with the highest modulation in the brain. Serially re-implanting tumors in mice as a model of recurrence and metastasis highlighted the sustained upregulation of Sall4, c-Myc, Mmp1, Mmp9 and Dkk1 genes in metastatic lesions with a 2-fold higher expression of stem cell markers (CD44+/CD24-). Thus, Oct3/4 transcriptome may drive the differentiation and maintenance of BCSCs, promoting their tumorigenic potential, metastasis and resistance to drugs such as paclitaxel with tissue-specific heterogeneity.
Collapse
Affiliation(s)
- Robin G Rajan
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, 800 Meadows Road, Boca Raton, FL 33486, USA
| | - Raisa I Krutilina
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Tatyana N Ignatova
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, 800 Meadows Road, Boca Raton, FL 33486, USA
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Zoran S Pavicevich
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Galina M Dulatova
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Maria A Lane
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Arindam R Chatterjee
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
- Mallinckrodt Institute of Radiology, Departments of Neurosurgery and Neurology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | - Robert J Rooney
- Le-Bonheur Children's Outpatient Hospital, 51 N Dunlap St., Memphis, TN 38105, USA
| | - Mymoon Antony
- Wellington Regional Medical Center, 10101 Forest Hill Blvd, Wellington, FL 33414, USA
| | - Vivian R Hagerty
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Nickolay V Kukekov
- Department of Pathology and Laboratory Medicine, Center for Cancer Research, University of Tennessee Health Sciences Center, 920 Madison Ave., Memphis, TN 38163, USA
| | - Khalid A Hanafy
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| | - Frank D Vrionis
- Helene and Stephen Weicholz Cell Therapy Laboratory, Marcus Neuroscience Institute, 800 Meadows Road, Boca Raton, FL 33486, USA
- Department of Biomedical Science, Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA
| |
Collapse
|
171
|
Zhang T, Zhuang L, Muaibati M, Wang D, Abasi A, Tong Q, Ma D, Jin L, Huang X. Identification of cervical cancer stem cells using single-cell transcriptomes of normal cervix, cervical premalignant lesions, and cervical cancer. EBioMedicine 2023; 92:104612. [PMID: 37224771 DOI: 10.1016/j.ebiom.2023.104612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Cervical cancer is the fourth leading cause of mortality among gynecological malignancies. However, the identification of cervical cancer stem cells remains unclear. METHODS We performed single-cell mRNA sequencing on ∼122,400 cells from 20 cervical biopsies, including 5 healthy controls, 4 high-grade intraepithelial neoplasias, 5 microinvasive carcinomas of the cervix, and 6 invasive cervical squamous carcinomas. Bioinformatic results were validated by multiplex immunohistochemistry (mIHC) in cervical cancer tissue microarrays (TMA) (n = 85). FINDINGS We identified cervical cancer stem cells and highlighted the functional changes in cervical stem cells during malignant transformation. The original non-malignant stem cell properties (characterized by high proliferation) gradually diminished, whereas the tumor stem cell properties (characterized by epithelial-mesenchymal transformation and invasion) were enhanced. The mIHC results of our TMA cohort confirmed the existence of stem-like cells and indicated that cluster correlated with neoplastic recurrence. Subsequently, we investigated malignant and immune cell heterogeneity in the cervical multicellular ecosystem across different disease stages. We observed global upregulation of interferon responses in the cervical microenvironment during lesion progression. INTERPRETATION Our results provide more insights into cervical premalignant and malignant lesion microenvironments. FUNDING This research was supported by the Guangdong Provincial Natural Science Foundation of China (2023A1515010382), Grant 2021YFC2700603 from the National Key Research & Development Program of China and the Hubei Provincial Natural Science Foundation of China (2022CFB174 and 2022CFB893).
Collapse
Affiliation(s)
- Tao Zhang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China; Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China
| | - Liang Zhuang
- Department of Oncology, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China
| | - Munawaer Muaibati
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Dan Wang
- Department of Ophthalmology, Wuhan Children's Hospital, Tongji Medicine College, Huazhong University of Science and Technology, Wuhan 430015, People's Republic of China
| | - Abuduyilimu Abasi
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Qing Tong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030, People's Republic of China.
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan 430030; People's Republic of China.
| |
Collapse
|
172
|
Zhang D, Jiang Z, Hu J, Sun X, Zheng Y, Shen Y. Comprehensively prognostic and immunological analysis of snail family transcriptional repressor 2 in pan-cancer and identification in pancreatic carcinoma. Front Immunol 2023; 14:1117585. [PMID: 37251370 PMCID: PMC10213725 DOI: 10.3389/fimmu.2023.1117585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/27/2023] [Indexed: 05/31/2023] Open
Abstract
Background Snail family transcriptional repressor 2 (SNAI2) is a transcription factor that induces epithelial to mesenchymal transition in neoplastic epithelial cells. It is closely related to the progression of various malignancies. However, the significance of SNAI2 in human pan-cancer is still largely unknown. Methods The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Cancer Cell Line Encyclopedia (CCLE) databases were taken to examine the SNAI2 expression pattern in tissues and cancer cells. The link between SNAI2 gene expression levels and prognosis, as well as immune cell infiltration, was investigated using the Kaplan-Meier technique and Spearman correlation analysis. We also explored the expression and distribution of SNAI2 in various tumor tissues and cells by the THPA (Human Protein Atlas) database. We further investigated the relationship between SNAI2 expression levels and immunotherapy response in various clinical immunotherapy cohorts. Finally, the immunoblot was used to quantify the SNAI2 expression levels, and the proliferative and invasive ability of pancreatic cancer cells was determined by colony formation and transwell assays. Results We discovered heterogeneity in SNAI2 expression in different tumor tissues and cancer cell lines by exploring public datasets. The genomic alteration of SNAI2 existed in most cancers. Also, SNAI2 exhibits prognosis predictive ability in various cancers. SNAI2 was significantly correlated with immune-activated hallmarks, cancer immune cell infiltrations, and immunoregulators. It's worth noting that SNAI2 expression is significantly related to the effectiveness of clinical immunotherapy. SNAI2 expression was also found to have a high correlation with the DNA mismatch repair (MMR) genes and DNA methylation in many cancers. Finally, the knockdown of SNAI2 significantly weakened the proliferative and invasive ability of pancreatic cancer cells. Conclusion These findings suggested that SNAI2 could be used as a biomarker in human pan-cancer to detect immune infiltration and poor prognosis, which provides a new idea for cancer treatment.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of General Surgery, the Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhong Jiang
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianping Hu
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaoyun Sun
- Department of Medical Genetics, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yan Zheng
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Shen
- Jiangxi Key Laboratory of Molecular Medicine, the Second Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
173
|
Wang L, Tang Y. N6-methyladenosine (m6A) in cancer stem cell: From molecular mechanisms to therapeutic implications. Biomed Pharmacother 2023; 163:114846. [PMID: 37167725 DOI: 10.1016/j.biopha.2023.114846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
The emergence of drug resistance and metastasis has long been a difficult problem for cancer treatment. Recent studies have shown that cancer stem cell populations are key factors in the regulation of cancer aggressiveness, relapse and drug resistance. Cancer stem cell (CSC) populations are highly plastic and self-renewing, giving them unique metabolic, metastatic, and chemotherapy resistance properties. N6-methyladenosine (m6A) is the most abundant internal modification of mRNA and is involved in a variety of cell growth and development processes, including RNA transcription, alternative splicing, degradation, and translation. It has also been linked to the development of various cancers. At present, the important role of m6A in tumour progression is gradually attracting attention, especially in the tumour stemness regulation process. Abnormal m6A modifications regulate tumour metastasis, recurrence and drug resistance. This paper aims to explore the regulatory mechanism of m6A in CSCs and clinical therapy, clarify its regulatory network, and provide theoretical guidance for the development of clinical targets and improvement of therapeutic effects.
Collapse
Affiliation(s)
- Liming Wang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China
| | - Yuanxin Tang
- Department of General Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, P.R. China.
| |
Collapse
|
174
|
Li Z, Yang Z, Liu W, Zhu W, Yin L, Han Z, Xian Y, Wen J, Tang H, Lin X, Yang Y, Wang J, Zhang K. Disheveled3 enhanced EMT and cancer stem-like cells properties via Wnt/β-catenin/c-Myc/SOX2 pathway in colorectal cancer. J Transl Med 2023; 21:302. [PMID: 37147666 PMCID: PMC10161491 DOI: 10.1186/s12967-023-04120-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/09/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) and cancer stem-like cells (CSLCs) play crucial role in tumor metastasis and drug-resistance. Disheveled3 (DVL3) is involved in malignant behaviors of cancer. However, the role and potential mechanism of DVL3 remain elusive in EMT and CSLCs of colorectal cancer (CRC). METHODS UALCAN and PrognoScan databases were employed to evaluate DVL3 expression in CRC tissues and its correlation with CRC prognosis, respectively. Transwell, sphere formation and CCK8 assay were used to assess metastasis, stemness and drug sensitivity of CRC cells, respectively. Western blotting and dual luciferase assay were performed to analyze the protein expression and Wnt/β-catenin activation, respectively. Lentiviral transfection was used to construct the stable cell lines. Animal studies were performed to analyze the effect of silencing DVL3 on tumorigenicity and metastasis of CRC cells in vivo. RESULTS DVL3 was overexpressed in CRC tissues and several CRC cell lines. DVL3 expression was also higher in CRC tissues with lymph node metastasis than tumor tissues without metastasis, and correlated with poor prognosis of CRC patients. DVL3 positively regulated the abilities of migration, invasion and EMT-like molecular changes in CRC cells. Moreover, DVL3 promoted CSLCs properties and multidrug resistance. We further identified that Wnt/β-catenin was crucial for DVL3-mediated EMT, stemness and SOX2 expression, while silencing SOX2 inhibited DVL3-mediated EMT and stemness. Furthermore, c-Myc, a direct target gene of Wnt/β-catenin, was required for SOX2 expression and strengthened EMT and stemness via SOX2 in CRC cells. Finally, knockdown of DVL3 suppressed tumorigenicity and lung metastasis of CRC cells in nude mice. CONCLUSION DVL3 promoted EMT and CSLCs properties of CRC via Wnt/β-catenin/c-Myc/SOX2 axis, providing a new strategy for successful CRC treatment.
Collapse
Affiliation(s)
- Zhengguang Li
- Oncology Department of Chengdu Seventh People's Hospital, Chengdu, China.
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China.
| | - Zhirong Yang
- Pathology Department of Deyang People's Hospital, Deyang, 618000, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Wei Liu
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 61051, China
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Wanglong Zhu
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Lan Yin
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Zhenyu Han
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yu Xian
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Jie Wen
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Hualong Tang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Xinyue Lin
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Yuhan Yang
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China
| | - Jingyi Wang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 61051, China.
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China.
| | - Kun Zhang
- The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, 61051, China.
- School of Biological Sciences and Technology, Chengdu Medical College, Chengdu, 610500, China.
| |
Collapse
|
175
|
Goenka A, Khan F, Verma B, Sinha P, Dmello CC, Jogalekar MP, Gangadaran P, Ahn B. Tumor microenvironment signaling and therapeutics in cancer progression. Cancer Commun (Lond) 2023; 43:525-561. [PMID: 37005490 PMCID: PMC10174093 DOI: 10.1002/cac2.12416] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/20/2023] [Indexed: 04/04/2023] Open
Abstract
Tumor development and metastasis are facilitated by the complex interactions between cancer cells and their microenvironment, which comprises stromal cells and extracellular matrix (ECM) components, among other factors. Stromal cells can adopt new phenotypes to promote tumor cell invasion. A deep understanding of the signaling pathways involved in cell-to-cell and cell-to-ECM interactions is needed to design effective intervention strategies that might interrupt these interactions. In this review, we describe the tumor microenvironment (TME) components and associated therapeutics. We discuss the clinical advances in the prevalent and newly discovered signaling pathways in the TME, the immune checkpoints and immunosuppressive chemokines, and currently used inhibitors targeting these pathways. These include both intrinsic and non-autonomous tumor cell signaling pathways in the TME: protein kinase C (PKC) signaling, Notch, and transforming growth factor (TGF-β) signaling, Endoplasmic Reticulum (ER) stress response, lactate signaling, Metabolic reprogramming, cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) and Siglec signaling pathways. We also discuss the recent advances in Programmed Cell Death Protein 1 (PD-1), Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4), T-cell immunoglobulin mucin-3 (TIM-3) and Lymphocyte Activating Gene 3 (LAG3) immune checkpoint inhibitors along with the C-C chemokine receptor 4 (CCR4)- C-C class chemokines 22 (CCL22)/ and 17 (CCL17), C-C chemokine receptor type 2 (CCR2)- chemokine (C-C motif) ligand 2 (CCL2), C-C chemokine receptor type 5 (CCR5)- chemokine (C-C motif) ligand 3 (CCL3) chemokine signaling axis in the TME. In addition, this review provides a holistic understanding of the TME as we discuss the three-dimensional and microfluidic models of the TME, which are believed to recapitulate the original characteristics of the patient tumor and hence may be used as a platform to study new mechanisms and screen for various anti-cancer therapies. We further discuss the systemic influences of gut microbiota in TME reprogramming and treatment response. Overall, this review provides a comprehensive analysis of the diverse and most critical signaling pathways in the TME, highlighting the associated newest and critical preclinical and clinical studies along with their underlying biology. We highlight the importance of the most recent technologies of microfluidics and lab-on-chip models for TME research and also present an overview of extrinsic factors, such as the inhabitant human microbiome, which have the potential to modulate TME biology and drug responses.
Collapse
Affiliation(s)
- Anshika Goenka
- The Ken & Ruth Davee Department of NeurologyThe Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg School of MedicineChicago, 60611ILUSA
| | - Fatima Khan
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Bhupender Verma
- Department of OphthalmologySchepens Eye Research InstituteMassachusetts Eye and Ear InfirmaryHarvard Medical SchoolBoston, 02114MAUSA
| | - Priyanka Sinha
- Department of NeurologyMassGeneral Institute for Neurodegenerative DiseaseMassachusetts General Hospital, Harvard Medical SchoolCharlestown, 02129MAUSA
| | - Crismita C. Dmello
- Department of Neurological SurgeryFeinberg School of MedicineNorthwestern UniversityChicago, 60611ILUSA
| | - Manasi P. Jogalekar
- Helen Diller Family Comprehensive Cancer CenterUniversity of California San FranciscoSan Francisco, 94143CAUSA
| | - Prakash Gangadaran
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| | - Byeong‐Cheol Ahn
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future TalentsDepartment of Biomedical Science, School of MedicineKyungpook National UniversityDaegu, 41944South Korea
- Department of Nuclear MedicineSchool of Medicine, Kyungpook National University, Kyungpook National University HospitalDaegu, 41944South Korea
| |
Collapse
|
176
|
Si W, Kan C, Zhang L, Li F. Role of RUNX2 in breast cancer development and drug resistance (Review). Oncol Lett 2023; 25:176. [PMID: 37033103 PMCID: PMC10079821 DOI: 10.3892/ol.2023.13762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/02/2023] [Indexed: 03/17/2023] Open
Abstract
Breast cancer is the most common malignancy and ranks second among the causes of tumor-associated death in females. The recurrence and drug resistance of breast cancer are intractable due to the presence of breast cancer stem cells (BCSCs), which are adequate to initiate tumor formation and refractory to conventional remedies. Runt-related transcription factor 2 (RUNX2), a pivotal transcription factor in mammary gland and bone development, has also been related to metastatic cancer and BCSCs. State-of-the-art research has indicated the retention of RUNX2 expression in a more invasive subtype of breast cancer, and in particular, triple-negative breast cancer development and drug resistance are associated with estrogen receptor signaling pathways. The present review mainly focused on the latest updates on RUNX2 in BCSCs and their roles in breast cancer progression and drug resistance, providing insight that may aid the development of RUNX2-based diagnostics and treatments for breast cancer in clinical practice.
Collapse
Affiliation(s)
- Wentao Si
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Chen Kan
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Leisheng Zhang
- Key Laboratory of Molecular Diagnostics and Precision Medicine for Surgical Oncology in Gansu Province and NHC Key Laboratory of Diagnosis and Therapy of Gastrointestinal Tumor, Gansu Provincial Hospital, Lanzhou, Gansu 730000, P.R. China
- Key Laboratory of Radiation Technology and Biophysics, Hefei Institute of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, P.R. China
| | - Feifei Li
- Department of Pathophysiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
177
|
Hu H, Li B, Wang J, Tan Y, Xu M, Xu W, Lu H. New advances into cisplatin resistance in head and neck squamous carcinoma: Mechanisms and therapeutic aspects. Biomed Pharmacother 2023; 163:114778. [PMID: 37137185 DOI: 10.1016/j.biopha.2023.114778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/05/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) arises from the interplay of multiple factors, such as smoking, alcohol consumption, and viral infections. Cisplatin-based concurrent radiotherapy regimens represent the first-line treatment for advanced HNSCC cases. However, cisplatin resistance significantly contributes to poor prognoses in HNSCC patients, making it crucial to unravel the underlying mechanisms to overcome this resistance. The complexity of cisplatin resistance in HNSCC involves cancer stem cells, autophagy, epithelial-mesenchymal transition, drug efflux, and metabolic reprogramming. Recent advances in nanodrug delivery systems, combined with existing small-molecule inhibitors and innovative genetic technologies, have opened new therapeutic avenues for addressing cisplatin resistance in HNSCC. This review systematically summarizes research progress from the past five years on cisplatin resistance in HNSCC, with a particular focus on the roles of cancer stem cells and autophagy. Additionally, potential future treatment strategies to overcome cisplatin resistance are discussed, including the targeting of cancer stem cells or autophagy through nanoparticle-based drug delivery systems. Furthermore, the review highlights the prospects and challenges associated with nanodelivery platforms in addressing cisplatin resistance in HNSCC.
Collapse
Affiliation(s)
- Hanlin Hu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Bo Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Junke Wang
- Department of Cardiology, Qingdao Hiser Hospital Affiliated to Qingdao University, Qingdao, China.
| | - Ye Tan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Mingjin Xu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Wenhua Xu
- Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, China.
| | - Haijun Lu
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
178
|
Guo Z, Li N, Jiang Y, Zhang L, Tong L, Wang Y, Lv P, Li X, Han C, Lin J. HOXB9 a miR-122-5p regulated gene, suppressed the anticancer effects of brassaol by upregulating SCD1 expression in melanoma. Biomed Pharmacother 2023; 162:114650. [PMID: 37031492 DOI: 10.1016/j.biopha.2023.114650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/11/2023] Open
Abstract
Brusatol (Bru), a Chinese medicine Brucea javanica extract, has a variety of antitumour effects. However, its role and underlying mechanism in melanoma have not been fully elucidated. In this study, we found that brusatol inhibited melanoma cell proliferation and migration and promoted cell apoptosis in vitro, in addition to suppressing melanoma cell tumorigenesis in vivo. Further studies on the mechanism revealed that brusatol significantly downregulated the expression of stearoyl-CoA desaturase 1 (SCD1). Increased SCD1 expression could impair the antitumour effects of brusatol on melanoma cells. Subsequently, we found that HOXB9, an important transcription factor, was directly bound to the promoter of SCD1, facilitating its transcription. Overexpression of HOXB9 inhibited brusatol-induced SCD1 reduction and promoted cell survival. Furthermore, our results revealed that miR-122-5p was significantly increased in response to brusatol treatment and led to a decrease in HOXB9 in melanoma. Collectively, our data suggested that the miR-122-5p/HOXB9/SCD1 axis might play an important role in the antitumour effects of brusatol and that brusatol might have potential clinical implications in melanoma therapy.
Collapse
Affiliation(s)
- Ziming Guo
- Department of Dermatology of the First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Na Li
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yuankuan Jiang
- Department of Dermatology of the First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Li Zhang
- Laboratory of Pathogenic Biology, College of Basic Medical Science, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Lidong Tong
- Department of Dermatology of the First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Yipin Wang
- Department of Dermatology of the First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, People's Republic of China
| | - Peng Lv
- The Second Hospital, Dalian Medical University, Dalian 116027, People's Republic of China.
| | - Xiaojie Li
- College of Stomatology Dalian Medical University, Dalian 116044, People's Republic of China.
| | - Chuanchun Han
- Department of Dermatology of the First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, People's Republic of China.
| | - Jingrong Lin
- Department of Dermatology of the First Affiliated Hospital & Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, People's Republic of China.
| |
Collapse
|
179
|
Wang M, Li J, Wang D, Xin Y, Liu Z. The effects of mesenchymal stem cells on the chemotherapy of colorectal cancer. Biomed Pharmacother 2023; 160:114373. [PMID: 36753960 DOI: 10.1016/j.biopha.2023.114373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Colorectal cancer (CRC) has been the third commonest cancer in the world. The prognosis of patients with CRC is related to the molecular subtypes and gene mutations, which is prone to recurrence, metastasis, and drug resistance. Mesenchymal stem cells (MSCs) are a group of progenitor ones with the capabilities of self-renewal, multi-directional differentiation, and tissue re-population, which could be isolated from various kinds of tissues and be differentiated into diverse cell types. In recent years, MSCs are applied for mechanisms study of tissue repairing, graft-versus-host disease (GVHD) and autoimmune-related disease, and tumor development, with the advantages of anti-inflammation, multi-lineage differentiation, and homing capability. Integrating the chemotherapy and MSCs therapy might provide a novel treatment approach for CRC patients. In this review, we summarize the current progress in the integrated treatment of integrating the MSCs and chemotherapy for CRC.
Collapse
Affiliation(s)
- Meiqi Wang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, China
| | - Dongxin Wang
- Department of Anesthesiology, Jilin Cancer Hospital, Jilin, China
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Zhuo Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
180
|
Hu W, Zheng W, Du J, Tian Z, Zhao Y, Zhao P, Li J. TIPE2 sensitizes breast cancer cells to paclitaxel by suppressing drug-induced autophagy and cancer stem cell properties. Hum Cell 2023:10.1007/s13577-023-00900-y. [PMID: 36964413 DOI: 10.1007/s13577-023-00900-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Drug resistance is a great obstacle to the clinical application of paclitaxel (PTX) in breast cancer treatment. Chemoresistance can be either primary or acquired. Multifarious factors are related to drug resistance. Among these factors, drug-induced autophagy has been shown to contribute to acquired chemoresistance in cancer cells. Additionally, cancer stem cells (CSCs) drive primary chemoresistance. Recent advances regarding TIPE2 demonstrate that TIPE2 enhances osteosarcoma and non-small cell lung cancer cell sensitivity to cisplatin. However, the role of TIPE2 in PTX resistance in breast cancer cells has not been elucidated. Here, the in vitro and in vivo study demonstrated that TIPE2 sensitized breast cancer cells to PTX by suppressing drug-induced autophagy and CSC properties. Mechanistically, we found that TIPE2 activated the AKT/mTOR signalling pathway and inhibited the TAK1/MAPK signalling pathway to suppress drug-induced autophagy. Moreover, TIPE2 inhibited TAK1/NF-κB activation to reduce breast CSC properties. Collectively, our results first elucidated the inhibitory role of TIPE2 in breast cancer chemoresistance. Thus, TIPE2 may be a new target for breast cancer chemotherapy.
Collapse
Affiliation(s)
- Wei Hu
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
- Department of General Surgery, Affiliated Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Wenxiang Zheng
- Center of Translational Medicine, Affiliated Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Jianxin Du
- Center of Translational Medicine, Affiliated Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Zhaobing Tian
- Department of General Surgery, Affiliated Zibo Cancer Hospital, Zibo, 255067, Shandong, People's Republic of China
| | - Yixin Zhao
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
- Department of General Surgery, Affiliated Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Peiqing Zhao
- Center of Translational Medicine, Affiliated Zibo Central Hospital, Zibo, 255036, Shandong, People's Republic of China
| | - Junsheng Li
- School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
- Department of General Surgery, Affiliated Zhongda Hospital, Southeast University, 87 Dingjiaqiao, Nanjing, 210009, Jiangsu, People's Republic of China.
| |
Collapse
|
181
|
Min HY, Lim Y, Kwon H, Boo HJ, Yeob Hyun S, Hong J, Hong S, Lee HY. An A-ring substituted evodiamine derivative with potent anticancer activity against human non-small cell lung cancer cells by targeting heat shock protein 70. Biochem Pharmacol 2023; 211:115507. [PMID: 36958677 DOI: 10.1016/j.bcp.2023.115507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
The heat shock protein (HSP) system is essential for the conformational stability and function of several proteins. Therefore, the development of efficacious HSP-targeting anticancer agents with minimal toxicity is required. We previously demonstrated that evodiamine is an anticancer agent that targets HSP70 in non-small cell lung cancer (NSCLC) cells. In this study, we synthesized a series of evodiamine derivatives with improved efficacy and limited toxicity. Among the 14 evodiamine derivatives, EV408 (10-hydroxy-14-methyl-8,13,13b,14-tetrahydroindolo [2',3':3,4]pyrido[2,1-b]quinazolin-5(7H)-one) exhibited the most potent inhibitory effects on viability and colony formation under anchorage-dependent and -independent culture conditions in various human NSCLC cells, including those that are chemoresistant, by inducing apoptosis. In addition, EV408 suppressed the cancer stem-like cell (CSC) population of NSCLC cells and the expression of stemness-associated markers. Mechanistically, EV408 inhibited HSP70 function by directly binding and destabilizing the HSP70 protein. Furthermore, EV408 significantly inhibited the growth of NSCLC cell line tumor xenografts without overt toxicity. Additionally, EV408 had a negligible effect on the viability of normal cells. These results suggest the potential of EV408 as an efficacious HSP70-targeting evodiamine derivative with limited toxicity that inhibits both non-CSC and CSC populations in NSCLC.
Collapse
Affiliation(s)
- Hye-Young Min
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Yijae Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyukjin Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Hye-Jin Boo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Yeob Hyun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Junhwa Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Ho-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
182
|
Truskowski K, Amend SR, Pienta KJ. Dormant cancer cells: programmed quiescence, senescence, or both? Cancer Metastasis Rev 2023; 42:37-47. [PMID: 36598661 PMCID: PMC10014758 DOI: 10.1007/s10555-022-10073-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023]
Abstract
Metastasis is the overwhelming driver of cancer mortality, accounting for the majority of cancer deaths. Many patients present with metastatic relapse years after eradication of the primary lesion. Disseminated cancer cells can undergo a durable proliferative arrest and lie dormant in secondary tissues before reentering the cell cycle to seed these lethal relapses. This process of cancer cell dormancy remains poorly understood, largely due to difficulties in studying these dormant cells. In the face of these challenges, the application of knowledge from the cellular senescence and quiescence fields may help to guide future thinking on the study of dormant cancer cells. Both senescence and quiescence are common programs of proliferative arrest that are integral to tissue development and homeostasis. Despite phenotypic differences, these two states also share common characteristics, and both likely play a role in cancer dormancy and delayed metastatic relapse. Understanding the cell biology behind these states, their overlaps and unique characteristics is critical to our future understanding of dormant cancer cells, as these cells likely employ some of the same molecular programs to promote survival and dissemination. In this review, we highlight the biology underlying these non-proliferative states, relate this knowledge to what we currently know about dormant cancer cells, and discuss implications for future work toward targeting these elusive metastatic seeds.
Collapse
Affiliation(s)
- Kevin Truskowski
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA.
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA.
| | - Sarah R Amend
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| | - Kenneth J Pienta
- Brady Urological Institute, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, 1830 E. Monument St. Suite 20103, Baltimore, MD, 21205, USA
- Cancer Ecology Center, Johns Hopkins School of Medicine, 600 North Wolfe St, Baltimore, MD, USA
| |
Collapse
|
183
|
SERPINF1 Mediates Tumor Progression and Stemness in Glioma. Genes (Basel) 2023; 14:genes14030580. [PMID: 36980858 PMCID: PMC10047918 DOI: 10.3390/genes14030580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Serpin family F member 1 (SERPINF1) reportedly plays multiple roles in various tumors; however, its clinical significance and molecular functions in glioma have been largely understudied. In the present study, we analyzed the prognostic value of SERPINF1 in three independent glioma datasets. Next, we explored the molecular functions and transcriptional regulation of SERPINF1 at the single-cell level. Moreover, in vitro experiments were conducted to evaluate the roles of SERPINF1 in the proliferation, invasion, migration, and stemness of glioma cells. Our results showed that a higher expression of SERPINF1 correlated with a poor overall survival rate in glioma patients (hazard ratio: 4.061 in TCGA, 2.017 in CGGA, and 1.675 in GSE16011, p < 0.001). Besides, SERPINF1 knockdown could suppress the proliferation, invasion, and migration of glioma cells in vitro. In addition, SERPINF1 expression was significantly upregulated in glioma stem cells (GSCs) compared to parental glioma cells. Knocking down SERPINF1 impaired the sphere formation of GSC-A172 and GSC-LN18. Bioinformatics analysis revealed that Notch signaling activation was closely associated with high SERPINF1 expression at the single-cell level. Furthermore, STAT1, CREM, and NR2F2 may participate in the transcriptional regulation of SERPINF1 in glioma. Overall, our results suggest that SERPINF1 may be a candidate prognostic predictor and potential therapeutic target for glioma.
Collapse
|
184
|
Wu B, Shi X, Jiang M, Liu H. Cross-talk between cancer stem cells and immune cells: potential therapeutic targets in the tumor immune microenvironment. Mol Cancer 2023; 22:38. [PMID: 36810098 PMCID: PMC9942413 DOI: 10.1186/s12943-023-01748-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Ongoing research has revealed that the existence of cancer stem cells (CSCs) is one of the biggest obstacles in the current cancer therapy. CSCs make an influential function in tumor progression, recurrence and chemoresistance due to their typical stemness characteristics. CSCs are preferentially distributed in niches, and those niche sites exhibit characteristics typical of the tumor microenvironment (TME). The complex interactions between CSCs and TME illustrate these synergistic effects. The phenotypic heterogeneity within CSCs and the spatial interactions with the surrounding tumor microenvironment led to increased therapeutic challenges. CSCs interact with immune cells to protect themselves against immune clearance by exploiting the immunosuppressive function of multiple immune checkpoint molecules. CSCs also can protect themselves against immune surveillance by excreting extracellular vesicles (EVs), growth factors, metabolites and cytokines into the TME, thereby modulating the composition of the TME. Therefore, these interactions are also being considered for the therapeutic development of anti-tumor agents. We discuss here the immune molecular mechanisms of CSCs and comprehensively review the interplay between CSCs and the immune system. Thus, studies on this topic seem to provide novel ideas for reinvigorating therapeutic approaches to cancer.
Collapse
Affiliation(s)
- Bo Wu
- grid.459742.90000 0004 1798 5889Department of General Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Xiang Shi
- grid.459742.90000 0004 1798 5889Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042 China
| | - Meixi Jiang
- grid.412644.10000 0004 5909 0696Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032 China
| | - Hongxu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, 110042, China.
| |
Collapse
|
185
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
186
|
Kohlhepp MS, Liu H, Tacke F, Guillot A. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer-Challenges and opportunities. Front Mol Biosci 2023; 10:1129831. [PMID: 36845555 PMCID: PMC9950415 DOI: 10.3389/fmolb.2023.1129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic liver diseases from varying etiologies generally lead to liver fibrosis and cirrhosis. Among them, non-alcoholic fatty liver disease (NAFLD) affects roughly one-quarter of the world population, thus representing a major and increasing public health burden. Chronic hepatocyte injury, inflammation (non-alcoholic steatohepatitis, NASH) and liver fibrosis are recognized soils for primary liver cancer, particularly hepatocellular carcinoma (HCC), being the third most common cause for cancer-related deaths worldwide. Despite recent advances in liver disease understanding, therapeutic options on pre-malignant and malignant stages remain limited. Thus, there is an urgent need to identify targetable liver disease-driving mechanisms for the development of novel therapeutics. Monocytes and macrophages comprise a central, yet versatile component of the inflammatory response, fueling chronic liver disease initiation and progression. Recent proteomic and transcriptomic studies performed at singular cell levels revealed a previously overlooked diversity of macrophage subpopulations and functions. Indeed, liver macrophages that encompass liver resident macrophages (also named Kupffer cells) and monocyte-derived macrophages, can acquire a variety of phenotypes depending on microenvironmental cues, and thus exert manifold and sometimes contradictory functions. Those functions range from modulating and exacerbating tissue inflammation to promoting and exaggerating tissue repair mechanisms (i.e., parenchymal regeneration, cancer cell proliferation, angiogenesis, fibrosis). Due to these central functions, liver macrophages represent an attractive target for the treatment of liver diseases. In this review, we discuss the multifaceted and contrary roles of macrophages in chronic liver diseases, with a particular focus on NAFLD/NASH and HCC. Moreover, we discuss potential therapeutic approaches targeting liver macrophages.
Collapse
|
187
|
Zhu S, Li W, Zhang H, Yan Y, Mei Q, Wu K. Retinal determination gene networks: from biological functions to therapeutic strategies. Biomark Res 2023; 11:18. [PMID: 36750914 PMCID: PMC9906957 DOI: 10.1186/s40364-023-00459-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 01/28/2023] [Indexed: 02/09/2023] Open
Abstract
The retinal determinant gene network (RDGN), originally discovered as a critical determinator in Drosophila eye specification, has become an important regulatory network in tumorigenesis and progression, as well as organogenesis. This network is not only associated with malignant biological behaviors of tumors, such as proliferation, and invasion, but also regulates the development of multiple mammalian organs. Three members of this conservative network have been extensively investigated, including DACH, SIX, and EYA. Dysregulated RDGN signaling is associated with the initiation and progression of tumors. In recent years, it has been found that the members of this network can be used as prognostic markers for cancer patients. Moreover, they are considered to be potential therapeutic targets for cancer. Here, we summarize the research progress of RDGN members from biological functions to signaling transduction, especially emphasizing their effects on tumors. Additionally, we discuss the roles of RDGN members in the development of organs and tissue as well as their correlations with the pathogenesis of chronic kidney disease and coronary heart disease. By summarizing the roles of RDGN members in human diseases, we hope to promote future investigations into RDGN and provide potential therapeutic strategies for patients.
Collapse
Affiliation(s)
- Shuangli Zhu
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Wanling Li
- grid.412793.a0000 0004 1799 5032Department of Geriatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China ,grid.470966.aCancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032 China
| | - Hao Zhang
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Yuheng Yan
- grid.412793.a0000 0004 1799 5032Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Qi Mei
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China. .,Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China.
| | - Kongming Wu
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, 030032, China. .,Cancer Center, Tongji hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
188
|
Sun L, Wang H, Liu Q, Meng F, Zhang J, Li X, Chang S, Li G, Chen F. Camptothecin improves sorafenib sensitivity by inhibiting Nrf2‑ARE pathway in hepatocellular carcinoma. Oncol Rep 2023; 49:55. [PMID: 36734286 PMCID: PMC9926516 DOI: 10.3892/or.2023.8492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/18/2023] [Indexed: 02/04/2023] Open
Abstract
Sorafenib is a targeted drug for hepatocellular carcinoma (HCC), however, its efficacy is limited. Nuclear factor erythroid 2‑related factor 2 (Nrf2) contributes to sorafenib resistance. The present study investigated camptothecin (CPT) as a Nrf2 inhibitor to sensitize HCC to sorafenib. The effect of CPT on sorafenib sensitivity in HCC was assessed in vivo using H22 mice model (n=32) and VX2 rabbit models (n=32), which were sorted into four treatment groups. The expression levels of Nrf2, its downstream genes, including heme oxygenases‑1 (HO‑1) and NAD(P)H quinone oxidoreductase 1 (NQO1), and the epithelial‑mesenchymal transition markers Snail and N‑cadherin in tumors were determined using immunohistochemical staining and western blotting. Magnetic resonance imaging was used to monitor changes in tumor microcirculation and activity before and after treatment. Mouse body weights, liver and kidney function were monitored to evaluate the safety of combined therapy. The results revealed that the mean tumor size of the combined group was significantly smaller than that of sorafenib group for both models. The expression levels of Nrf2, heme oxygenase‑1, NAD(P)H quinone oxidoreductase 1, Snail, and N‑cadherin in the sorafenib group were significantly higher than control group (P<0.05). However, the expression levels of these genes were decreased in the combined group (P<0.05). Microcirculation perfusion and tumor activity in the combined group were also lower than sorafenib group. There were no significant differences in mouse body weight or liver and kidney function among the four groups. In summary, CPT is a Nrf2 inhibitor that could enhance the efficacy of sorafenib against HCC.
Collapse
Affiliation(s)
- Liwei Sun
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, Shandong 250014, P.R. China,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250024, P.R. China
| | - Hankang Wang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, Shandong 250014, P.R. China,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250024, P.R. China
| | - Qian Liu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, P.R. China
| | - Fanguang Meng
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, Shandong 250014, P.R. China
| | - Jinliang Zhang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, Shandong 250014, P.R. China,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250024, P.R. China
| | - Xiaodong Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, Shandong 250014, P.R. China,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250024, P.R. China
| | - Shulin Chang
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, Shandong 250014, P.R. China,Graduate School, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250024, P.R. China
| | - Guijie Li
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, Shandong 250014, P.R. China,Correspondence to: Dr Feng Chen or Dr Guijie Li, Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, 16766 Jingshi Road, Lixia, Jinan, Shandong 250014, P.R. China, E-mail:
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, Jinan, Shandong 250014, P.R. China,Correspondence to: Dr Feng Chen or Dr Guijie Li, Department of Radiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Abdominal Medicine Imaging, 16766 Jingshi Road, Lixia, Jinan, Shandong 250014, P.R. China, E-mail:
| |
Collapse
|
189
|
Tu X, Li C, Sun W, Tian X, Li Q, Wang S, Ding X, Huang Z. Suppression of Cancer Cell Stemness and Drug Resistance via MYC Destabilization by Deubiquitinase USP45 Inhibition with a Natural Small Molecule. Cancers (Basel) 2023; 15:cancers15030930. [PMID: 36765885 PMCID: PMC9913288 DOI: 10.3390/cancers15030930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Cancer stem cells (CSCs) play significant roles in cancer development, drug resistance and cancer recurrence. In cancer treatments based on the CSC characteristics and inducing factors, MYC is a promising target for therapeutic molecules. Although it has been regarded as an undrugable target, its stability tightly regulated by the ubiquitin-proteasome system offers a new direction for molecule targeting and cancer treatment. Herein we report our discoveries in this research area, and we have found that deubiquitinase USP45 can directly bind with MYC, resulting in its deubiquitination and stabilization. Further, USP45 overexpressing can upregulate MYC, and this overexpressing can significantly enhance cancer development, cancer cell stemness and drug resistance. Interestingly, without enhancing cancer development, MYC silencing with shRNA can only suppress USP45-induced stemness and drug resistance. Moreover, we have identified that USP45 can be specifically bound and inhibited by a natural small molecule (α-mangostin), in turn significantly suppressing USP45-induced stemness and drug resistance. Since USP45 is significantly expressed in cervical tumors, we have discovered that the combination of α-mangostin and doxorubicin can significantly inhibit USP45-induced cervical tumorigenesis in an animal model. In general, on the basis of our USP45 discoveries on its MYC deubiquitination and α-mangostin inhibition, suppressing USP45 has opened a new window for suppressing cancer development, stemness and drug resistance.
Collapse
Affiliation(s)
- Xiao Tu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Chuncheng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Wen Sun
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xi Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Qiufu Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Shaoxin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Xiaoling Ding
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
| | - Zhen Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610000, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 610000, China
- SeNA Research Institute and Szostak-CDHT Large Nucleic Acids Institute, Chengdu 610000, China
- Correspondence: ; Fax: +86-028-8550-2629
| |
Collapse
|
190
|
Glutamine Metabolism in Cancer Stem Cells: A Complex Liaison in the Tumor Microenvironment. Int J Mol Sci 2023; 24:ijms24032337. [PMID: 36768660 PMCID: PMC9916789 DOI: 10.3390/ijms24032337] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
In this review we focus on the role of glutamine in control of cancer stem cell (CSC) fate. We first provide an overview of glutamine metabolism, and then summarize relevant studies investigating how glutamine metabolism modulates the CSC compartment, concentrating on solid tumors. We schematically describe how glutamine in CSC contributes to several metabolic pathways, such as redox metabolic pathways, ATP production, non-essential aminoacids and nucleotides biosynthesis, and ammonia production. Furthermore, we show that glutamine metabolism is a key regulator of epigenetic modifications in CSC. Finally, we briefly discuss how cancer-associated fibroblasts, adipocytes, and senescent cells in the tumor microenvironment may indirectly influence CSC fate by modulating glutamine availability. We aim to highlight the complexity of glutamine's role in CSC, which supports our knowledge about metabolic heterogeneity within the CSC population.
Collapse
|
191
|
Re-Sensitizing Cancer Stem Cells to Conventional Chemotherapy Agents. Int J Mol Sci 2023; 24:ijms24032122. [PMID: 36768445 PMCID: PMC9917165 DOI: 10.3390/ijms24032122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Cancer stem cells are found in many cancer types. They comprise a distinct subpopulation of cells within the tumor that exhibit properties of stem cells. They express a number of cell surface markers, such as CD133, CD44, ALDH, and EpCAM, as well as embryonic transcription factors Oct4, Nanog, and SOX2. CSCs are more resistant to conventional chemotherapy and can potentially drive tumor relapse. Therefore, it is essential to understand the molecular mechanisms that drive chemoresistance and to target them with specific therapy effectively. Highly conserved developmental signaling pathways such as Wnt, Hedgehog, and Notch are commonly reported to play a role in CSCs chemoresistance development. Studies show that particular pathway inhibitors combined with conventional therapy may re-establish sensitivity to the conventional therapy. Another significant contributor of chemoresistance is a specific tumor microenvironment. Surrounding stroma in the form of cancer-associated fibroblasts, macrophages, endothelial cells, and extracellular matrix components produce cytokines and other factors, thus creating a favorable environment and decreasing the cytotoxic effects of chemotherapy. Anti-stromal agents may potentially help to overcome these effects. Epigenetic changes and autophagy were also among the commonly reported mechanisms of chemoresistance. This review provides an overview of signaling pathway components involved in the development of chemoresistance of CSCs and gathers evidence from experimental studies in which CSCs can be re-sensitized to conventional chemotherapy agents across different cancer types.
Collapse
|
192
|
Jeng KS, Chang CF, Sheen IS, Jeng CJ, Wang CH. Cellular and Molecular Biology of Cancer Stem Cells of Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:1417. [PMID: 36674932 PMCID: PMC9861908 DOI: 10.3390/ijms24021417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer death globally. The cancer stem cells (CSCs) of HCC are responsible for tumor growth, invasion, metastasis, recurrence, chemoresistance, target therapy resistance and radioresistance. The reported main surface markers used to identify liver CSCs include epithelial cell adhesion/activating molecule (EpCAM), cluster differentiation 90 (CD90), CD44 and CD133. The main molecular signaling pathways include the Wnt/β-catenin, transforming growth factors-β (TGF-β), sonic hedgehog (SHH), PI3K/Akt/mTOR and Notch. Patients with EpCAM-positive alpha-fetoprotein (AFP)-positive HCC are usually young but have advanced tumor-node-metastasis (TNM) stages. CD90-positive HCCs are usually poorly differentiated with worse prognosis. Those with CD44-positive HCC cells develop early metastases. Those with CD133 expression have a higher recurrence rate and a shorter overall survival. The Wnt/β-catenin signaling pathway triggers angiogenesis, tumor infiltration and metastasis through the enhancement of angiogenic factors. All CD133+ liver CSCs, CD133+/EpCAM+ liver CSCs and CD44+ liver CSCs contribute to sorafenib resistance. SHH signaling could protect HCC cells against ionizing radiation in an autocrine manner. Reducing the CSC population of HCC is crucial for the improvement of the therapy of advanced HCC. However, targeting CSCs of HCC is still challenging.
Collapse
Affiliation(s)
- Kuo-Shyang Jeng
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - Chiung-Fang Chang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| | - I-Shyang Sheen
- Department of Hepato Gastroenterology, Linkou Medical Center, Chang-Gung University, Taoyuan City 33305, Taiwan
| | - Chi-Juei Jeng
- Postgraduate of Institute of Medicine, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Hsuan Wang
- Department of Surgery, Far Eastern Memorial Hospital, New Taipei City 22060, Taiwan
| |
Collapse
|
193
|
Wang YY, Wang WD, Sun ZJ. Cancer stem cell-immune cell collusion in immunotherapy. Int J Cancer 2023. [PMID: 36602290 DOI: 10.1002/ijc.34421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
Immunotherapy has pioneered a new era of tumor treatment, in which the immune checkpoint blockade (ICB) exerts significant superiority in overcoming tumor immune escape. However, the formation of an immune-suppressive tumor microenvironment (TME) and the lack of effective activation of the immune response have become major obstacles limiting its development. Emerging reports indicate that cancer stem cells (CSCs) potentially play important roles in treatment resistance and progressive relapse, while current research is usually focused on CSCs themselves. In this review, we mainly emphasize the collusions between CSCs and tumor-infiltrating immune cells. We focus on the summary of CSC-immune cell crosstalk signaling pathways in ICB resistance and highlight the application of targeted drugs to improve the ICB response.
Collapse
Affiliation(s)
- Yuan-Yuan Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Wen-Da Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine, Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China.,Department of Oral Maxillofacial-Head Neck Oncology, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
194
|
Duan XP, Liu K, Jiao XD, Qin BD, Li B, He X, Ling Y, Wu Y, Chen SQ, Zang YS. Prognostic value of tumor mutation burden in patients with advanced gastric cancer receiving first-line chemotherapy. Front Oncol 2023; 12:1007146. [PMID: 36686739 PMCID: PMC9847361 DOI: 10.3389/fonc.2022.1007146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Background Tumor mutation burden (TMB) is a promising biomarker positively associated with the benefit of immunotherapy and that might predict the outcome of chemotherapy. We described the prognostic value of TMB in advanced gastric cancer and explored the underlying mechanism. Methods We enrolled 155 TMB-evaluated advanced gastric cancer patients and analyzed the relationship between clinicopathological characteristics and both overall survival (OS) and progression-free survival (PFS) among 40 patients treated with first-line chemotherapy. We further verified the distribution of TMB and analyzed the potential mechanism underlying the prognosis based on The Cancer Genome Atlas (TCGA) database. Results Among the 155 patients, 29 (18.7%) were TMB-high (TMB ≥ 10), roughly the same as the proportion in the TCGA data. Of the 40 patients receiving first-line chemotherapy, the median OS (7.9 vs. 12.1 months; HR 3.18; p = 0.0056) and PFS (4.4 vs. 6.2 months; HR 2.94; p = 0.0099) of the tissue-tested TMB (tTMB)-high patients were inferior to those of the tTMB-low patients. Similarly, unfavorable median OS (9.9 vs. 12.1 months; HR 2.11; p = 0.028) and PFS (5.3 vs. 6.5 months; HR 2.49; p = 0.0054) were shown in the blood-tested TMB (bTMB)-high than in the bTMB-low patients. The Cox analysis demonstrated that both tTMB-high and bTMB-high were significant independent predictors of dreadful OS and PFS. The differentially expressed genes (DEGs) according to TMB status were most significantly enriched in the downregulated metabolic pathway among the TMB-high patients. Conclusions TMB-high advanced gastric cancer patients accounted for around one-sixth and had a poorer prognosis than TMB-low patients when treated with first-line chemotherapy. The potential mechanism might be the downregulated metabolic activity in TMB-high patients.
Collapse
Affiliation(s)
- Xiao-Peng Duan
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ke Liu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xiao-Dong Jiao
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bao-Dong Qin
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Bing Li
- Burning Rock Biotech, Shanghai, China
| | - Xi He
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yan Ling
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Ying Wu
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Shi-Qi Chen
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yuan-Sheng Zang
- Department of Medical Oncology, Changzheng Hospital, Naval Medical University, Shanghai, China,*Correspondence: Yuan-Sheng Zang,
| |
Collapse
|
195
|
Wu X, Xie Y, Zhao K, Lu J. Targeting the super elongation complex for oncogenic transcription driven tumor malignancies: Progress in structure, mechanisms and small molecular inhibitor discovery. Adv Cancer Res 2023; 158:387-421. [PMID: 36990537 DOI: 10.1016/bs.acr.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Oncogenic transcription activation is associated with tumor development and resistance derived from chemotherapy or target therapy. The super elongation complex (SEC) is an important complex regulating gene transcription and expression in metazoans closely related to physiological activities. In normal transcriptional regulation, SEC can trigger promoter escape, limit proteolytic degradation of transcription elongation factors and increase the synthesis of RNA polymerase II (POL II), and regulate many normal human genes to stimulate RNA elongation. Dysregulation of SEC accompanied by multiple transcription factors in cancer promotes rapid transcription of oncogenes and induce cancer development. In this review, we summarized recent progress in understanding the mechanisms of SEC in regulating normal transcription, and importantly its roles in cancer development. We also highlighted the discovery of SEC complex target related inhibitors and their potential applications in cancer treatment.
Collapse
Affiliation(s)
- Xinyu Wu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanqiu Xie
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China; Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Kehao Zhao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| | - Jing Lu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China.
| |
Collapse
|
196
|
Dashtaki ME, Ghasemi S. CRISPR/Cas9-based Gene Therapies for Fighting Drug Resistance Mediated by Cancer Stem Cells. Curr Gene Ther 2023; 23:41-50. [PMID: 36056851 DOI: 10.2174/1566523222666220831161225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/11/2022] [Accepted: 06/11/2022] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are cancer-initiating cells found in most tumors and hematological cancers. CSCs are involved in cells progression, recurrence of tumors, and drug resistance. Current therapies have been focused on treating the mass of tumor cells and cannot eradicate the CSCs. CSCs drug-specific targeting is considered as an approach to precisely target these cells. Clustered regularly interspaced short palindromic repeats (CRISPR/Cas9) gene-editing systems are making progress and showing promise in the cancer research field. One of the attractive applications of CRISPR/Cas9 as one approach of gene therapy is targeting the critical genes involved in drug resistance and maintenance of CSCs. The synergistic effects of gene editing as a novel gene therapy approach and traditional therapeutic methods, including chemotherapy, can resolve drug resistance challenges and regression of the cancers. This review article considers different aspects of CRISPR/Cas9 ability in the study and targeting of CSCs with the intention to investigate their application in drug resistance.
Collapse
Affiliation(s)
- Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
197
|
Wu J, Feng J, Zhang Q, He Y, Xu C, Wang C, Li W. Epigenetic regulation of stem cells in lung cancer oncogenesis and therapy resistance. Front Genet 2023; 14:1120815. [PMID: 37144123 PMCID: PMC10151750 DOI: 10.3389/fgene.2023.1120815] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/22/2023] [Indexed: 05/06/2023] Open
Abstract
Epigenetics plays an important role in regulating stem cell signaling, as well as in the oncogenesis of lung cancer and therapeutic resistance. Determining how to employ these regulatory mechanisms to treat cancer is an intriguing medical challenge. Lung cancer is caused by signals that cause aberrant differentiation of stem cells or progenitor cells. The different pathological subtypes of lung cancer are determined by the cells of origin. Additionally, emerging studies have demonstrated that the occurrence of cancer treatment resistance is connected to the hijacking of normal stem cell capability by lung cancer stem cells, especially in the processes of drug transport, DNA damage repair, and niche protection. In this review, we summarize the principles of the epigenetic regulation of stem cell signaling in relation to the emergence of lung cancer and resistance to therapy. Furthermore, several investigations have shown that the tumor immune microenvironment in lung cancer affects these regulatory pathways. And ongoing experiments on epigenetics-related therapeutic strategies provide new insight for the treatment of lung cancer in the future.
Collapse
Affiliation(s)
- Jiayang Wu
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiaming Feng
- West China School of Medicine, Sichuan University, Chengdu, China
| | - Qiran Zhang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yazhou He
- Department of oncology, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chengdi Wang
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- *Correspondence: Weimin Li, ; Chengdi Wang,
| | - Weimin Li
- Department of Pulmonary and Critical Care Medicine, Med-X Center for Manufacturing, Center of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
- *Correspondence: Weimin Li, ; Chengdi Wang,
| |
Collapse
|
198
|
Mu J, Gong J, Lin P, Zhang M, Wu K. Machine learning methods revealed the roles of immune-metabolism related genes in immune infiltration, stemness, and prognosis of neuroblastoma. Cancer Biomark 2023; 38:241-259. [PMID: 37545226 DOI: 10.3233/cbm-230119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
BACKGROUND Immunometabolism plays an important role in neuroblastoma (NB). However, the mechanism of immune-metabolism related genes (IMRGs) in NB remains unclear. This study aimed to explore the effects of IMRGs on the prognosis, immune infiltration and stemness of patients with NB using machine learning methods. METHODS R software (v4.2.1) was used to identify the differentially expressed IMRGs, and machine learning algorithm was used to screen the prognostic genes from IMRGs. Then we constructed a prognostic model and calculated the risk scores. The NB patients were grouped according to the prognosis scores. In addition, the genes most associated with the immune infiltration and stemness of NB were analyzed by weighted gene co-expression network analysis (WGCNA). RESULTS There were 89 differentially expressed IMRGs between the MYCN amplification and the MYCN non-amplification group, among which CNR1, GNAI1, GLDC and ABCC4 were selected by machine learning algorithm to construct the prognosis model due to their better prediction effect. Both the K-M survival curve and the 5-year Receiver operating characteristic (ROC) curve indicated that the prognosis model could predict the prognosis of NB patients, and there was significant difference in immune infiltration between the two groups according to the median of risk score. CONCLUSIONS We verified the effects of IMRGs on the prognosis, immune infiltration and stemness of NB. These findings could provide help for predicting prognosis and developing immunotherapy in NB.
Collapse
Affiliation(s)
- Jianhua Mu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianan Gong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Peng Lin
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Mengzhen Zhang
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kai Wu
- Department of Pediatric Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
199
|
Zhang R, Peng Y, Gao Z, Qian J, Yang K, Wang X, Lu W, Zhu Y, Qiu D, Jin T, Wang G, He J, Liu N. Oncogenic role and drug sensitivity of ETV4 in human tumors: a pan-cancer analysis. Front Oncol 2023; 13:1121258. [PMID: 37205199 PMCID: PMC10185867 DOI: 10.3389/fonc.2023.1121258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/22/2023] [Indexed: 05/21/2023] Open
Abstract
Background Increasing evidence supports a relationship between E twenty-six variant transcription factor 4 (ETV4) and several cancers, but no pan-cancer analysis has been reported. Methods The present study surveyed the effects of ETV4 on cancer using RNA sequencing data obtained from The Cancer Genome Atlas and GTEx, and further explored its role in drug sensitivity using data from Cellminer. Differential expression analyses were conducted for multiple cancers using R software. Cox regression and survival analysis were employed to calculate correlations between ETV4 levels and survival outcomes in multiple cancers using the online tool Sangerbox. ETV4 expression was also compared with immunity, heterogeneity, stemness, mismatch repair genes, and DNA methylation among different cancers. Results ETV4 was found to be significantly upregulated in 28 tumors. Upregulation of ETV4 was associated with poor overall survival, progression free interval, disease-free-interval, and disease specific survival in several cancer types. Expression of ETV4 was also remarkably correlated with immune cell infiltration, tumor heterogeneity, mismatch repair gene expression, DNA methylation, and tumor stemness. Furthermore, ETV4 expression seemed to affect sensitivity to a number of anticancer drugs. Conclusions These results suggest that ETV4 may be useful as a prognostic factor and therapeutic target.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanfang Peng
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Zhe Gao
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Qian
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kang Yang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinfa Wang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjing Lu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongjie Zhu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dezhi Qiu
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tong Jin
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Gang Wang
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junping He
- Department of Neurosurgery, Children’s Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Junping He, ; Ning Liu,
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Junping He, ; Ning Liu,
| |
Collapse
|
200
|
Yadav V, Sharma AK, Parashar G, Parashar NC, Ramniwas S, Jena MK, Tuli HS, Yadav K. Patent landscape highlighting therapeutic implications of peptides targeting myristoylated alanine-rich protein kinase-C substrate (MARCKS). Expert Opin Ther Pat 2023; 33:445-454. [PMID: 37526024 DOI: 10.1080/13543776.2023.2240020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023]
Abstract
INTRODUCTION MARCKS protein, a protein kinase C (PKC) substrate, is known to be at the intersection of several intracellular signaling pathways and plays a pivotal role in cellular physiology. Unlike PKC inhibitors, MARCKS-targeting drug (BIO-11006) has shown early success in clinical trials involving lung diseases. Recent research investigations have identified two MARCKS-targeting peptides which possess multifaceted implications against asthma, cancer, inflammation, and lung diseases. AREAS COVERED This review article provides the patent landscape and recent developments on peptides targeting MARCKS for therapeutic purposes. Online free open-access databases were used to fetch out the patent information, and research articles were fetched using PubMed. EXPERT OPINION Research studies highlighting the intriguing role of MARCKS in human disease and physiology have dramatically increased in recent years. A similar increasing trend in the number of patents has also been observed related to the MARCKS-targeting peptides. Thus, there is a need to amalgamate and translate such a trend into therapeutic intervention. Our review article provides an overview of such recent advances, and we believe that our compilation will fetch the interest of researchers around the globe to develop MARCKS-targeting peptides in future for human diseases.
Collapse
Affiliation(s)
- Vikas Yadav
- Department of Translational Medicine, Clinical Research Centre, Skane University Hospital, Malmö, Sweden
| | - Amarish Kumar Sharma
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Gaurav Parashar
- Division of Biomedical & Life Sciences, School of Science, Navrachana University, Vadodara, Gujarat, India
| | - Nidarshana Chaturvedi Parashar
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Haryana, India
| | - Seema Ramniwas
- University Centre for Research & Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Manoj Kumar Jena
- Department of Biotechnology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Ambala, Haryana, India
| | - Kiran Yadav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Mohali, Punjab, India
| |
Collapse
|