2001
|
Imai Y, Kanao T, Sawada T, Kobayashi Y, Moriwaki Y, Ishida Y, Takeda K, Ichijo H, Lu B, Takahashi R. The loss of PGAM5 suppresses the mitochondrial degeneration caused by inactivation of PINK1 in Drosophila. PLoS Genet 2010; 6:e1001229. [PMID: 21151955 PMCID: PMC2996328 DOI: 10.1371/journal.pgen.1001229] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 10/29/2010] [Indexed: 11/19/2022] Open
Abstract
PTEN-induced kinase 1 (PINK1), which is required for mitochondrial homeostasis, is a gene product responsible for early-onset Parkinson's disease (PD). Another early onset PD gene product, Parkin, has been suggested to function downstream of the PINK1 signalling pathway based on genetic studies in Drosophila. PINK1 is a serine/threonine kinase with a predicted mitochondrial target sequence and a probable transmembrane domain at the N-terminus, while Parkin is a RING-finger protein with ubiquitin-ligase (E3) activity. However, how PINK1 and Parkin regulate mitochondrial activity is largely unknown. To explore the molecular mechanism underlying the interaction between PINK1 and Parkin, we biochemically purified PINK1-binding proteins from human cultured cells and screened the genes encoding these binding proteins using Drosophila PINK1 (dPINK1) models to isolate a molecule(s) involved in the PINK1 pathology. Here we report that a PINK1-binding mitochondrial protein, PGAM5, modulates the PINK1 pathway. Loss of Drosophila PGAM5 (dPGAM5) can suppress the muscle degeneration, motor defects, and shorter lifespan that result from dPINK1 inactivation and that can be attributed to mitochondrial degeneration. However, dPGAM5 inactivation fails to modulate the phenotypes of parkin mutant flies. Conversely, ectopic expression of dPGAM5 exacerbated the dPINK1 and Drosophila parkin (dParkin) phenotypes. These results suggest that PGAM5 negatively regulates the PINK1 pathway related to maintenance of the mitochondria and, furthermore, that PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1. Parkinson's disease (PD) is a neurodegenerative disease pathologically characterized by degeneration of dopaminergic (DA) neurons in the midbrain. A small percentage of PD cases are inherited in a Mendelian manner, and several disease-causing genes have been identified. The PINK1 and Parkin genes have been isolated as the genes for autosomal recessive form of early-onset PD. Unexpectedly, loss of function of either PINK1 or Parkin in Drosophila causes mitochondrial degeneration in the flight muscles, which exhibits a visible phenotype of abnormal wing postures, allowing a rapid genetic screening. We purified PINK1-binding proteins from human cultured cells and screened the gene for these binding proteins using the PINK1 mutant flies. We found that inactivation of a PINK1-binding protein phosphoglycerate mutase 5 (PGAM5) suppresses mitochondrial degeneration caused by the loss of PINK1 activity. Although parkin is suggested to be genetically downstream of PINK1 in Drosophila, loss of PGAM5 failed to modulate the phenotypes by parkin inactivation. Our finding suggested that, for mitochondrial maintenance of tissues with high-energy demands such as the muscles and DA neurons, PGAM5 acts between PINK1 and Parkin, or functions independently of Parkin downstream of PINK1.
Collapse
Affiliation(s)
- Yuzuru Imai
- Institute of Development, Aging, and Cancer, Tohoku University, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2002
|
Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid Redox Signal 2010; 13:1665-78. [PMID: 20446768 DOI: 10.1089/ars.2010.3222] [Citation(s) in RCA: 409] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An antioxidant response element (ARE) or an electrophile responsive element (EpRE) regulate the transcriptional induction of a battery of drug-detoxifying enzymes that are protective against electrophiles. Based on the high similarity of the ARE consensus sequence to an erythroid gene regulatory element NF-E2 binding site, we have found that the transcription factor Nrf2 is indispensable for the ARE-mediated induction of drug-metabolizing enzymes. Recent genome-wide analysis demonstrated that Nrf2 regulates hundreds of genes that are involved in the cytoprotective response against oxidative stress. In-depth analysis of Nrf2 regulatory mechanisms has led us to the discovery of a novel protein, which we have named Keap1. Keap1 suppresses Nrf2 activity by specifically binding to its evolutionarily conserved N-terminal Neh2 regulatory domain. In this review article, we summarize the findings and observations that have lead to the discovery of the Nrf2-Keap1 system. Furthermore, we briefly discuss the function of the Nrf2-Keap1 system under the regulation of the endogenous electrophilic compound 15-deoxy-Δ¹²(,)¹⁴-prostaglandin J₂. We propose that Nrf2-Keap1 plays a significant physiological role in the response to endogenous, environmental, and pharmacological electrophiles.
Collapse
Affiliation(s)
- Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Japan.
| | | | | |
Collapse
|
2003
|
Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 2010; 13:1763-811. [PMID: 20446769 PMCID: PMC2966482 DOI: 10.1089/ars.2009.3074] [Citation(s) in RCA: 628] [Impact Index Per Article: 41.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 04/27/2010] [Accepted: 05/01/2010] [Indexed: 12/22/2022]
Abstract
Despite the capacity of chaperones and other homeostatic components to restore folding equilibrium, cells appear poorly adapted for chronic oxidative stress that increases in cancer and in metabolic and neurodegenerative diseases. Modulation of endogenous cellular defense mechanisms represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. This article introduces the concept of hormesis and its applications to the field of neuroprotection. It is argued that the hormetic dose response provides the central underpinning of neuroprotective responses, providing a framework for explaining the common quantitative features of their dose-response relationships, their mechanistic foundations, and their relationship to the concept of biological plasticity, as well as providing a key insight for improving the accuracy of the therapeutic dose of pharmaceutical agents within the highly heterogeneous human population. This article describes in mechanistic detail how hormetic dose responses are mediated for endogenous cellular defense pathways, including sirtuin and Nrf2 and related pathways that integrate adaptive stress responses in the prevention of neurodegenerative diseases. Particular attention is given to the emerging role of nitric oxide, carbon monoxide, and hydrogen sulfide gases in hormetic-based neuroprotection and their relationship to membrane radical dynamics and mitochondrial redox signaling.
Collapse
|
2004
|
Holland R, Fishbein JC. Chemistry of the cysteine sensors in Kelch-like ECH-associated protein 1. Antioxid Redox Signal 2010; 13:1749-61. [PMID: 20486763 PMCID: PMC2959180 DOI: 10.1089/ars.2010.3273] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The protein Kelch-like ECH-associated protein 1 (Keap1) is a cysteine-rich regulatory and scaffold protein. Human Keap1 contains 27 cysteines. Some of these cysteines are believed to mediate derepression of the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which subsequently upregulates phase 2 enzymes, in response to electrophilic/oxidative assault. Some current models depict a highly select group of two and possibly a few more cysteine residues as key sensors. The assumptions and approaches undergirding these models are commented upon. The chemical reactivity of the cysteines of Keap1 toward an array of electrophiles and one oxidant is reviewed. A number of reports in the recent literature of molecules that putatively modify cysteines of Keap1 are also included. Insights into the current molecular basis of electrophile/oxidant activation of the Nrf2 pathway via reaction at cysteines of Keap1 are discussed. Finally, important knowns and unknowns are summarized.
Collapse
Affiliation(s)
- Ryan Holland
- The Laboratory of Comparative Carcinogenesis, National Cancer Institute, National Institutes of Health, Frederick, Maryland, USA
| | | |
Collapse
|
2005
|
Natarajan VT, Singh A, Kumar AA, Sharma P, Kar HK, Marrot L, Meunier JR, Natarajan K, Rani R, Gokhale RS. Transcriptional Upregulation of Nrf2-Dependent Phase II Detoxification Genes in the Involved Epidermis of Vitiligo Vulgaris. J Invest Dermatol 2010; 130:2781-9. [DOI: 10.1038/jid.2010.201] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
2006
|
Hayes JD, McMahon M, Chowdhry S, Dinkova-Kostova AT. Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 2010; 13:1713-48. [PMID: 20446772 DOI: 10.1089/ars.2010.3221] [Citation(s) in RCA: 430] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The cap'n'collar (CNC) bZIP transcription factor Nrf2 controls expression of genes for antioxidant enzymes, metal-binding proteins, drug-metabolising enzymes, drug transporters, and molecular chaperones. Many chemicals that protect against carcinogenesis induce Nrf2-target genes. These compounds are all thiol-reactive and stimulate an adaptive response to redox stress in cells. Such agents induce the expression of genes that posses an antioxidant response element (ARE) in their regulatory regions. Under normal homeostatic conditions, Nrf2 activity is restricted through a Keap1-dependent ubiquitylation by Cul3-Rbx1, which targets the CNC-bZIP transcription factor for proteasomal degradation. However, as the substrate adaptor function of Keap1 is redox-sensitive, Nrf2 protein evades ubiquitylation by Cul3-Rbx1 when cells are treated with chemopreventive agents. As a consequence, Nrf2 accumulates in the nucleus where it heterodimerizes with small Maf proteins and transactivates genes regulated through an ARE. In this review, we describe synthetic compounds and phytochemicals from edible plants that induce Nrf2-target genes. We also discuss evidence for the existence of different classes of ARE (a 16-bp 5'-TMAnnRTGABnnnGCR-3' versus an 11-bp 5'-RTGABnnnGCR-3', with or without the embedded activator protein 1-binding site 5'-TGASTCA-3'), species differences in the ARE-gene battery, and the identity of critical Cys residues in Keap1 required for de-repression of Nrf2 by chemopreventive agents.
Collapse
Affiliation(s)
- John D Hayes
- Biomedical Research Institute, Ninewells Hospital, University of Dundee, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
2007
|
Mulvey C, Tudzarova S, Crawford M, Williams GH, Stoeber K, Godovac-Zimmermann J. Quantitative proteomics reveals a "poised quiescence" cellular state after triggering the DNA replication origin activation checkpoint. J Proteome Res 2010; 9:5445-60. [PMID: 20707412 DOI: 10.1021/pr100678k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An origin activation checkpoint has recently been discovered in the G1 phase of the mitotic cell cycle, which can be triggered by loss of DNA replication initiation factors such as the Cdc7 kinase. Insufficient levels of Cdc7 activate cell cycle arrest in normal cells, whereas cancer cells appear to lack this checkpoint response, do not arrest, and proceed with an abortive S phase, leading to cell death. The differential response between normal and tumor cells at this checkpoint has led to widespread interest in the development of pharmacological Cdc7 inhibitors as novel anticancer agents. We have used RNAi against Cdc7 in combination with SILAC-based high resolution MS proteomics to investigate the cellular mechanisms underlying the maintenance of the origin activation checkpoint in normal human diploid fibroblasts. Bioinformatics analysis identified clear changes in wide-ranging biological processes including altered cellular energetic flux, moderate stress response, reduced proliferative capacity, and a spatially distributed response across the mitochondria, lysosomes, and the cell surface. These results provide a quantitative overview of the processes involved in maintenance of the arrested state, show that this phenotype involves active rather than passive cellular adaptation, and highlight a diverse set of proteins responsible for cell cycle arrest and ultimately for promotion of cellular survival. We propose that the Cdc7-depleted proteome maintains cellular arrest by initiating a dynamic quiescence-like response and that the complexities of this phenotype will have important implications for the continued development of promising Cdc7-targeted cancer therapies.
Collapse
Affiliation(s)
- Claire Mulvey
- Centre for Molecular Medicine, Rayne Institute, Division of Medicine, University College London, London, U.K
| | | | | | | | | | | |
Collapse
|
2008
|
Saw CLL, Wu Q, Kong ANT. Anti-cancer and potential chemopreventive actions of ginseng by activating Nrf2 (NFE2L2) anti-oxidative stress/anti-inflammatory pathways. Chin Med 2010; 5:37. [PMID: 20979613 PMCID: PMC2990743 DOI: 10.1186/1749-8546-5-37] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 10/27/2010] [Indexed: 12/13/2022] Open
Abstract
This article reviews recent basic and clinical studies of ginseng, particularly the anti-cancer effects and the potential chemopreventive actions by activating the transcriptional factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2 or NFE2L2)-mediated anti-oxidative stress or anti-inflammatory pathways. Nrf2 is a novel target for cancer prevention as it regulates the antioxidant responsive element (ARE), a critical regulatory element in the promoter region of genes encoding cellular phase II detoxifying and anti-oxidative stress enzymes. The studies on the chemopreventive effects of ginseng or its components/products showed that Nrf2 could also be a target for ginseng's actions. A number of papers also demonstrated the anti-inflammatory effects of ginseng. Targeting Nrf2 pathway is a novel approach to the investigation of ginseng's cancer chemopreventive actions, including some oxidative stress and inflammatory conditions responsible for the initiation, promotion and progression of carcinogenesis.
Collapse
Affiliation(s)
- Constance Lay-Lay Saw
- Center for Cancer Prevention Research, Ernest Mario School of Pharmacy, Rutgers, the State University of New Jersey, USA.
| | | | | |
Collapse
|
2009
|
Kim YM, Pae HO, Park JE, Lee YC, Woo JM, Kim NH, Choi YK, Lee BS, Kim SR, Chung HT. Heme oxygenase in the regulation of vascular biology: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 2010. [PMID: 20624029 DOI: 10.1089/ars.2010.31532988629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heme oxygenases (HOs) are the rate-limiting enzymes in the catabolism of heme into biliverdin, free iron, and carbon monoxide. Two genetically distinct isoforms of HO have been characterized: an inducible form, HO-1, and a constitutively expressed form, HO-2. HO-1 is a kind of stress protein, and thus regarded as a sensitive and reliable indicator of cellular oxidative stress. The HO system acts as potent antioxidants, protects endothelial cells from apoptosis, is involved in regulating vascular tone, attenuates inflammatory response in the vessel wall, and participates in angiogenesis and vasculogenesis. Endothelial integrity and activity are thought to occupy the central position in the pathogenesis of cardiovascular diseases. Cardiovascular disease risk conditions converge in the contribution to oxidative stress. The oxidative stress leads to endothelial and vascular smooth muscle cell dysfunction with increases in vessel tone, cell growth, and gene expression that create a pro-thrombotic/pro-inflammatory environment. Subsequent formation, progression, and obstruction of atherosclerotic plaque may result in myocardial infarction, stroke, and cardiovascular death. This background provides the rationale for exploring the potential therapeutic role for HO system in the amelioration of vascular inflammation and prevention of adverse cardiovascular outcomes.
Collapse
Affiliation(s)
- Young-Myeong Kim
- Vascular System Research Center and Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Kangwon-do, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
2010
|
Bartz RR, Piantadosi CA. Clinical review: oxygen as a signaling molecule. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2010; 14:234. [PMID: 21062512 PMCID: PMC3219237 DOI: 10.1186/cc9185] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Molecular oxygen is obviously essential for conserving energy in a form useable for aerobic life; however, its utilization comes at a cost--the production of reactive oxygen species (ROS). ROS can be highly damaging to a range of biological macromolecules, and in the past the overproduction of these short-lived molecules in a variety of disease states was thought to be exclusively toxic to cells and tissues such as the lung. Recent basic research, however, has indicated that ROS production--in particular, the production of hydrogen peroxide--plays an important role in both intracellular and extracellular signal transduction that involves diverse functions from vascular health to host defense. The present review summarizes oxygen's capacity, acting through its reactive intermediates, to recruit the enzymatic antioxidant defenses, to stimulate cell repair processes, and to mitigate cellular damage.
Collapse
Affiliation(s)
- Raquel R Bartz
- Department of Anesthesiology, Duke University School of Medicine, Box 3094, Durham, NC 27710, USA.
| | | |
Collapse
|
2011
|
Lima CF, Pereira-Wilson C, Rattan SIS. Curcumin induces heme oxygenase-1 in normal human skin fibroblasts through redox signaling: Relevance for anti-aging intervention. Mol Nutr Food Res 2010; 55:430-42. [DOI: 10.1002/mnfr.201000221] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2010] [Revised: 08/06/2010] [Accepted: 08/26/2010] [Indexed: 11/11/2022]
|
2012
|
Xie Y. Structure, Assembly and Homeostatic Regulation of the 26S Proteasome. J Mol Cell Biol 2010; 2:308-17. [DOI: 10.1093/jmcb/mjq030] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
2013
|
Upregulation of transcription factor NRF2-mediated oxidative stress response pathway in rat brain under short-term chronic hypobaric hypoxia. Funct Integr Genomics 2010; 11:119-37. [PMID: 20922447 DOI: 10.1007/s10142-010-0195-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 08/06/2010] [Accepted: 09/13/2010] [Indexed: 02/03/2023]
Abstract
Exposure to high altitude (and thus hypobaric hypoxia) induces electrophysiological, metabolic, and morphological modifications in the brain leading to several neurological clinical syndromes. Despite the known fact that hypoxia episodes in brain are a common factor for many neuropathologies, limited information is available on the underlying cellular and molecular mechanisms. In this study, we investigated the temporal effect of short-term (0-12 h) chronic hypobaric hypoxia on global gene expression of rat brain followed by detailed canonical pathway analysis and regulatory network identification. Our analysis revealed significant alteration of 33, 17, 53, 81, and 296 genes (p < 0.05, <1.5-fold) after 0.5, 1, 3, 6, and 12 h of hypoxia, respectively. Biological processes like regulation, metabolic, and transport pathways are temporally activated along with anti- and proinflammatory signaling networks like PI3K/AKT, NF-κB, ERK/MAPK, IL-6 and IL-8 signaling. Irrespective of exposure durations, nuclear factor (erythroid-derived 2)-like 2 (NRF2)-mediated oxidative stress response pathway and genes were detected at all time points suggesting activation of NRF2-ARE antioxidant defense system. The results were further validated by assessing the expression levels of selected genes in temporal as well as brain regions with quantitative RT-PCR and western blot. In conclusion, our whole brain approach with temporal monitoring of gene expression patterns during hypobaric hypoxia has resulted in (1) deciphering sequence of pathways and signaling networks activated during onset of hypoxia, and (2) elucidation of NRF2-orchestrated antioxidant response as a major intrinsic defense mechanism. The results of this study will aid in better understanding and management of hypoxia-induced brain pathologies.
Collapse
|
2014
|
|
2015
|
Rappold PM, Tieu K. Astrocytes and therapeutics for Parkinson's disease. Neurotherapeutics 2010; 7:413-23. [PMID: 20880505 PMCID: PMC2948546 DOI: 10.1016/j.nurt.2010.07.001] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 06/15/2010] [Accepted: 07/01/2010] [Indexed: 12/12/2022] Open
Abstract
Astrocytes play direct, active, and critical roles in mediating neuronal survival and function in various neurodegenerative disorders. This role of astrocytes is well illustrated in amyotrophic lateral sclerosis (ALS), in which the removal of glutamate from the extracellular space by astrocytes confers neuroprotection, whereas astrocytic release of soluble toxic molecules promotes neurodegeneration. In recent years, this context-dependent dual role of astrocytes has also been documented in experimental models of Parkinson's disease. The present review addresses these studies and some potential mechanisms by which astrocytes may influence the neurodegenerative processes in Parkinson's disease, and in particular examines how astrocytes confer neuroprotection either through the removal of toxic molecules from the extracellular space or through the release of trophic factors and antioxidant molecules. In contrast, under pathological conditions, astrocytes release proinflammatory cytokines and other toxic molecules that are detrimental to dopaminergic neurons. These emerging roles of astrocytes in the pathogenesis of Parkinson's disease constitute an exciting development with promising novel therapeutic targets.
Collapse
Affiliation(s)
- Phillip M. Rappold
- grid.16416.340000000419369174Department of Neurology in the Center for Translational Neuromedicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Box 645, 14642 Rochester, NY
| | - Kim Tieu
- grid.16416.340000000419369174Department of Neurology in the Center for Translational Neuromedicine, University of Rochester School of Medicine, 575 Elmwood Avenue, Box 645, 14642 Rochester, NY
| |
Collapse
|
2016
|
Bertolotti M, Yim SH, Garcia-Manteiga JM, Masciarelli S, Kim YJ, Kang MH, Iuchi Y, Fujii J, Vené R, Rubartelli A, Rhee SG, Sitia R. B- to plasma-cell terminal differentiation entails oxidative stress and profound reshaping of the antioxidant responses. Antioxid Redox Signal 2010; 13:1133-44. [PMID: 20486764 DOI: 10.1089/ars.2009.3079] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Limited amounts of reactive oxygen species are necessary for cell survival and signaling, but their excess causes oxidative stress. H(2)O(2) and other reactive oxygen species are formed as byproducts of several metabolic pathways, possibly including oxidative protein folding in the endoplasmic reticulum. B- to plasma-cell differentiation is characterized by a massive expansion of the endoplasmic reticulum, finalized to sustain abundant immunoglobulin (Ig) synthesis and secretion. The increased production of disulfide-rich Ig might cause oxidative stress that could serve signaling roles in the differentiation and lifespan control of antibody-secreting cells. Here we show that terminal B-cell differentiation entails redox stress, NF-E2-related factor-2 (Nrf2) activation, and reshaping of the antioxidant responses. However, plasma-cell differentiation was not dramatically impaired in peroxiredoxin (Prx)1-, 2-, 3-, and 4-, glutathione peroxidase 1-, and Nrf2-knockout splenocytes, suggesting redundancy and robustness in antioxidant systems. Endoplasmic reticulum (ER)-resident Prx4 increases dramatically during differentiation. In its absence, IgM secretion was not significantly affected, but more high-molecular-weight covalent complexes accumulated intracellularly. Our results suggest that the early intracellular production of H(2)O(2) facilitates B-cell proliferation and reveal a role for the Nrf2 pathway in the differentiation and function of IgM-secreting cells.
Collapse
Affiliation(s)
- Milena Bertolotti
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2017
|
Sahin K, Orhan C, Tuzcu M, Ali S, Sahin N, Hayirli A. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails. Poult Sci 2010; 89:2251-8. [DOI: 10.3382/ps.2010-00749] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
2018
|
Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal 2010; 13:833-75. [PMID: 20367257 DOI: 10.1089/ars.2009.3044] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an embryo constitutes a complex choreography of regulatory events that underlies precise temporal and spatial control. Throughout this process the embryo encounters ever changing environments, which challenge its metabolism. Oxygen is required for embryogenesis but it also poses a potential hazard via formation of reactive oxygen and reactive nitrogen species (ROS/RNS). These metabolites are capable of modifying macromolecules (lipids, proteins, nucleic acids) and altering their biological functions. On one hand, such modifications may have deleterious consequences and must be counteracted by antioxidant defense systems. On the other hand, ROS/RNS function as essential signal transducers regulating the cellular phenotype. In this context the combined maternal/embryonic redox homeostasis is of major importance and dysregulations in the equilibrium of pro- and antioxidative processes retard embryo development, leading to organ malformation and embryo lethality. Silencing the in vivo expression of pro- and antioxidative enzymes provided deeper insights into the role of the embryonic redox equilibrium. Moreover, novel mechanisms linking the cellular redox homeostasis to gene expression regulation have recently been discovered (oxygen sensing DNA demethylases and protein phosphatases, redox-sensitive microRNAs and transcription factors, moonlighting enzymes of the cellular redox homeostasis) and their contribution to embryo development is critically reviewed.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, FR Germany
| | | | | | | | | |
Collapse
|
2019
|
Dumont M, Lin MT, Beal MF. Mitochondria and antioxidant targeted therapeutic strategies for Alzheimer's disease. J Alzheimers Dis 2010; 20 Suppl 2:S633-43. [PMID: 20421689 DOI: 10.3233/jad-2010-100507] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are important features present in Alzheimer's disease (AD). They appear early and contribute to disease progression, both in human postmortem AD brains as well as in transgenic AD mouse brains. For this reason, targeting oxidative stress and mitochondria in AD may lead to the development of promising therapeutic strategies. Several exogenous antioxidant compounds have been tested and found beneficial in transgenic AD mice, such as vitamins and spices. However, their efficacy was much more modest in human trials. More recently, new strategies have been elaborated to promote endogenous antioxidant systems. Different pathways involved in oxidative stress response have been identified. Compounds able to upregulate these pathways are being generated and tested in animal models of AD and in human patients. Upregulation of antioxidant gene expression was beneficial in mice, giving hope for future avenues in the treatment of AD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Magali Dumont
- Weill Cornell Medical College, Department of Neurology and Neuroscience, New York, NY, USA
| | | | | |
Collapse
|
2020
|
Ebert B, Kisiela M, Malátková P, El-Hawari Y, Maser E. Regulation of human carbonyl reductase 3 (CBR3; SDR21C2) expression by Nrf2 in cultured cancer cells. Biochemistry 2010; 49:8499-511. [PMID: 20806931 DOI: 10.1021/bi100814d] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Carbonyl reduction is a central metabolic process that controls the level of key regulatory molecules as well as xenobiotics. Carbonyl reductase 3 (CBR3; SDR21C2), a member of the short-chain dehydrogenase/reductase (SDR) superfamily, has been poorly characterized so far, and the regulation of its expression is a complete mystery. Here, we show that CBR3 expression is regulated via Nrf2, a key regulator in response to oxidative stress. In human cancer cell lines, CBR3 mRNA was expressed differentially, ranging from very high (A549, lung) to very low (HT-29, colon; HepG2, liver) levels. CBR3 protein was highly expressed in SW-480 (colon) cells but was absent in HCT116 (colon) and HepG2 cells. CBR3 mRNA could be induced in HT-29 cells by Nrf2 agonists [sulforaphane (SUL, 7-fold) and diethyl maleate (DEM, 4-fold)] or hormone receptor ligand Z-guggulsterone (5-fold). Aryl hydrocarbon receptor agonist B[k]F failed to induce CBR3 mRNA after incubation for 8 h but elevated CBR3 levels after 24 h, most likely mediated by B[k]F metabolites that can activate Nrf2 signaling. Inhibition of Nrf2-activating upstream kinase MEK/ERK by PD98059 weakened DEM-mediated induction of CBR3 mRNA. Proteasome inhibitors MG-132 (5 μM) and bortezomib (50 nM) dramatically increased the level of CBR3 mRNA, obviously because of the increase in the level of Nrf2 protein. While siRNA-mediated knockdown of Nrf2 led to a decrease in the level of CBR3 mRNA in A549 cells (30% of control), Keap1 knockdown increased the level of CBR3 mRNA expression in HepG2 (9.3-fold) and HT-29 (2.7-fold) cells. Here, we provide for the first time evidence that human CBR3 is a new member of the Nrf2 gene battery.
Collapse
Affiliation(s)
- Bettina Ebert
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein, Kiel, Germany
| | | | | | | | | |
Collapse
|
2021
|
Sun LY, Bokov AF, Richardson A, Miller RA. Hepatic response to oxidative injury in long-lived Ames dwarf mice. FASEB J 2010; 25:398-408. [PMID: 20826540 DOI: 10.1096/fj.10-164376] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Multiple stress resistance pathways were evaluated in the liver of Ames dwarf mice before and after exposure to the oxidative toxin diquat, seeking clues to the exceptional longevity conferred by this mutation. Before diquat treatment, Ames dwarf mice, compared with nonmutant littermate controls, had 2- to 6-fold higher levels of expression of mRNAs for immediate early genes and 2- to 5-fold higher levels of mRNAs for genes dependent on the transcription factor Nrf2. Diquat led to a 2-fold increase in phosphorylation of the stress kinase ERK in control (but not Ames dwarf) mice and to a 50% increase in phosphorylation of the kinase JNK2 in Ames dwarf (but not control) mice. Diquat induction of Nrf2 protein was higher in dwarf mice than in controls. Of 6 Nrf2-responsive genes evaluated, 4 (HMOX, NQO-1, MT-1, and MT-2) remained 2- to 10-fold lower in control than in dwarf liver after diquat, and the other 2 (GCLM and TXNRD) reached levels already seen in dwarf liver at baseline. Thus, livers of Ames dwarf mice differ systematically from controls in multiple stress resistance pathways before and after exposure to diquat, suggesting mechanisms for stress resistance and extended longevity in Ames dwarf mice.
Collapse
Affiliation(s)
- Liou Y Sun
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-0940, USA
| | | | | | | |
Collapse
|
2022
|
Ogino T, Ozaki M, Matsukawa A. Oxidative stress enhances granulocytic differentiation in HL 60 cells, an acute promyelocytic leukemia cell line. Free Radic Res 2010; 44:1328-37. [DOI: 10.3109/10715762.2010.503757] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2023
|
Santos R, Lefevre S, Sliwa D, Seguin A, Camadro JM, Lesuisse E. Friedreich ataxia: molecular mechanisms, redox considerations, and therapeutic opportunities. Antioxid Redox Signal 2010; 13:651-90. [PMID: 20156111 PMCID: PMC2924788 DOI: 10.1089/ars.2009.3015] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/08/2010] [Accepted: 02/14/2010] [Indexed: 12/14/2022]
Abstract
Mitochondrial dysfunction and oxidative damage are at the origin of numerous neurodegenerative diseases like Friedreich ataxia and Alzheimer and Parkinson diseases. Friedreich ataxia (FRDA) is the most common hereditary ataxia, with one individual affected in 50,000. This disease is characterized by progressive degeneration of the central and peripheral nervous systems, cardiomyopathy, and increased incidence of diabetes mellitus. FRDA is caused by a dynamic mutation, a GAA trinucleotide repeat expansion, in the first intron of the FXN gene. Fewer than 5% of the patients are heterozygous and carry point mutations in the other allele. The molecular consequences of the GAA triplet expansion is transcription silencing and reduced expression of the encoded mitochondrial protein, frataxin. The precise cellular role of frataxin is not known; however, it is clear now that several mitochondrial functions are not performed correctly in patient cells. The affected functions include respiration, iron-sulfur cluster assembly, iron homeostasis, and maintenance of the redox status. This review highlights the molecular mechanisms that underlie the disease phenotypes and the different hypothesis about the function of frataxin. In addition, we present an overview of the most recent therapeutic approaches for this severe disease that actually has no efficient treatment.
Collapse
Affiliation(s)
- Renata Santos
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Sophie Lefevre
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
- University Pierre et Marie Curie, Paris, France
| | - Dominika Sliwa
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Alexandra Seguin
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Jean-Michel Camadro
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| | - Emmanuel Lesuisse
- Mitochondria, Metals and Oxidative Stress Laboratory, Institut Jacques Monod (UMR 7592 CNRS–University Paris-Diderot), Paris, France
| |
Collapse
|
2024
|
Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch Biochem Biophys 2010; 501:116-23. [PMID: 20361926 PMCID: PMC2930038 DOI: 10.1016/j.abb.2010.03.019] [Citation(s) in RCA: 546] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 03/17/2010] [Accepted: 03/25/2010] [Indexed: 12/30/2022]
Abstract
NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1) is a widely-distributed FAD-dependent flavoprotein that promotes obligatory 2-electron reductions of quinones, quinoneimines, nitroaromatics, and azo dyes, at rates that are comparable with NADH or NADPH. These reductions depress quinone levels and thereby minimize opportunities for generation of reactive oxygen intermediates by redox cycling, and for depletion of intracellular thiol pools. NQO1 is a highly-inducible enzyme that is regulated by the Keap1/Nrf2/ARE pathway. Evidence for the importance of the antioxidant functions of NQO1 in combating oxidative stress is provided by demonstrations that induction of NQO1 levels or their depletion (knockout, or knockdown) are associated with decreased and increased susceptibilities to oxidative stress, respectively. Furthermore, benzene genotoxicity is markedly enhanced when NQO1 activity is compromised. Not surprisingly, human polymorphisms that suppress NQO1 activities are associated with increased predisposition to disease. Recent studies have uncovered protective roles for NQO1 that apparently are unrelated to its enzymatic activities. NQO1 binds to and thereby stabilizes the important tumor suppressor p53 against proteasomal degradation. Indeed, NQO1 appears to regulate the degradative fate of other proteins. These findings suggest that NQO1 may exercise a selective "gatekeeping" role in regulating the proteasomal degradation of specific proteins, thereby broadening the cytoprotective role of NQO1 far beyond its highly effective antioxidant functions.
Collapse
Affiliation(s)
- Albena T. Dinkova-Kostova
- Biomedical Research Institute, University of Dundee, Dundee, Scotland, UK
- Lewis B. and Dorothy Cullman Chemoprotection Center and Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Paul Talalay
- Lewis B. and Dorothy Cullman Chemoprotection Center and Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2025
|
Wang J. Preclinical and clinical research on inflammation after intracerebral hemorrhage. Prog Neurobiol 2010; 92:463-77. [PMID: 20713126 DOI: 10.1016/j.pneurobio.2010.08.001] [Citation(s) in RCA: 491] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/24/2010] [Accepted: 08/09/2010] [Indexed: 12/15/2022]
Abstract
Intracerebral hemorrhage (ICH) is one of the most lethal stroke subtypes. Despite the high morbidity and mortality associated with ICH, its pathophysiology has not been investigated as well as that of ischemic stroke. Available evidence from preclinical and clinical studies suggests that inflammatory mechanisms are involved in the progression of ICH-induced secondary brain injury. For example, in preclinical ICH models, microglial activation has been shown to occur within 1h, much earlier than neutrophil infiltration. Recent advances in our understanding of neuroinflammatory pathways have revealed several new molecular targets, and related therapeutic strategies have been tested in preclinical ICH models. This review summarizes recent progress made in preclinical models of ICH, surveys preclinical and clinical studies of inflammatory cells (leukocytes, macrophages, microglia, and astrocytes) and inflammatory mediators (matrix metalloproteinases, nuclear factor erythroid 2-related factor 2, heme oxygenase, and iron), and highlights the emerging areas of therapeutic promise.
Collapse
Affiliation(s)
- Jian Wang
- Department of Anesthesiology/Critical Care Medicine, The Johns Hopkins University, School of Medicine, 720 Rutland Avenue, Traylor Building 809, Baltimore, MD 21205, USA.
| |
Collapse
|
2026
|
Liu Q, Zhang H, Smeester L, Zou F, Kesic M, Jaspers I, Pi J, Fry RC. The NRF2-mediated oxidative stress response pathway is associated with tumor cell resistance to arsenic trioxide across the NCI-60 panel. BMC Med Genomics 2010; 3:37. [PMID: 20707922 PMCID: PMC2939609 DOI: 10.1186/1755-8794-3-37] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 08/13/2010] [Indexed: 01/28/2023] Open
Abstract
Background Drinking water contaminated with inorganic arsenic is associated with increased risk for different types of cancer. Paradoxically, arsenic trioxide can also be used to induce remission in patients with acute promyelocytic leukemia (APL) with a success rate of approximately 80%. A comprehensive study examining the mechanisms and potential signaling pathways contributing to the anti-tumor properties of arsenic trioxide has not been carried out. Methods Here we applied a systems biology approach to identify gene biomarkers that underlie tumor cell responses to arsenic-induced cytotoxicity. The baseline gene expression levels of 14,500 well characterized human genes were associated with the GI50 data of the NCI-60 tumor cell line panel from the developmental therapeutics program (DTP) database. Selected biomarkers were tested in vitro for the ability to influence tumor susceptibility to arsenic trioxide. Results A significant association was found between the baseline expression levels of 209 human genes and the sensitivity of the tumor cell line panel upon exposure to arsenic trioxide. These genes were overlayed onto protein-protein network maps to identify transcriptional networks that modulate tumor cell responses to arsenic trioxide. The analysis revealed a significant enrichment for the oxidative stress response pathway mediated by nuclear factor erythroid 2-related factor 2 (NRF2) with high expression in arsenic resistant tumor cell lines. The role of the NRF2 pathway in protecting cells against arsenic-induced cell killing was validated in tumor cells using shRNA-mediated knock-down. Conclusions In this study, we show that the expression level of genes in the NRF2 pathway serve as potential gene biomarkers of tumor cell responses to arsenic trioxide. Importantly, we demonstrate that tumor cells that are deficient for NRF2 display increased sensitivity to arsenic trioxide. The results of our study will be useful in understanding the mechanism of arsenic-induced cytotoxicity in cells, as well as the increased applicability of arsenic trioxide as a chemotherapeutic agent in cancer treatment.
Collapse
Affiliation(s)
- Qian Liu
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | |
Collapse
|
2027
|
Torgovnick A, Schiavi A, Testi R, Ventura N. A role for p53 in mitochondrial stress response control of longevity in C. elegans. Exp Gerontol 2010; 45:550-7. [PMID: 20172019 DOI: 10.1016/j.exger.2010.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 11/24/2022]
Abstract
As in the case of aging, many degenerative disorders also result from progressive mitochondrial deterioration and cellular damage accumulation. Therefore, preventing damage accumulation may delay aging and help to prevent degenerative disorders, especially those associated with mitochondrial dysfunction. In the nematode Caenorhabditis elegans a mild mitochondrial dysfunction prolongs the lifespan. We previously proposed that, following a mild mitochondrial dysfunction, protective stress responses are activated in a hormetic-like fashion, and ultimately account for extended animal's lifespan. We recently showed that in C. elegans, lifespan extension induced by reduced expression of different mitochondrial proteins involved in electron transport chain functionality requires p53/cep-1. In this paper we find that reducing the expression of frataxin, the protein defective in patients with Friedreich's ataxia, triggers a complex stress response, and that the associated induction of the antioxidant glutathione-S-transferase is regulated by cep-1. Given the high percentage of homology between human and nematode genes and the conservation of fundamental intracellular pathways between the two species, identification of molecular mechanisms activated in response to frataxin suppression in C. elegans may suggest novel therapeutic approaches to prevent the accumulation of irreversible damage and the consequent appearance of symptoms in Friedreich's ataxia and possibly other human mitochondrial-associated diseases. The same pathways could be exploitable for delaying the aging process ascribed to mitochondrial degeneration.
Collapse
Affiliation(s)
- Alessandro Torgovnick
- Department of Experimental Medicine and Biochemical Sciences, University of Rome Tor Vergata, Rome, Italy
| | | | | | | |
Collapse
|
2028
|
Kadl A, Meher AK, Sharma PR, Lee MY, Doran AC, Johnstone SR, Elliott MR, Gruber F, Han J, Chen W, Kensler T, Ravichandran KS, Isakson BE, Wamhoff BR, Leitinger N. Identification of a novel macrophage phenotype that develops in response to atherogenic phospholipids via Nrf2. Circ Res 2010; 107:737-46. [PMID: 20651288 DOI: 10.1161/circresaha.109.215715] [Citation(s) in RCA: 440] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Macrophages change their phenotype and biological functions depending on the microenvironment. In atherosclerosis, oxidative tissue damage accompanies chronic inflammation; however, macrophage phenotypic changes in response to oxidatively modified molecules are not known. OBJECTIVE To examine macrophage phenotypic changes in response to oxidized phospholipids that are present in atherosclerotic lesions. METHODS AND RESULTS We show that oxidized phospholipid-treated murine macrophages develop into a novel phenotype (Mox) that is strikingly different from the conventional M1 and M2 macrophage phenotypes. Compared to M1 and M2, Mox macrophages show a different gene expression pattern, as well as decreased phagocytotic and chemotactic capacity. Treatment with oxidized phospholipids induces both M1 and M2 macrophages to switch to the Mox phenotype. Whole-genome expression array analysis and subsequent gene ontology clustering revealed that the Mox phenotype was characterized by abundant overrepresentation of Nrf2-mediated expression of redox-regulatory genes. In macrophages isolated from Nrf2(-/-) mice, oxidized phospholipid-induced gene expression and regulation of redox status were compromised. Moreover, we found that Mox macrophages comprise 30% of all macrophages in advanced atherosclerotic lesions of low-density lipoprotein receptor knockout (LDLR(-/-)) mice. CONCLUSIONS Together, we identify Nrf2 as a key regulator in the formation of a novel macrophage phenotype (Mox) that develops in response to oxidative tissue damage. The unique biological properties of Mox macrophages suggest this phenotype may play an important role in atherosclerotic lesion development as well as in other settings of chronic inflammation.
Collapse
Affiliation(s)
- Alexandra Kadl
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2029
|
Rosales-Corral S, Reiter RJ, Tan DX, Ortiz GG, Lopez-Armas G. Functional aspects of redox control during neuroinflammation. Antioxid Redox Signal 2010; 13:193-247. [PMID: 19951033 DOI: 10.1089/ars.2009.2629] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Neuroinflammation is a CNS reaction to injury in which some severe pathologies, regardless of their origin, converge. The phenomenon emphasizes crosstalk between neurons and glia and reveals a complex interaction with oxidizing agents through redox sensors localized in enzymes, receptors, and transcription factors. When oxidizing pressures cause reversible molecular changes, such as minimal or transitory proinflammatory cytokine overproduction, redox couples provide a means of translating the presence of reactive oxygen or nitrogen species into useful signals in the cell. Additionally, thiol-based redox sensors convey information about localized changes in redox potential induced by physiologic or pathologic situations. They are susceptible to oxidative changes and become key events during neuroinflammation, altering the course of a signaling response or the behavior of specific transcription factors. When oxidative stress augments the pressure on the intracellular environment, the effective reduction potential of redox pairs diminishes, and cell signaling shifts toward proinflammatory and proapoptotic signals, creating a vicious cycle between oxidative stress and neuroinflammation. In addition, electrophilic compounds derived from the oxidative cascade react with key protein thiols and interfere with redox signaling. This article reviews the relevant functional aspects of redox control during the neuroinflammatory process.
Collapse
Affiliation(s)
- Sergio Rosales-Corral
- Lab. Desarrollo-Envejecimiento, Enfermedades Neurodegenerativas, División de Neurociencias, Centro de Investigación Biomédica de Occidente (CIBO) del Instituto Mexicano del Seguro Social (IMSS) , Guadalajara, Jalisco. Mexico.
| | | | | | | | | |
Collapse
|
2030
|
Yan D, Dong J, Sulik KK, Chen SY. Induction of the Nrf2-driven antioxidant response by tert-butylhydroquinone prevents ethanol-induced apoptosis in cranial neural crest cells. Biochem Pharmacol 2010; 80:144-9. [PMID: 20223225 PMCID: PMC2860686 DOI: 10.1016/j.bcp.2010.03.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 03/02/2010] [Accepted: 03/02/2010] [Indexed: 11/23/2022]
Abstract
Previous studies have shown that ethanol exposure causes apoptosis in cranial neural crest cells (NCCs), an ethanol-sensitive cell population implicated in Fetal Alcohol Spectrum Disorders (FASD). Additionally, induction of endogenous antioxidants through activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) has been shown to prevent oxidative stress and apoptosis in ethanol-exposed mouse embryos. The objective of this study was to test whether tert-butylhydroquinone (tBHQ), an Nrf2 inducer, can protect NCCs against ethanol-induced apoptosis. Ethanol exposure was shown to cause a moderate increase in the protein expression of Nrf2 and its downstream antioxidants in the NCCs. Treatment of NCCs with tBHQ alone significantly increased the protein expression of Nrf2 and its downstream antioxidants and also significantly increased the activities of the antioxidant enzymes. In NCCs exposed to ethanol, the tBHQ-mediated antioxidant response prevented oxidative stress and apoptosis. These results clearly demonstrate that the activation of Nrf2 signaling confers protection against ethanol-induced apoptosis in NCCs.
Collapse
Affiliation(s)
- Dong Yan
- Bowles Center for Alcohol Studies & Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Dong
- Bowles Center for Alcohol Studies & Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kathleen K. Sulik
- Bowles Center for Alcohol Studies & Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shao-yu Chen
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61656, USA
| |
Collapse
|
2031
|
Long EK, Picklo MJ. Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE.. Free Radic Biol Med 2010; 49:1-8. [PMID: 20353821 DOI: 10.1016/j.freeradbiomed.2010.03.015] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 03/11/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
Abstract
Lipid peroxidation yields multiple aldehyde species. Of these, trans-4-hydroxy-2-nonenal (HNE), derived from n-6 poly-unsaturated fatty acids (PUFA) is one of the most studied products of lipid peroxidation. On the other hand, oxidative damage to n-3 PUFA, e.g. docosahexaenoic acid (DHA; 22:6, n-3) and eicosapentaenoic acid, is now recognized as an important effector of oxidative stress and is of particular interest in n-3 rich tissues such as brain and retina. Trans-4-hydroxy-2-hexenal (HHE) is a major alpha,beta-unsaturated aldehyde product of n-3 PUFA oxidation and, like HNE, is an active biochemical mediator resulting from lipid peroxidation. HHE adducts are elevated in disease states, in some cases, at higher levels than the corresponding HNE adduct. HHE has properties in common with HNE, but there are important differences particularly with respect to adduction targets and detoxification pathways. In this review, the biochemistry and cell biology of HHE will be discussed. From this review, it is clear that further study is needed to determine the biochemical and physiological roles of HHE and its related aldehyde, trans-4-oxo-2-hexenal.
Collapse
Affiliation(s)
- Eric K Long
- Department of Pharmacology, Physiology, and Therapeutics, Grand Forks, ND 58203-9037, USA
| | | |
Collapse
|
2032
|
Nieznanski K. Interactions of prion protein with intracellular proteins: so many partners and no consequences? Cell Mol Neurobiol 2010; 30:653-66. [PMID: 20041289 PMCID: PMC11498852 DOI: 10.1007/s10571-009-9491-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/18/2009] [Indexed: 10/20/2022]
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of transmissible spongiform encephalopathies (TSEs)--fatal diseases of the central nervous system. Its physiological function as well as exact role in neurodegeneration remain unclear, hence screens for proteins interacting with PrP seem to be the most promising approach to elucidating these issues. PrP is mostly a plasma membrane-anchored extracellular glycoprotein and only a small fraction resides inside the cell, yet the number of identified intracellular partners of PrP is comparable to that of its membranal or extracellular interactors. Since some TSEs are accompanied by significantly increased levels of cytoplasmic PrP and this fraction of the protein has been found to be neurotoxic, it is of particular interest to characterize the intracellular interactome of PrP. It seems reasonable that at elevated cytoplasmic levels, PrP may exert cytotoxic effect by affecting the physiological functions of its intracellular interactors. This review is focused on the cytoplasmic partners of PrP along with possible consequences of their binding.
Collapse
Affiliation(s)
- Krzysztof Nieznanski
- Department of Biochemistry, Polish Academy of Sciences, Nencki Institute of Experimental Biology, 3 Pasteur St, Warsaw 02093, Poland.
| |
Collapse
|
2033
|
Godman CA, Chheda KP, Hightower LE, Perdrizet G, Shin DG, Giardina C. Hyperbaric oxygen induces a cytoprotective and angiogenic response in human microvascular endothelial cells. Cell Stress Chaperones 2010; 15:431-42. [PMID: 19949909 PMCID: PMC3082642 DOI: 10.1007/s12192-009-0159-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Revised: 11/02/2009] [Accepted: 11/04/2009] [Indexed: 11/29/2022] Open
Abstract
A genome-wide microarray analysis of gene expression was carried out on human microvascular endothelial cells (HMEC-1) exposed to hyperbaric oxygen treatment (HBOT) under conditions that approximated clinical settings. Highly up-regulated genes included immediate early transcription factors (FOS, FOSB, and JUNB) and metallothioneins. Six molecular chaperones were also up-regulated immediately following HBOT, and all of these have been implicated in protein damage control. Pathway analysis programs identified the Nrf-2-mediated oxidative stress response as one of the primary responders to HBOT. Several of the microarray changes in the Nrf2 pathway and a molecular chaperone were validated using quantitative PCR. For all of the genes tested (Nrf2, HMOX1, HSPA1A, M1A, ACTC1, and FOS), HBOT elicited large responses, whereas changes were minimal following treatment with 100% O(2) in the absence of elevated pressure. The increased expression of immediate early and cytoprotective genes corresponded with an HBOT-induced increase in cell proliferation and oxidative stress resistance. In addition, HBOT treatment enhanced endothelial tube formation on Matrigel plates, with particularly dramatic effects observed following two daily HBO treatments. Understanding how HBOT influences gene expression changes in endothelial cells may be beneficial for improving current HBOT-based wound-healing protocols. These data also point to other potential HBOT applications where stimulating protection and repair of the endothelium would be beneficial, such as patient preconditioning prior to major surgery.
Collapse
Affiliation(s)
- Cassandra A Godman
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.
| | | | | | | | | | | |
Collapse
|
2034
|
Prieto P, Cuenca J, Través PG, Fernández-Velasco M, Martín-Sanz P, Boscá L. Lipoxin A4 impairment of apoptotic signaling in macrophages: implication of the PI3K/Akt and the ERK/Nrf-2 defense pathways. Cell Death Differ 2010; 17:1179-88. [PMID: 20094061 DOI: 10.1038/cdd.2009.220] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lipoxin A(4) (LXA(4)) is an endogenous lipid mediator that requires transcellular metabolic traffic for its synthesis. The targets of LXA(4) on neutrophils are well described, contributing to attenuation of inflammation. However, effects of lipoxins on macrophage are less known, particularly the action of LXA(4) on the regulation of apoptosis of these cells. Our data show that pretreatment of human or murine macrophages with LXA(4) at the concentrations prevailing in the course of resolution of inflammation (nanomolar range) significantly inhibits the apoptosis induced by staurosporine, etoposide and S-nitrosoglutathione or by more pathophysiological stimuli, such as LPS/IFNgamma challenge. The release of mitochondrial mediators of apoptosis and the activation of caspases was abrogated in the presence of LXA(4). In addition to this, the synthesis of reactive oxygen species induced by staurosporine was attenuated and antiapoptotic proteins of the Bcl-2 family accumulated in the presence of lipoxin. Analysis of the targets of LXA(4) identified an early activation of the PI3K/Akt and ERK/Nrf-2 pathways, which was required for the observation of the antiapoptotic effects of LXA(4). These data suggest that the LXA(4), released after the recruitment of neutrophils to sites of inflammation, exerts a protective effect on macrophage viability that might contribute to a better resolution of inflammation.
Collapse
Affiliation(s)
- P Prieto
- Instituto de Investigaciones Biomédicas Alberto Sols (Centro Mixto CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
2035
|
Martin MT, Dix DJ, Judson RS, Kavlock RJ, Reif DM, Richard AM, Rotroff DM, Romanov S, Medvedev A, Poltoratskaya N, Gambarian M, Moeser M, Makarov SS, Houck KA. Impact of environmental chemicals on key transcription regulators and correlation to toxicity end points within EPA's ToxCast program. Chem Res Toxicol 2010; 23:578-90. [PMID: 20143881 DOI: 10.1021/tx900325g] [Citation(s) in RCA: 165] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Exposure to environmental chemicals adds to the burden of disease in humans and wildlife to a degree that is difficult to estimate and, thus, mitigate. The ability to assess the impact of existing chemicals for which little to no toxicity data are available or to foresee such effects during early stages of chemical development and use, and before potential exposure occurs, is a pressing need. However, the capacity of the current toxicity evaluation approaches to meet this demand is limited by low throughput and high costs. In the context of EPA's ToxCast project, we have evaluated a novel cellular biosensor system (Factorial (1) ) that enables rapid, high-content assessment of a compound's impact on gene regulatory networks. The Factorial biosensors combined libraries of cis- and trans-regulated transcription factor reporter constructs with a highly homogeneous method of detection enabling simultaneous evaluation of multiplexed transcription factor activities. Here, we demonstrate the application of the technology toward determining bioactivity profiles by quantitatively evaluating the effects of 309 environmental chemicals on 25 nuclear receptors and 48 transcription factor response elements. We demonstrate coherent transcription factor activity across nuclear receptors and their response elements and that Nrf2 activity, a marker of oxidative stress, is highly correlated to the overall promiscuity of a chemical. Additionally, as part of the ToxCast program, we identify molecular targets that associate with in vivo end points and represent modes of action that can serve as potential toxicity pathway biomarkers and inputs for predictive modeling of in vivo toxicity.
Collapse
Affiliation(s)
- Matthew T Martin
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2036
|
Zhao HD, Zhang F, Shen G, Li YB, Li YH, Jing HR, Ma LF, Yao JH, Tian XF. Sulforaphane protects liver injury induced by intestinal ischemia reperfusion through Nrf2-ARE pathway. World J Gastroenterol 2010; 16:3002-3010. [PMID: 20572303 PMCID: PMC2890940 DOI: 10.3748/wjg.v16.i24.3002] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2010] [Revised: 04/18/2010] [Accepted: 04/25/2010] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of sulforaphane (SFN) on regulation of NF-E2-related factor-2 (Nrf2)-antioxidant response element (ARE) pathway in liver injury induced by intestinal ischemia/reperfusion (I/R). METHODS Rats were divided randomly into four experimental groups: control, SFN control, intestinal I/R and SFN pretreatment groups (n = 8 in each group). The intestinal I/R model was established by clamping the superior mesenteric artery for 1 h and 2 h reperfusion. In the SFN pretreatment group, surgery was performed as in the intestinal I/R group, with intraperitoneal administration of 3 mg/kg SFN 1 h before the operation. Intestine and liver histology was investigated. Serum levels of aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were measured. Liver tissue superoxide dismutase (SOD), myeloperoxidase (MPO), glutathione (GSH) and glutathione peroxidase (GSH-Px) activity were assayed. The liver transcription factor Nrf2 and heme oxygenase-1 (HO-1) were determined by immunohistochemical analysis and Western blotting analysis. RESULTS Intestinal I/R induced intestinal and liver injury, characterized by histological changes as well as a significant increase in serum AST and ALT levels (AST: 260.13 +/- 40.17 U/L vs 186.00 +/- 24.21 U/L, P < 0.01; ALT: 139.63 +/- 11.35 U/L vs 48.38 +/- 10.73 U/L, P < 0.01), all of which were reduced by pretreatment with SFN, respectively (AST: 260.13 +/- 40.17 U/L vs 216.63 +/- 22.65 U/L, P < 0.05; ALT: 139.63 +/- 11.35 U/L vs 97.63 +/- 15.56 U/L, P < 0.01). The activity of SOD in the liver tissue decreased after intestinal I/R (P < 0.01), which was enhanced by SFN pretreatment (P < 0.05). In addition, compared with the control group, SFN markedly reduced liver tissue MPO activity (P < 0.05) and elevated liver tissue GSH and GSH-Px activity (P < 0.05, P < 0.05), which was in parallel with the increased level of liver Nrf2 and HO-1 expression. CONCLUSION SFN pretreatment attenuates liver injury induced by intestinal I/R in rats, attributable to the antioxidant effect through Nrf2-ARE pathway.
Collapse
|
2037
|
Menshikova EB, Tkachev VO, Zenkov NK. Redox-dependent signaling system Nrf2/ARE in inflammation. Mol Biol 2010. [DOI: 10.1134/s0026893310030015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
2038
|
Genome-wide identification of TAL1's functional targets: insights into its mechanisms of action in primary erythroid cells. Genome Res 2010; 20:1064-83. [PMID: 20566737 DOI: 10.1101/gr.104935.110] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coordination of cellular processes through the establishment of tissue-specific gene expression programs is essential for lineage maturation. The basic helix-loop-helix hemopoietic transcriptional regulator TAL1 (formerly SCL) is required for terminal differentiation of red blood cells. To gain insight into TAL1 function and mechanisms of action in erythropoiesis, we performed ChIP-sequencing and gene expression analyses from primary fetal liver erythroid cells. We show that TAL1 coordinates expression of genes in most known red cell-specific processes. The majority of TAL1's genomic targets require direct DNA-binding activity. However, one-fifth of TAL1's target sequences, mainly among those showing high affinity for TAL1, can recruit the factor independently of its DNA binding activity. An unbiased DNA motif search of sequences bound by TAL1 identified CAGNTG as TAL1-preferred E-box motif in erythroid cells. Novel motifs were also characterized that may help distinguish activated from repressed genes and suggest a new mechanism by which TAL1 may be recruited to DNA. Finally, analysis of recruitment of GATA1, a protein partner of TAL1, to sequences occupied by TAL1 suggests that TAL1's binding is necessary prior or simultaneous to that of GATA1. This work provides the framework to study regulatory networks leading to erythroid terminal maturation and to model mechanisms of action of tissue-specific transcription factors.
Collapse
|
2039
|
Kennedy J, Katsuta H, Jung MH, Marselli L, Goldfine AB, Balis UJ, Sgroi D, Bonner-Weir S, Weir GC. Protective unfolded protein response in human pancreatic beta cells transplanted into mice. PLoS One 2010; 5:e11211. [PMID: 20585452 PMCID: PMC2887848 DOI: 10.1371/journal.pone.0011211] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/25/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND There is great interest about the possible contribution of ER stress to the apoptosis of pancreatic beta cells in the diabetic state and with islet transplantation. METHODS AND FINDINGS Expression of genes involved in ER stress were examined in beta cell enriched tissue obtained with laser capture microdissection (LCM) from frozen sections of pancreases obtained from non-diabetic subjects at surgery and from human islets transplanted into ICR-SCID mice for 4 wk. Because mice have higher glucose levels than humans, the transplanted beta cells were exposed to mild hyperglycemia and the abnormal environment of the transplant site. RNA was extracted from the LCM specimens, amplified and then subjected to microarray analysis. The transplanted beta cells showed an unfolded protein response (UPR). There was activation of many genes of the IRE-1 pathway that provide protection against the deleterious effects of ER stress, increased expression of ER chaperones and ERAD (ER-associated protein degradation) proteins. The other two arms of ER stress, PERK and ATF-6, had many down regulated genes. Downregulation of EIF2A could protect by inhibiting protein synthesis. Two genes known to contribute to apoptosis, CHOP and JNK, were downregulated. CONCLUSIONS Human beta cells in a transplant site had UPR changes in gene expression that protect against the proapoptotic effects of unfolded proteins.
Collapse
Affiliation(s)
- Jeffrey Kennedy
- Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Hitoshi Katsuta
- Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Min-Ho Jung
- Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorella Marselli
- Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Allison B. Goldfine
- Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ulysses J. Balis
- Molecular Pathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dennis Sgroi
- Molecular Pathology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Susan Bonner-Weir
- Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gordon C. Weir
- Section on Islet Cell Biology and Regenerative Medicine, Research Division, Joslin Diabetes Center, and the Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
2040
|
Ma ZC, Hong Q, Wang YG, Tan HL, Xiao CR, Liang QD, Zhang BL, Gao Y. Ferulic acid protects human umbilical vein endothelial cells from radiation induced oxidative stress by phosphatidylinositol 3-kinase and extracellular signal-regulated kinase pathways. Biol Pharm Bull 2010; 33:29-34. [PMID: 20045931 DOI: 10.1248/bpb.33.29] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ferulic acid (FA) has been demonstrated to have a remarkable antioxidant activity, the mechanism of FA of protecting human umbilical vein endothelial cells (HUVECs) from radiation induced oxidative stress was investigated in the present study. The oxidative protection of FA was assessed by cellular glutathione (GSH) content, nicotinamide adenine dinucleotide phosphate (NADPH) levels, and reactive oxygen species (ROS) analysis. Nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation was detected using Western blotting. The upstream signaling pathway involved in FA mediated Nrf2 activation was determined by signaling inhibitors. FA significantly increased the transcription of antioxidant related genes such as GCLC (glutamate-cysteine ligase catalytic subunit), GCLM (glutamate-cysteine ligase regulatory subunit), NQO1 (NADPH quinone oxidoreductase-1) and heme oxygenase-1 (HO-1) mRNA in radiated cells, and these changes involved in a significant increase of the intracellular GSH content and the expression of NAPDH. FA evidently promoted Nrf2 translocation into nuclei and increased the intracellular GSH and NADPH levels in radiated cells. Phosphatidylinositol 3-kinase (PI3K) and extracellular signal regulated kinase (ERK) pathways were associated with FA-induced Nrf2 activation. The results suggested that FA-induced Nrf2 activation play key role in cytoprotective effect of FA against oxidative stress via PI3K and ERK signaling pathways.
Collapse
Affiliation(s)
- Zeng-Chun Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
2041
|
Tapryal N, Mukhopadhyay C, Mishra MK, Das D, Biswas S, Mukhopadhyay CK. Glutathione synthesis inhibitor butathione sulfoximine regulates ceruloplasmin by dual but opposite mechanism: Implication in hepatic iron overload. Free Radic Biol Med 2010; 48:1492-500. [PMID: 20211720 DOI: 10.1016/j.freeradbiomed.2010.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/10/2010] [Accepted: 02/19/2010] [Indexed: 12/01/2022]
Abstract
Glutathione (GSH) depletion is often detected in chronic pathological conditions like hepatitis C infection, alcohol consumption or xenobiotic assault with simultaneous reactive oxygen species (ROS) generation and hepatic iron overload. However, relation between GSH depletion and regulators of iron homeostasis is not clear so far. To determine that hepatic HepG2 cells were treated with GSH synthesis inhibitor butathione sulfoximine (BSO) and a dual regulation of ceruloplasmin (Cp) that involves in hepatic iron release was detected unlike other iron homeostasis regulators. BSO treatment that caused marginal GSH deficiency increased Cp synthesis due to increased transcription mediated by activator protein (AP)-1-binding site. In higher GSH deficiency (> 40 %) with increased ROS generation, Cp expression was decreased due to promotion of Cp mRNA decay mediated by 3'untranslated region (3'UTR) as found by transfecting chimera of chloramphenicol acetyl transferase (CAT) gene with Cp 3'UTR. RNA gel shift assay showed significant reduction in 3'UTR binding protein complex in similar condition. Decreased CAT expression and RNA-protein complex binding are reversed by pretreatment with antioxidant N-acetyl cysteine suggesting 3'UTR binding protein complex is redox-sensitive. This unique and opposite regulation of Cp provides a mechanism of hepatic iron-deposition during glutathione deficiency detected in chronic pathological conditions.
Collapse
Affiliation(s)
- Nisha Tapryal
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi - 110 067, India
| | | | | | | | | | | |
Collapse
|
2042
|
Manandhar S, Lee S, Kwak MK. Effect of stable inhibition of NRF2 on doxorubicin sensitivity in human ovarian carcinoma OV90 cells. Arch Pharm Res 2010; 33:717-26. [DOI: 10.1007/s12272-010-0511-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 02/02/2010] [Accepted: 02/17/2010] [Indexed: 02/06/2023]
|
2043
|
Nguyen PM, Park MS, Chow M, Chang JH, Wrischnik L, Chan WK. Benzo[a]pyrene increases the Nrf2 content by downregulating the Keap1 message. Toxicol Sci 2010; 116:549-61. [PMID: 20498004 DOI: 10.1093/toxsci/kfq150] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We employed the suppressive subtractive hybridization to identify 41 up- and downregulated transcripts in Jurkat cells after benzo[a]pyrene (BaP) treatment. Among the 21 downregulated transcripts, we found that BaP suppresses the Keap1 transcript by 7.5-fold. Subsequent analyses revealed that BaP significantly suppresses the Keap1 message and protein levels to about 40 and 60%, respectively, of the vehicle controls in Jurkat cells without reactive oxygen species involvement. In addition, the nuclear Nrf2 (nuclear factor erythroid 2-related factor) protein content is significantly increased by 2.6-fold. The same BaP treatment to Hepa1c1c7 cells also downregulates the Keap1 message and protein levels to a similar extent. When we treated Jurkat cells with 3-(4-morpholinyl)propyl isothiocyanate, which is known to increase the amount of the Nrf2 content, we found that there is no change in the Keap1 message, but the amount of the Keap1 (kelch-like ECH-associated protein 1) protein is reduced to 75% of the vehicle controls. Although both Nrf2 target messages nqo1 and gstp1 are upregulated by BaP in Jurkat cells, only GSTP1 is upregulated at the protein level. Unlike Hepa1c1c7 cells, Jurkat cells have no detectable aryl hydrocarbon receptor and BaP metabolites, minimal CYP1A1 activity, and no quinone oxidoreductase 1 (NQO1) activity. We concluded that BaP, but not its metabolites, increases the amount of the nuclear Nrf2 protein by downregulating the Keap1 message in Jurkat cells.
Collapse
Affiliation(s)
- Phuong Minh Nguyen
- Department of Labour Physiology, Vietnam Military Medical University, Hadong, Hanoi, Vietnam
| | | | | | | | | | | |
Collapse
|
2044
|
|
2045
|
Jain A, Lamark T, Sjøttem E, Larsen KB, Awuh JA, Øvervatn A, McMahon M, Hayes JD, Johansen T. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 2010; 285:22576-91. [PMID: 20452972 DOI: 10.1074/jbc.m110.118976] [Citation(s) in RCA: 1186] [Impact Index Per Article: 79.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The p62/SQSTM1 (sequestosome 1) protein, which acts as a cargo receptor for autophagic degradation of ubiquitinated targets, is up-regulated by various stressors. Induction of the p62 gene by oxidative stress is mediated by NF-E2-related factor 2 (NRF2) and, at the same time, p62 protein contributes to the activation of NRF2, but hitherto the mechanisms involved were not known. Herein, we have mapped an antioxidant response element (ARE) in the p62 promoter that is responsible for its induction by oxidative stress via NRF2. Chromatin immunoprecipitation and gel mobility-shift assays verified that NRF2 binds to this cis-element in vivo and in vitro. Also, p62 docks directly onto the Kelch-repeat domain of Kelch-like ECH-associated protein 1 (KEAP1), via a motif designated the KEAP1 interacting region (KIR), thereby blocking binding between KEAP1 and NRF2 that leads to ubiquitylation and degradation of the transcription factor. The KIR motif in p62 is located immediately C-terminal to the LC3-interacting region (LIR) and resembles the ETGE motif utilized by NRF2 for its interaction with KEAP1. KIR is required for p62 to stabilize NRF2, and inhibition of KEAP1 by p62 occurs from a cytoplasmic location within the cell. The LIR and KIR motifs cannot be engaged simultaneously by LC3 and KEAP1, but because p62 is polymeric the interaction between KEAP1 and p62 leads to accumulation of KEAP1 in p62 bodies, which is followed by autophagic degradation of KEAP1. Our data explain how p62 contributes to activation of NRF2 target genes in response to oxidative stress through creating a positive feedback loop.
Collapse
Affiliation(s)
- Ashish Jain
- Molecular Cancer Research Group, Institute of Medical Biology, University of Tromsø, 9037 Tromsø, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
2046
|
Hong YB, Kang HJ, Kwon SY, Kim HJ, Kwon KY, Cho CH, Lee JM, Kallakury BV, Bae I. Nuclear factor (erythroid-derived 2)-like 2 regulates drug resistance in pancreatic cancer cells. Pancreas 2010; 39:463-72. [PMID: 20118824 PMCID: PMC3506252 DOI: 10.1097/mpa.0b013e3181c31314] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To investigate the molecular basis of drug resistance in pancreatic cancer. METHODS The expression of nuclear factor (erythroid-derived 2)-like 2 (Nrf2) levels in pancreatic cancer tissues and cell lines was analyzed. Clinical relevance between Nrf2 activation and drug resistance was demonstrated by measuring cell viability after Nrf2 and adenosine 5'-triphosphate-binding cassette, subfamily G member 2 (ABCG2) regulation by overexpression or knock-down of these genes. Activity of ABCG2 was measured by Hoechst 33342 staining. RESULTS Abnormally elevated Nrf2 protein levels were observed in pancreatic cancer tissues and cell lines relative to normal pancreatic tissues. Increasing Nrf2 protein levels either by overexpression of exogenous Nrf2 or by activating endogenous Nrf2 resulted in increased drug resistance. Conversely, a reduction in endogenous Nrf2 protein levels or inactivation of endogenous Nrf2 resulted in decreased drug resistance. These changes in drug resistance or sensitivity were also positively correlated to the expression levels of Nrf2 downstream genes. Similarly, the expression of ABCG2 was correlated with drug resistance. CONCLUSIONS Because the intrinsic drug resistance of pancreatic cancers is, in part, due to abnormally elevated Nrf2 protein levels, further research on regulating Nrf2 activity may result in the development of novel pancreatic cancer therapies.
Collapse
Affiliation(s)
- Young Bin Hong
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington DC, 20057-1469, USA
| | - Hyo Jin Kang
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington DC, 20057-1469, USA
| | - Sun Young Kwon
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington DC, 20057-1469, USA
- Department of Pathology, Keimyung University, School of Medicine, Daegu, Korea
| | - Hee Jeong Kim
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington DC, 20057-1469, USA
| | - Kun Young Kwon
- Department of Pathology, Keimyung University, School of Medicine, Daegu, Korea
| | - Chi Heum Cho
- Department of Obstetrics and Gynecology, Keimyung University, School of Medicine, Daegu, Korea
| | - Jong-Min Lee
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington DC, 20057-1469, USA
- Department of Obstetrics and Gynecology, East-West Neo Medical Center, Kyung Hee University, Seoul, Korea
| | - Bhaskar V.S. Kallakury
- Department of Pathology, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington DC, 20057-1469, USA
| | - Insoo Bae
- Department of Oncology and Department of Radiation Medicine, Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington DC, 20057-1469, USA
- Department of Nanobiomedical Science, Dankook University, Chunan, Korea
| |
Collapse
|
2047
|
Riechers DE, Kreuz K, Zhang Q. Detoxification without intoxication: herbicide safeners activate plant defense gene expression. PLANT PHYSIOLOGY 2010; 153:3-13. [PMID: 20237021 PMCID: PMC2862420 DOI: 10.1104/pp.110.153601] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Accepted: 03/09/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Dean E Riechers
- Department of Crop Sciences, University of Illinois, Urbana, Illinois 61801, USA.
| | | | | |
Collapse
|
2048
|
Nrf2 responses and the therapeutic selectivity of electrophilic compounds in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 2010; 107:7479-84. [PMID: 20368435 DOI: 10.1073/pnas.1002890107] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Recent studies show that redox-active small molecules are selectively cytotoxic to chronic lymphocytic leukemia (CLL). Although elevated levels of reactive oxygen species in CLL cells have been implicated, the molecular mechanism underlying this selectivity is unclear. In other cell types, the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway regulates the oxidative stress response. We found elevated Nrf2 signaling in untreated CLL cells compared with normal lymphocytes. Therefore, we tested 27 known electrophilic and antioxidant compounds with drug-like properties and determined their CLL-selective cytotoxicity and effect on Nrf2 signaling. The selected compounds were from five distinct structural classes; alpha-beta unsaturated carbonyls, isothiocyanates, sulfhydryl reactive metals, flavones, and polyphenols. Our results show that compounds containing alpha-beta unsaturated carbonyls, sulfhydryl reactive metals, and isothiocyanates are strong activators of Nrf2 in a reporter assay system and in primary human CLL based on increased expression of the Nrf2 target heme oxygenase-1. alpha-beta Unsaturated carbonyl-containing compounds were selectively cytotoxic to CLL, and loss of the alpha-beta unsaturation abrogated Nrf2 activity and CLL toxicity. The alpha-beta unsaturated carbonyl containing compounds ethacrynic acid and parthenolide activated Nrf2 in normal peripheral blood mononuclear cells, but had a less potent effect in CLL cells. Furthermore, ethacrynic acid bound directly to the Nrf2-negative regulator Kelch-like ECH-associated protein 1 (Keap1) in CLL cells. These experiments document the presence of Nrf2 signaling in human CLL and suggest that altered Nrf2 responses may contribute to the observed selective cytotoxicity of electrophilic compounds in this disease.
Collapse
|
2049
|
Lukosz M, Jakob S, Büchner N, Zschauer TC, Altschmied J, Haendeler J. Nuclear redox signaling. Antioxid Redox Signal 2010; 12:713-42. [PMID: 19737086 DOI: 10.1089/ars.2009.2609] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Reactive oxygen species have been described to modulate proteins within the cell, a process called redox regulation. However, the importance of compartment-specific redox regulation has been neglected for a long time. In the early 1980s and 1990s, many in vitro studies introduced the possibility that nuclear redox signaling exists. However, the functional relevance for that has been greatly disregarded. Recently, it has become evident that nuclear redox signaling is indeed one important signaling mechanism regulating a variety of cellular functions. Transcription factors, and even kinases and phosphatases, have been described to be redox regulated in the nucleus. This review describes several of these proteins in closer detail and explains their functions resulting from nuclear localization and redox regulation. Moreover, the redox state of the nucleus and several important nuclear redox regulators [Thioredoxin-1 (Trx-1), Glutaredoxins (Grxs), Peroxiredoxins (Prxs), and APEX nuclease (multifunctional DNA-repair enzyme) 1 (APEX1)] are introduced more precisely, and their necessity for regulation of transcription factors is emphasized.
Collapse
Affiliation(s)
- Margarete Lukosz
- Molecular Cell & Aging Research, IUF (Institute for Molecular Preventive Medicine), At the University of Duesseldorf gGmbH, Auf'm Hennekamp 50, 40225 Duesseldorf, Germany
| | | | | | | | | | | |
Collapse
|
2050
|
Shi X, Zhou B. The role of Nrf2 and MAPK pathways in PFOS-induced oxidative stress in zebrafish embryos. Toxicol Sci 2010; 115:391-400. [PMID: 20200220 DOI: 10.1093/toxsci/kfq066] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Perfluorooctane sulfonate (PFOS) is a persistent organic pollutant and causes oxidative stress, apoptosis, and developmental toxicity in zebrafish embryos. In the present study, we examined nuclear factor erythroid 2-related factor 2 (Nrf2)- and mitogen-activated protein kinases (MAPKs)-mediated oxidative stress pathways in zebrafish embryos upon exposure to PFOS. Four-hour postfertilization (hpf) zebrafish embryos were exposed to 0.2, 0.4, and 1.0 mg/l PFOS until 96 hpf. PFOS enhanced production of reactive oxygen species (ROS) in a concentration-dependent manner. Activity of antioxidative enzymes, including superoxide dismutase, catalase, and glutathione peroxidase, was significantly induced in zebrafish larvae in all PFOS-treated groups relative to the control. Exposure to 1.0 mg/l PFOS significantly increased malondialdehyde production in zebrafish larvae. The Nrf2 and heme oxygenase-1 (HO-1) gene expressions were both significantly upregulated compared with the control group. For MAPKs, we investigated gene expression profiles of extracellular signal-regulated protein kinase (ERK), c-Jun NH (2)-terminal kinase (JNK), and p38. The ERK gene expression levels were unchanged, whereas JNK and p38 gene expressions were significantly upregulated, which could be linked to PFOS-induced cell apoptosis in zebrafish larvae. In addition, we found that coexposure with sulforaphane, an Nrf2 activator, could significantly protect against PFOS-induced ROS generation, whereas inhibition of MAPKs did not exhibit significant effects on PFOS-induced HO-1 gene expression and ROS production. Furthermore, we showed that morpholino-mediated knockdown of Nrf2 reduced PFOS-induced HO-1 gene expression. These findings demonstrate that Nrf2 is protective against PFOS-induced oxidative stress in zebrafish larvae.
Collapse
Affiliation(s)
- Xiongjie Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | |
Collapse
|