201
|
Shou DW, Quan Y, Cheng JM, Yang SQ, Chen JW, Li YQ, Huang C, Chen HT, Zhou YJ. Inhibition of FoxO1 ameliorates hepatic steatosis and hepatitis in nonalcoholic steatohepatitis mice through regulation of gut microbiota. J Dig Dis 2024; 25:453-462. [PMID: 39211938 DOI: 10.1111/1751-2980.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE We aimed to investigate the role of forkhead box O1 (FoxO1) inhibitor AS1842856 (AS) in nonalcoholic steatohepatitis (NASH) mice and the potential mechanisms. METHODS Mice were given methionine-choline-sufficient (MCS), or methionine- and choline-deficient (MCD) diet for 5 weeks, along with AS (60 mg/kg) or vehicle gavage treatment (0.2 mL/day). Body and liver weight, serum triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), alanine aminotransferase (ALT), aspartate aminotransferase (AST), fasting glucose and insulin levels were measured. Liver macrophage infiltration and ileal ZO-1 protein expression were also detected. Interleukin (IL)-6, IL-1β, and tumor necrosis factor (TNF)-α, sterol regulatory element binding protein (SREBP)-1c, phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase), α-smooth muscle actin (SMA), recombinant collagen type III α1 (Col3a1), and connective tissue growth factor (Ctgf) expressions were measured. Stool samples were collected for 16S rDNA sequencing. RESULTS Compared to the MCD group, AS attenuated liver weight, reduced serum TG, ALT, and AST levels, increased HDL-C levels, mitigated hepatic steatosis, decreased macrophage infiltration, and augmented ileal ZO-1 proteins in NASH mice. It also reduced the levels of IL-6, IL-1β, and TNF-α, alongside with the Srebp-1c mRNA expression. However, no significant effects on Pepck, G6Pase, α-SMA, Col3a1, or Ctgf were observed. Furthermore, AS promoted diversity and altered gut microbiota composition in NASH mice, causing increased beneficial bacteria like Akkermansia muciniphila, Parabacteroides distasonis, and Prevotellamassilia, which were associated with metabolic functions. CONCLUSION FoxO1 inhibitor AS ameliorated hepatic steatosis, inflammation, and intestinal dysbiosis in NASH mice, making it a potentially promising treatment for NASH.
Collapse
Affiliation(s)
- Di Wen Shou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Ying Quan
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Jie Min Cheng
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Si Qi Yang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Jia Wei Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yong Qiang Li
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Chen Huang
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Hui Ting Chen
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| | - Yong Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou, Guangdong Province, China
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong Province, China
| |
Collapse
|
202
|
Zhou Y, Nie M, Zhou H, Mao F, Zhao L, Ding J, Jing X. Head-to-head comparison of three different US-based quantitative parameters for hepatic steatosis assessment: a prospective study. Abdom Radiol (NY) 2024; 49:2262-2271. [PMID: 38740581 DOI: 10.1007/s00261-024-04347-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE To evaluate the diagnostic performance of attenuation coefficient (AC), hepato-renal index (HRI) and controlled attenuation parameter (CAP) in quantitative assessment of hepatic steatosis by employing histopathology as reference standard. METHODS Participants with suspected metabolic-associated fatty liver disease (MAFLD) who underwent US-based parameter examinations and liver biopsy were prospectively recruited. The distributions of US parameters across different grades of steatosis were calculated, and diagnostic performance was determined based on the areas under the receiver operating characteristic curve (AUC). RESULTS A total of 73 participants were included, with hepatic steatosis grades S0, S1, S2, and S3 distributed as follows: 13, 20, 27, and 13 respectively. The correlation coefficients for CAP, AC, and HRI ranged from 0.67 to 0.74. AC and HRI showed a strong correlation with steatosis grade. The AUC for CAP and AC in diagnosing steatosis ≥ S1 were significantly higher at 0.99 and 0.98 compared to HRI's value. For diagnosing steatosis ≥ S2, the AUC of CAP (AUC: 0.85) was lower than that of AC (AUC: 0.94), and HRI (AUC: 0.94). Similarly for diagnosing steatosis S3, the AUC of CAP (AUC: 0.68) was lower than that of AC (AUC: 0.88), and HRI (AUC: 0.88). CONCLUSION The AC and HRI values increased with the progression of hepatic steatosis grade, while CAP increased from S0 to S2 but not from S2 to S3. For mild steatosis diagnosis, CAP and AC showed superior diagnostic performance compared to HRI, while AC and HRI were more advantageous in differentiating moderate and severe steatosis.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
| | - Mengjin Nie
- Department of Ultrasound, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
- Department of Ultrasound, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Hongyu Zhou
- Department of Ultrasound, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
| | - Feng Mao
- Department of Ultrasound, Zhongshan Hospital Fudan University, Shanghai, 200032, China
| | - Lin Zhao
- Department of Ultrasound, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
| | - Jianmin Ding
- Department of Ultrasound, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China
| | - Xiang Jing
- Department of Ultrasound, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China.
- Tianjin Institute of Hepatobiliary Disease, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Third Central Hospital, Hedong District, No. 83 Jintang Road, Tianjin, 300170, China.
| |
Collapse
|
203
|
Long J, Xu Y, Zhang X, Wu B, Wang C. Role of FXR in the development of NAFLD and intervention strategies of small molecules. Arch Biochem Biophys 2024; 757:110024. [PMID: 38703803 DOI: 10.1016/j.abb.2024.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) remains a prevailing etiological agent behind hepatocyte diseases like chronic liver disease. The spectrum of processes involved in NAFLD stages includes hepatic steatosis, non-alcoholic fatty liver, and non-alcoholic steatohepatitis (NASH). Without intervention, the progression of NASH can further deteriorate into cirrhosis and ultimately, hepatocellular carcinoma. The cardinal features that characterize NAFLD are insulin resistance, lipogenesis, oxidative stress and inflammation, extracellular matrix deposition and fibrosis. Due to its complex pathogenesis, existing pharmaceutical agents fail to take a curative or ameliorative effect on NAFLD. Consequently, it is imperative to identify novel therapeutic targets and strategies for NAFLD, ideally to improve the aforementioned key features in patients. As an enterohepatic regulator of bile acid homeostasis, lipid metabolism, and inflammation, FarnesoidX receptor (FXR) is an important pharmacological target for the treatment of NAFLD. Manipulating FXR to regulate lipid metabolic signaling pathways is a potential mechanism to mitigate NAFLD. Therefore, elucidating the modulatory character of FXR in regulating lipid metabolism in NAFLD has the potential to yield groundbreaking perspectives for drug design. This review details recent advances in the regulation of lipid depletion in hepatocytes and investigates the pivotal function of FXR in the progress of NAFLD.
Collapse
Affiliation(s)
- Jiachan Long
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuanhang Xu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuerong Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bingxing Wu
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Caiyan Wang
- State Key Laboratory of Traditional Chinese Medicine Syndrome, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
204
|
Xie Y, Wei L, Guo J, Jiang Q, Xiang Y, Lin Y, Xie H, Yin X, Gong X, Wan J. Ginkgolide C attenuated Western diet-induced non-alcoholic fatty liver disease via increasing AMPK activation. Inflammation 2024:10.1007/s10753-024-02086-3. [PMID: 38954260 DOI: 10.1007/s10753-024-02086-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a metabolic dysregulation-related disorder that is generally characterized by lipid metabolism dysfunction and an excessive inflammatory response. Currently, there are no authorized pharmacological interventions specifically designed to manage NASH. It has been reported that Ginkgolide C exhibits anti-inflammatory effects and modulates lipid metabolism. However, the impact and function of Ginkgolide C in diet-induced NASH are unclear. METHODS In this study, mice were induced by a Western Diet (WD) with different doses of Ginkgolide C with or without Compound C (adenosine 5 '-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor). The effects of Ginkgolide C were evaluated by assessing liver damage, steatosis, fibrosis, and AMPK expression. RESULTS The results showed that Ginkgolide C significantly alleviated liver damage, steatosis, and fibrosis in the WD-induced mice. In addition, Ginkgolide C markedly improved insulin resistance and attenuated hepatic inflammation. Importantly, Ginkgolide C exerted protective effects by activating the AMPK signaling pathway, which was reversed by AMPK inhibition. CONCLUSION Ginkgolide C alleviated NASH induced by WD in mice, potentially via activating the AMPK signaling pathway.
Collapse
Affiliation(s)
- Yao Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Leyi Wei
- Department of Anatomy, Chongqing Medical University, Chongqing, China
| | - Jiashi Guo
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Qingsong Jiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yang Xiang
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Yan Lin
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Huang Xie
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Xinru Yin
- Department of Gastroenterology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xia Gong
- Department of Anatomy, Chongqing Medical University, Chongqing, China.
| | - Jingyuan Wan
- Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
205
|
Li J, Xiang Y, Han J, Gao Y, Wang R, Dong Z, Chen H, Gao R, Liu C, Teng GJ, Qi X. Retinopathy as a predictive indicator for significant hepatic fibrosis according to T2DM status: A cross-sectional study based on the national health and nutrition examination survey data. Ann Hepatol 2024; 29:101478. [PMID: 38354949 DOI: 10.1016/j.aohep.2024.101478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/16/2024]
Abstract
INTRODUCTION AND OBJECTIVES Type 2 Diabetes Mellitus (T2DM), a prevalent metabolic disorder, often coexists with a range of complications, with retinopathy being particularly common. Recent studies have shed light on a potential connection between diabetic retinopathy (DR) and hepatic fibrosis, indicating a possible shared pathophysiological foundation in T2DM. This study investigates the correlation between retinopathy and hepatic fibrosis among individuals with T2DM, as well as evaluates the diagnostic value of DR for significant hepatic fibrosis. MATERIALS AND METHODS Our cross-sectional analysis incorporated 5413 participants from the National Health and Nutrition Examination Survey (NHANES) 2005-2008. The Fibrosis-4 score (FIB-4) classified hepatic fibrosis into different grades (F0-F4), with significant hepatic fibrosis marked as F2 or higher. Retinopathy severity was determined using retinal imaging and categorized into four levels. The analysis of variance or Chi-square tests facilitated group comparisons. Additionally, the receiver operating characteristic (ROC) analysis appraised the predictive accuracy of retinopathy for significant hepatic fibrosis in the T2DM population. RESULTS Among 5413 participants, the mean age was 59.56 ± 12.41, with 50.2% male. And 20.6% were diagnosed with T2DM. Hepatic fibrosis grading was positively associated with retinopathy severity (OR [odds ratio]: 1.521, 95%CI [confidence interval]: 1.152-2.008, P = 0.003) across the entire population. The association was amplified in the T2DM population according to Pearson's analysis results. The ROC curve demonstrated retinopathy's diagnostic capacity for significant hepatic fibrosis in the T2DM population (AUC [area under curve] = 0.72, 95%CI: 0.651-0.793, P < 0.001). CONCLUSIONS Retinopathy could serve as an independent predictor of significant hepatic fibrosis in T2DM population. Ophthalmologists are advised to closely monitor T2DM patients with retinopathy.
Collapse
Affiliation(s)
- Jinze Li
- Institute for AI in Medicine, School of Artificial Intelligence, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu Province, China
| | - Yi Xiang
- Department of Oncology, The First Affiliated Hospital, Gannan Medical University, Ganzhou 341000, Jiangxi Province, China; Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210044, Jiangsu Province, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China
| | - Jiahao Han
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210044, Jiangsu Province, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China
| | - Youfang Gao
- Department of Infectious Disease, The People's Hospital of Bozhou, Bozhou 236800, Anhui Province, China
| | - Ruiying Wang
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Zihe Dong
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China; The First School of Clinical Medicine, Lanzhou University, Lanzhou 730000, Gansu Province, China
| | - Huihui Chen
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China; Department of Ultrasound, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Ruixia Gao
- Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China; Medical School, Southeast University, Nanjing, 210009, Jiangsu Province, China
| | - Chuan Liu
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210044, Jiangsu Province, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China
| | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, Jiangsu Province, China
| | - Xiaolong Qi
- Center of Portal Hypertension, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology (Southeast University), Nanjing 210044, Jiangsu Province, China; Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing 210009, Jiangsu Province, China; State Key Laboratory of Digital Medical Engineering, Nanjing 210044, Jiangsu Province, China.
| |
Collapse
|
206
|
Danielsson O, Vesterinen T, Arola J, Åberg F, Nissinen MJ. Coexistence of metabolic-associated fatty liver disease and autoimmune or toxic liver disease. Eur J Gastroenterol Hepatol 2024; 36:961-969. [PMID: 38829946 PMCID: PMC11136267 DOI: 10.1097/meg.0000000000002785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/06/2024] [Indexed: 06/05/2024]
Abstract
Fatty liver disease (FLD) affects approximately 25% of global adult population. Metabolic-associated fatty liver disease (MAFLD) is a term used to emphasize components of metabolic syndrome in FLD. MAFLD does not exclude coexistence of other liver disease, but impact of coexisting MAFLD is unclear. We investigated prevalence and characteristics of MAFLD in patients with biopsy-proven autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), or toxic liver disease. Liver histopathology and clinical data from Helsinki University Hospital district (1.7 million inhabitants) between 2009 and 2019 were collected from patients with AIH, PBC, PSC, or toxic liver disease at the time of diagnosis. MAFLD was diagnosed as macrovesicular steatosis ≥5% together with obesity, type-2 diabetes, or signs of metabolic dysregulation. Of 648 patients included, steatosis was observed in 15.6% (n = 101), of which 94.1% (n = 95) was due to MAFLD. Prevalence of coexisting MAFLD in the four liver diseases varied between 12.4 and 18.2% (P = 0.483). Fibrosis was more severe in MAFLD among patients with toxic liver disease (P = 0.01). Histopathological characteristics otherwise showed similar distribution among MAFLD and non-FLD controls. Alcohol consumption was higher in MAFLD group among patients with AIH or PBC (P < 0.05 for both). In AIH, smoking was more common in patients with coexisting MAFLD (P = 0.034). Prevalence of coexisting MAFLD in other primary liver diseases is lower than reported in general population. Histopathology of MAFLD patients did not clearly differ from non-FLD ones. Alcohol and smoking were associated with MAFLD in AIH.
Collapse
Affiliation(s)
- Oscar Danielsson
- Clinic of Gastroenterology, Abdominal Center, Helsinki University Hospital and University of Helsinki
- Doctoral Programme in Clinical Research, University of Helsinki
| | - Tiina Vesterinen
- HUS Diagnostic Center, HUSLAB, Helsinki University Hospital and University of Helsinki
| | - Johanna Arola
- HUS Diagnostic Center, HUSLAB, Helsinki University Hospital and University of Helsinki
- Department of Pathology, Faculty of Medicine, University of Helsinki
| | - Fredrik Åberg
- Abdominal Center, Transplantation and Liver Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Markku J. Nissinen
- Clinic of Gastroenterology, Abdominal Center, Helsinki University Hospital and University of Helsinki
| |
Collapse
|
207
|
Sheng M, Huo S, Jia L, Weng Y, Liu W, Lin Y, Yu W. NUAK1 promotes metabolic dysfunction-associated steatohepatitis progression by activating Caspase 6-driven pyroptosis and inflammation. Hepatol Commun 2024; 8:e0479. [PMID: 38967580 PMCID: PMC11227355 DOI: 10.1097/hc9.0000000000000479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND lNUAK1 is strongly associated with organ fibrosis, but its causal mechanism for modulating lipid metabolism and hepatic inflammation underlying MASH has not been fully clarified. METHOD In our study, human liver tissues from patients with MASH and control subjects were obtained to evaluate NUAK1 expression. MASH models were established using C57BL/6 mice. Liver damage and molecular mechanisms of the NUAK1-Caspase 6 signaling were tested in vivo and in vitro. RESULTS In the clinical arm, NUAK1 expression was upregulated in liver samples from patients with MASH. Moreover, increased NUAK1 was detected in mouse MASH models. NUAK1 inhibition ameliorated steatohepatitis development in MASH mice accompanied by the downregulation of hepatic steatosis and fibrosis. Intriguingly, NUAK1 was found to facilitate Caspase 6 activation and trigger pyroptosis in MASH-stressed livers. Disruption of hepatocytes Caspase 6 decreased MASH-induced liver inflammation with upregulated TAK1 but diminished RIPK1. Moreover, we found that NUAK1/Caspase 6 axis inhibition could accelerate the interaction between TAK1 and RIPK1, which in turn led to the degradation of RIPK1. CONCLUSIONS In summary, our study elucidates that NUAK1-Caspase 6 signaling controls inflammation activation in MASH through the interaction between TAK1 and RIPK1, which is crucial for controlling pyroptosis and promoting the progression of MASH.
Collapse
Affiliation(s)
- Mingwei Sheng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Shuhan Huo
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Lili Jia
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yiqi Weng
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Weihua Liu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| | - Yuanbang Lin
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
208
|
He Q, He W, Dong H, Guo Y, Yuan G, Shi X, Wang D, Lu F. Role of liver sinusoidal endothelial cell in metabolic dysfunction-associated fatty liver disease. Cell Commun Signal 2024; 22:346. [PMID: 38943171 PMCID: PMC11214243 DOI: 10.1186/s12964-024-01720-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/01/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells that represent the interface between blood cells on one side and hepatocytes on the other side. LSECs not only form a barrier within the hepatic sinus, but also play important physiological functions such as regulating hepatic vascular pressure, anti-inflammatory and anti-fibrotic. Pathologically, pathogenic factors can induce LSECs capillarization, that is, loss of fenestra and dysfunction, which are conducive to early steatosis, lay the foundation for the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), and accelerate metabolic dysfunction-associated steatohepatitis (MASH) and liver fibrosis. The unique localization, phenotype, and function of LSECs make them potential candidates for reducing liver injury, inflammation, and preventing or reversing fibrosis in the future.
Collapse
Affiliation(s)
- Qiongyao He
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wu He
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Hui Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yujin Guo
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Yuan
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoli Shi
- Department of Endocrinology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dingkun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Fuer Lu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
209
|
Marroncini G, Naldi L, Martinelli S, Amedei A. Gut-Liver-Pancreas Axis Crosstalk in Health and Disease: From the Role of Microbial Metabolites to Innovative Microbiota Manipulating Strategies. Biomedicines 2024; 12:1398. [PMID: 39061972 PMCID: PMC11273695 DOI: 10.3390/biomedicines12071398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/16/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.
Collapse
Affiliation(s)
- Giada Marroncini
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Laura Naldi
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.M.); (L.N.)
| | - Serena Martinelli
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, 50139 Florence, Italy
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), 50139 Florence, Italy
| |
Collapse
|
210
|
Lara-Romero C, Romero-Gómez M. Treatment Options and Continuity of Care in Metabolic-associated Fatty Liver Disease: A Multidisciplinary Approach. Eur Cardiol 2024; 19:e06. [PMID: 38983581 PMCID: PMC11231815 DOI: 10.15420/ecr.2023.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 02/14/2024] [Indexed: 07/11/2024] Open
Abstract
The terms non-alcoholic fatty liver disease and non-alcoholic steatohepatitis have some limitations as they use exclusionary confounder terms and the use of potentially stigmatising language. Recently, a study with content experts and patients has been set to change this nomenclature. The term chosen to replace non-alcoholic fatty liver disease was metabolic dysfunction-associated steatotic liver disease (MASLD), which avoids stigmatising and helps improve awareness and patient identification. MASLD is the most common cause of chronic liver disease with an increasing prevalence, accounting for 25% of the global population. It is considered the hepatic manifestation of the metabolic syndrome with lifestyle playing a fundamental role in its physiopathology. Diet change and physical activity are the cornerstones of treatment, encompassing weight loss and healthier behaviours and a holistic approach. In Europe, there is no approved drug for MASLD to date and there is a substantial unmet medical need for effective treatments for patients with MASLD. This review not only provides an update on advances in evidence for nutrition and physical activity interventions but also explores the different therapeutic options that are being investigated and whose development focuses on the restitution of metabolic derangements and halting inflammatory and fibrogenic pathways.
Collapse
Affiliation(s)
- Carmen Lara-Romero
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| | - Manuel Romero-Gómez
- Gastroenterology and Hepatology Department, Virgen del Rocío University Hospital Seville, Spain
- Clinical and Translational Research in Digestive Diseases, Institute of Biomedicine of Seville, University of Seville Seville, Spain
| |
Collapse
|
211
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
212
|
Imai J, Takashimizu S, Suzuki N, Ohshinden K, Sawamoto K, Mishima Y, Tsuruya K, Arase Y, Yamano M, Kishimoto N, Yamada C, Inoue N, Moriyama K, Baba A, Suzuki H, Kagawa T, Nishizaki Y. Comparative study of MAFLD as a predictor of metabolic disease treatment for NAFLD. Sci Rep 2024; 14:13411. [PMID: 38862756 PMCID: PMC11166940 DOI: 10.1038/s41598-024-64301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
A novel concept of Metabolic Associated Fatty Liver Disease (MAFLD) was proposed, incorporating metabolic abnormalities such as obesity and diabetes, which are risk factors that affect the prognosis. Non-Alcoholic Fatty Liver Disease (NAFLD), entails fat accumulation in the liver without alcohol consumption and is often linked to obesity, insulin resistance, and metabolic syndrome. However, the broad nature of the disease concept has hindered prognosis accuracy. In this study, we assess the contribution of the impact of diagnostic criteria for MAFLD on metabolic disease progression compared to conventional diagnostic criteria for NAFLD. A total of 7159 patient who were presented to the health screening center in Tokai University Hospital both in 2015 and 2020 were included in the study. Fatty liver was diagnosed using abdominal ultrasonography. The diagnostic criteria for NAFLD were consistent with the global guidelines based on alcohol consumption. The diagnostic criteria for MAFLD were based on the International Consensus Panel. Medications (anti-hypertensive, diabetic, and dyslipidemia medications) were evaluated by self-administration in the submitted medical questionnaire. A total of 2500 (34.9%) participants were diagnosed with fatty liver (FL +), 1811 (72.4%) fit both NAFLD and MAFLD diagnostic criteria (overlap), 230 (9.2%) fit only the NAFLD diagnostic criteria (NAFLD group) and 404 (16.1%) fit the MAFLD diagnostic criteria (MAFLD group) at 2015. Over the next 5 years, medication rates increased in the NAFLD group for anti-hypertensive, + 17 (7.4%); diabetes, + 3 (1.3%); and dyslipidemia, + 32 (13.9%). In contrast, the only-MAFLD group showed a more significant increase with + 49 (12.1%), + 21 (5.2%), and + 49 (12.1%), for the respective medications, indicating a substantial rise in patients starting new medications. Our analysis of repeated health check-ups on participants revealed that the diagnostic criteria for MAFLD are more predictive of future treatment for metabolic disease than conventional diagnostic criteria for NAFLD.
Collapse
Affiliation(s)
- Jin Imai
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan.
| | - Shinji Takashimizu
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Nana Suzuki
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kana Ohshinden
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kana Sawamoto
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yusuke Mishima
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kota Tsuruya
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yoshitaka Arase
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Mitsuhiko Yamano
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Noriaki Kishimoto
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Chizumi Yamada
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Nagamu Inoue
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kengo Moriyama
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Akiyasu Baba
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Hidekazu Suzuki
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tatehiro Kagawa
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Yasuhiro Nishizaki
- Department of Clinical Health Science, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| |
Collapse
|
213
|
Fatemi Y, Nikfar M, Oladazimi A, Zheng J, Hoy H, Ali H. Machine Learning Approach for Cardiovascular Death Prediction among Nonalcoholic Steatohepatitis (NASH) Liver Transplant Recipients. Healthcare (Basel) 2024; 12:1165. [PMID: 38921280 PMCID: PMC11202858 DOI: 10.3390/healthcare12121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/30/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Cardiovascular disease is the leading cause of mortality among nonalcoholic steatohepatitis (NASH) patients who undergo liver transplants. In the present study, machine learning algorithms were used to identify important risk factors for cardiovascular death and to develop a prediction model. The Standard Transplant Analysis and Research data were gathered from the Organ Procurement and Transplantation Network. After cleaning and preprocessing, the dataset comprised 10,871 patients and 92 features. Recursive feature elimination (RFE) and select from model (SFM) were applied to select relevant features from the dataset and avoid overfitting. Multiple machine learning algorithms, including logistic regression, random forest, decision tree, and XGBoost, were used with RFE and SFM. Additionally, prediction models were developed using a support vector machine, Gaussian naïve Bayes, K-nearest neighbors, random forest, and XGBoost algorithms. Finally, SHapley Additive exPlanations (SHAP) were used to increase interpretability. The findings showed that the best feature selection method was RFE with a random forest estimator, and the most critical features were recipient and donor blood type, body mass index, recipient and donor state of residence, serum creatinine, and year of transplantation. Furthermore, among all the outcomes, the XGBoost model had the highest performance, with an accuracy value of 0.6909 and an area under the curve value of 0.86. The findings also revealed a predictive relationship between features and cardiovascular death after liver transplant among NASH patients. These insights may assist clinical decision-makers in devising strategies to prevent cardiovascular complications in post-liver transplant NASH patients.
Collapse
Affiliation(s)
- Yasin Fatemi
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA; (Y.F.); (M.N.); (A.O.)
| | - Mohsen Nikfar
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA; (Y.F.); (M.N.); (A.O.)
| | - Amir Oladazimi
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA; (Y.F.); (M.N.); (A.O.)
| | - Jingyi Zheng
- Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849, USA;
| | - Haley Hoy
- College of Nursing, The University of Alabama in Huntsville, Huntsville, AL 35805, USA;
| | - Haneen Ali
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL 36849, USA; (Y.F.); (M.N.); (A.O.)
- Health Services Administration Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
214
|
Zhang Y, Cao C, Li C, Witt RG, Huang H, Tsung A, Zhang H. Physical exercise in liver diseases. Hepatology 2024:01515467-990000000-00900. [PMID: 38836646 DOI: 10.1097/hep.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Liver diseases contribute to ~2 million deaths each year and account for 4% of all deaths globally. Despite various treatment options, the management of liver diseases remains challenging. Physical exercise is a promising nonpharmacological approach to maintain and restore homeostasis and effectively prevent and mitigate liver diseases. In this review, we delve into the mechanisms of physical exercise in preventing and treating liver diseases, highlighting its effects on improving insulin sensitivity, regulating lipid homeostasis, and modulating immune function. In addition, we evaluate the impact of physical exercise on various liver diseases, including liver ischemia/reperfusion injury, cardiogenic liver disease, metabolic dysfunction-associated steatotic liver disease, portal hypertension, cirrhosis, and liver cancer. In conclusion, the review underscores the effectiveness of physical exercise as a beneficial intervention in combating liver diseases.
Collapse
Affiliation(s)
- Yunwei Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chunyan Cao
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Chaofan Li
- Department of Medicine, Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, Virginia, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Russell G Witt
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hai Huang
- Division of Hepatology, Center for Immunology and Inflammation, Departments of Molecular Medicine, Medicine, and Surgery at the School of Medicine, Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Allan Tsung
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| | - Hongji Zhang
- Department of Surgery, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
215
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
216
|
Yang H, Li D, Gao G. Kaempferol Alleviates Hepatic Injury in Nonalcoholic Steatohepatitis (NASH) by Suppressing Neutrophil-Mediated NLRP3-ASC/TMS1-Caspase 3 Signaling. Molecules 2024; 29:2630. [PMID: 38893506 PMCID: PMC11173805 DOI: 10.3390/molecules29112630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a significant hepatic condition that has gained worldwide attention. Kaempferol (Kae), renowned for its diverse biological activities, including anti-inflammatory, antioxidant, anti-aging, and cardio-protective properties, has emerged as a potential therapeutic candidate for non-alcoholic steatohepatitis (NASH). Despite its promising therapeutic potential, the precise underlying mechanism of Kae's beneficial effects in NASH remains unclear. Therefore, this study aims to clarify the mechanism by conducting comprehensive in vivo and in vitro experiments. RESULTS In this study, a murine model of non-alcoholic steatohepatitis (NASH) was established by feeding C57BL/6 female mice a high-fat diet for 12 weeks. Kaempferol (Kae) was investigated for its ability to modulate systemic inflammatory responses and lipid metabolism in this model (20 mg/kg per day). Notably, Kae significantly reduced the expression of NLRP3-ASC/TMS1-Caspase 3, a crucial mediator of liver tissue inflammation. Additionally, in a HepG2 cell model induced with palmitic acid/oleic acid (PA/OA) to mimic NASH conditions, Kae demonstrated the capacity to decrease lipid droplet accumulation and downregulate the expression of NLRP3-ASC/TMS1-Caspase 3 (20 µM and the final concentration to 20 nM). These findings suggest that Kae may hold therapeutic potential in the treatment of NASH by targeting inflammatory and metabolic pathways. CONCLUSIONS These findings suggest that kaempferol holds potential as a promising therapeutic intervention for ameliorating non-alcoholic fatty liver disease (NAFLD).
Collapse
Affiliation(s)
- He Yang
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| | | | - Guolan Gao
- Medical School, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
217
|
Ramachandran G, Pottakkat B. Probiotics-A Promising Novel Therapeutic Approach in the Management of Chronic Liver Diseases. J Med Food 2024; 27:467-476. [PMID: 38574254 DOI: 10.1089/jmf.2023.k.0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
An increased incidence of liver diseases has been observed in recent years and is associated with gut dysbiosis, which causes bacterial infection, intestinal permeability, and further leads to disease-related complications. Probiotics, active microbial strains, are gaining more clinical importance due to their beneficial effect in the management of many diseases, including liver diseases. Clinical scenarios show strong evidence that probiotics have efficacy in treating liver diseases due to their ability to improve epithelial barrier function, prevent bacterial translocation, and boost the immune system. Moreover, probiotics survive both bile and gastric acid to reach the gut and exert their health benefit. Evidence shows that probiotics are a promising approach to prevent several complications in clinical practice. Herein, we discuss the recent evidence, challenges, and appropriate use of probiotics in managing advanced liver diseases, which may have an impact on future therapeutic strategies. Furthermore, the superior effect of strain-specific probiotics and their efficacy and safety in managing liver diseases are discussed.
Collapse
Affiliation(s)
- Gokulapriya Ramachandran
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Biju Pottakkat
- Department of Surgical Gastroenterology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| |
Collapse
|
218
|
Lanthier L, Grbic D, Plourde MÉ, Cauchon M. [Among patients with metabolic dysfunction associated steatohepatitis (MASH), is resmetirom 80 or 100mg superior to placebo in reversing MASH and/or fibrosis on liver biopsy, and is it safe?]. Rev Med Interne 2024; 45:395-396. [PMID: 38755073 DOI: 10.1016/j.revmed.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Affiliation(s)
- L Lanthier
- Département de médecine spécialisé, service de médecine interne générale, université de Sherbrooke, 580 Bowen Sud, Sherbrooke, QC, Canada.
| | - D Grbic
- Département de médecine spécialisé, service de gastro-entérologie, université de Sherbrooke, Sherbrooke, QC, Canada
| | - M-É Plourde
- Département de médecine nucléaire et radiobiologie, service de radio-oncologie, université de Sherbrooke, Sherbrooke, QC, Canada
| | - M Cauchon
- Département de médecine familiale et de médecine d'urgence, université Laval, Québec, QC, Canada
| |
Collapse
|
219
|
Abdelmalek MF, Harrison SA, Sanyal AJ. The role of glucagon-like peptide-1 receptor agonists in metabolic dysfunction-associated steatohepatitis. Diabetes Obes Metab 2024; 26:2001-2016. [PMID: 38511418 DOI: 10.1111/dom.15524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/22/2024]
Abstract
Despite its considerable and growing burden, there are currently no Food and Drug Administration-approved treatments for metabolic dysfunction-associated steatotic liver disease or its progressive form, metabolic dysfunction-associated steatohepatitis (MASH). Several glucagon-like peptide-1 receptor agonists (GLP-1RAs) and other agents are in various phases of clinical development for use in MASH; an ideal therapy should reduce liver fat content, improve chronic liver disease, help mitigate metabolic comorbidities and decrease all-cause mortality. Because of interconnected disease mechanisms, metabolic dysfunction-associated steatotic liver disease/MASH often coexists with type 2 diabetes (T2D), obesity and cardiovascular disease. Various GLP-1RAs are Food and Drug Administration-approved for use in T2D, and two, liraglutide and semaglutide, are approved for overweight and obesity. GLP-1RAs decrease glucose levels and body weight and improve cardiovascular outcomes in people with T2D who are at high risk of cardiovascular disease. In addition, GLP-1RAs have been reported to reduce liver fat content and liver enzymes, reduce oxidative stress and improve hepatic de novo lipogenesis and the histopathology of MASH. Weight loss may contribute to these effects; however, the exact mechanisms are unknown. Adverse events that are commonly associated with GLP-1RAs include vomiting, nausea and diarrhoea. There is a lack of evidence from meta-analyses regarding the increased risk of acute pancreatitis and various forms of cancer with GLP-1RAs. Large-scale, phase 3 trials, which will provide definitive data on GLP-1RAs and other potential therapies in MASH, are ongoing. Given the spectrum of modalities under investigation, it is hoped that these trials will support the identification of pharmacotherapies that provide clinical benefit for patients with MASH.
Collapse
Affiliation(s)
- Manal F Abdelmalek
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
220
|
Tang Y, Fan Y, Wang Y, Wang D, Huang Q, Chen T, Cao X, Wen C, Shen X, Li J, You Y. A Current Understanding of FXR in NAFLD: The multifaceted regulatory role of FXR and novel lead discovery for drug development. Biomed Pharmacother 2024; 175:116658. [PMID: 38701562 DOI: 10.1016/j.biopha.2024.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The global prevalence of nonalcoholic fatty liver disease (NAFLD) has reached 30 %, with an annual increase. The incidence of NAFLD-induced cirrhosis is rapidly rising and has become the leading indicator for liver transplantation in the US. However, there are currently no US Food and Drug Administration-approved drugs for NAFLD. Increasing evidence underscores the close association between NAFLD and bile acid metabolism disorder, highlighting the feasibility of targeting the bile acid signaling pathway for NAFLD treatment. The farnesoid X receptor (FXR) is an endogenous receptor for bile acids that exhibits favorable effects in ameliorating the metabolic imbalance of bile acids, lipid disorders, and disruption of intestinal homeostasis, all of which are key characteristics of NAFLD, making FXR a promising therapeutic target for NAFLD. The present review provides a comprehensive overview of the diverse mechanisms through which FXR improves NAFLD, with particular emphasis on its involvement in regulating bile acid homeostasis and the recent advancements in drug development targeting FXR for NAFLD treatment.
Collapse
Affiliation(s)
- Yuhong Tang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Yujuan Fan
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Yiming Wang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Dong Wang
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Qingyu Huang
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Tongqing Chen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Xinyue Cao
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Cailing Wen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China
| | - Xiaoyan Shen
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China.
| | - Jian Li
- Department of Cardiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Yan You
- School of Pharmacy & Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
221
|
Luo HY, Mu WJ, Chen M, Zhu JY, Li Y, Li S, Yan LJ, Li RY, Yin MT, Li X, Chen HM, Guo L. Hepatic Klf10-Fh1 axis promotes exercise-mediated amelioration of NASH in mice. Metabolism 2024; 155:155916. [PMID: 38615945 DOI: 10.1016/j.metabol.2024.155916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/27/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024]
Abstract
Exercise is an effective non-pharmacological strategy for the treatment of nonalcoholic steatohepatitis (NASH), but the underlying mechanism needs further investigation. Kruppel-like factor 10 (Klf10) is a transcriptional factor that is expressed in multiple tissues including liver, whose role in NASH is not well defined. In our study, exercise induces hepatic Klf10 expression through the cAMP/PKA/CREB pathway. Hepatocyte-specific knockout of Klf10 (Klf10LKO) increases lipid accumulation, cell death, inflammation and fibrosis in NASH diet-fed mice and reduces the protective effects of treadmill exercise against NASH, while hepatocyte-specific overexpression of Klf10 (Klf10LTG) works in concert with exercise to reduce NASH in mice. Mechanistically, Klf10 promotes the expression of fumarate hydratase 1 (Fh1), thereby reducing fumarate accumulation in hepatocytes. This decreases the trimethyl (me3) levels of histone 3 lysine 4 (H3K4me3) on lipogenic genes promoters to attenuate lipogenesis, thus ameliorating free fatty acids (FFAs)-induced hepatocytes steatosis, apoptosis, insulin resistance and blunting dysfunctional hepatocytes-mediated activation of macrophages and hepatic stellate cells. Therefore, by regulating the Fh1/fumarate/H3K4me3 pathway, Klf10 acts as a downstream effector of exercise to combat NASH.
Collapse
Affiliation(s)
- Hong-Yang Luo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Wang-Jing Mu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Yang Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Shan Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Lin-Jing Yan
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Ruo-Ying Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Meng-Ting Yin
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Xin Li
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Hu-Min Chen
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai 200438, China; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
222
|
Wu TY, Hsieh YC, Yin WR, Cheng KY, Hou YT. Fabrication of a decellularized liver matrix-based hepatic patch for the repair of CCl4-induced liver injury. Biotechnol J 2024; 19:e2300570. [PMID: 38864387 DOI: 10.1002/biot.202300570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 04/23/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
This article primarily introduces a new treatment for liver fibrosis/cirrhosis. We developed a hepatic patch by combining decellularized liver matrix (DLM) with the hepatocyte growth factor (HGF)/heparin-complex and evaluated its restorative efficacy. In vitro prophylactic results, the HGF/heparin-DLM patches effectively mitigated CCl4-induced hepatocyte toxicity and restored the cytotoxicity levels to the baseline levels by day 5. Furthermore, these patches restored albumin synthesis of injured hepatocytes to more than 70% of the normal levels within 5 days. In vitro therapeutic results, the urea synthesis of the injured hepatocytes reached 91% of the normal levels after 10 days of culture, indicating successful restoration of hepatic function by the HGF/heparin-DLM patches in both prophylactic and therapeutic models. In vivo results, HGF/heparin-DLM patches attached to the liver and gut exhibited a significant decrease in collagen content (4.44 times and 2.77 times, respectively) and an increase in glycogen content (1.19 times and 1.12 times, respectively) compared to the fibrosis group after 1 week, separately. In summary, liver function was restored and inflammation was inhibited through the combined effects of DLM and the HGF/heparin-complex in fibrotic liver. The newly designed hepatic patch holds promise for both in vitro and in vivo regeneration therapy and preventive health care for liver tissue engineering.
Collapse
Affiliation(s)
- Ting-Yi Wu
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yi-Cheng Hsieh
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Wei-Rong Yin
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Yi Cheng
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| | - Yung-Te Hou
- Department of Biomechatronics Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
223
|
Ajayi T, Moon G, Chen S, Pan S, Oseini A, Houchen C. Surging Liver Transplantation for Nonalcoholic Steatohepatitis from 2000-2022: A National Database Study. South Med J 2024; 117:302-310. [PMID: 38830583 PMCID: PMC11160975 DOI: 10.14423/smj.0000000000001699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
OBJECTIVES Our aim was to provide an up-to-date, large-scale overview of the trends and clinicodemographics for NASH LTs performed in the United States compared with all other LT indications between 2000 and 2022. We also examined the demographic factors that will predict future demand for NASH LT. METHODS Our analysis of NASH LT from the Organ Procurement & Transplantation Network database spanning 2000-2022 consisted primarily of descriptive statistics and hypothesis testing with corrections for multiple testing when necessary. Trend lines and linear correlations were also explored. RESULTS NASH LTs have experienced a remarkable surge, escalating from 0.12% of all LTs in 2000 to a substantial 14.7% in 2022, marking a 100-fold increase. Examining demographic trends, a significant proportion of NASH LTs recipients fall within the 50- to 64-year-old age group. Moreover, 52% of these recipients concurrently exhibit type 2 diabetes mellitus, a notably higher percentage than the 19% observed in all LT recipients. Type 2 diabetes mellitus emerges as a prominent risk factor for NASH progressing to end-stage liver disease. The phenomenon of repeat transplantation is noteworthy; although 6% of all LTs necessitate repeat procedures, this figure dramatically drops to 0.6% for NASH LTs. Ethnic disparities are apparent, with African Americans representing a mere 2% of NASH LT recipients, significantly lower than their representation in the overall population. Regionally, the East Coast has a higher proportion of NASH LT recipients compared with waitlist additions. This trend holds true across demographics. CONCLUSIONS Our findings underscore the need for increased resources, particularly for minority, uninsured, or noncitizen individuals requiring LT for NASH. This analysis provides valuable insights into the dynamic landscape of LTs in the context of NASH, shaping the trajectory of medical interventions in the 21st century.
Collapse
Affiliation(s)
- Tokunbo Ajayi
- Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Gina Moon
- Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Sixia Chen
- Section of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Steven Pan
- Section of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Abdul Oseini
- Department of Transplant Surgery, Section of Transplant, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Courtney Houchen
- Section of Digestive Diseases and Nutrition, University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
224
|
Duman S, Kuru D, Gumussoy M, Kiremitci S, Gokcan H, Ulas B, Ellik Z, Ozercan M, Er RE, Karakaya F, Bodakci E, Erden A, Elhan AH, Savas B, Loomba R, Idilman R. A combination of non-invasive tests for the detection of significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease is not superior to magnetic resonance elastography alone. Eur Radiol 2024; 34:3882-3888. [PMID: 37987833 DOI: 10.1007/s00330-023-10441-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/04/2023] [Accepted: 10/05/2023] [Indexed: 11/22/2023]
Abstract
OBJECTIVES The aims of the present study were to investigate a combination of magnetic resonance elastography (MRE) and vibration-controlled transient elastography (VCTE) or MRE and fibrosis score 4 (FIB-4) in the detection of significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Between November 5, 2021, and March 4, 2022, a total of 119 consecutive patients with MASLD were included. Liver stiffness was measured using liver biopsy, MRE, VCTE, and FIB-4. Data were collected from outpatient visit charts. Significant fibrosis was defined as ≥ stage 2 fibrosis. RESULTS All 119 MASLD patients were Caucasian, and their median age was 55 years. MRE, VCTE, and FIB-4 demonstrated significant accuracy in the detection of significant fibrosis with an area under the ROC curve (AUC) of 0.848 ± 0.036 (p < 0.001), 0.632 ± 0.052 (p = 0.012), and 0.664 ± 0.051 (p = 0.001), respectively. However, the diagnostic performance of MRE was superior compared to that of VCTE (AUC difference: 0.216 ± 0.053, p < 0.001) and FIB-4 (AUC difference: 0.184 ± 0.058, p = 0.001). With logistic regression analysis, it was determined that when compared to MRE alone, a combination of MRE and TE (p = 0.880) or MRE and FIB-4 (p = 0.455) were not superior for detecting significant fibrosis. CONCLUSIONS MRE alone is an accurate and non-invasive method for the identification of MASLD patients with significant fibrosis. CLINICAL RELEVANCE STATEMENT Magnetic resonance elastography alone accurately detects significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease. KEY POINTS • In routine clinical practice, several non-invasive biochemical-based biomarkers and imaging methods are widely used to assess liver fibrosis in patients with metabolic dysfunction-associated steatotic liver disease. • Magnetic resonance elastography (MRE) is more accurate than vibration-controlled transient elastography (VCTE) or fibrosis score 4 (FIB-4) for assessing liver fibrosis and identifying significant fibrosis in patients with metabolic dysfunction-associated steatotic liver disease. • The combination of MRE and VCTE or MRE and FIB-4 was not superior to MRE alone.
Collapse
Affiliation(s)
- Serkan Duman
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey.
| | - Digdem Kuru
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Mesut Gumussoy
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Saba Kiremitci
- Department of Pathology, Ankara University School of Medicine, Ankara, Turkey
| | - Hale Gokcan
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Bahar Ulas
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Zeynep Ellik
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Mubin Ozercan
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Ramazan Erdem Er
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Fatih Karakaya
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Emin Bodakci
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Ayse Erden
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Atilla H Elhan
- Department of Biostatistics, Ankara University School of Medicine, Ankara, Turkey
| | - Berna Savas
- Department of Pathology, Ankara University School of Medicine, Ankara, Turkey
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, University of California at San Diego, La Jolla, CA, USA
| | - Ramazan Idilman
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey.
| |
Collapse
|
225
|
Koda Y, Nagasaki Y. Metabolic dysfunction-associated steatohepatitis treated by poly(ethylene glycol)-block-poly(cysteine) block copolymer-based self-assembling antioxidant nanoparticles. J Control Release 2024; 370:367-378. [PMID: 38692439 DOI: 10.1016/j.jconrel.2024.04.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/17/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Non-alcoholic steatohepatitis (NASH), now known as metabolic dysfunction-associated steatohepatitis (MASH), involves oxidative stress caused by the overproduction of reactive oxygen species (ROS). Small-molecule antioxidants have not been approved for antioxidant chemotherapy because of severe adverse effects that collapse redox homeostasis, even in healthy tissues. To overcome these disadvantages, we have been developing poly(ethylene glycol)-block-poly(cysteine) (PEG-block-PCys)-based self-assembling polymer nanoparticles (NanoCyses), releasing Cys after in vivo degradation by endogenous enzymes, to obtain antioxidant effects without adverse effects. However, a comprehensive investigation of the effects of polymer design on therapeutic outcomes has not yet been conducted to develop our NanoCys system for antioxidant chemotherapy. In this study, we synthesized different poly(L-cysteine) (PCys) chains whose sulfanyl groups were protected by tert-butyl thiol (StBu) and butyryl (Bu) groups to change the reactivity of the side chains, affording NanoCys(SS) and NanoCys(Bu), respectively. To elucidate the importance of the polymer design, these NanoCyses were orally administered to MASH model mice as a model of oxidative stress-related diseases. Consequently, the acyl-protective NanoCys(Bu) significantly suppressed hepatic lipid accumulation and oxidative stress compared to NanoCys(SS). Furthermore, we substantiated that shorter PCys were much better than longer PCys for therapeutic outcomes and the effects related to the liberation properties of Cys from these nanoparticles. Owing to its antioxidant functions, NanoCyses also significantly attenuated hepatic inflammation and fibrosis in the MASH mouse model.
Collapse
Affiliation(s)
- Yuta Koda
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan
| | - Yukio Nagasaki
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; Master's School of Medical Sciences, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Center for Research in Radiation, Isotope and Earth System Sciences (CRiES), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8573, Japan; Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo-ku Tokyo 113-0033, Japan; High-value Biomaterials Research and Commercialization Center (HBRCC), National Taipei University of Technology, Taipei 10608, Taiwan.
| |
Collapse
|
226
|
Huang F, Zhao N, Cai P, Hou M, Yang S, Zheng B, Ma Q, Jiang J, Gai X, Mao Y, Wang L, Hu Z, Zha X, Liu F, Zhang H. Active AKT2 stimulation of SREBP1/SCD1-mediated lipid metabolism boosts hepatosteatosis and cancer. Transl Res 2024; 268:51-62. [PMID: 38244769 DOI: 10.1016/j.trsl.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/22/2024]
Abstract
Due to soared obesity population worldwide, hepatosteatosis is becoming a major risk factor for hepatocellular carcinoma (HCC). Undertaken molecular events during the progression of steatosis to liver cancer are thus under intensive investigation. In this study, we demonstrated that high-fat diet potentiated mouse liver AKT2. Hepatic AKT2 hyperactivation through gain-of-function mutation of Akt2 (Akt2E17K) caused spontaneous hepatosteatosis, injury, inflammation, fibrosis, and eventually HCC in mice. AKT2 activation also exacerbated lipopolysaccharide and D-galactosamine hydrochloride-induced injury/inflammation and N-Nitrosodiethylamine (DEN)-induced HCC. A positive correlation between AKT2 activity and SCD1 expression was observed in human HCC samples. Activated AKT2 enhanced the production of monounsaturated fatty acid which was dependent on SREBP1 upregulation of SCD1. Blockage of active SREBP1 and ablation of SCD1 reduced steatosis, inflammation, and tumor burden in DEN-treated Akt2E17K mice. Therefore, AKT2 activation is crucial for the development of steatosis-associated HCC which can be treated with blockage of AKT2-SREBP1-SCD1 signaling cascade.
Collapse
Affiliation(s)
- Fuqiang Huang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Zhao
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Department of Blood Transfusion, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
| | - Pei Cai
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengjie Hou
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuhui Yang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bohao Zheng
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Ma
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Jingpeng Jiang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaochen Gai
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lianmei Wang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaojun Zha
- Department of Biochemistry & Molecular Biology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Fangming Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
227
|
Wang L, Liu K, Deng L, Zhou G, Qian W, Xu K. Exploration of Perturbed Liver Fibrosis-Related Factors and Collagen Type I in Animal Model of Non-Alcoholic Fatty Liver Disease. Appl Biochem Biotechnol 2024; 196:3260-3273. [PMID: 37646888 DOI: 10.1007/s12010-023-04694-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
To determine their involvement in the onset of the disease, we investigated the changing levels of liver fibrosis-related proteins, namely, type-I collagen, α-smooth muscle actin (α-SMA), and transforming growth factor β1 and β3 (TGF-β1, β3). The four groups of Sprague-Dawley (SD) rats were involved in the study, namely, (i) normal control group, (ii) high-fat diet group (HFD), (iii) carbon tetrachloride (CCl4) group, and (iv) NAFLD group (animal model) which were chosen at random. The NAFLD model received HFD combined with subcutaneous injection of small doses of CCl4. Histopathological examination confirmed extent of liver fibrosis, while other immunological and molecular methods were used to evaluate expression and distribution of α-SMA, type I collagen TGF-β1 and TGF-β3, at both m-RNA and protein levels. In contrast to the normal control group, the NAFLD group showed moderately elevated expressions of TGF-β1, α-SMA, and type I collagen, which was proportional on temporal scale of NAFLD persistence in the model (P < 0.05). In the early phage of NAFLD, enhancement in the mRNA transcripts and, henceforth, protein expression of TGF-β3 was observed. However, these were found to be downregulated in case of liver fibrosis (P < 0.05). This NAFLD rat model shows the histopathologic changes of human NAFLD and is suitable for the study of NAFLD pathogenesis. These findings suggest that type I collagen and the liver fibrosis-related factors TGF- β1, TGF- β3, and α-SMA may be significant contributors to NAFLD. Although NAFLD model is previously demonstrated by other researchers, our study is novel in terms of exploration of involvement of fibrosis-related factors and in particular aforementioned proteins at the early stage of NAFLD vis-à-vis dynamics of type-I collagen distribution.
Collapse
Affiliation(s)
- Liyun Wang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Kahua Liu
- Department of Gastroenterology, the Central Hospital of Qingdao City, Shandong Province, Qing Dao city, 266011, China
| | - Liang Deng
- Department of Gastroenterology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Guanyu Zhou
- Department of Gastroenterology, Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Wei Qian
- Department of Gastroenterology, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Keshu Xu
- Department of Gastroenterology, Union Hospital of Tongji Medical College Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
228
|
Xu S, Lu F, Gao J, Yuan Y. Inflammation-mediated metabolic regulation in adipose tissue. Obes Rev 2024; 25:e13724. [PMID: 38408757 DOI: 10.1111/obr.13724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/04/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024]
Abstract
Chronic inflammation of adipose tissue is a prominent characteristic of many metabolic diseases. Lipid metabolism in adipose tissue is consistently dysregulated during inflammation, which is characterized by substantial infiltration by proinflammatory cells and high cytokine concentrations. Adipose tissue inflammation is caused by a variety of endogenous factors, such as mitochondrial dysfunction, reactive oxygen species (ROS) production, endoplasmic reticulum (ER) stress, cellular senescence, ceramides biosynthesis and mediators of lipopolysaccharides (LPS) signaling. Additionally, the gut microbiota also plays a crucial role in regulating adipose tissue inflammation. Essentially, adipose tissue inflammation arises from an imbalance in adipocyte metabolism and the regulation of immune cells. Specific inflammatory signals, including nuclear factor-κB (NF-κB) signaling, inflammasome signaling and inflammation-mediated autophagy, have been shown to be involved in the metabolic regulation. The pathogenesis of metabolic diseases characterized by chronic inflammation (obesity, insulin resistance, atherosclerosis and nonalcoholic fatty liver disease [NAFLD]) and recent research regarding potential therapeutic targets for these conditions are also discussed in this review.
Collapse
Affiliation(s)
- Shujie Xu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jianhua Gao
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Yuan
- Department of Plastic and Reconstructive Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
229
|
Chen J, Wu L, Li Y. FGL1 and FGL2: emerging regulators of liver health and disease. Biomark Res 2024; 12:53. [PMID: 38816776 PMCID: PMC11141035 DOI: 10.1186/s40364-024-00601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024] Open
Abstract
Liver disease is a complex group of diseases with high morbidity and mortality rates, emerging as a major global health concern. Recent studies have highlighted the involvement of fibrinogen-like proteins, specifically fibrinogen-like protein 1 (FGL1) and fibrinogen-like protein 2 (FGL2), in the regulation of various liver diseases. FGL1 plays a crucial role in promoting hepatocyte growth, regulating lipid metabolism, and influencing the tumor microenvironment (TME), contributing significantly to liver repair, non-alcoholic fatty liver disease (NAFLD), and liver cancer. On the other hand, FGL2 is a multifunctional protein known for its role in modulating prothrombin activity and inducing immune tolerance, impacting viral hepatitis, liver fibrosis, hepatocellular carcinoma (HCC), and liver transplantation. Understanding the functions and mechanisms of fibrinogen-like proteins is essential for the development of effective therapeutic approaches for liver diseases. Additionally, FGL1 has demonstrated potential as a disease biomarker in radiation and drug-induced liver injury as well as HCC, while FGL2 shows promise as a biomarker in viral hepatitis and liver transplantation. The expression levels of these molecules offer exciting prospects for disease assessment. This review provides an overview of the structure and roles of FGL1 and FGL2 in different liver conditions, emphasizing the intricate molecular regulatory processes and advancements in targeted therapies. Furthermore, it explores the potential benefits and challenges of targeting FGL1 and FGL2 for liver disease treatment and the prospects of fibrinogen-like proteins as biomarkers for liver disease, offering insights for future research in this field.
Collapse
Affiliation(s)
- Jiongming Chen
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Lei Wu
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, 400030, China.
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
230
|
Zhong Z, Xu M, Ge C, Tan J. Exploring shared molecular signatures and regulatory mechanisms in nonalcoholic steatohepatitis and inflammatory bowel disease using integrative bioinformatics analysis. Sci Rep 2024; 14:12085. [PMID: 38802459 PMCID: PMC11130338 DOI: 10.1038/s41598-024-62310-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024] Open
Abstract
The co-existence of inflammatory bowel disease (IBD) and non-alcoholic steatohepatitis (NASH) has raised interest in identifying shared molecular mechanisms and potential therapeutic targets. However, the relationship between these two diseases remains unclear and effective medical treatments are still lacking. Through the bioinformatics analysis in this study, 116 shared differentially expressed genes (SDEGs) were identified between IBD and NASH datasets. GO and KEGG pathway analyses revealed significant involvement of SDEGs in apoptotic processes, cell death, defense response, cytokine and chemokine activity, and signaling pathways. Furthermore, weighted gene co-expression network analysis (WGCNA) identified five shared signature genes associated specifically with IBD and NASH, they were CXCL9, GIMAP2, ADAMTS5, GRAP, and PRF1. These five genes represented potential diagnostic biomarkers for distinguishing patients with diseases from healthy individuals by using two classifier algorithms and were positively related to autophagy, ferroptosis, angiogenesis, and immune checkpoint factors in the two diseases. Additionally, single-cell analysis of IBD and NASH samples highlighted the expression of regulatory genes in various immune cell subtypes, emphasizing their significance in disease pathogenesis. Our work elucidated the shared signature genes and regulatory mechanisms of IBD and NASH, which could provide new potential therapies for patients with IBD and NASH.
Collapse
Affiliation(s)
- Zixuan Zhong
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China.
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, People's Republic of China.
| | - Minxuan Xu
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, People's Republic of China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Chenxu Ge
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, People's Republic of China
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People's Republic of China
| | - Jun Tan
- Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological and Chemical Engineering, Chongqing University of Education, Chongqing, 400067, People's Republic of China
- Research Center of Brain Intellectual Promotion and Development for Children Aged 0-6 Years, Chongqing University of Education, Chongqing, 400067, People's Republic of China
| |
Collapse
|
231
|
Haxhi J, Vitale M, Mattia L, Giuliani C, Sacchetti M, Orlando G, Iacobini C, Menini S, Zanuso S, Nicolucci A, Balducci S, Pugliese G. Effect of sustained decreases in sedentary time and increases in physical activity on liver enzymes and indices in type 2 diabetes. Front Endocrinol (Lausanne) 2024; 15:1393859. [PMID: 38854689 PMCID: PMC11157683 DOI: 10.3389/fendo.2024.1393859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024] Open
Abstract
Background Current guidelines for nonalcoholic fatty liver disease (NAFLD) recommend high volumes and/or intensities of physical activity (PA), the achievement of which generally requires participation in supervised exercise training programs that however are difficult to implement in routine clinical practice. Conversely, counselling interventions may be more suitable, but result in only modest increases in moderate-to-vigorous-intensity PA (MVPA). This study assessed whether a counseling intervention for increasing PA and decreasing sedentary time (SED-time) is effective in improving NAFLD markers in people with type 2 diabetes. Methods Three-hundred physically inactive and sedentary patients were randomized 1:1 to receive one-month theoretical and practical counseling once-a-year (intervention group) or standard care (control group) for 3 years. Aspartate aminotransferase (AST), alanine aminotransferase (ALT), and γ-glutamyltranspeptidase (γGT) levels were measured and fatty liver index (FLI), hepatic steatosis index (HSI), and visceral adiposity index (VAI) were calculated. Total PA volume, light-intensity PA (LPA), moderate-to-vigorous-intensity PA (MVPA), and SED-time were objectively measured by an accelerometer. Results Throughout the 3-year period, NAFLD markers did not change in the control group, whereas ALT, γGT, FLI, and HSI decreased in the intervention group, with significant between-group differences, despite modest MVPA increases, which however were associated with larger decrements in SED-time and reciprocal increments in LPA. Mean changes in NAFLD markers varied according to quartiles of (and correlated with) changes in MVPA (all markers) and SED-time, LPA, and PA volume (ALT, γGT, and HSI). Mean changes in MVPA or PA volume were independent predictors of changes in NAFLD markers. When included in the models, change in cardiorespiratory fitness and lower body muscle strength were independently associated with some NAFLD markers. Conclusion A behavior change involving all domains of PA lifestyle, even if insufficient to achieve the recommended MVPA target, may provide beneficial effects on NAFLD markers in people with type 2 diabetes.
Collapse
Affiliation(s)
- Jonida Haxhi
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
- Diabetes Unit, Sant’Andrea University Hospital, Rome, Italy
- Metabolic Fitness Association, Rome, Italy
| | - Martina Vitale
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
- Diabetes Unit, Sant’Andrea University Hospital, Rome, Italy
| | - Lorenza Mattia
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
- Diabetes Unit, Sant’Andrea University Hospital, Rome, Italy
| | - Chiara Giuliani
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
- Diabetes Unit, Sant’Andrea University Hospital, Rome, Italy
| | - Massimo Sacchetti
- Department of Human Movement and Sport Sciences, University of Rome ‘Foro Italico’, Rome, Italy
| | - Giorgio Orlando
- Department of Human Movement and Sport Sciences, University of Rome ‘Foro Italico’, Rome, Italy
- Research Centre for Musculoskeletal Science and Sports Medicine, Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Carla Iacobini
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
| | - Stefano Menini
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
| | - Silvano Zanuso
- Center for Applied Biological and Exercise Sciences, Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
- Centre for Human Performance and Sport, University of Greenwich, London, United Kingdom
| | - Antonio Nicolucci
- Center for Outcomes Research and Clinical Epidemiology (CORESEARCH), Pescara, Italy
- Department of Clinical Pharmacology and Epidemiology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Italy
| | - Stefano Balducci
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
- Diabetes Unit, Sant’Andrea University Hospital, Rome, Italy
- Metabolic Fitness Association, Rome, Italy
| | - Giuseppe Pugliese
- Department of Clinical and Molecular Medicine, University of Rome La Sapienza, Rome, Italy
- Diabetes Unit, Sant’Andrea University Hospital, Rome, Italy
| |
Collapse
|
232
|
Wu H, Lou T, Pan M, Wei Z, Yang X, Liu L, Feng M, Shi L, Qu B, Cong S, Chen K, Yang H, Liu J, Li Y, Jia Z, Xiao H. Chaihu Guizhi Ganjiang Decoction attenuates nonalcoholic steatohepatitis by enhancing intestinal barrier integrity and ameliorating PPARα mediated lipotoxicity. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117841. [PMID: 38310988 DOI: 10.1016/j.jep.2024.117841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/11/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is a prominent cause of liver-related death that poses a threat to global health and is characterized by severe hepatic steatosis, lobular inflammation, and ballooning degeneration. To date, no Food and Drug Administration-approved medicine is commercially available. The Chaihu Guizhi Ganjiang Decoction (CGGD) shows potential curative effects on regulation of blood lipids and blood glucose, mitigation of organism inflammation, and amelioration of hepatic function. However, the overall regulatory mechanisms underlying its effects on NASH remain unclear. PURPOSE This study aimed to investigate the efficiency of CGGD on methionine- and choline-deficient (MCD)-induced NASH and unravel its underlying mechanisms. METHODS A NASH model of SD rats was established using an MCD diet for 8 weeks, and the efficacy of CGGD was evaluated based on hepatic lipid accumulation, inflammatory response, and fibrosis. The effects of CGGD on the intestinal barrier, metabolic profile, and differentially expressed genes (DEGs) profile were analyzed by integrating gut microbiota, metabolomics, and transcriptome sequencing to elucidate its mechanisms of action. RESULTS In MCD-induced NASH rats, pathological staining demonstrated that CGGD alleviated lipid accumulation, inflammatory cell infiltration, and fibrosis in the hepatic tissue. After CGGD administration, liver index, liver weight, serum alanine aminotransferase (ALT), and aspartate aminotransferase (AST) contents, liver triglycerides (TG), and free fatty acids (FFAs) were decreased, meanwhile, it down-regulated the level of proinflammatory mediators (TNF-α, IL-6, IL-1β, MCP-1), and up-regulated the level of anti-inflammatory factors (IL-4, IL-10), and the expression of liver fibrosis markers TGFβ, Acta2, Col1a1 and Col1a2 were weakened. Mechanistically, CGGD treatment altered the diversity of intestinal flora, as evidenced by the depletion of Allobaculum, Blautia, norank_f_Erysipelotrichaceae, and enrichment of the probiotic genera Roseburia, Lactobacillus, Lachnoclostridium, etc. The colonic histopathological results indicated that the gut barrier damage recovered in the CGGD treatment group, and the expression levels of colonic short-chain fatty acids (SCFAs)-specific receptors FFAR2, FFAR3, and tight junction (TJs) proteins ZO-1, Occludin, Claudin-1 were increased compared with those in the model group. Further metabolomic and transcriptomic analyses suggested that CGGD mitigated the lipotoxicity caused by glycerophospholipid and eicosanoid metabolism disorders by decreasing the levels of PLA2G4A, LPCAT1, COX2, and LOX5. In addition, CGGD could activate the inhibitory lipotoxic transcription factor PPARα, regulate the proteins of FABP1, APOC2, APOA2, and LPL to promote fatty acid catabolism, and suppress the TLR4/MyD88/NFκB pathway to attenuate NASH. CONCLUSION Our study demonstrated that CGGD improved steatosis, inflammation, and fibrosis on NASH through enhancing intestinal barrier integrity and alleviating PPARα mediated lipotoxicity, which makes it an attractive candidate for potential new strategies for NASH prevention and treatment.
Collapse
Affiliation(s)
- Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Tianyu Lou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingxia Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zuying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaoqin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Lixia Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Biqiong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shiyu Cong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Kui Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haolan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhixin Jia
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hongbin Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
233
|
Li J, Ma X, Yin C. Proteome-wide Mendelian randomization identifies potential therapeutic targets for nonalcoholic fatty liver diseases. Sci Rep 2024; 14:11814. [PMID: 38782984 PMCID: PMC11116402 DOI: 10.1038/s41598-024-62742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the predominant cause of liver pathology. Current evidence highlights plasma proteins as potential therapeutic targets. However, their mechanistic roles in NAFLD remain unclear. This study investigated the involvement of specific plasma proteins and intermediate risk factors in NAFLD progression. Two-sample Mendelian randomization (MR) analysis was conducted to examine the association between plasma proteins and NAFLD. Colocalization analysis determined the shared causal variants between the identified proteins and NAFLD. The MR analysis was applied separately to proteins, risk factors, and NAFLD. Mediator shares were computed by detecting the correlations among these elements. Phenome-wide association studies (phewas) were utilized to assess the safety implications of targeting these proteins. Among 1,834 cis-protein quantitative trait loci (cis-pQTLs), after-FDR correction revealed correlations between the plasma levels of four gene-predicted proteins (CSPG3, CILP2, Apo-E, and GCKR) and NAFLD. Colocalization analysis indicated shared causal variants for CSPG3 and GCKR in NAFLD (posterior probability > 0.8). Out of the 22 risk factors screened for MR analysis, only 8 showed associations with NAFLD (p ≤ 0.05), while 4 linked to CSPG3 and GCKR. The mediator shares for these associations were calculated separately. Additionally, reverse MR analysis was performed on the pQTLs, risk factors, and NAFLD, which exhibited a causal relationship with forward MR analysis. Finally, phewas summarized the potential side effects of associated-targeting proteins, including CSPG3 and GCKR. Our research emphasized the potential therapeutic targets for NAFLD and provided modifiable risk factors for preventing NAFLD.
Collapse
Affiliation(s)
- Junhang Li
- Department of Ultrasonography, Dali Prefecture Third People's Hospital, Dali Prefecture, Yunnan Province, China
| | - Xiang Ma
- Chongqing Medical University, Chongqing, China
| | - Cuihua Yin
- Department of Ultrasonography, Dali Prefecture Third People's Hospital, Dali Prefecture, Yunnan Province, China.
| |
Collapse
|
234
|
Liu E, Li Q, Pan T, Chen Y. Association Between Secondhand Smoke Exposure and Nonalcoholic Fatty Liver Disease in the General U.S. Adult Nonsmoker Population. Nicotine Tob Res 2024; 26:663-668. [PMID: 38124389 DOI: 10.1093/ntr/ntad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/30/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION Smoking is a cause of nonalcoholic fatty liver disease (NAFLD), but the dose-response relationship between secondhand smoke exposure (SHS) and NAFLD is unclear. This study sought to determine the relationship between SHS and NAFLD risk among adult nonsmokers in the United States. AIMS AND METHODS Data from 7412 adult nonsmokers aged ≥20 years who participated in the National Health and Nutrition Examination Survey (NHANES) between 2007 and 2016 were used in this study. SHS was defined as a nonsmoker with a serum cotinine concentration of 0.05-10.00 ng/mL. NAFLD was identified using the U.S. fatty liver index (USFLI), hepatic steatosis index (HSI), and fatty liver index (FLI). Weighted multivariable logistic regression and restricted cubic spline models were applied to evaluate the relationship between SHS and NAFLD risk. RESULTS The participants had a weighted mean age of 49.2 years, and 55.5% were female. SHS was associated with NAFLD (odds ratio [OR] 1.22; 95% confidence interval CI: 1.05 to 1.42), showing a linear dose-response relationship (natural log of cotinine level: OR 1.10, 95% CI: 1.05 to 1.17). Sensitivity analyses using different NAFLD definitions (HSI: OR 1.21, 95% CI: 1.01 to 1.46; FLI: OR 1.26, 95% CI: 1.06 to 1.49), excluding participants taking hepatotoxic drugs, and propensity score-adjusted analysis yielded similar results. The association between SHS and NAFLD was consistent in analyses stratified by age, sex, and race/ethnicity. CONCLUSIONS Among this nationally representative sample of U.S. adults, SHS had a linear dose-response relationship with the risk of NAFLD, suggesting that measures to lower SHS might lower NAFLD risk. IMPLICATIONS This study assessed the association between secondhand smoke exposure and the risk of nonalcoholic fatty liver disease (NAFLD) using data from 7412 adult nonsmokers aged 20 years or older who participated in the United States NHANES between 2007 and 2016. Secondhand smoke exposure was measured using serum cotinine levels. Three different noninvasive indexes were used to measure NAFLD. Secondhand smoke exposure was associated with an increased risk of NAFLD, with a linear dose-response relationship. The results of sensitivity analyses and subgroup analyses were consistent.
Collapse
Affiliation(s)
- Enqian Liu
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Zhejiang, China
| | - Qiuping Li
- Department of Nursing, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tongtong Pan
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Zhejiang, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, The First Affiliated Hospital of Wenzhou Medical University and Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, Zhejiang, China
| |
Collapse
|
235
|
Shi R, Li X, Sun K, Liu F, Kang B, Wang Y, Wang Y, Zhu B, Zhao X, Liu Z, Wang X. Association between severity of nonalcoholic fatty liver disease and major adverse cardiovascular events in patients assessed by coronary computed tomography angiography. BMC Cardiovasc Disord 2024; 24:267. [PMID: 38773388 PMCID: PMC11107064 DOI: 10.1186/s12872-024-03880-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/08/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND The effect of nonalcoholic fatty liver disease (NAFLD) on major adverse cardiovascular events (MACEs) can be influenced by the degree of coronary artery stenosis. However, the association between the severity of NAFLD and MACEs in patients who underwent coronary computed tomography angiography (CCTA) is unclear. METHODS A total of 341 NAFLD patients who underwent CCTA were enrolled. The severity of NAFLD was divided into mild NAFLD and moderate-severe NAFLD by abdominal CT results. The degree of coronary artery stenosis was evaluated by using Coronary Artery Disease Reporting and Data System (CAD-RADS) category. Cox regression analysis and Kaplan-Meier analysis were used to assess poor prognosis. RESULTS During the follow-up period, 45 of 341 NAFLD patients (13.20%) who underwent CCTA occurred MACEs. The severity of NAFLD (hazard ratio [HR] = 2.95[1.54-5.66]; p = 0.001) and CAD-RADS categories 3-5 (HR = 16.31[6.34-41.92]; p < 0.001) were independent risk factors for MACEs. The Kaplan-Meier analysis showed that moderate to severe NAFLD patients had a worsen prognosis than mild NAFLD patients (log-rank p < 0.001). Moreover, the combined receiver operating characteristic curve of the severity of NAFLD and CAD-RADS category showed a good predicting performance for the risk of MACEs, with an area under the curve of 0.849 (95% CI = 0.786-0.911). CONCLUSION The severity of NAFLD was independent risk factor for MACEs in patients with obstructive CAD, having CAD-RADS 3-5 categories on CCTA.
Collapse
Affiliation(s)
- Rongchao Shi
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xuemei Li
- Department of Gastroenterology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
- Department of Gastroenterology, Heze Municipal Hospital, Heze, Shandong Province, China
| | - Kui Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Fangyuan Liu
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Bing Kang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Yilin Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ying Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Baosen Zhu
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China
| | - Xinya Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Zhiqiang Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong Province, China.
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong Province, China.
| |
Collapse
|
236
|
Song Q, Zhao Z, Liu H, Zhang J, Wang Z, Zhang Y, Ma G, Ge S. Pseudotargeted lipidomics analysis of scoparone on glycerophospholipid metabolism in non-alcoholic steatohepatitis mice by LC-MRM-MS. PeerJ 2024; 12:e17380. [PMID: 38799063 PMCID: PMC11122033 DOI: 10.7717/peerj.17380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/21/2024] [Indexed: 05/29/2024] Open
Abstract
As the inflammatory subtype of nonalcoholic fatty liver disease (NAFLD), the progression of nonalcoholic steatohepatitis (NASH) is associated with disorders of glycerophospholipid metabolism. Scoparone is the major bioactive component in Artemisia capillaris which has been widely used to treat NASH in traditional Chinese medicine. However, the underlying mechanisms of scoparone against NASH are not yet fully understood, which hinders the development of effective therapeutic agents for NASH. Given the crucial role of glycerophospholipid metabolism in NASH progression, this study aimed to characterize the differential expression of glycerophospholipids that is responsible for scoparone's pharmacological effects and assess its efficacy against NASH. Liquid chromatography-multiple reaction monitoring-mass spectrometry (LC-MRM-MS) was performed to get the concentrations of glycerophospholipids, clarify mechanisms of disease, and highlight insights into drug discovery. Additionally, pathologic findings also presented consistent changes in high-fat diet-induced NASH model, and after scoparone treatment, both the levels of glycerophospholipids and histopathology were similar to normal levels, indicating a beneficial effect during the observation time. Altogether, these results refined the insights on the mechanisms of scoparone against NASH and suggested a route to relieve NASH with glycerophospholipid metabolism. In addition, the current work demonstrated that a pseudotargeted lipidomic platform provided a novel insight into the potential mechanism of scoparone action.
Collapse
Affiliation(s)
- Qi Song
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ziyi Zhao
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Hu Liu
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Jinling Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Zhiqiang Wang
- Hebei Key Laboratory of Public Health Safety, School of Public HealthPublic Health, Hebei University, Baoding, Hebei, China
| | - Yunqi Zhang
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Guowei Ma
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
| | - Shaoqin Ge
- College of Traditional Chinese Medicine, Hebei University, Baoding, Hebei, China
- College of Basic Medical Science, Hebei University of Technology, Baoding, Hebei, China
| |
Collapse
|
237
|
Clark AT, Russo-Savage L, Ashton LA, Haghshenas N, Schulman IG. A Novel Mutation in LXRα Uncovers a Role for Cholesterol Sensing in Limiting Metabolic Dysfunction-Associated Steatohepatitis (MASH). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.13.593869. [PMID: 38798597 PMCID: PMC11118525 DOI: 10.1101/2024.05.13.593869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Liver x receptor alpha (LXRα, Nr1h3) functions as an important intracellular cholesterol sensor that regulates fat and cholesterol metabolism at the transcriptional level in response to the direct binding of cholesterol derivatives. We have generated mice with a mutation in LXRα that reduces activity in response to endogenous cholesterol derived LXR ligands while still allowing transcriptional activation by synthetic agonists. The mutant LXRα functions as a dominant negative that shuts down cholesterol sensing. When fed a high fat, high cholesterol diet LXRα mutant mice rapidly develop pathologies associated with Metabolic Dysfunction-Associated Steatohepatitis (MASH) including ballooning hepatocytes, liver inflammation, and fibrosis. Strikingly LXRα mutant mice have decreased liver triglycerides but increased liver cholesterol. Therefore, MASH-like phenotypes can arise in the absence of large increases in triglycerides. Reengaging LXR signaling by treatment with synthetic agonist reverses MASH suggesting that LXRα normally functions to impede the development of liver disease.
Collapse
Affiliation(s)
- Alexis T. Clark
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
- These authors contributed equally to the work
| | - Lillian Russo-Savage
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
- These authors contributed equally to the work
- Current address: Department of Neurological Sciences, University of Vermont, Burlington, Vermont
| | - Luke A. Ashton
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Niki Haghshenas
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ira G. Schulman
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
238
|
Zheng D, Liu X, Zeng W, Zhou W, Zhou C. Association of hepatic steatosis and liver fibrosis with chronic obstructive pulmonary disease among adults. Sci Rep 2024; 14:10822. [PMID: 38734742 PMCID: PMC11088642 DOI: 10.1038/s41598-024-61696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 05/08/2024] [Indexed: 05/13/2024] Open
Abstract
With high prevalence and substantial mortality, metabolic dysfunction-associated steatotic liver disease and chronic obstructive pulmonary disease (COPD) are significant public health concerns. Utilizing a large, population-based dataset from the National Health and Nutrition Examination Survey, our study probes the relationship between COPD prevalence and hepatic steatosis and fibrosis, as measured by Vibration-Controlled Transient Elastography. We analyzed data from 693 individuals with COPD and 7229 without. Through weighted multivariate logistic regression analysis, a restricted cubic spline curve, and threshold effect analysis, we investigated the correlation between the severity of hepatic steatosis and fibrosis and the presence of COPD. Our findings revealed a positive correlation between the controlled attenuation parameter (CAP) and COPD prevalence [OR = 1.03 (95% CI 1.01, 1.05)], even after multivariate adjustment. Furthermore, we observed a U-shaped association between CAP and COPD, where the inflection point, CAP value of 264.85 dB/m, corresponded to the lowest COPD prevalence. Our study emphasizes a substantial and complex link between hepatic steatosis and COPD. These findings urge healthcare professionals to factor liver health into COPD management and prompt further exploration into the underlying mechanisms. This could pave the way for the development of improved prevention and treatment strategies.
Collapse
Affiliation(s)
- Dayang Zheng
- Department of Thoracic Surgery, East Hospital, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 30 Jiefang Road, Shigu District, Hengyang, 421009, Hunan Province, China
| | - Xiang Liu
- Department of Thoracic Surgery, East Hospital, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 30 Jiefang Road, Shigu District, Hengyang, 421009, Hunan Province, China
| | - Wei Zeng
- Department of Thoracic Surgery, East Hospital, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 30 Jiefang Road, Shigu District, Hengyang, 421009, Hunan Province, China
| | - Wangyan Zhou
- Department of Medical Record, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Chunxiang Zhou
- Department of Thoracic Surgery, East Hospital, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 30 Jiefang Road, Shigu District, Hengyang, 421009, Hunan Province, China.
| |
Collapse
|
239
|
Dai L, Jiang R, Zhan Z, Zhang L, Qian Y, Xu X, Yang W, Zhang Z. Machine learning-based algorithm identifies key mitochondria-related genes in non-alcoholic steatohepatitis. Lipids Health Dis 2024; 23:137. [PMID: 38720280 PMCID: PMC11077862 DOI: 10.1186/s12944-024-02122-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Evidence suggests that hepatocyte mitochondrial dysfunction leads to abnormal lipid metabolism, redox imbalance, and programmed cell death, driving the onset and progression of non-alcoholic steatohepatitis (NASH). Identifying hub mitochondrial genes linked to NASH may unveil potential therapeutic targets. METHODS Mitochondrial hub genes implicated in NASH were identified via analysis using 134 algorithms. RESULTS The Random Forest algorithm (RF), the most effective among the 134 algorithms, identified three genes: Aldo-keto reductase family 1 member B10 (AKR1B10), thymidylate synthase (TYMS), and triggering receptor expressed in myeloid cell 2 (TREM2). They were upregulated and positively associated with genes promoting inflammation, genes involved in lipid synthesis, fibrosis, and nonalcoholic steatohepatitis activity scores in patients with NASH. Moreover, using these three genes, patients with NASH were accurately categorized into cluster 1, exhibiting heightened disease severity, and cluster 2, distinguished by milder disease activity. CONCLUSION These three genes are pivotal mitochondrial genes implicated in NASH progression.
Collapse
Affiliation(s)
- Longfei Dai
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Renao Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Zhicheng Zhan
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Liangliang Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Yuyang Qian
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Xinjian Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Wenqi Yang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China
| | - Zhen Zhang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230022, Anhui Province, China.
| |
Collapse
|
240
|
Tong L, Chen Z, Li Y, Wang X, Yang C, Li Y, Zhu Y, Lu Y, Liu Q, Xu N, Shao S, Wu L, Zhang P, Wu G, Wu X, Chen X, Fang J, Jia R, Xu T, Li B, Zheng L, Liu J, Tong X. Transketolase promotes MAFLD by limiting inosine-induced mitochondrial activity. Cell Metab 2024; 36:1013-1029.e5. [PMID: 38547864 DOI: 10.1016/j.cmet.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/10/2024] [Accepted: 03/06/2024] [Indexed: 05/12/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has a global prevalence of about 25% and no approved therapy. Using metabolomic and proteomic analyses, we identified high expression of hepatic transketolase (TKT), a metabolic enzyme of the pentose phosphate pathway, in human and mouse MAFLD. Hyperinsulinemia promoted TKT expression through the insulin receptor-CCAAT/enhancer-binding protein alpha axis. Utilizing liver-specific TKT overexpression and knockout mouse models, we demonstrated that TKT was sufficient and required for MAFLD progression. Further metabolic flux analysis revealed that Tkt deletion increased hepatic inosine levels to activate the protein kinase A-cAMP response element binding protein cascade, promote phosphatidylcholine synthesis, and improve mitochondrial function. Moreover, insulin induced hepatic TKT to limit inosine-dependent mitochondrial activity. Importantly, N-acetylgalactosamine (GalNAc)-siRNA conjugates targeting hepatic TKT showed promising therapeutic effects on mouse MAFLD. Our study uncovers how hyperinsulinemia regulates TKT-orchestrated inosine metabolism and mitochondrial function and provides a novel therapeutic strategy for MAFLD prevention and treatment.
Collapse
Affiliation(s)
- Lingfeng Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhangbing Chen
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangyang Li
- Unit of Immune and Metabolic Regulation, School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
| | - Xinxia Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Changjie Yang
- Department of Liver Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yakui Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yemin Zhu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ying Lu
- Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Qi Liu
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Nannan Xu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sijia Shao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lifang Wu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ping Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guangyu Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaoyu Wu
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Xiaosong Chen
- Department of Liver Surgery, RenJi Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Junwei Fang
- Department of Ophthalmology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai 200032, China
| | - Renbing Jia
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Tianle Xu
- Center for Brain Science of Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200062, China; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Liang Zheng
- Key Laboratory of Pediatric Hematology and Oncology, Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Junling Liu
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Synvida Biotechnology Co., Ltd, Shanghai, China.
| | - Xuemei Tong
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| |
Collapse
|
241
|
Li H, Wang M, Chen P, Zhu M, Chen L. A high-dose of ursodeoxycholic acid treatment alleviates liver inflammation by remodeling gut microbiota and bile acid profile in a mouse model of non-alcoholic steatohepatitis. Biomed Pharmacother 2024; 174:116617. [PMID: 38643542 DOI: 10.1016/j.biopha.2024.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Ursodeoxycholic acid (UDCA) is a hydrophilic bile acid commonly used for treating cholestatic liver disease. However, its efficacy on non-alcoholic steatohepatitis (NASH) was controversial. This study aimed to investigate the impact of a high dosage of UDCA on a mouse model of NASH. Forty 6-week-old mice were fed a high-fat high-cholesterol (HFHC) diet for 12 weeks to establish a mouse model of NASH, and then divided into four groups: two groups transitioned to a normal diet, and the other two groups maintained the HFHC diet. Each group was administered a daily dosage of 300 mg/kg of UDCA or saline for a period of 8 weeks. The 16 s ribosomal RNA genes extracted from mice fecal pellets were sequenced using next-generation sequencing techniques. Serum bile acid profiles were quantified using liquid chromatography electrospray ionization tandem mass spectrometry method. The results showed that UDCA treatment ameliorated liver inflammation, without affecting liver fibrosis. UDCA treatment reduced the relative abundance of the genera Bacteroides, Parabacteroides, and Intestinimonas, whereas increased the relative abundance of the genera norank_f_Muribaculaceae and Parasutterella in the HFHC-maintaining groups. The serum levels of total bile acids and total primary bile acids increased, whereas those of endogenous primary bile acids decreased after UDCA treatment. Correlation analysis showed that primary bile acids were negatively correlated with the genera norank_f_Christensenellaceae and unclassified_f_Ruminococcaceae. In conclusion, a high dosage of UDCA can alleviate liver inflammation, probably by modifying the composition of gut microbiota and serum bile acid profiles in NASH mice.
Collapse
Affiliation(s)
- Hu Li
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China; Department of Infectious Disease, Shanghai Jiao Tong University Affiliated Sixth People`s Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200235, China
| | - Mingjie Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China
| | - Peizhan Chen
- Clinical Research Center, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China
| | - Mingyu Zhu
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China
| | - Li Chen
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 201821, China.
| |
Collapse
|
242
|
Ren H, Xu H, Yang D, Tong X, Zhao X, Wang Q, Sun Y, Ou X, Jia J, You H, Wang Z, Yang Z. Intravoxel incoherent motion assessment of liver fibrosis staging in MASLD. Abdom Radiol (NY) 2024; 49:1411-1418. [PMID: 38461432 DOI: 10.1007/s00261-024-04207-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 03/12/2024]
Abstract
PURPOSE Partial correlation analysis was performed to account for the interference of steatosis changes and inflammatory factors, to determine the true correlation between fibrosis and IVIM parameters (Dfast, Dslow, and F), and to evaluate the diagnostic efficacy of IVIM for liver fibrosis. METHODS A total of 106 patients with metabolic dysfunction-associated steatotic liver disease (MASLD) examined by IVIM from November 2016 to November 2023 at our hospital were retrospectively included. Preliminary analysis of each IVIM parameter and correlations with pathological findings were performed using Spearman correlation analysis, and partial correlation analysis was used to exclude the interference of other pathological factors, thus yielding the true correlations between IVIM parameters (Dfast, Dslow, and F) and pathology. The diagnostic efficacy of IVIM parameters for diagnosing MASLD was assessed via receiver operating characteristic (ROC) curve analysis. RESULTS Spearman correlation analysis of all the IVIM parameters revealed correlations with steatosis, lobular inflammation, and ballooning. Partial correlation analysis indicated that Dfast was correlated with the pathological fibrosis stage (r = - 0.593, P < 0.001), Dslow was correlated with the pathological steatosis score (r = - 0.313, P < 0.05), and F was correlated with the pathological fibrosis stage and steatosis score (r = - 0.456 and 0.255, P < 0.001 and P < 0.05). In the diagnosis of hepatic fibrosis, significant hepatic fibrosis, advanced liver fibrosis and cirrhosis, Dfast achieved areas under the ROC curve of 0.763, 0.801, 0.853, and 0.897, respectively. The threshold values for diagnosing different fibrosis stages using Dfast (10-3 mm2/s) were 57.613, 54.587, 52.714, and 51.978, respectively. CONCLUSION According to our partial correlation analysis, there was a moderate correlation between Dfast and F according to fibrosis stage, and Dfast was not influenced by inflammation or steatosis when diagnosing fibrosis in MASLD patients. A relatively close Dfast threshold is insufficient for accurately and noninvasively assessing various stages of MASLD fibrosis. In clinical practice, this approach can be considered an alternative method for the preliminary assessment of fibrosis in MASLD patients.
Collapse
Affiliation(s)
- Hao Ren
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Hui Xu
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Dawei Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Xiaofei Tong
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Qianyi Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Yameng Sun
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Jidong Jia
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Hong You
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yongan Road, West District, Beijing, 100050, China
| | - Zhenchang Wang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China
| | - Zhenghan Yang
- Department of Radiology, Beijing Friendship Hospital, Capital Medical University, Yongan Road 95, West District, Beijing, 100050, China.
| |
Collapse
|
243
|
Yang DL, Liu SP, Wang HL, Li JR, Su JY, Li MJ, Teng YX, Deng ZJ, Li ZH, Huang JL, Guo PP, Ma L, Li ZZ, Zhong JH. Prevalence of metabolic syndrome among patients with hepatocellular carcinoma of different etiologies: a retrospective study. Infect Agent Cancer 2024; 19:21. [PMID: 38693556 PMCID: PMC11064370 DOI: 10.1186/s13027-024-00575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/29/2024] [Indexed: 05/03/2024] Open
Abstract
AIMS This study compared the prevalences of metabolic syndrome and of cardiac or kidney comorbidities among patients with hepatocellular carcinoma (HCC) associated with metabolic dysfunction-related fatty liver disease (MAFLD), chronic infection with hepatitis B or C virus (HBV or HCV), or the combination of MAFLD and chronic HBV infection. METHODS Medical records were retrospectively analyzed for patients with HCC who underwent hepatectomy between March 2013 and March 2023. Patients with HCC of different etiologies were compared in terms of their clinicodemographic characteristics and laboratory data before surgery. RESULTS Of the 2422 patients, 1,822 (75.2%) were chronically infected with HBV without MAFLD and HCV, 415 (17.2%) had concurrent MAFLD and chronic HBV infection but no HCV infection, 121 (5.0%) had MAFLD without hepatitis virus infection, and 64 (2.6%) were chronically infected with HCV in the presence or absence of MAFLD and HBV infection. Compared to patients chronically infected with HBV without MAFLD and HCV, those with MAFLD but no hepatitis virus infection showed significantly lower prevalence of cirrhosis, ascites, portal hypertension, alpha-fetoprotein concentration ≥ 400 ng/mL, tumor size > 5 cm, multinodular tumors and microvascular invasion. Conversely, they showed significantly higher prevalence of metabolic syndrome, hypertension, type 2 diabetes, abdominal obesity, history of cardiovascular disease, T-wave alterations, hypertriglyceridemia and hyperuricemia, as well as higher risk of arteriosclerotic cardiovascular disease. Compared to patients with MAFLD but no hepatitis virus infection, those with concurrent MAFLD and chronic infection with HBV showed significantly higher prevalence of cirrhosis, ascites and portal hypertension, but significantly lower prevalence of hypertension and history of cardiovascular disease. Compared to patients with other etiologies, those chronically infected with HCV in the presence or absence of MAFLD and HBV infection, showed significantly higher prevalence of cirrhosis, portal hypertension, ascites, and esophagogastric varices. CONCLUSION Patients with HCC associated with MAFLD tend to have a background of less severe liver disease than those with HCC of other etiologies, but they may be more likely to suffer metabolic syndrome or comorbidities affecting the heart or kidneys.
Collapse
Affiliation(s)
- Da-Long Yang
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Shao-Ping Liu
- Hepatobiliary Surgery Department, The Eighth Affiliated Hospital of Guangxi Medical University, Guigang, China
| | - Hong-Liang Wang
- Organ Transplantation Department, 923th Hospital of PLA Joint Logistic Support Force, Nanning, China
| | - Jian-Rong Li
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jia-Yong Su
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Min-Jun Li
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yu-Xian Teng
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhu-Jian Deng
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhong-Hai Li
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jian-Li Huang
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Ping-Ping Guo
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Liang Ma
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhen-Zhen Li
- Pathology Department, Guangxi Medical University Cancer Hospital, He Di Rd 71, 530021, Nanning, China.
| | - Jian-Hong Zhong
- Hepatobiliary Surgery Department, Guangxi Liver Cancer Diagnosis and Treatment Engineering and Technology Research Center, Guangxi Medical University Cancer Hospital, Nanning, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, China.
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor Ministry of Education, Nanning, China.
| |
Collapse
|
244
|
Dioguardi Burgio M, Castera L, Oufighou M, Rautou PE, Paradis V, Bedossa P, Sartoris R, Ronot M, Bodard S, Garteiser P, Van Beers B, Valla D, Vilgrain V, Correas JM. Prospective Comparison of Attenuation Imaging and Controlled Attenuation Parameter for Liver Steatosis Diagnosis in Patients With Nonalcoholic Fatty Liver Disease and Type 2 Diabetes. Clin Gastroenterol Hepatol 2024; 22:1005-1013.e27. [PMID: 38072287 DOI: 10.1016/j.cgh.2023.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/31/2023] [Accepted: 11/26/2023] [Indexed: 01/04/2024]
Abstract
BACKGROUND & AIMS Similarly to the controlled attenuation parameter (CAP), the ultrasound-based attenuation imaging (ATI) can quantify hepatic steatosis. We prospectively compared the performance of ATI and CAP for the diagnosis of hepatic steatosis in patients with type 2 diabetes and nonalcoholic fatty liver disease using histology and magnetic resonance imaging-proton density fat fraction (MRI-PDFF) as references. METHODS Patients underwent ATI and CAP measurement, MRI, and biopsy on the same day. Steatosis was classified as S0, S1, S2, and S3 on histology (<5%, 5%-33%, 33%-66%, and >66%, respectively) while the thresholds of 6.4%, 17.4%, and 22.1%, respectively, were used for MRI-PDFF. The area under the curve (AUC) of ATI and CAP was compared using a DeLong test. RESULTS Steatosis could be evaluated in 191 and 187 patients with MRI-PDFF and liver biopsy, respectively. For MRI-PDFF steatosis, the AUC of ATI and CAP were 0.86 (95% confidence interval [CI], 0.81-0.91) vs 0.69 (95% CI, 0.62-0.75) for S0 vs S1-S3 (P = .02) and 0.71 (95% CI, 0.64-0.77) vs 0.69 (95% CI, 0.61-0.75) for S0-S1 vs S2-S3 (P = .60), respectively. For histological steatosis, the AUC of ATI and CAP were 0.92 (95% CI, 0.87-0.95) vs 0.95 (95% CI, 0.91-0.98) for S0 vs S1-S3 (P = .64) and 0.79 (95% CI, 0.72-0.84) vs 0.76 (95% CI, 0.69-0.82) for S0-S1 vs S2-S3 (P = .61), respectively. CONCLUSION ATI may be used as an alternative to CAP for the diagnosis and quantification of steatosis, in patients with type 2 diabetes and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Marco Dioguardi Burgio
- Department of Radiology, Hôpital Beaujon, AP-HP Nord, Clichy, France; Université Paris Cité, INSERM, Centre de Recherche sur L'inflammation, Paris, France.
| | - Laurent Castera
- Departement of Hepatology, Hospital Beaujon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Mehdi Oufighou
- Department of Radiology, Hôpital Beaujon, AP-HP Nord, Clichy, France
| | - Pierre-Emmanuel Rautou
- Université Paris Cité, INSERM, Centre de Recherche sur L'inflammation, Paris, France; Service d'Hépatologie, AP-HP, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Valérie Paradis
- Université Paris Cité, INSERM, Centre de Recherche sur L'inflammation, Paris, France; Department of Pathology, Hôpital Beaujon, AP-HP Nord, Clichy, France
| | - Pierre Bedossa
- Department of Pathology, Hôpital Beaujon, AP-HP Nord, Clichy, France
| | - Riccardo Sartoris
- Department of Radiology, Hôpital Beaujon, AP-HP Nord, Clichy, France
| | - Maxime Ronot
- Department of Radiology, Hôpital Beaujon, AP-HP Nord, Clichy, France; Université Paris Cité, INSERM, Centre de Recherche sur L'inflammation, Paris, France
| | - Sylvain Bodard
- Department of Adult Radiology, Necker University Hospital, AP-HP, Paris, France; Université Paris Cité, Paris, France
| | - Philippe Garteiser
- Université Paris Cité, INSERM, Centre de Recherche sur L'inflammation, Paris, France
| | - Bernard Van Beers
- Department of Radiology, Hôpital Beaujon, AP-HP Nord, Clichy, France; Université Paris Cité, INSERM, Centre de Recherche sur L'inflammation, Paris, France
| | - Dominique Valla
- Université Paris Cité, INSERM, Centre de Recherche sur L'inflammation, Paris, France; Service d'Hépatologie, AP-HP, Hôpital Beaujon, DMU DIGEST, Centre de Référence des Maladies Vasculaires du Foie, FILFOIE, ERN RARE-LIVER, Clichy, France
| | - Valérie Vilgrain
- Department of Radiology, Hôpital Beaujon, AP-HP Nord, Clichy, France; Université Paris Cité, INSERM, Centre de Recherche sur L'inflammation, Paris, France
| | - Jean Michel Correas
- Department of Adult Radiology, Necker University Hospital, AP-HP, Paris, France; Université Paris Cité, Paris, France; Sorbonne Université, CNRS, INSERM Laboratoire d'Imagerie Biomédicale, Paris, France
| |
Collapse
|
245
|
Drai C, Chierici A, Pavone G, Benamran D, Alromayan M, Alamri A, Anty R, Liddo G, Iannelli A. Remission of nonalcoholic steatohepatitis after bariatric surgery: a single referral center cohort study. Surg Obes Relat Dis 2024; 20:482-489. [PMID: 38195314 DOI: 10.1016/j.soard.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 01/11/2024]
Abstract
BACKGROUND Obesity is associated with nonalcoholic steatohepatitis (NASH), which leads to an increased rate of primary liver cancers, cirrhosis, and decreased life expectancy. Metabolic/bariatric surgery (MBS) determines long-term weight loss and the resolution of obesity-related medical problems. OBJECTIVE The aim of this study was to evaluate the impact of MBS on liver histologic features in individuals with obesity. SETTING Tertiary referral university hospital. METHODS We retrospectively analyzed data on 37 patients undergoing MBS from a prospectively held database. All patients had a liver biopsy at the time of MBS and a second liver biopsy in case of further surgery or for NASH follow-up. Eighteen patients had NASH on the first liver biopsy. The primary endpoint was the resolution of steatohepatitis without worsening of fibrosis on the second liver biopsy. Secondary endpoints were the evolution of liver steatosis, hepatocyte ballooning, nonalcoholic fatty liver disease activity score, and biochemical parameters from the time of the first to the second liver biopsy. RESULTS Fifteen (83.3%) patients had significant resolution of steatohepatitis (P < .001) without fibrosis worsening. There was a statistically significant improvement of all blood tests except for low-density lipoprotein, alkaline phosphatases, and bilirubinemia. The Homeostatic Model Assessment (HOMA) index was significantly improved after MBS (P < .001), and circulating insulin and leptin concentrations were significantly reduced. Mean weight loss was 47 kg, with a 16.6 kg/m2 body mass index reduction and a % of total weight loss (%TWL) of 40.3 ±14% from the moment of MBS to the last follow-up. CONCLUSION MBS is effective in determining NASH regression without fibrosis worsening and in reducing HOMA index and leptin and insulin concentrations.
Collapse
Affiliation(s)
- Céline Drai
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Andrea Chierici
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Giovanna Pavone
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France; Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Dorith Benamran
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Mohamed Alromayan
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France; Security Forces Medical City, Riyadh, Saudi Arabia
| | - Abdulrhamane Alamri
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France; Department of Surgery, Medical College, Najran University. Najran, Saudi Arabia
| | - Rodolphe Anty
- Department of Gastroenterology, Digestive Center, Université Côte d'Azur, Centre Hospitalier Universitaire, Nice, France; Université Côte d'Azur, Nice, France
| | - Guido Liddo
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France
| | - Antonio Iannelli
- Digestive Surgery and Liver Transplantation Unit, Centre Hospitalier Universitaire de Nice, Nice, France; Université Côte d'Azur, Nice, France; Team 8 "Hepatic complications of obesity and alcohol," Inserm U1065, Nice, France.
| |
Collapse
|
246
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
247
|
Jiang W, Yan Y, Yuan G, Du T. Referral to hepatologists or a second-line examination requirement is common in patients with type 2 diabetes mellitus. Nutr Metab Cardiovasc Dis 2024; 34:1314-1324. [PMID: 38220507 DOI: 10.1016/j.numecd.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND AND AIMS To estimate the number of patients who required a referral to hepatologists following the 2016 EASL-EASD-EASO guideline and a second-line vibration controlled transient elastography (VCTE) examination following the 2021 EASL guideline according to obesity, glycated hemoglobin (HbA1c), blood pressure (BP), and low-density lipoprotein cholesterol (LDL-C) control status in patients with type 2 diabetes mellitus (T2DM). METHODS AND RESULTS A total of 2515 T2DM patients who were hospitalized were cross-sectionally assessed. When we applied the 2016 EASL-EASD-EASO guideline, 26.8 %-46.4 % (depending on the scores used for diagnosing fibrosis) of T2DM patients needed a referral to hepatologists. When we applied the 2021 EASL guideline, a VCTE examination was required in 10.9 %-35 % (depending on the scores used for diagnosing fibrosis) of T2DM patients. The referral rates and the VCTE requirement were even higher in patients who were obese and/or had poor HbA1c, BP, and/or LDL-C control. CONCLUSIONS Application of the screening guidelines would lead to a referral to hepatologists or a second-line VCTE examination requirement for a substantial number of T2DM patients, regardless of obesity and metabolic goal attainment status.
Collapse
Affiliation(s)
- Wangyan Jiang
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China; Department of Clinical Nutrition, Deyang People's Hospital, Deyang, Sichuan, China
| | - Yongli Yan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Gang Yuan
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China
| | - Tingting Du
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; Branch of National Clinical Research Center for Metabolic Diseases, Wuhan, Hubei, China.
| |
Collapse
|
248
|
Reiche WS, Walters RW, Schutte BF, Mukherjee S, Buaisha HM. Mild Thrombocytopenia, a Predictor of Outcomes After Laparoscopic Cholecystectomy: Assessment of Surgical Risk in Patients With Metabolic Dysfunction-Associated Steatotic Liver Disease. J Clin Gastroenterol 2024; 58:507-515. [PMID: 37702741 PMCID: PMC10994184 DOI: 10.1097/mcg.0000000000001926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/20/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND A common cause of mild thrombocytopenia is chronic liver disease, the most common etiology being metabolic dysfunction-associated steatotic liver disease (MASLD). Mild thrombocytopenia is a well-defined, independent marker of hepatic fibrosis in patients with chronic liver disease. Currently, there is a paucity of information available to characterize perioperative risk in patients with MASLD; therefore, the characterization of perioperative morbidity is paramount. We used a platelet threshold of 150×10 9 as a surrogate for fibrosis in patients undergoing laparoscopic cholecystectomy to study its effect on perioperative complications and mortality. PATIENTS AND METHODS We queried the American College of Surgeons National Surgical Quality Improvement Program database for laparoscopic cholecystectomies occurring from 2005 through 2018. Demographic differences between patients with and without thrombocytopenia were evaluated using the t test or the χ 2 test, whereas adjusted and unadjusted differences in outcome risk were evaluated using log-binomial regression models. RESULTS We identified 437,630 laparoscopic cholecystectomies of which 6.9% included patients with thrombocytopenia. Patients with thrombocytopenia were more often males, older, and with chronic disease. Patients with thrombocytopenia and higher Aspartate Aminotransferase to Platelet Ratio Index scores had 30-day mortality rates risk ratio of 5.3 (95% CI: 4.8-5.9), with higher complication rates risk ratio of 2.4 (95% CI: 2.3-2.5). The most frequent complications included the need for transfusion, renal, respiratory, and cardiac. CONCLUSIONS Perioperatively, patients with mild thrombocytopenia undergoing laparoscopic cholecystectomy had higher mortality rates and complications compared with patients with normal platelet counts. Thrombocytopenia may be a promising, cost-effective tool to identify patients with MASLD and estimate perioperative risk, especially if used in high-risk populations.
Collapse
Affiliation(s)
- William S. Reiche
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Ryan W. Walters
- Department of Clinical Research and Public Health, Creighton University School of Medicine
| | - Bryce F. Schutte
- Department of Medicine, CHI Creighton University Medical Center, Omaha, NE
| | - Sandeep Mukherjee
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| | - Haitam M. Buaisha
- Department of Internal Medicine, Division of Gastroenterology and Hepatology
| |
Collapse
|
249
|
Müller M, Grasshoff C. [The Role of the Anaesthesiologist in Liver Transplantation - Preoperative Evaluation]. Anasthesiol Intensivmed Notfallmed Schmerzther 2024; 59:283-295. [PMID: 38759684 DOI: 10.1055/a-2152-7350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Preoperative evaluation prior to listing for orthotopic liver transplantation (LT) requires a careful multidisciplinary approach with specialized teams including surgeons, hepatologists and anesthesiologists in order to improve short- and long-term clinical outcomes. Due to inadequate supply of donor organs and changing demographics, patients listed for LT have become older, sicker and share more comorbidities. As cardiovascular events are the leading cause for early mortality precise evaluation of risk factors is mandatory. This review focuses on the detection and management of coronary artery disease, cirrhotic cardiomyopathy, portopulmonary hypertension and hepatopulmonary syndrome in patients awaiting LT. Further insights are being given into scoring systems, patients with Acute-on-chronic-liver-failure (ACLF), frailty, NASH cirrhosis and into psychologic evaluation of patients with substance abuse.
Collapse
|
250
|
Carneiro CRG, Ayres ABS, Gestic MA, Utrini MP, Chaim FDM, Callejas-Neto F, Chaim EA, Cazzo E. Association of Histopathological and Biochemical Aspects of NAFLD With the Severity of Liver Fibrosis in Individuals With Obesity: Cross-sectional Study. Obes Surg 2024; 34:1569-1574. [PMID: 38502518 DOI: 10.1007/s11695-024-07180-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/14/2024] [Accepted: 03/14/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND Given the importance of fibrosis in the progression of non-alcoholic fatty liver disease (NAFLD), identifying biochemical and histopathological aspects associated with its severity is important to determine the course of disease in high-risk populations. OBJECTIVES The study aims to investigate correlations between biochemical and histopathological variables associated with the occurrence and severity of NAFLD-related liver fibrosis in individuals with obesity. METHODS This is a cross-sectional study which enrolled 171 individuals who underwent bariatric surgery at a tertiary university hospital. Clinical, laboratory, and histopathological hepatic characteristics were analyzed. Univariate and multivariate analyses were carried out to identify factors associated with the outcomes studied (severity of fibrosis staging) through simple and multiple regression models. RESULTS Female were 87.7%, and the mean age was 38.4 ± 9.3 years. The most common histopathological abnormalities were macrovesicular steatosis (74.9%) and hepatocellular ballooning (40.4%). In the histopathological univariate analysis, liver fibrosis significantly correlated with severities of microvesicular steatosis (p = 0.003), lobular inflammation (p = 0.001), and NAS (p < 0.001). In the multivariate analysis, the degrees of microvesicular steatosis (p < 0.001) and NAS (p < 0.001) independently correlated with fibrosis severity. In the univariate biochemical analysis, fibrosis severity significantly correlated with levels of hemoglobin A1c (p = 0.004) and glucose (p = 0.01). In the multivariate analysis, glucose levels independently correlated with liver fibrosis degree (p = 0.007). CONCLUSION Significant and independent associations were observed between the intensities of microvesicular steatosis, NAS, and glucose levels and the severity degree of liver fibrosis in individuals with obesity.
Collapse
Affiliation(s)
- Carollyne Rodovalho Guerra Carneiro
- Dept. of Surgery, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Rua Alexander Fleming, S/No Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Arthur Balestra Silveira Ayres
- Dept. of Surgery, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Rua Alexander Fleming, S/No Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Martinho Antonio Gestic
- Dept. of Surgery, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Rua Alexander Fleming, S/No Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Murillo Pimentel Utrini
- Dept. of Surgery, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Rua Alexander Fleming, S/No Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Felipe David Mendonça Chaim
- Dept. of Surgery, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Rua Alexander Fleming, S/No Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Francisco Callejas-Neto
- Dept. of Surgery, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Rua Alexander Fleming, S/No Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Elinton Adami Chaim
- Dept. of Surgery, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Rua Alexander Fleming, S/No Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil
| | - Everton Cazzo
- Dept. of Surgery, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Rua Alexander Fleming, S/No Cidade Universitária Zeferino Vaz, Campinas, SP, CEP 13085-000, Brazil.
| |
Collapse
|