201
|
Batai K, Hooker S, Kittles RA. Leveraging genetic ancestry to study health disparities. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 175:363-375. [PMID: 32935870 PMCID: PMC8246846 DOI: 10.1002/ajpa.24144] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Research to understand human genomic variation and its implications in health has great potential to contribute in the reduction of health disparities. Biological anthropology can play important roles in genomics and health disparities research using a biocultural approach. This paper argues that racial/ethnic categories should not be used as a surrogate for sociocultural factors or global genomic clusters in biomedical research or clinical settings, because of the high genetic heterogeneity that exists within traditional racial/ethnic groups. Genetic ancestry is used to show variation in ancestral genomic contributions to recently admixed populations in the United States, such as African Americans and Hispanic/Latino Americans. Genetic ancestry estimates are also used to examine the relationship between ancestry-related biological and sociocultural factors affecting health disparities. To localize areas of genomes that contribute to health disparities, admixture mapping and genome-wide association studies (GWAS) are often used. Recent GWAS have identified many genetic variants that are highly differentiated among human populations that are associated with disease risk. Some of these are population-specific variants. Many of these variants may impact disease risk and help explain a portion of the difference in disease burden among racial/ethnic groups. Genetic ancestry is also of particular interest in precision medicine and disparities in drug efficacy and outcomes. By using genetic ancestry, we can learn about potential biological differences that may contribute to the heterogeneity observed across self-reported racial groups.
Collapse
Affiliation(s)
- Ken Batai
- Department of UrologyUniversity of ArizonaTucsonArizonaUSA
| | - Stanley Hooker
- Division of Health Equities, Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Rick A. Kittles
- Division of Health Equities, Department of Population SciencesCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
202
|
Tillman EM, Beavers CJ, Afanasjeva J, Momary KM, Strnad KG, Yerramilli A, Williams AM, Smith BA, Florczykowski B, Fahmy M. Current and future state of clinical pharmacist‐led precision medicine initiatives. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2021. [DOI: 10.1002/jac5.1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Monica Fahmy
- American College of Clinical Pharmacy Lenexa Kansas USA
| |
Collapse
|
203
|
Magavern EF, Daly AK, Gilchrist A, Hughes DA. Pharmacogenomics spotlight commentary: From the United Kingdom to global populations. Br J Clin Pharmacol 2021; 87:4546-4548. [PMID: 34036624 DOI: 10.1111/bcp.14917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/01/2021] [Accepted: 05/09/2021] [Indexed: 10/21/2022] Open
Affiliation(s)
- Emma F Magavern
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Clinical Pharmacology, Cardiovascular Medicine, Barts Health NHS Trust, London, UK
| | - Ann K Daly
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Annette Gilchrist
- Department of Pharmaceutical Sciences, Chicago College of Pharmacy - Downers Grove, Midwestern University, Downers Grove, Illinois, USA
| | - Dyfrig A Hughes
- Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, UK.,Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
204
|
Hicks JK, Howard R, Reisman P, Adashek JJ, Fields KK, Gray JE, McIver B, McKee K, O'Leary MF, Perkins RM, Robinson E, Tandon A, Teer JK, Markowitz J, Rollison DE. Integrating Somatic and Germline Next-Generation Sequencing Into Routine Clinical Oncology Practice. JCO Precis Oncol 2021; 5:PO.20.00513. [PMID: 34095711 PMCID: PMC8169076 DOI: 10.1200/po.20.00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/14/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022] Open
Abstract
Next-generation sequencing (NGS) is rapidly expanding into routine oncology practice. Genetic variations in both the cancer and inherited genomes are informative for hereditary cancer risk, prognosis, and treatment strategies. Herein, we focus on the clinical perspective of integrating NGS results into patient care to assist with therapeutic decision making. Five key considerations are addressed for operationalization of NGS testing and application of results to patient care as follows: (1) NGS test ordering and workflow design; (2) result reporting, curation, and storage; (3) clinical consultation services that provide test interpretations and identify opportunities for molecularly guided therapy; (4) presentation of genetic information within the electronic health record; and (5) education of providers and patients. Several of these key considerations center on informatics tools that support NGS test ordering and referencing back to the results for therapeutic purposes. Clinical decision support tools embedded within the electronic health record can assist with NGS test utilization and identifying opportunities for targeted therapy including clinical trial eligibility. Challenges for project and change management in operationalizing NGS-supported, evidence-based patient care in the context of current information technology systems with appropriate clinical data standards are discussed, and solutions for overcoming barriers are provided.
Collapse
Affiliation(s)
- J. Kevin Hicks
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
| | - Rachel Howard
- Department of Health Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Phillip Reisman
- Department of Health Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jacob J. Adashek
- Department of Internal Medicine, University of South Florida, Tampa, FL
| | - Karen K. Fields
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Clinical Pathways, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Jhanelle E. Gray
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Bryan McIver
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Head and Neck-Endocrine Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Kelly McKee
- Department of Clinical Pathways, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Mandy F. O'Leary
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Randa M. Perkins
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Clinical Informatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Edmondo Robinson
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Internal Medicine, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Ankita Tandon
- Department of Internal Medicine, University of South Florida, Tampa, FL
| | - Jamie K. Teer
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Joseph Markowitz
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Dana E. Rollison
- Department of Oncologic Sciences, University of South Florida, Tampa, FL
- Department of Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| |
Collapse
|
205
|
Pratt VM, Turner A, Broeckel U, Dawson DB, Gaedigk A, Lynnes TC, Medeiros EB, Moyer AM, Requesens D, Vetrini F, Kalman LV. Characterization of Reference Materials with an Association for Molecular Pathology Pharmacogenetics Working Group Tier 2 Status: CYP2C9, CYP2C19, VKORC1, CYP2C Cluster Variant, and GGCX: A GeT-RM Collaborative Project. J Mol Diagn 2021; 23:952-958. [PMID: 34020041 DOI: 10.1016/j.jmoldx.2021.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/26/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022] Open
Abstract
Pharmacogenetic testing is increasingly available from clinical and research laboratories. However, only a limited number of quality control and other reference materials are currently available for many of the variants that are tested. The Association for Molecular Pathology Pharmacogenetic Work Group has published a series of papers recommending alleles for inclusion in clinical testing. Several of the alleles were not considered for tier 1 because of a lack of reference materials. To address this need, the Division of Laboratory Systems, Centers for Disease Control and Prevention-based Genetic Testing Reference Material (GeT-RM) program, in collaboration with members of the pharmacogenetic testing and research communities and the Coriell Institute for Medical Research, has characterized 18 DNA samples derived from Coriell cell lines. DNA samples were distributed to five volunteer testing laboratories for genotyping using three commercially available and laboratory developed tests. Several tier 2 variants, including CYP2C9∗13, CYP2C19∗35, the CYP2C cluster variant (rs12777823), two variants in VKORC1 (rs61742245 and rs72547529) related to warfarin resistance, and two variants in GGCX (rs12714145 and rs11676382) related to clotting factor activation, were identified among these samples. These publicly available materials complement the pharmacogenetic reference materials previously characterized by the GeT-RM program and will support the quality assurance and quality control programs of clinical laboratories that perform pharmacogenetic testing.
Collapse
Affiliation(s)
- Victoria M Pratt
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Amy Turner
- RPRD Diagnostics, Milwaukee, Wisconsin; Department of Pediatrics, Section on Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ulrich Broeckel
- RPRD Diagnostics, Milwaukee, Wisconsin; Department of Pediatrics, Section on Genomic Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - D Brian Dawson
- Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio; Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, Ohio; Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology and Therapeutic Innovation, Children's Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Ty C Lynnes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Elizabeth B Medeiros
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ann M Moyer
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | - Francesco Vetrini
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lisa V Kalman
- Division of Laboratory Systems, Centers for Disease Control and Prevention, Atlanta, Georgia.
| |
Collapse
|
206
|
Gammal RS, Smith DM, Wiisanen KW, Cusimano JM, Pettit RS, Stephens JW, Walko CM, Yang RH, Dunnenberger HM. The pharmacist's responsibility to ensure appropriate use of direct‐to‐consumer genetic testing. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2021. [DOI: 10.1002/jac5.1437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - D. Max Smith
- American College of Clinical Pharmacy Lenexa Kansas USA
| | | | | | | | | | | | | | | |
Collapse
|
207
|
Cohn I, Manshaei R, Liston E, Okello JBA, Khan R, Curtis MR, Krupski AJ, Jobling RK, Kalbfleisch K, Paton TA, Reuter MS, Hayeems RZ, Verstegen RHJ, Goldman A, Kim RH, Ito S. Assessment of the Implementation of Pharmacogenomic Testing in a Pediatric Tertiary Care Setting. JAMA Netw Open 2021; 4:e2110446. [PMID: 34037732 PMCID: PMC8155824 DOI: 10.1001/jamanetworkopen.2021.10446] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
IMPORTANCE Pharmacogenomic (PGx) testing provides preemptive pharmacotherapeutic guidance regarding the lack of therapeutic benefit or adverse drug reactions of PGx targeted drugs. Pharmacogenomic information is of particular value among children with complex medical conditions who receive multiple medications and are at higher risk of developing adverse drug reactions. OBJECTIVES To assess the implementation outcomes of a PGx testing program comprising both a point-of-care model that examined targeted drugs and a preemptive model informed by whole-genome sequencing that evaluated a broad range of drugs for potential therapy among children in a pediatric tertiary care setting. DESIGN, SETTING, AND PARTICIPANTS This cohort study was conducted at The Hospital for Sick Children in Toronto, Ontario, from January 2017 to September 2020. Pharmacogenomic analyses were performed among 172 children who were categorized into 2 groups: a point-of-care cohort and a preemptive cohort. The point-of-care cohort comprised 57 patients referred to the consultation clinic for planned therapy with PGx targeted drugs and/or for adverse drug reactions, including lack of therapeutic benefit, after the receipt of current or past medications. The preemptive cohort comprised 115 patients who received exploratory whole-genome sequencing-guided PGx testing for their heart conditions from the cardiac genome clinic at the Ted Rogers Centre for Heart Research. EXPOSURES Patients received PGx analysis of whole-genome sequencing data and/or multiplex genotyping of 6 pharmacogenes (CYP2C19, CYP2C9, CYP2D6, CYP3A5, VKORC1, and TPMT) that have established PGx clinical guidelines. MAIN OUTCOMES AND MEASURES The number of patients for whom PGx test results warranted deviation from standard dosing regimens. RESULTS A total of 172 children (mean [SD] age, 8.5 [5.6] years; 108 boys [62.8%]) were enrolled in the study. In the point-of-care cohort, a median of 2 target genes (range, 1-5 genes) were investigated per individual, with CYP2C19 being the most frequently examined; genotypes in 21 of 57 children (36.8%) were incompatible with standard treatment regimens. As expected from population allelic frequencies, among the 115 children in the whole-genome sequencing-guided preemptive cohort, 92 children (80.0%) were recommended to receive nonstandard treatment regimens for potential drug therapies based on their 6-gene pharmacogenetic profile. CONCLUSIONS AND RELEVANCE In this cohort study, among both the point-of-care and preemptive cohorts, the multiplex PGx testing program provided dosing recommendations that deviated from standard regimens at an overall rate that was similar to the population frequencies of relevant variants.
Collapse
Affiliation(s)
- Iris Cohn
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Roozbeh Manshaei
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eriskay Liston
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - John B. A. Okello
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Reem Khan
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Meredith R. Curtis
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Abby J. Krupski
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Rebekah K. Jobling
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Genome Diagnostics, Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kelsey Kalbfleisch
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tara A. Paton
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Miriam S. Reuter
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Canada’s Genomic Enterprise (CGEn), The Hospital for Sick Children, Toronto, Ontario, Canada
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Robin Z. Hayeems
- Program in Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Health Policy Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Ruud H. J. Verstegen
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Division of Rheumatology, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| | | | - Raymond H. Kim
- Cardiac Genome Clinic, Ted Rogers Centre for Heart Research, The Hospital for Sick Children, Toronto, Ontario, Canada
- Division of Clinical and Metabolic Genetics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Fred A. Litwin Family Centre in Genetic Medicine, University Health Network, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shinya Ito
- Division of Clinical Pharmacology and Toxicology, Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- Program in Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Paediatrics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
208
|
Henderson LM, Hopkins SE, Boyer BB, Thornton TA, Rettie AE, Thummel KE. In Vivo Functional Effects of CYP2C9 M1L, a Novel and Common Variant in the Yup'ik Alaska Native Population. Drug Metab Dispos 2021; 49:345-352. [PMID: 33632714 PMCID: PMC8008381 DOI: 10.1124/dmd.120.000301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/03/2022] Open
Abstract
Alaska Native people are under-represented in genetic research but have unique gene variation that may critically impact their response to pharmacotherapy. Full resequencing of CYP2C9 in a cross-section of this population identified CYP2C9 Met1Leu (M1L), a novel, relatively common single nucleotide polymorphism hypothesized to confer CYP2C9 poor metabolizer phenotype by disrupting the start codon. M1L is present at a minor allele frequency of 6.3% in Yup'ik Alaska Native people and thus can contribute to the risk of an adverse drug response from narrow-therapeutic-index CYP2C9 substrates such as (S)-warfarin. This study's objective was to characterize the catalytic efficiency of the Leu1 variant enzyme in vivo by evaluating the pharmacokinetic behavior of naproxen, a probe substrate for CYP2C9 activity, in genotyped Yup'ik participants. We first confirmed the selectivity of (S)-naproxen O-demethylation by CYP2C9 using activity-phenotyped human liver microsomes and selective cytochrome P450 inhibitors and then developed and validated a novel liquid chromatography mass spectrometry method for simultaneous quantification of (S)-naproxen, (S)-O-desmethylnaproxen, and naproxen acyl glucuronide in human urine. The average ratio of (S)-O-desmethylnaproxen to unchanged (S)-naproxen in urine was 18.0 ± 8.0 (n = 11) for the homozygous CYP2C9Met1 reference group and 10.3 ± 6.6 (n = 11) for the Leu1 variant carrier group (P = 0.011). The effect of M1L variation on CYP2C9 function and its potential to alter the pharmacokinetics of drugs metabolized by the enzyme has clinical implications and should be included in a variant screening panel when pharmacogenetic testing in the Alaska Native population is warranted. SIGNIFICANCE STATEMENT: The novel CYP2C9 Met1Leu variant in Alaska Native people was recently identified. This study validated (S)-naproxen as a CYP2C9 probe substrate to characterize the in vivo functional activity of the CYP2C9 Leu1 variant. The results of this pharmacogenetic-pharmacokinetic study suggest that the CYP2C9 Leu1 variant exhibits loss of enzyme activity. This finding may be important to consider when administering narrow-therapeutic-index medications metabolized by CYP2C9 and also compels further investigation to characterize novel genetic variation in understudied populations.
Collapse
Affiliation(s)
- Lindsay M Henderson
- Departments of Pharmaceutics (L.M.H., K.E.T.), Biostatistics (T.A.T.), and Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Obstetrics and Gynecology (S.E.H., B.B.B.), Oregon Health & Science University, Portland, Oregon
| | - Scarlett E Hopkins
- Departments of Pharmaceutics (L.M.H., K.E.T.), Biostatistics (T.A.T.), and Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Obstetrics and Gynecology (S.E.H., B.B.B.), Oregon Health & Science University, Portland, Oregon
| | - Bert B Boyer
- Departments of Pharmaceutics (L.M.H., K.E.T.), Biostatistics (T.A.T.), and Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Obstetrics and Gynecology (S.E.H., B.B.B.), Oregon Health & Science University, Portland, Oregon
| | - Timothy A Thornton
- Departments of Pharmaceutics (L.M.H., K.E.T.), Biostatistics (T.A.T.), and Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Obstetrics and Gynecology (S.E.H., B.B.B.), Oregon Health & Science University, Portland, Oregon
| | - Allan E Rettie
- Departments of Pharmaceutics (L.M.H., K.E.T.), Biostatistics (T.A.T.), and Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Obstetrics and Gynecology (S.E.H., B.B.B.), Oregon Health & Science University, Portland, Oregon
| | - Kenneth E Thummel
- Departments of Pharmaceutics (L.M.H., K.E.T.), Biostatistics (T.A.T.), and Medicinal Chemistry (A.E.R.), University of Washington, Seattle, Washington; and Department of Obstetrics and Gynecology (S.E.H., B.B.B.), Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
209
|
Luo S, Jiang R, Grzymski JJ, Lee W, Lu JT, Washington NL. Comprehensive Allele Genotyping in Critical Pharmacogenes Reduces Residual Clinical Risk in Diverse Populations. Clin Pharmacol Ther 2021; 110:759-767. [PMID: 33930192 PMCID: PMC8453755 DOI: 10.1002/cpt.2279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
Genomic‐guided pharmaceutical prescribing is increasingly recognized as an important clinical application of genetics. Accurate genotyping of pharmacogenomic (PGx) genes can be difficult, owing to their complex genetic architecture involving combinations of single‐nucleotide polymorphisms and structural variation. Here, we introduce the Helix PGx database, an open‐source star allele, genotype, and resulting metabolic phenotype frequency database for CYP2C9, CYP2C19, CYP2D6, and CYP4F2, based on short‐read sequencing of >86,000 unrelated individuals enrolled in the Helix DNA Discovery Project. The database is annotated using a pipeline that is clinically validated against a broad range of alleles and designed to call CYP2D6 structural variants with high (98%) accuracy. We find that CYP2D6 has greater allelic diversity than the other genes, manifest in both a long tail of low‐frequency star alleles, as well as a disproportionate fraction (36%) of all novel predicted loss‐of‐function variants identified. Across genes, we observe that many rare alleles (<0.1% frequency) in the overall cohort have 10 times higher frequency in one or more subgroups with non‐European genetic ancestry. Extending these PGx genotypes to predicted metabolic phenotypes, we demonstrate that >90% of the cohort harbors a high‐risk variant in one of the four pharmacogenes. Based on the recorded prescriptions for >30,000 individuals in the Healthy Nevada Project, combined with predicted PGx metabolic phenotypes, we anticipate that standard‐of‐care screening of these 4 pharmacogenes could impact nearly half of the general population.
Collapse
Affiliation(s)
| | | | - Joseph J Grzymski
- Desert Research Institute, Reno, Nevada, USA.,Renown Institute of Health Innovation, Reno, Nevada, USA
| | | | | | | |
Collapse
|
210
|
Sridharan K, Al Banna R, Malalla Z, Husain A, Sater M, Jassim G, Otoom S. Influence of CYP2C9, VKORC1, and CYP4F2 polymorphisms on the pharmacodynamic parameters of warfarin: a cross-sectional study. Pharmacol Rep 2021; 73:1405-1417. [PMID: 33811620 DOI: 10.1007/s43440-021-00256-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Warfarin is the most commonly evaluated drug in pharmacogenetic-guided dosing studies. However, gaps remain regarding the influence of the genetic polymorphisms of CYP2C9, VKORC1, and CYP4F2 on specific pharmacodynamic parameters like the warfarin sensitivity index (WSI), prothrombin time international normalized ratio (PT-INR), and log-INR variability. METHODS A cross-sectional study was conducted in non-smoking adults receiving warfarin for at least 6 months. Their demographics, diagnoses, warfarin dosing regimen, concomitant drugs, PT-INR, and bleeding episodes were obtained. CYP2C9 (rs1057910-*3 and rs1799853-*2 alleles), CYP4F2 (rs2108622), and VKORC1 (rs9923231) polymorphisms were assessed using real-time polymerase chain reaction. Three genotype groups (I-III) were defined based on the combined genetic polymorphisms of CYP2C9 and VKORC1 from the FDA's recommendations. Key outcome measures included anticoagulation control, time spent in therapeutic range, stable warfarin dose, WSI, log-INR variability, and Warfarin Composite Measure (WCM). RESULTS The study recruited 236 patients; 75 (31.8%) carried a functional CYP2C9 variant allele, and, 143 (60.6%) had at least one T allele in CYP4F2 and 133 (56.4%) had at least one T allele in VKORC1. Groups' II and III CYP2C9 and VKORC1 genotypes were observed with reduced stable warfarin dose, increased WSI, higher log-INR variability, and increased bleeding risk. The presence of *2 or *3 allele in CYP2C9 was observed with reduced stable warfarin doses akin to the presence of T alleles in VKORC1; however, the doses increased with T alleles in CYP4F2. CONCLUSION The evaluated genetic polymorphisms significantly influenced all the pharmacodynamic parameters of warfarin. Evaluating CYP2C9, VKORC1, and CYP4F2 genetic polymorphisms prior to warfarin initiation is likely to optimize therapeutic response.
Collapse
Affiliation(s)
- Kannan Sridharan
- Department of Pharmacology and Therapeutics, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain.
| | - Rashed Al Banna
- Department of Cardiology, Salmaniya Medical Complex, Ministry of Health, Manama, Kingdom of Bahrain
| | - Zainab Malalla
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Aysha Husain
- Department of Cardiology, Salmaniya Medical Complex, Ministry of Health, Manama, Kingdom of Bahrain
- RCSI-MUB, Manama, Kingdom of Bahrain
| | - Mai Sater
- Department of Medical Biochemistry, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Ghufran Jassim
- Department of Family Medicine, RCSI-MUB, Manama, Kingdom of Bahrain
| | | |
Collapse
|
211
|
Boahen CK, Joosten LA, Netea MG, Kumar V. Conceptualization of population-specific human functional immune-genomics projects to identify factors that contribute to variability in immune and infectious diseases. Heliyon 2021; 7:e06755. [PMID: 33912719 PMCID: PMC8066384 DOI: 10.1016/j.heliyon.2021.e06755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
The human immune system presents remarkable inter-individual variability in response to pathogens or perturbations. Recent high-throughput technologies have enabled the identification of both heritable and non-heritable determinants of immune response variation between individuals. In this review, we summarize the advances made through the Human Functional Genomics Projects (HFGPs), challenges and the need for more refined strategies. Inter-individual variability in stimulation-induced cytokine responses is influenced in part by age, gender, seasonality, and gut microbiome. Host genetic regulators especially single nucleotide polymorphisms in multiple immune gene loci, particularly the TLR1-TLR6-TLR10 locus, have been identified using individuals of predominantly European descent. However, transferability of such findings to other populations is challenging. We are beginning to incorporate diverse population cohorts and leverage multi-omics approaches at single cell level to bridge the current knowledge gap. We believe that such an approach presents the opportunities to comprehensively assess both genetic and environmental factors driving variation seen in immune response phenotype and a better understanding of the molecular and biological mechanisms involved.
Collapse
Affiliation(s)
- Collins K. Boahen
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Leo A.B. Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
| | - Mihai G. Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany
| | - Vinod Kumar
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, 6525 HP, the Netherlands
- University of Groningen, University Medical Center Groningen, Department of Genetics, Groningen, 9700 RB, the Netherlands
- Nitte (Deemed to be University), Nitte University Centre for Science Education and Research (NUCSER), Medical Sciences Complex, Deralakatte, Mangalore, 575018, India
| |
Collapse
|
212
|
Alghamdi MA, Al-Eitan L, Alkhatib R, Al-Assi A, Almasri A, Aljamal H, Aman H, Khasawneh R. Variants in CDHR3, CACNAC1, and LTA Genes Predisposing Sensitivity and Response to Warfarin in Patients with Cardiovascular Disease. Int J Gen Med 2021; 14:1093-1100. [PMID: 33790638 PMCID: PMC8006967 DOI: 10.2147/ijgm.s298597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/08/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Warfarin has been in use for more than 60 years; however, it has serious side effects including major bleeding. The high interpatient variability in the required dose impacts the sensitivity and responsiveness to warfarin in different patients. This study aims to assess the influence of CDHR3, CACNAC1, and LTA gene polymorphisms on the variability of warfarin dose requirements and susceptibility to coronary heart disease in the Jordanian population. Methods This study was conducted in the anti-coagulation clinic in Queen Alia Heart Institute in Amman, with 212 patients in total. Three SNPs were genotyped within CDHR3 (rs10270308), CACNAC1 (rs216013), and LTA (rs1041981) genes. Results Our findings revealed that patients with LTA polymorphism are more prone to warfarin sensitivity than others. Furthermore, carriers of the LTA polymorphism needed a lower initial dose of warfarin and are associated with less variation in doses required to achieve target INR. Conclusion The current study could help in understanding the role of genetic variability in warfarin dosing and matching patients to different treatment options. Clinical applications of these findings for warfarin treatment may also contribute to improving the efficacy and safety of warfarin treatment in Jordanian patients with cardiovascular disease.
Collapse
Affiliation(s)
- Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha, 61421, Saudi Arabia
| | - Laith Al-Eitan
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Rami Alkhatib
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ahmad Al-Assi
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Ayah Almasri
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Hanan Aljamal
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Hatem Aman
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Rame Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Royal Medical Services (RMS), Amman, 11118, Jordan
| |
Collapse
|
213
|
Jirawutkornkul N, Patikorn C, Anantachoti P. Access to precision medicine in Thailand: a comparative study. JOURNAL OF HEALTH RESEARCH 2021. [DOI: 10.1108/jhr-04-2020-0106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PurposeThis study explored health insurance coverage of genetic testing and potential factors associated with precision medicine (PM) reimbursement in Thailand.Design/methodology/approachThe study employed a targeted review method. Thirteen PMs were selected to represent four PM categories: targeted cancer therapy candidate, prediction of adverse drug reactions (ADRs), dose adjustment and cancer risk prediction. Content analysis was performed to compare access to PMs among three health insurance schemes in Thailand. The primary outcome of the study was evaluating PM test reimbursement status. Secondary outcomes included clinical practice guidelines, PMs statement in FDA-approved leaflet and economic evaluation.FindingsCivil Servant Medical Benefits Scheme (CSMBS) provided more generous access to PM than Universal Coverage Scheme (UCS) and Social Security Scheme (SSS). Evidence of economic evaluations likely impacted the reimbursement decisions of SSS and UCS, while the information provided in FDA-approved leaflets seemed to impact the reimbursement decisions of CSMBS. Three health insurance schemes provided adequate access to PM tests for some cancer-targeted therapies, while gaps existed for access to PM tests for serious ADRs prevention, dose adjustment and cancer risk prediction.Originality/valueThis was the first study to explore the situation of access to PMs in Thailand. The evidence alerts public health insurance schemes to reconsider access to PMs. Development of health technology assessment guidelines for PM test reimbursement decisions should be prioritized.
Collapse
|
214
|
Verma A, Dhingra N, Yanagawa B. Rivaroxaban in Patients with Atrial Fibrillation and a Bioprosthetic Mitral Valve. N Engl J Med 2021; 384:975. [PMID: 33704949 DOI: 10.1056/nejmc2035891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Atul Verma
- Southlake Regional Health Center, Newmarket, ON, Canada
| | | | | |
Collapse
|
215
|
Vuorinen AL, Lehto M, Niemi M, Harno K, Pajula J, van Gils M, Lähteenmäki J. Pharmacogenetics of Anticoagulation and Clinical Events in Warfarin-Treated Patients: A Register-Based Cohort Study with Biobank Data and National Health Registries in Finland. Clin Epidemiol 2021; 13:183-195. [PMID: 33727862 PMCID: PMC7954279 DOI: 10.2147/clep.s289031] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 01/19/2021] [Indexed: 01/22/2023] Open
Abstract
PURPOSE To assess the association between VKORC1 and CYP2C9 variants and the incidence of adverse drug reactions in warfarin-treated patients in a real-world setting. MATERIALS AND METHODS This was a register-based cohort study (PreMed) linking data from Finnish biobanks, national health registries and patient records between January 1st 2007 and June 30th 2018. The inclusion criteria were: 1) ≥18 years of age, 2) CYP2C9 and VKORC1 genotype information available, 3) a diagnosis of a cardiovascular disease, 4) at least one warfarin purchase, 5) regular INR tests. Eligible individuals were divided into two warfarin sensitivity groups; normal responders, and sensitive and highly sensitive responders based on their VKORC1 and CYP2C9 genotypes. The incidences of clinical events were compared between the groups using Cox regression models. RESULTS The cohort consisted of 2508 participants (45% women, mean age of 69 years), of whom 65% were categorized as normal responders and 35% sensitive or highly sensitive responders. Compared to normal responders, sensitive and highly sensitive responders had fewer INR tests below 2 (median: 33.3% vs 43.8%, 95% CI: -13.3%, -10.0%) and more above 3 (median: 18.2% vs 6.7%, 95% Cl: 8.3%, 10.8%). The incidence (per 100 patient-years) of bleeding outcomes was 5.4 for normal responders and 5.6 for the sensitive and highly sensitive responder group (HR=1.03, 95% CI: 0.74, 1.44). The incidence of thromboembolic outcomes was 4.9 and 7.8, respectively (HR=1.48, 95% CI: 1.08, 2.03). CONCLUSION In a real-world setting, genetically sensitive and highly sensitive responders to warfarin had more high INR tests and required a lower daily dose of warfarin than normal responders. However, the risk for bleeding events was not increased in sensitive and highly sensitive responders. Interestingly, the risk of thromboembolic outcomes was lower in normal responders compared to the sensitive and highly sensitive responders. TRIAL REGISTRATION NCT04001166.
Collapse
Affiliation(s)
| | - Mika Lehto
- Heart and Lung Center, Helsinki University Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Mikko Niemi
- Department of Clinical Pharmacology and Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
- Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Kari Harno
- Department of Health and Social Management, University of Eastern Finland, Kuopio, Finland
| | - Juha Pajula
- VTT Technical Research Centre of Finland, Tampere, Finland
| | - Mark van Gils
- VTT Technical Research Centre of Finland, Tampere, Finland
| | | |
Collapse
|
216
|
Magavern EF, Kaski JC, Turner RM, Drexel H, Janmohamed A, Scourfield A, Burrage D, Floyd CN, Adeyeye E, Tamargo J, Lewis BS, Kjeldsen KP, Niessner A, Wassmann S, Sulzgruber P, Borry P, Agewall S, Semb AG, Savarese G, Pirmohamed M, Caulfield MJ. The Role of Pharmacogenomics in Contemporary Cardiovascular Therapy: A position statement from the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2021; 8:85-99. [PMID: 33638977 DOI: 10.1093/ehjcvp/pvab018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
There is a strong and ever-growing body of evidence regarding the use of pharmacogenomics to inform cardiovascular pharmacology. However, there is no common position taken by international cardiovascular societies to unite diverse availability, interpretation and application of such data, nor is there recognition of the challenges of variation in clinical practice between countries within Europe. Aside from the considerable barriers to implementing pharmacogenomic testing and the complexities of clinically actioning results, there are differences in the availability of resources and expertise internationally within Europe. Diverse legal and ethical approaches to genomic testing and clinical therapeutic application also require serious thought. As direct-to-consumer genomic testing becomes more common, it can be anticipated that data may be brought in by patients themselves, which will require critical assessment by the clinical cardiovascular prescriber. In a modern, pluralistic and multi-ethnic Europe, self-identified race/ethnicity may not be concordant with genetically detected ancestry and thus may not accurately convey polymorphism prevalence. Given the broad relevance of pharmacogenomics to areas such as thrombosis and coagulation, interventional cardiology, heart failure, arrhythmias, clinical trials, and policy/regulatory activity within cardiovascular medicine, as well as to genomic and pharmacology subspecialists, this position statement attempts to address these issues at a wide-ranging level.
Collapse
Affiliation(s)
- E F Magavern
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Clinical Pharmacology, Cardiovascular Medicine, Barts Health NHS Trust, London, UK
| | - J C Kaski
- Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom
| | - R M Turner
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - H Drexel
- Vorarlberg Institute for Vascular Investigation & Treatment (VIVIT), Feldkirch, A Private University of the Principality of Liechtenstein, Triesen, FL.,Drexel University College of Medicine, Philadelphia, USA
| | - A Janmohamed
- Department of Clinical Pharmacology, St George's, University of London, United Kingdom
| | - A Scourfield
- Department of Clinical Pharmacology, University College London Hospital Foundation Trust, UK
| | - D Burrage
- Whittington Health NHS Trust, London, UK
| | - C N Floyd
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.,Department of Clinical Pharmacology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - E Adeyeye
- Department of Clinical Pharmacology, Cardiovascular Medicine, Barts Health NHS Trust, London, UK
| | - J Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Madrid, Spain
| | - B S Lewis
- Cardiovascular Clinical Research Institute, Lady Davis Carmel Medical Center and the Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Keld Per Kjeldsen
- Department of Cardiology, Copenhagen University Hospital (Amager-Hvidovre), Copenhagen, Denmark.,Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - A Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna
| | - S Wassmann
- Cardiology Pasing, Munich, Germany and University of the Saarland, Homburg/Saar, Germany
| | - P Sulzgruber
- Medical University of Vienna, Department of Medicine II, Division of Cardiology
| | - P Borry
- Center for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,Leuven Institute for Human Genetics and Society, Leuven, Belgium
| | - S Agewall
- Oslo University Hospital Ullevål and Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - A G Semb
- Preventive Cardio-Rheuma clinic, department of rheumatology, innovation and research, Diakonhjemmet hospital, Oslo, Norway
| | - G Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - M Pirmohamed
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.,Liverpool Health Partners, Liverpool, UK
| | - M J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
217
|
Shah SN, Gammal RS, Amato MG, Alobaidly M, Reyes DD, Hasan S, Seger DL, Krier JB, Bates DW. Clinical Utility of Pharmacogenomic Data Collected by a Health-System Biobank to Predict and Prevent Adverse Drug Events. Drug Saf 2021; 44:601-607. [PMID: 33620701 DOI: 10.1007/s40264-021-01050-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Medication-related harm represents a significant issue for patient safety and quality of care. One strategy to avoid preventable adverse drug events is to utilize patient-specific factors such as pharmacogenomics (PGx) to individualize therapy. OBJECTIVE We measured the number of patients enrolled in a health-system biobank with actionable PGx results who received relevant medications and assessed the incidence of adverse drug events (ADEs) that might have been prevented had the PGx results been used to inform prescribing. METHODS Patients with actionable PGx results in the following four genes with Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines were identified: HLA-A*31:01, HLA-B*15:02, TPMT, and VKORC1. The patients who received interacting medications (carbamazepine, oxcarbazepine, thiopurines, or warfarin) were identified, and electronic health records were reviewed to determine the incidence of potentially preventable ADEs. RESULTS Of 36,424 patients with PGx results, 2327 (6.4%) were HLA-A*31:01 positive; 3543 (9.7%) were HLA-B*15:02 positive; 2893 (7.9%) were TPMT intermediate metabolizers; and 4249 (11.7%) were homozygous for the VKORC1 c.1639 G>A variant. Among patients positive for one of the HLA variants who received carbamazepine or oxcarbazepine (n = 92), four (4.3%) experienced a rash that warranted drug discontinuation. Among the TPMT intermediate metabolizers who received a thiopurine (n = 56), 11 (19.6%) experienced severe myelosuppression that warranted drug discontinuation. Among patients homozygous for the VKORC1 c.1639 G>A variant who received warfarin (n = 379), 85 (22.4%) experienced active bleeding and/or international normalized ratio (INR) > 5 that warranted drug discontinuation or dose reduction. CONCLUSION Patients with actionable PGx results from a health-system biobank who received relevant medications experienced predictable ADEs. These ADEs may have been prevented if the patients' PGx results were available in the electronic health record with clinical decision support prior to prescribing.
Collapse
Affiliation(s)
- Sonam N Shah
- Department of Internal Medicine, Brigham and Women's Hospital, 41 Avenue of Louis Pasteur, Office 103, Boston, MA, 02115, USA. .,Department of Pharmacy Practice, MCPHS University School of Pharmacy, Boston, MA, USA.
| | - Roseann S Gammal
- Department of Pharmacy Practice, MCPHS University School of Pharmacy, Boston, MA, USA.,Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Mary G Amato
- Department of Internal Medicine, Brigham and Women's Hospital, 41 Avenue of Louis Pasteur, Office 103, Boston, MA, 02115, USA.,Department of Pharmacy Practice, MCPHS University School of Pharmacy, Boston, MA, USA
| | - Maryam Alobaidly
- Department of Pharmacy Practice, MCPHS University School of Pharmacy, Boston, MA, USA
| | - Dariel Delos Reyes
- Department of Pharmacy Practice, MCPHS University School of Pharmacy, Boston, MA, USA
| | - Sarah Hasan
- Department of Pharmacy Practice, MCPHS University School of Pharmacy, Boston, MA, USA
| | - Diane L Seger
- Clinical Quality Analysis, Partners Healthcare, Somerville, MA, USA
| | - Joel B Krier
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - David W Bates
- Department of Internal Medicine, Brigham and Women's Hospital, 41 Avenue of Louis Pasteur, Office 103, Boston, MA, 02115, USA.,Clinical Quality Analysis, Partners Healthcare, Somerville, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
218
|
Zhou XY, Lu XR, Li YH, Ma YQ, Zhao SW, Wang F, Xu RA, Hu GX, Cai JP. Identification and Enzymatic Activity Evaluation of a Novel CYP2C9 Allelic Variant Discovered in a Patient. Front Pharmacol 2021; 12:619339. [PMID: 33643050 PMCID: PMC7905303 DOI: 10.3389/fphar.2021.619339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/06/2021] [Indexed: 01/10/2023] Open
Abstract
Warfarin is a widely prescribed anticoagulant but the doses required to attain the optimum therapeutic effect exhibit dramatic inter-individual variability. Pharmacogenomics-guided warfarin dosing has been recommended to improve safety and effectiveness. We analyzed the cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase complex subunit 1 (VKORC1) genes among 120 patients taking warfarin. A new coding variant was identified by sequencing CYP2C9. The novel A > G mutation at nucleotide position 14,277 led to an amino acid substitution of isoleucine with valine at position 213 (I213V). The functional consequence of the variant was subsequently evaluated in vitro. cDNA of the novel variant was constructed by site-directed mutagenesis and the recombinant protein was expressed in vitro using a baculovirus–insect cell expression system. The recombinant protein expression was quantified at apoprotein and holoprotein levels. Its enzymatic activities toward tolbutamide, warfarin and losartan were then assessed. It exhibited changed apparent Km values and increases of 148%, 84% and 67% in the intrinsic clearance of tolbutamide, warfarin and losartan, respectively, compared to wild-type CYP2C9*1, indicating dramatically enhanced in vitro enzymatic activity. Our study suggests that the amino acid at position 213 in wild-type CYP2C9*1 may be important for the enzymatic activity of CYP2C9 toward tolbutamide, warfarin and losartan. In summary, a patient taking high-dose warfarin (6.0 mg/day) in order to achieve the target international normalized ratio was found to have a mutation in the CYP2C9 gene.
Collapse
Affiliation(s)
- Xiao-Yang Zhou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiang-Ran Lu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China.,Department of Pharmacy, Zhejiang Yueqing People's Hospital, Yueqing, China
| | - Ying-Hui Li
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Ya-Qing Ma
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Shi-Wen Zhao
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Department of Anesthesiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Fang Wang
- Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Department of Cardiology, Beijing Hospital, National Center of Gerontology; Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Ren-Ai Xu
- Department of Pharmacy, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guo-Xin Hu
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Beijing, China.,Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
219
|
Elewa H, Qurishi I, Abouelhassan R, Abou Safrah S, Alhamoud E, Bader L. Effect of SAMe-TT 2R 2 score and genetic polymorphism on the quality of anticoagulation control in Qatari patients treated with warfarin. J Thromb Thrombolysis 2021; 49:659-666. [PMID: 32274641 PMCID: PMC7182538 DOI: 10.1007/s11239-020-02102-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
There is no strong evidence on pharmacogenetics role on the quality of INR control after the initiation phase and on the maintenance of stable INR on the long term as measured by the time in therapeutic range (TTR). The benefit of a score such as SAMe-TT2R2 is that it can preemptively guide clinicians on whether to start the patient on warfarin or direct oral anticoagulant. To determine the association between genetic variants in CYP2C9, VKORC1, and CYP4F2 and TTR. To validate SAMe-TT2R2 score predictive ability on the quality of anticoagulation in Qatari patients. This is an observational nested case–control study that was conducted on a cohort of Qatari patients treated with warfarin with previously identified genotype for the CYP2C9, VKORC1, and CYP2F4. The sample size of this cohort was 148 patients. Mean TTR was 62.7 ± 21%. TTR was not significantly different among carriers of the CYP2C9*2 &*3, VKORC1(–1639G>A) or CYP4F2*3 compared to their non-carriers alleles. None of the factors in the SAMe-TT2R2 score had a significant effect on the TTR except for the female gender where TTR was significantly lower in females (n = 89) compared to males (n = 59) (59.6 ± 21% vs. 67.2 ± 20%, p = 0.03). Furthermore, patients with SAMe-TT2R2 score of zero had significantly better TTR compared to those with higher scores (76.5 ± 17% vs. 61.8 ± 21%, p = 0.04). Logistic regression analysis showed that high SAMe-TT2R2 score was the only statistically significant predicting factor of poor INR control (odds ratio (OR) 5.7, 95% confidence interval (CI) 1.1–28.3, p = 0.034). Genetic variants have no contribution to the quality of INR control. SAMe-TT2R2 score was predictive for the poor quality of anticoagulation in a cohort of Qatari patients.
Collapse
Affiliation(s)
- Hazem Elewa
- Clinical Pharmacy and Practice Section, College of Pharmacy, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Iqrah Qurishi
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | | | | | - Loulia Bader
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
220
|
Salem M, Eljilany I, El-Bardissy A, Elewa H. Genetic Polymorphism Effect on Warfarin-Rifampin Interaction: A Case Report and Review of Literature. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:149-156. [PMID: 33542643 PMCID: PMC7851577 DOI: 10.2147/pgpm.s288918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/29/2020] [Indexed: 01/06/2023]
Abstract
Warfarin-rifampin interaction has been reported since the 1970s. Due to rifampin's strong induction of CYP2C9, most cases could not attain the target international normalized ratio (INR) despite warfarin dose escalation. Genetic polymorphisms determine up to 50% of warfarin dose variability. A 38-year-old woman was started on warfarin and rifampin for cerebral venous sinus thrombosis and pulmonary tuberculosis. Over six weeks, the daily warfarin dose was increased from 3 to 10 mg to attain three consecutive in-clinic therapeutic INRs. She completed three complications-free months of warfarin treatment with time in therapeutic range (TTR) of 46%. We performed retrospective genetic testing to determine the patient's CYP2C9, CYP4F2, and VKORC1 genotypes and whether they had affected the interaction outcome. The analysis revealed that the subject carries CYP2C9*3*3 and VKORC1-1639 (GA) mutations, classifying her as a slow metabolizer and, hence, highly warfarin-sensitive. This was reflected on how the case responded to a relatively lower dose than previously reported cases that did not achieve the target on warfarin daily doses up to 35 mg. This is the first report addressing the genotype effect on this interaction. Patients with genetic variants requiring low warfarin doses are more likely to respond at a feasible dose while on rifampin. Future studies to evaluate warfarin-rifampin-gene interaction are warranted.
Collapse
Affiliation(s)
- Muhammad Salem
- Department of Pharmacy, Hamad General Hospital, Doha, Qatar
| | - Islam Eljilany
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | | | - Hazem Elewa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
221
|
Affiliation(s)
- Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
222
|
Functional Assessment of 12 Rare Allelic CYP2C9 Variants Identified in a Population of 4773 Japanese Individuals. J Pers Med 2021; 11:jpm11020094. [PMID: 33540768 PMCID: PMC7912942 DOI: 10.3390/jpm11020094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) is an important drug-metabolizing enzyme that contributes to the metabolism of approximately 15% of clinically used drugs, including warfarin, which is known for its narrow therapeutic window. Interindividual differences in CYP2C9 enzymatic activity caused by CYP2C9 genetic polymorphisms lead to inconsistent treatment responses in patients. Thus, in this study, we characterized the functional differences in CYP2C9 wild-type (CYP2C9.1), CYP2C9.2, CYP2C9.3, and 12 rare novel variants identified in 4773 Japanese individuals. These CYP2C9 variants were heterologously expressed in 293FT cells, and the kinetic parameters (Km, kcat, Vmax, catalytic efficiency, and CLint) of (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation were estimated. From this analysis, almost all novel CYP2C9 variants showed significantly reduced or null enzymatic activity compared with that of the CYP2C9 wild-type. A strong correlation was found in catalytic efficiencies between (S)-warfarin 7-hydroxylation and tolbutamide 4-hydroxylation among all studied CYP2C9 variants. The causes of the observed perturbation in enzyme activity were evaluated by three-dimensional structural modeling. Our findings could clarify a part of discrepancies among genotype–phenotype associations based on the novel CYP2C9 rare allelic variants and could, therefore, improve personalized medicine, including the selection of the appropriate warfarin dose.
Collapse
|
223
|
Fanni D, Pinna F, Gerosa C, Paribello P, Carpiniello B, Faa G, Manchia M. Anatomical distribution and expression of CYP in humans: Neuropharmacological implications. Drug Dev Res 2021; 82:628-667. [PMID: 33533102 DOI: 10.1002/ddr.21778] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
The cytochrome P450 (CYP450) superfamily is responsible for the metabolism of most xenobiotics and pharmacological treatments generally used in clinical settings. Genetic factors as well as environmental determinants acting through fine epigenetic mechanisms modulate the expression of CYP over the lifespan (fetal vs. infancy vs. adult phases) and in diverse organs. In addition, pathological processes might alter the expression of CYP. In this selective review, we sought to summarize the evidence on the expression of CYP focusing on three specific aspects: (a) the anatomical distribution of the expression in body districts relevant in terms of drug pharmacokinetics (liver, gut, and kidney) and pharmacodynamics, focusing for the latter on the brain, since this is the target organ of psychopharmacological agents; (b) the patterns of expression during developmental phases; and (c) the expression of CYP450 enzymes during pathological processes such as cancer. We showed that CYP isoforms show distinct patterns of expression depending on the body district and the specific developmental phases. Of particular relevance for neuropsychopharmacology is the complex regulatory mechanisms that significantly modulate the complexity of the pharmacokinetic regulation, including the concentration of specific CYP isoforms in distinct areas of the brain, where they could greatly affect local substrate and metabolite concentrations of drugs.
Collapse
Affiliation(s)
- Daniela Fanni
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Federica Pinna
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Clara Gerosa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Bernardo Carpiniello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Gavino Faa
- Unit of Anatomic Pathology, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Anatomic Pathology, University Hospital Agency of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy.,Unit of Clinical Psychiatry, University Hospital Agency of Cagliari, Cagliari, Italy.,Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
224
|
Fan M, Yarema MC, Box A, Hume S, Aitchison KJ, Bousman CA. Identification of high-impact gene-drug pairs for pharmacogenetic testing in Alberta, Canada. Pharmacogenet Genomics 2021; 31:29-39. [PMID: 32826605 DOI: 10.1097/fpc.0000000000000418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To facilitate decision-making and priority-setting related to Alberta's Pharmacogenomics (PGx) testing implementation strategy by identifying gene-drug pairs with the highest potential impact on prescribing practices in Alberta. PATIENTS AND METHODS Annual drug dispensing data for Alberta from 2012 to 2016 for 57 medications with PGx-based prescribing guidelines were obtained, along with population estimates and demographics (age and ethnicity). Frequencies of actionable PGx genotypes by ethnicity were obtained from the Pharmacogenomics Knowledgebase (PharmGKB). Annual dispensing activity for each of the 57 medications was calculated for the full population (all ages) and children/youth (0-19 years). Alberta ethnicity data were cross-referenced with genetic frequency data for each of the main ethnic groups from PharmGKB to estimate the proportion of individuals with actionable genotypes. Actionable genotype proportions and drug dispensing frequencies were collectively used to identify high impact gene-drug pairs. RESULTS We found (a) half of the drugs with PGx-based prescribing guidelines, namely, analgesics, proton pump inhibitors, psychotropics, and cardiovascular drugs, were dispensed at high frequencies (>1% of the entire population), (b) the dispensing rate for about one-third of these drugs increased over the 5-year study period, (c) between 1.1 and 45% of recipients of these drugs carried actionable genotypes, and (d) the gene-drug pairs with greatest impact in Alberta predominatly included CYP2C19 or CYP2D6. CONCLUSIONS We uncovered specific patterns in drug dispensing and identified important gene-drug pairs that will inform the planning and development of an evidenced-based PGx testing service in Alberta, Canada. Adaptation of our approach may facilitate the process of evidence-based PGx testing implementation in other jurisdictions.
Collapse
Affiliation(s)
- Mikayla Fan
- Biomedical Sciences, Cumming School of Medicine, University of Calgary, Calgary
| | - Mark C Yarema
- Poison and Drug Information Service, Alberta Health Services, Calgary
- Section of Clinical Pharmacology and Toxicology, Alberta Health Services, Calgary
- Department of Emergency Medicine, University of Calgary, Calgary
| | - Adrian Box
- Alberta Precision Laboratories, Alberta Health Services, Edmonton
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary
| | - Stacey Hume
- Alberta Precision Laboratories, Alberta Health Services, Edmonton
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton
| | - Katherine J Aitchison
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton
- Department of Psychiatry and Medical Genetics, University of Alberta, Edmonton
| | - Chad A Bousman
- Department of Medical Genetics, Psychiatry, Physiology and Pharmacology, University of Calgary, Calgary
- Alberta Children's Hospital Research Institute, Calgary
- Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
225
|
Wake DT, Bell GC, Gregornik DB, Ho TT, Dunnenberger HM. Synthesis of major pharmacogenomics pretest counseling themes: a multisite comparison. Pharmacogenomics 2021; 22:165-176. [PMID: 33461326 DOI: 10.2217/pgs-2020-0168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The accessibility of pharmacogenomic (PGx) testing has grown substantially over the last decade and with it has arisen a demand for patients to be counseled on the use of these tests. While guidelines exist for the use of PGx results; objective determinants for who should receive PGx testing remain incomplete. PGx clinical services have been created to meet these screening and education needs and significant variability exists between these programs. This article describes the practices of four PGx clinics during pretest counseling sessions. A description of the major tenets of the benefits, limitations and risks of testing are compiled. Additional tools are provided to serve as a foundation for those wishing to begin or expand their own counseling service.
Collapse
Affiliation(s)
- Dyson T Wake
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA
| | - Gillian C Bell
- Genetics & Personalized Medicine Department, Mission Health, Asheville, NC 28803, USA
| | - David B Gregornik
- Pharmacogenomics Program, Children's Minnesota, Minneapolis, MN 55404, USA
| | - Teresa T Ho
- Department of Pharmacotherapeutics & Clinical Research, University of South Florida Taneja College of Pharmacy, Tampa, FL 33612, USA
| | - Henry M Dunnenberger
- Neaman Center for Personalized Medicine, NorthShore University HealthSystem, Evanston, IL 60201, USA
| |
Collapse
|
226
|
Nobakht E, Jagadeesan M, Paul R, Bromberg J, Dadgar S. Precision Medicine in Kidney Transplantation: Just Hype or a Realistic Hope? Transplant Direct 2021; 7:e650. [PMID: 33437865 PMCID: PMC7793397 DOI: 10.1097/txd.0000000000001102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
Desirable outcomes including rejection- and infection-free kidney transplantation are not guaranteed despite current strategies for immunosuppression and using prophylactic antimicrobial medications. Graft survival depends on factors beyond human leukocyte antigen matching such as the level of immunosuppression, infections, and management of other comorbidities. Risk stratification of transplant patients based on predisposing genetic modifiers and applying precision pharmacotherapy may help improving the transplant outcomes. Unlike certain fields such as oncology in which consistent attempts are being carried out to move away from the "error and trial approach," transplant medicine is lagging behind in implementing personalized immunosuppressive therapy. The need for maintaining a precarious balance between underimmunosuppression and overimmunosuppression coupled with adverse effects of medications calls for a gene-based guidance for precision pharmacotherapy in transplantation. Technologic advances in molecular genetics have led to increased accessibility of genetic tests at a reduced cost and have set the stage for widespread use of gene-based therapies in clinical care. Evidence-based guidelines available for precision pharmacotherapy have been proposed, including guidelines from Clinical Pharmacogenetics Implementation Consortium, the Pharmacogenomics Knowledge Base National Institute of General Medical Sciences of the National Institutes of Health, and the US Food and Drug Administration. In this review, we discuss the implications of pharmacogenetics and potential role for genetic variants-based risk stratification in kidney transplantation. A single score that provides overall genetic risk, a polygenic risk score, can be achieved by combining of allograft rejection/loss-associated variants carried by an individual and integrated into practice after clinical validation.
Collapse
Affiliation(s)
- Ehsan Nobakht
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Muralidharan Jagadeesan
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Rohan Paul
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
| | - Jonathan Bromberg
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD
| | - Sherry Dadgar
- Division of Renal Diseases and Hypertension, Department of Medicine, George Washington University School of Medicine, Washington, DC
- Personalized Medicine Care Diagnostics Laboratory (PMCDx), Inc., Germantown, MD
| |
Collapse
|
227
|
Abdullah-Koolmees H, van Keulen AM, Nijenhuis M, Deneer VHM. Pharmacogenetics Guidelines: Overview and Comparison of the DPWG, CPIC, CPNDS, and RNPGx Guidelines. Front Pharmacol 2021; 11:595219. [PMID: 33568995 PMCID: PMC7868558 DOI: 10.3389/fphar.2020.595219] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/30/2020] [Indexed: 12/12/2022] Open
Abstract
Many studies have shown that the efficacy and risk of side effects of drug treatment is influenced by genetic variants. Evidence based guidelines are essential for implementing pharmacogenetic knowledge in daily clinical practice to optimize pharmacotherapy of individual patients. A literature search was performed to select committees developing guidelines with recommendations being published in English. The Dutch Pharmacogenetics Working Group (DPWG), the Clinical Pharmacogenetics Implementation Consortium (CPIC), the Canadian Pharmacogenomics Network for Drug Safety (CPNDS), and the French National Network (Réseau) of Pharmacogenetics (RNPGx) were selected. Their guidelines were compared with regard to the methodology of development, translation of genotypes to predicted phenotypes, pharmacotherapeutic recommendations and recommendations on genotyping. A detailed overview of all recommendations for gene-drug combinations is given. The committees have similar methodologies of guideline development. However, the objectives differed at the start of their projects, which have led to unique profiles and strengths of their guidelines. DPWG and CPIC have a main focus on pharmacotherapeutic recommendations for a large number of drugs in combination with a patient’s genotype or predicted phenotype. DPWG, CPNDS and RNPGx also recommend on performing genetic testing in daily clinical practice, with RNPGx even describing specific clinical settings or medical conditions for which genotyping is recommended. Discordances exist, however committees also initiated harmonizing projects. The outcome of a consensus project was to rename “extensive metabolizer (EM)” to “normal metabolizer (NM)”. It was decided to translate a CYP2D6 genotype with one nonfunctional allele (activity score 1.0) into the predicted phenotype of intermediate metabolizer (IM). Differences in recommendations are the result of the methodologies used, such as assessment of dose adjustments of tricyclic antidepressants. In some cases, indication or dose specific recommendations are given for example for clopidogrel, codeine, irinotecan. The following drugs have recommendations on genetic testing with the highest level: abacavir (HLA), clopidogrel (CYP2C19), fluoropyrimidines (DPYD), thiopurines (TPMT), irinotecan (UGT1A1), codeine (CYP2D6), and cisplatin (TPMT). The guidelines cover many drugs and genes, genotypes, or predicted phenotypes. Because of this and their unique features, considering the totality of guidelines are of added value. In conclusion, many evidence based pharmacogenetics guidelines with clear recommendations are available for clinical decision making by healthcare professionals, patients and other stakeholders.
Collapse
Affiliation(s)
- Heshu Abdullah-Koolmees
- Division of Laboratories, Pharmacy, and Biomedical Genetics, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands
| | - Antonius M van Keulen
- Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| | - Marga Nijenhuis
- Royal Dutch Pharmacists Association (KNMP), Hague, Netherlands
| | - Vera H M Deneer
- Division of Laboratories, Pharmacy, and Biomedical Genetics, Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht, Netherlands.,Division of Pharmacoepidemiology and Clinical Pharmacology, Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, Netherlands
| |
Collapse
|
228
|
Youssef E, Kirkdale CL, Wright DJ, Guchelaar HJ, Thornley T. Estimating the potential impact of implementing pre-emptive pharmacogenetic testing in primary care across the UK. Br J Clin Pharmacol 2021; 87:2907-2925. [PMID: 33464647 DOI: 10.1111/bcp.14704] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 02/01/2023] Open
Abstract
AIMS Pharmacogenetics (PGx) in the UK is currently implemented in secondary care for a small group of high-risk medicines. However, most prescribing takes place in primary care, with a large group of medicines influenced by commonly occurring genetic variations. The goal of this study is to quantitatively estimate the volumes of medicines impacted by implementation of a population-level, pre-emptive pharmacogenetic screening programme for nine genes related to medicines frequently dispensed in primary care in 2019. METHODS A large community pharmacy database was analysed to estimate the national incidence of first prescriptions for 56 PGx drugs used in the UK for the period 1 January-31 December 2019. These estimated prescription volumes were combined with phenotype frequency data to estimate the occurrence of actionable drug-gene interactions (DGI) in daily practice in community pharmacies. RESULTS In between 19.1 and 21.1% (n = 5 233 353-5 780 595) of all new prescriptions for 56 drugs (n = 27 411 288 new prescriptions/year), an actionable drug-gene interaction (DGI) was present according to the guidelines of the Dutch Pharmacogenetics Working Group and/or the Clinical Pharmacogenetics Implementation Consortium. In these cases, the DGI would result in either increased monitoring, guarding against a maximum ceiling dose or an optional or immediate drug/dose change. An immediate dose adjustment or change in drug regimen accounted for 8.6-9.1% (n = 2 354 058-2 500 283) of these prescriptions. CONCLUSIONS Actionable drug-gene interactions frequently occur in UK primary care, with a large opportunity to optimise prescribing.
Collapse
Affiliation(s)
- Essra Youssef
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | | - David J Wright
- School of Pharmacy, University of East Anglia, Norwich, UK
| | - Henk-Jan Guchelaar
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tracey Thornley
- Boots UK, Thane Road, Nottingham, UK.,School of Pharmacy, University of Nottingham, Nottingham, UK
| |
Collapse
|
229
|
Qin W, Du Z, Xiao J, Duan H, Shu Q, Li H. Evaluation of clinical impact of pharmacogenomics knowledge involved in CPIC guidelines on Chinese pediatric patients. Pharmacogenomics 2021; 21:209-219. [PMID: 31967514 DOI: 10.2217/pgs-2019-0153] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aim: To evaluate the clinical benefits of implementing pharmacogenomics testing for Chinese pediatric patients. Materials & methods : Based on the drug-gene interactions involved in the Clinical Pharmacogenetics Implementation Consortium guidelines, whole-genome sequencing data from the Chinese Academy of Sciences Precision Medicine Initiative project and the medication data of pediatric patients from a children's hospital, the prevalence of the Chinese population with actionable pharmacogenomic variants was calculated, the prescribing pattern for pediatric patients was analyzed. Results: 37.0% of the drugs involved in the Clinical Pharmacogenetics Implementation Consortium guidelines were used by Chinese pediatric patients, 8.91% inpatients and 0.89% outpatients received at least one pharmacogenomics medication, 1.24% (4803) inpatients and 0.16% (2940) outpatients were estimated to be at high risk of pharmacogenomic-related adverse therapeutic outcomes. Conclusion: Implementing pharmacogenomics testing can improve therapeutic outcomes for many Chinese pediatric patients.
Collapse
Affiliation(s)
- Weifeng Qin
- The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou 310052, PR China.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jingfa Xiao
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Huilong Duan
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou 310027, PR China
| | - Qiang Shu
- The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou 310052, PR China
| | - Haomin Li
- The Children's Hospital, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Hangzhou 310052, PR China
| |
Collapse
|
230
|
Tao Y, Jiang B, Xue L, Xie C, Zhang Y. Evolutionary synthetic oversampling technique and cocktail ensemble model for warfarin dose prediction with imbalanced data. Neural Comput Appl 2021. [DOI: 10.1007/s00521-020-05568-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
231
|
Sambyalova AY, Bairova TA, Belyaeva EV, Ershova OA, Sargaeva DS, Kolesnikov SI. CYP2C9, CYP4F2, VKORC1 Gene Polymorphism in Buryat Population. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795420120121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
232
|
王 莽, 朱 涛, 俞 国, 霍 强, 杨 毅. [The Effect of CYP4 F2 Polymorphism on Initial Warfarin Dose in Patients with Heart Valve Replacement]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:129-133. [PMID: 33474902 PMCID: PMC10408945 DOI: 10.12182/20210160108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To study the effect of cytochrome P-4504F2 ( CYP4 F2) gene polymorphism on the initial dose of warfarin in patients after mechanical heart valve replacement. METHODS We collected 350 patients receiving warfarin after mechanical heart valve replacement from January 2013 to December 2015 in our hospital. According to the international standardized ratio (INR) ≥2 at the initial stage after surgery, the patients were divided into two groups: INR≥2 group and INR<2 group. We selected the blood samples of all the 350 patients with testing the CYP4 F2 gene type of each patient, and analyzed the effect of CYP4 F2 gene polymorphism on the initial dose of warfarin after mechanical heart valve replacement (the average daily dose during hospitalization of patients 5-10 days after mechanical heart valve replacement). RESULTS There was no statistical significance in the initial dose of warfarin among patients with different CYP4 F2 genotypes. However, warfarin dose was higher in CYP4 F2 TT genotype than in CYP4 F2 CC carriers ((3.37±0.68) mg vs. (2.94±0.74) mg, P<0.05) in INR≥2 group; In patients with the same genotype, the initial dose of warfarin in the CYP4 F2 CC ((4.02±0.58) mg vs. (2.94±0.74) mg) and CYP4 F2 CT genotypes ((4.15±0.88) mg vs. (3.18±0.82) mg) of INR<2 group was higher than that in INR≥2 group ( P<0.05). Gender, age, body mass index (BMI), comorbidities (hypertension, diabetes mellitus, coronary heart disease, atrial fibrillation), cytopigment P-450 2C9 ( CYP2 C9), CYP4 F2 and vitamin K peroxide-reductase complex 1 ( VKORC1) gene polymorphism and INR compliance were included in multiple linear regression analysis. The regression equation was as follows: warfarin initial dose (mg) =-8.634+0.352×BMI (kg/m 2) +1.102× CYP4 F2 genotype (CC or CT values 1, TT values 2) +2.147× VKORC1 (AA or AG values 1, GG values 2) +1.325×INR ( INR≥2 values 0, INR<2 values 1). The coefficient of determination ( R 2) of regression equation was 0.431 ( P<0.05). CONCLUSION CYP4 F2 gene polymorphism may affect the initial dose of warfarin in patients after heart valve replacement, and this effect is also affected by body characteristics and other factors.
Collapse
Affiliation(s)
- 莽原 王
- 新疆医科大学第一附属医院 临床医学博士后科研流动站 (乌鲁木齐 830054)Clinical Medicine Postdoctoral Research Station, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
- 新疆医科大学第一附属医院 心外科 (乌鲁木齐 830054)Department of Cardiac Surgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - 涛 朱
- 新疆医科大学第一附属医院 临床医学博士后科研流动站 (乌鲁木齐 830054)Clinical Medicine Postdoctoral Research Station, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - 国军 俞
- 新疆医科大学第一附属医院 临床医学博士后科研流动站 (乌鲁木齐 830054)Clinical Medicine Postdoctoral Research Station, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - 强 霍
- 新疆医科大学第一附属医院 临床医学博士后科研流动站 (乌鲁木齐 830054)Clinical Medicine Postdoctoral Research Station, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - 毅宁 杨
- 新疆医科大学第一附属医院 临床医学博士后科研流动站 (乌鲁木齐 830054)Clinical Medicine Postdoctoral Research Station, the First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
233
|
Lin YS, Thummel KE, Thompson BD, Totah RA, Cho CW. Sources of Interindividual Variability. Methods Mol Biol 2021; 2342:481-550. [PMID: 34272705 DOI: 10.1007/978-1-0716-1554-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The efficacy, safety, and tolerability of drugs are dependent on numerous factors that influence their disposition. A dose that is efficacious and safe for one individual may result in sub-therapeutic or toxic blood concentrations in others. A significant source of this variability in drug response is drug metabolism, where differences in presystemic and systemic biotransformation efficiency result in variable degrees of systemic exposure (e.g., AUC, Cmax, and/or Cmin) following administration of a fixed dose.Interindividual differences in drug biotransformation have been studied extensively. It is recognized that both intrinsic factors (e.g., genetics, age, sex, and disease states) and extrinsic factors (e.g., diet , chemical exposures from the environment, and the microbiome) play a significant role. For drug-metabolizing enzymes, genetic variation can result in the complete absence or enhanced expression of a functional enzyme. In addition, upregulation and downregulation of gene expression, in response to an altered cellular environment, can achieve the same range of metabolic function (phenotype), but often in a less predictable and time-dependent manner. Understanding the mechanistic basis for variability in drug disposition and response is essential if we are to move beyond the era of empirical, trial-and-error dose selection and into an age of personalized medicine that will improve outcomes in maintaining health and treating disease.
Collapse
Affiliation(s)
- Yvonne S Lin
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA.
| | - Kenneth E Thummel
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Brice D Thompson
- Department of Pharmaceutics, University of Washington, Seattle, WA, USA
| | - Rheem A Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| | - Christi W Cho
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA
| |
Collapse
|
234
|
El Rouby N, Rodrigues Marcatto L, Claudio K, Camargo Tavares L, Steiner H, Botton MR, Lubitz SA, Fallon EN, Yee K, Kaye J, Scott SA, Karnes J, Caleb Junior de Lima Santos P, Duconge J, Cavallari LH. Multi-site Investigation of Genetic Determinants of Warfarin Dose Variability in Latinos. Clin Transl Sci 2021; 14:268-276. [PMID: 32860733 PMCID: PMC7877858 DOI: 10.1111/cts.12854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
We conducted a multi-site investigation of genetic determinants of warfarin dose variability in Latinos from the U.S. and Brazil. Patients from four institutions in the United States (n = 411) and Brazil (n = 663) were genotyped for VKORC1 c.-1639G> A, common CYP2C9 variants, CYP4F2*3, and NQO1*2. Multiple regression analysis was used in the U.S. cohort to test the association between warfarin dose and genotype, adjusting for clinical factors, with further testing in an independent cohort of Brazilians. In the U.S. cohort, VKORC1 and CYP2C9 variants were associated with lower warfarin dose (β = -0.29, P < 2.0 × 10-16 ; β = -0.21, P = 4.7 × 10-7 , respectively) whereas CYP4F2 and NQO1 variants were associated with higher dose (β = 0.10, P = 2 × 10-4 ; β = 0.10, P = 0.01, respectively). Associations with VKORC1 (β = -0.14, P = 2.0 × 10-16 ), CYP2C9 (β = -0.07, P = 5.6 × 10-10 ), and CYP4F2 (β = 0.03, P = 3 × 10-3 ), but not NQO1*2 (β = 0.01, P = 0.30), were replicated in the Brazilians, explaining 43-46% of warfarin dose variability among the cohorts from the U.S. and Brazil, respectively. We identified genetic associations with warfarin dose requirements in the largest cohort of ancestrally diverse, warfarin-treated Latinos from the United States and Brazil to date. We confirmed the association of variants in VKORC1, CYP2C9, and CYP4F2 with warfarin dose in Latinos from the United States and Brazil.
Collapse
Affiliation(s)
- Nihal El Rouby
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFloridaUSA
- Department of Pharmacy Practice and Administrative SciencesUniversity of Cincinnati James L. Winkle College of PharmacyCincinnatiOhioUSA
| | - Leiliane Rodrigues Marcatto
- Laboratory of Genetics and Molecular CardiologyFaculdade de Medicina FMUSPHeart Institute (InCor)Universidade de São PauloSão PauloBrazil
| | | | - Letícia Camargo Tavares
- Laboratory of Genetics and Molecular CardiologyFaculdade de Medicina FMUSPHeart Institute (InCor)Universidade de São PauloSão PauloBrazil
| | - Heidi Steiner
- Department of Pharmacy Practice and ScienceUniversity of Arizona College of PharmacyTucsonArizonaUSA
| | | | - Steve A. Lubitz
- Cardiac Arrhythmia Service and Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | | | - Kevin Yee
- Banner University Medical Center‐TucsonTucsonArizonaUSA
| | - Justin Kaye
- University of Arizona College of MedicineTucsonArizonaUSA
| | | | - Jason Karnes
- Laboratory of Genetics and Molecular CardiologyFaculdade de Medicina FMUSPHeart Institute (InCor)Universidade de São PauloSão PauloBrazil
| | | | | | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics and Precision MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
235
|
Mostafa S, Polasek TM, Sheffield LJ, Huppert D, Kirkpatrick CMJ. Quantifying the Impact of Phenoconversion on Medications With Actionable Pharmacogenomic Guideline Recommendations in an Acute Aged Persons Mental Health Setting. Front Psychiatry 2021; 12:724170. [PMID: 34489765 PMCID: PMC8416898 DOI: 10.3389/fpsyt.2021.724170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: Polypharmacy and genetic variants that strongly influence medication response (pharmacogenomics, PGx) are two well-described risk factors for adverse drug reactions. Complexities arise in interpreting PGx results in the presence of co-administered medications that can cause cytochrome P450 enzyme phenoconversion. Aim: To quantify phenoconversion in a cohort of acute aged persons mental health patients and evaluate its impact on the reporting of medications with actionable PGx guideline recommendations (APRs). Methods: Acute aged persons mental health patients (N = 137) with PGx and medication data at admission and discharge were selected to describe phenoconversion frequencies for CYP2D6, CYP2C19 and CYP2C9 enzymes. The expected impact of phenoconversion was then assessed on the reporting of medications with APRs. Results: Post-phenoconversion, the predicted frequency at admission and discharge increased for CYP2D6 intermediate metabolisers (IMs) by 11.7 and 16.1%, respectively. Similarly, for CYP2C19 IMs, the predicted frequency at admission and discharge increased by 13.1 and 11.7%, respectively. Nineteen medications with APRs were prescribed 120 times at admission, of which 50 (42%) had APRs pre-phenoconversion, increasing to 60 prescriptions (50%) post-phenoconversion. At discharge, 18 medications with APRs were prescribed 122 times, of which 48 (39%) had APRs pre-phenoconversion, increasing to 57 prescriptions (47%) post-phenoconversion. Discussion: Aged persons mental health patients are commonly prescribed medications with APRs, but interpretation of these recommendations must consider the effects of phenoconversion. Adopting a collaborative care model between prescribers and clinical pharmacists should be considered to address phenoconversion and ensure the potential benefits of PGx are maximised.
Collapse
Affiliation(s)
- Sam Mostafa
- Centre for Medicine Use and Safety, Monash University, Parkville, VIC, Australia.,MyDNA Life, Australia Limited, South Yarra, VIC, Australia
| | - Thomas M Polasek
- Centre for Medicine Use and Safety, Monash University, Parkville, VIC, Australia.,Certara, Princeton, NJ, United States.,Department of Clinical Pharmacology, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Leslie J Sheffield
- MyDNA Life, Australia Limited, South Yarra, VIC, Australia.,Department of Genetic Medicine, Melbourne Health, Parkville, VIC, Australia
| | - David Huppert
- Department of Aged & Liaison Psychiatry, Alfred Health, Melbourne, VIC, Australia.,Northwestern Mental Health, Melbourne Health, Melbourne, VIC, Australia
| | - Carl M J Kirkpatrick
- Centre for Medicine Use and Safety, Monash University, Parkville, VIC, Australia
| |
Collapse
|
236
|
Vanzo RJ, Prasad A, Staunch L, Hensel CH, Serrano MA, Wassman ER, Kaplun A, Grandin T, Boles RG. The Temple Grandin Genome: Comprehensive Analysis in a Scientist with High-Functioning Autism. J Pers Med 2020; 11:21. [PMID: 33383702 PMCID: PMC7824360 DOI: 10.3390/jpm11010021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022] Open
Abstract
Autism spectrum disorder (ASD) is a heterogeneous condition with a complex genetic etiology. The objective of this study is to identify the complex genetic factors that underlie the ASD phenotype and other clinical features of Professor Temple Grandin, an animal scientist and woman with high-functioning ASD. Identifying the underlying genetic cause for ASD can impact medical management, personalize services and treatment, and uncover other medical risks that are associated with the genetic diagnosis. Prof. Grandin underwent chromosomal microarray analysis, whole exome sequencing, and whole genome sequencing, as well as a comprehensive clinical and family history intake. The raw data were analyzed in order to identify possible genotype-phenotype correlations. Genetic testing identified variants in three genes (SHANK2, ALX1, and RELN) that are candidate risk factors for ASD. We identified variants in MEFV and WNT10A, reported to be disease-associated in previous studies, which are likely to contribute to some of her additional clinical features. Moreover, candidate variants in genes encoding metabolic enzymes and transporters were identified, some of which suggest potential therapies. This case report describes the genomic findings in Prof. Grandin and it serves as an example to discuss state-of-the-art clinical diagnostics for individuals with ASD, as well as the medical, logistical, and economic hurdles that are involved in clinical genetic testing for an individual on the autism spectrum.
Collapse
Affiliation(s)
- Rena J. Vanzo
- Lineagen, Inc., Salt Lake City, UT 84109, USA; (A.P.); (L.S.); (C.H.H.); (M.A.S.); (E.R.W.)
| | - Aparna Prasad
- Lineagen, Inc., Salt Lake City, UT 84109, USA; (A.P.); (L.S.); (C.H.H.); (M.A.S.); (E.R.W.)
| | - Lauren Staunch
- Lineagen, Inc., Salt Lake City, UT 84109, USA; (A.P.); (L.S.); (C.H.H.); (M.A.S.); (E.R.W.)
| | - Charles H. Hensel
- Lineagen, Inc., Salt Lake City, UT 84109, USA; (A.P.); (L.S.); (C.H.H.); (M.A.S.); (E.R.W.)
| | - Moises A. Serrano
- Lineagen, Inc., Salt Lake City, UT 84109, USA; (A.P.); (L.S.); (C.H.H.); (M.A.S.); (E.R.W.)
| | - E. Robert Wassman
- Lineagen, Inc., Salt Lake City, UT 84109, USA; (A.P.); (L.S.); (C.H.H.); (M.A.S.); (E.R.W.)
| | | | - Temple Grandin
- Department of Animal Science, Colorado State University, Fort Collins, CO 80523, USA;
| | - Richard G. Boles
- The Center for Neurological and Neurodevelopmental Health, Voorhees, NJ 08043, USA;
| |
Collapse
|
237
|
Nakamura M, Morino Y, Kakuta T, Hata Y, Takamisawa I, Tanabe K, Anzai H, Takahashi A, Kadota K, Suzuki H, Wakatsuki T, Okayama H, Yamashita J, Akasaka T, Yokoi H, Nakagami T, Higuchi Y, Yamaguchi J, Kimura T, Harada A, Kuroda T, Takita A, Iijima R, Murakami Y, Saito S. Monotherapy With Prasugrel After Dual-Antiplatelet Therapy for Japanese Percutaneous Coronary Intervention Patients With High Bleeding Risk - A Prospective Cohort Study (PENDULUM mono Study). Circ J 2020; 85:27-36. [PMID: 33162490 DOI: 10.1253/circj.cj-20-0786] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND The risks of bleeding and cardiovascular events in high bleeding risk (HBR) Japanese patients undergoing percutaneous coronary intervention (PCI) while receiving single-antiplatelet therapy (SAPT) remains unknown. We aimed to evaluate the frequency of bleeding and cardiovascular events associated with prasugrel monotherapy after short-term dual-antiplatelet therapy (DAPT) in Japanese HBR patients after PCI. METHODS AND RESULTS The PENDULUM mono study was a multicenter, non-interventional, prospective registry (n=1,173). The primary endpoint was the cumulative incidence of clinically relevant bleeding (CRB; Bleeding Academic Research Consortium types 2, 3, and 5) from 1 to 12 months after PCI. Secondary endpoints included major adverse cardiac and cerebrovascular events (MACCE). The proportion of patients who received prasugrel monotherapy at 12 months after PCI was 79.7%, and no cases of stent thrombosis were observed among these patients. The cumulative incidence of CRB was 3.2% from 1 to 12 months after PCI; that of MACCE was 3.8%. Severe anemia, chronic kidney disease, oral anticoagulant use at discharge, and heart failure were significantly associated with CRB. CONCLUSIONS Among HBR patients undergoing PCI who were not suitable for concomitant aspirin and were scheduled for prasugrel monotherapy, most patients were on prasugrel monotherapy after DAPT. Cumulative incidences of CRB and MACCE after periprocedural period were 3.2% and 3.8%, respectively, and no cases of stent thrombosis were reported. SAPT might be a suitable alternative to DAPT.
Collapse
Affiliation(s)
- Masato Nakamura
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center
| | | | - Tsunekazu Kakuta
- Department of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital
| | - Yoshiki Hata
- Department of Cardiology, Minamino Cardiovascular Hospital
| | | | - Kengo Tanabe
- Division of Cardiology, Mitsui Memorial Hospital
| | | | | | | | - Hiroshi Suzuki
- Division of Cardiology, Showa University Fujigaoka Hospital
| | - Tetsuzo Wakatsuki
- Department of Cardiovascular Medicine, Tokushima University Hospital
| | - Hideki Okayama
- Department of Cardiology, Ehime Prefectural Central Hospital
| | - Jun Yamashita
- Department of Cardiology, Tokyo Medical University Hospital
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University
| | | | - Takuo Nakagami
- Department of Cardiovascular Medicine, Omihachiman Community Medical Center
| | | | | | - Takumi Kimura
- Division of Cardiology, Iwate Prefectural Ofunato Hospital
| | | | | | | | - Raisuke Iijima
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center
| | | | - Shigeru Saito
- Division of Cardiology & Catheterization Laboratories, Shonan Kamakura General Hospital
| |
Collapse
|
238
|
Mathuba B, Koromina M, Mitropoulou C, Patrinos GP. Catalyzing clinical implementation of pharmacogenomics and personalized medicine interventions in Africa. Pharmacogenomics 2020; 22:115-122. [PMID: 33353428 DOI: 10.2217/pgs-2020-0101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pharmacogenomics is considered to be the low-hanging fruit in the tree of genomic medicine with numerous examples of its successful implementation in the clinic. In this perspective, we provide details about the potential clinical application of pharmacogenomics in African populations by using relevant drug cases and high-throughput genomics approaches; involving numerous countries and stakeholders; and most importantly exploiting the existing knowledge of respective large-scale initiatives. We emphasize on the necessity of constructing appropriate frameworks for government policies in African countries. We also provide input about different initiatives in the field of genomics medicine implementation in Africa, not only for their potential for synergy and collaboration among them, but also as models for replication in other regions worldwide, aiming for healthcare improvement.
Collapse
Affiliation(s)
- Bathusi Mathuba
- Botswana-Baylor Children's Clinical Centre of Excellence, Gaborone, Botswana
| | - Maria Koromina
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, 26503, Greece
| | | | - George P Patrinos
- Department of Pharmacy, University of Patras School of Health Sciences, Patras, 26503, Greece.,Department of Pathology, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain, UAE.,Zayed Center of Health Sciences, United Arab Emirates University, Al-Ain, UAE
| |
Collapse
|
239
|
Sun B, Wen YF, Culhane-Pera KA, Lo M, Xiong T, Lee K, Peng K, Thyagarajan B, Bishop JR, Zierhut H, Straka RJ. Differences in Predicted Warfarin Dosing Requirements Between Hmong and East Asians Using Genotype-Based Dosing Algorithms. Pharmacotherapy 2020; 41:265-276. [PMID: 33202062 DOI: 10.1002/phar.2487] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
INTRODUCTION Warfarin's narrow therapeutic index and high variability in dosage requirements make dosage selection critical. Genetic factors are known to impact warfarin dosage selection. The Hmong are a unique Asian subpopulation numbering over 278,000 in the United States whose participation in genetics-based research is virtually nonexistent. The translational significance of early reports of warfarin pharmacogene differences in Hmong has not been evaluated. OBJECTIVES (i) To validate previously identified allele frequency differences relevant to warfarin dosing in Hmong versus East Asians and (ii) to compare predicted warfarin sensitivity and maintenance doses between a Hmong population and an East Asian cohort. METHOD DNA collected from two independent cohorts (n=236 and n=198) of Hmong adults were genotyped for CYP2C9 (*2, *3), VKORC1 (G-1639A), and CYP4F2 (*3). Allele frequencies between the combined Hmong cohort (n=433) and East Asians (n=1165) from the 2009 International Warfarin Pharmacogenetics Consortium (IWPC) study were compared using a χ2 test. Percentages of Hmong and East Asian participants predicted to be very sensitive to warfarin were compared using a χ2 test, and the predicted mean warfarin maintenance dose was compared with a t test. RESULTS The allele frequencies of CYP2C9*3 in the combined Hmong cohort and CYP4F2*3 in the VIP-Hmong cohort are significantly different from those in East Asians (18.9% vs 3.0%, p<0.001 and 9.8% vs 22.1%, p<0.001, respectively). Comparing the combined Hmong cohort to the East Asian cohort, the percentage of participants predicted to be very sensitive to warfarin was significantly higher (28% vs 5%, p<0.01) and the mean predicted warfarin maintenance dose was significantly lower (19.8 vs 21.3 mg/week, p<0.001), respectively. CONCLUSION The unique allele frequencies related to warfarin when combined with nongenetic factors observed in the Hmong translate into clinically relevant differences in predicted maintenance dose requirements for Hmong versus East Asians.
Collapse
Affiliation(s)
- Boguang Sun
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ya-Feng Wen
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Muaj Lo
- Minnesota Community Care, St. Paul, Minnesota, USA
| | - Txia Xiong
- Minnesota Community Care, St. Paul, Minnesota, USA
| | - Koobmeej Lee
- Minnesota Community Care, St. Paul, Minnesota, USA
| | - Kerui Peng
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jeffrey R Bishop
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| | - Heather Zierhut
- Department of Genetics, Cell Biology and Development, College of Biological Science, University of Minnesota, Minneapolis, Minnesota, USA
| | - Robert J Straka
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
240
|
Malsagova KA, Butkova TV, Kopylov AT, Izotov AA, Potoldykova NV, Enikeev DV, Grigoryan V, Tarasov A, Stepanov AA, Kaysheva AL. Pharmacogenetic Testing: A Tool for Personalized Drug Therapy Optimization. Pharmaceutics 2020; 12:E1240. [PMID: 33352764 PMCID: PMC7765968 DOI: 10.3390/pharmaceutics12121240] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/15/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Pharmacogenomics is a study of how the genome background is associated with drug resistance and how therapy strategy can be modified for a certain person to achieve benefit. The pharmacogenomics (PGx) testing becomes of great opportunity for physicians to make the proper decision regarding each non-trivial patient that does not respond to therapy. Although pharmacogenomics has become of growing interest to the healthcare market during the past five to ten years the exact mechanisms linking the genetic polymorphisms and observable responses to drug therapy are not always clear. Therefore, the success of PGx testing depends on the physician's ability to understand the obtained results in a standardized way for each particular patient. The review aims to lead the reader through the general conception of PGx and related issues of PGx testing efficiency, personal data security, and health safety at a current clinical level.
Collapse
Affiliation(s)
- Kristina A. Malsagova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Tatyana V. Butkova
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Arthur T. Kopylov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Alexander A. Izotov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Natalia V. Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (N.V.P.); (D.V.E.); (V.G.)
| | - Dmitry V. Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (N.V.P.); (D.V.E.); (V.G.)
| | - Vagarshak Grigoryan
- Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; (N.V.P.); (D.V.E.); (V.G.)
| | - Alexander Tarasov
- Institute of Linguistics and Intercultural Communication, Sechenov University, 119992 Moscow, Russia;
| | - Alexander A. Stepanov
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| | - Anna L. Kaysheva
- Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; (T.V.B.); (A.T.K.); (A.A.I.); (A.A.S.); (A.L.K.)
| |
Collapse
|
241
|
Balanovska EV, Petrushenko VS, Koshel SM, Pocheshkhova EA, Chernevskiy DK, Mirzaev KB, Abdullaev S, Balanovsky OP. Cartographic atlas of frequency variation for 45 pharmacogenetic markers in populations of Russia and its neighbor states. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2020. [DOI: 10.24075/brsmu.2020.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The lack of information about the frequency of pharmacogenetic markers in Russia impedes the adoption of personalized treatment algorithms originally developed for West European populations. The aim of this paper was to study the distribution of some clinically significant pharmacogenetic markers across Russia. A total of 45 pharmacogenetic markers were selected from a few population genetic datasets, including ADME, drug target and hemostasis-controlling genes. The total number of donors genotyped for these markers was 2,197. The frequencies of these markers were determined for 50 different populations, comprised of 137 ethnic and subethnic groups. A comprehensive pharmacogenetic atlas was created, i.e. a systematic collection of gene geographic maps of frequency variation for 45 pharmacogenetic DNA markers in Russia and its neighbor states. The maps revealed 3 patterns of geographic variation. Clinal variation (a gradient change in frequency along the East-West axis) is observed in the pharmacogenetic markers that follow the main pattern of variation for North Eurasia (13% of the maps). Uniform distribution singles out a group of markers that occur at average frequency in most Russian regions (27% of the maps). Focal variation is observed in the markers that are specific to a certain group of populations and are absent in other regions (60% of the maps). The atlas reveals that the average frequency of the marker and its frequency in individual populations do not indicate the type of its distribution in Russia: a gene geographic map is needed to uncover the pattern of its variation.
Collapse
Affiliation(s)
- EV Balanovska
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Biobank of North Eurasia, Moscow, Russia
| | - VS Petrushenko
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Vavilov Institute of General Genetics, Moscow, Russia
| | - SM Koshel
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Lomonosov Moscow State University, Moscow, Russia
| | - EA Pocheshkhova
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Kuban State Medical Institute, Krasnodar, Russia
| | - DK Chernevskiy
- Bochkov Research Center for Medical Genetics, Moscow, Russia
| | - KB Mirzaev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - ShP Abdullaev
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - OP Balanovsky
- Bochkov Research Center for Medical Genetics, Moscow, Russia; Biobank of North Eurasia, Moscow, Russia; Vavilov Institute of General Genetics, Moscow, Russia
| |
Collapse
|
242
|
Ikonnikova AY, Filippova MA, Surzhikov SA, Pozhitnova VO, Kazakov RE, Lisitsa TS, Belkov SA, Nasedkina TV. Biochip-based approach for comprehensive pharmacogenetic testing. Drug Metab Pers Ther 2020; 36:dmdi-2020-0155. [PMID: 33780199 DOI: 10.1515/dmpt-2020-0155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 11/09/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Individual sensitivity to many widely used drugs is significantly associated with genetic factors. The purpose of our work was to develop an instrument for simultaneous determination of the most clinically relevant pharmacogenetic markers to allow personalized treatment, mainly in patients with cardiovascular diseases. METHODS Multiplex one-step polymerase chain reaction (PCR) followed by hybridization on a low-density biochip was applied to interrogate 15 polymorphisms in the following eight genes: VKORC1 -1639 G>A, CYP4F2 1297 G>A, GGCX 2374 C>G, CYP2C9 *2,*3 (430 C>T, 1075 A>C), CYP2D6 *3,*4, *6, *9, *41 (2549delA, 1846 G>A, 1707delT, 2615_2617delAAG, 2988 G>A), CYP2C19 *2,*3,*17 (681 G>A, 636 G>A, -806 C>T), ABCB1 (3435 C>T), SLCO1B1 *5. RESULTS Two hundred nineteen patients with cardiovascular diseases (CVD) and 48 female patients with estrogen receptor (ER)-positive breast cancer (BC) were genotyped. Of the 219 CVD patients, 203 (92.7%) carried one or more actionable at-risk genotypes based on VKORC1/CYP2C9, CYP2C9, CYP2C19, SLCO1B1, and CYP2D6 genotypes. Among them, 67 patients (30.6%) carried one, 58 patients (26.5%) carried two, 51 patients (23.3%) carried three, 26 patients (11.9%) carried four, and one patient (0.4%) carried five risk actionable genotypes. In the ER-positive BC group 12 patients (25%) were CYP2D6 intermediate or poor metabolizers. CONCLUSIONS The developed biochip is applicable for rapid and robust genotyping of patients who were taking a wide spectrum of medications to optimize drugs and dosage and avoid adverse drug reactions in cardiology, oncology, psychiatry, rheumatology and gastroenterology.
Collapse
Affiliation(s)
- Anna Yu Ikonnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina A Filippova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria O Pozhitnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ruslan E Kazakov
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana S Lisitsa
- Moscow Clinical Scientific Center named after Loginov Moscow Healthcare Department, Moscow, Russia
| | - Sergey A Belkov
- Federal State Budgetary Institution "Scientific Centre for Expert Evaluation of Medicinal Products" of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Tatiana V Nasedkina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
243
|
Bargal SA, Kight JN, Augusto de Oliveira F, Shahin MH, Langaee T, Gong Y, Hamadeh IS, Cooper-DeHoff RM, Cavallari LH. Implications of Polymorphisms in the BCKDK and GATA-4 Gene Regions on Stable Warfarin Dose in African Americans. Clin Transl Sci 2020; 14:492-496. [PMID: 33278335 PMCID: PMC7993290 DOI: 10.1111/cts.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022] Open
Abstract
VKORC1 and CYP2C9 genotypes explain less variability in warfarin dose requirements in African Americans compared with Europeans. Variants in BCKDK and GATA-4 gene regions, purported to regulate VKORC1 and CYP2C9 expression, have been shown to play an important role in warfarin dose requirements in Europeans and Asians, respectively. We sought to determine whether rs56314408 near BCKDK or GATA-4 rs2645400 influence warfarin dose requirements in 200 African Americans. Unlike the strong linkage disequilibrium (LD) between rs56314408 and VKORC1 rs9923231 in Europeans, they were not in LD in African Americans. No associations were found on univariate analysis. On multivariable analysis, rs56314408 was associated (P = 0.027) with dose in a regression model excluding VKORC1 rs9923231, and GATA-4 rs2645400 was associated (P = 0.032) with dose in a model excluding CYP2C (CYP2C9*2, *3, *5, *6, *8, and *11, CYP2C rs12777823) variants. Neither variant contributed to dose in the model that included both VKORC1 rs9923231 and CYP2C variants. Our results do not support contributions of the studied variants to warfarin dose requirements in African Americans. However, they illustrate the value of studies in African descent populations, who have low LD in their genome, in teasing out genetic variation underlying drug response associations. They also emphasize the importance of confirming associations in persons of African ancestry.
Collapse
Affiliation(s)
- Salma A Bargal
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Jennifer N Kight
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Felipe Augusto de Oliveira
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Mohamed H Shahin
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Taimour Langaee
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Yan Gong
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Issam S Hamadeh
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Rhonda M Cooper-DeHoff
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Larisa H Cavallari
- Department of Pharmacotherapy & Translational Research, Center for Pharmacogenomics & Precision Medicine, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
244
|
Al-Mahayri ZN, Patrinos GP, Wattanapokayakit S, Iemwimangsa N, Fukunaga K, Mushiroda T, Chantratita W, Ali BR. Variation in 100 relevant pharmacogenes among emiratis with insights from understudied populations. Sci Rep 2020; 10:21310. [PMID: 33277594 PMCID: PMC7718919 DOI: 10.1038/s41598-020-78231-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/17/2020] [Indexed: 02/08/2023] Open
Abstract
Genetic variations have an established impact on the pharmacological response. Investigating this variation resulted in a compilation of variants in "pharmacogenes". The emergence of next-generation sequencing facilitated large-scale pharmacogenomic studies and exhibited the extensive variability of pharmacogenes. Some rare and population-specific variants proved to be actionable, suggesting the significance of population pharmacogenomic research. A profound gap exists in the knowledge of pharmacogenomic variants enriched in some populations, including the United Arab Emirates (UAE). The current study aims to explore the landscape of variations in relevant pharmacogenes among healthy Emiratis. Through the resequencing of 100 pharmacogenes for 100 healthy Emiratis, we identified 1243 variants, of which 63% are rare (minor allele frequency ≤ 0.01), and 30% were unique. Filtering the variants according to Pharmacogenomics Knowledge Base (PharmGKB) annotations identified 27 diplotypes and 26 variants with an evident clinical relevance. Comparison with global data illustrated a significant deviation of allele frequencies in the UAE population. Understudied populations display a distinct allelic architecture and various rare and unique variants. We underscored pharmacogenes with the highest variation frequencies and provided investigators with a list of candidate genes for future studies. Population pharmacogenomic studies are imperative during the pursuit of global pharmacogenomics implementation.
Collapse
Affiliation(s)
- Zeina N Al-Mahayri
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
| | - George P Patrinos
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates
- Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rion, Patras, Greece
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Sukanya Wattanapokayakit
- Division of Genomic Medicine and Innovation Support, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Nareenart Iemwimangsa
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Taisei Mushiroda
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Bassam R Ali
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al-Ain, United Arab Emirates.
- Zayed Center for Health Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
- Department of Genetics and Genomics, College of Medicine and Heath Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
245
|
Quinn AL, Bhat S, Lee JC. Effect of CYP2C9 *11/*11 genotype on initial and long-term warfarin dose requirement and therapeutic response. Pharmacogenomics 2020; 21:1271-1277. [PMID: 33350885 DOI: 10.2217/pgs-2020-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The warfarin dose requirement and therapeutic response of a 42-year-old African-American male with genotype CYP2C9 *11/*11, VKORC1 -1639GG and CYP4F2 433Val/Val anticoagulated for ischemic stroke is described herein. Warfarin was dosed according to the institution's personalized medicine program recommendations of a 10 mg mini-load dose, followed by dose decreases to 4-6 mg/day through discharge. Stable international normalized ratio was achieved after eight doses, with good overall long-term maintenance of therapeutic international normalized ratio over several years with warfarin doses of 3.1-4.3 mg/day. This case report sheds further light on the clinical impact of CYP2C9 *11/*11 on warfarin dose requirements, short- and long-term treatment response and practical considerations for warfarin management in suspected carriers of rare variant CYP2C9 alleles.
Collapse
Affiliation(s)
| | - Shubha Bhat
- Department of Pharmacy Practice, Boston Medical Center, Boston, MA 02118, USA
| | - James C Lee
- Department of Pharmacy Practice, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
246
|
Ramsey LB, Ong HH, Schildcrout JS, Shi Y, Tang LA, Hicks JK, El Rouby N, Cavallari LH, Tuteja S, Aquilante CL, Beitelshees AL, Lemkin DL, Blake KV, Williams H, Cimino JJ, Davis BH, Limdi NA, Empey PE, Horvat CM, Kao DP, Lipori GP, Rosenman MB, Skaar TC, Teal E, Winterstein AG, Owusu Obeng A, Salyakina D, Gupta A, Gruber J, McCafferty-Fernandez J, Bishop JR, Rivers Z, Benner A, Tamraz B, Long-Boyle J, Peterson JF, Van Driest SL. Prescribing Prevalence of Medications With Potential Genotype-Guided Dosing in Pediatric Patients. JAMA Netw Open 2020; 3:e2029411. [PMID: 33315113 PMCID: PMC7737091 DOI: 10.1001/jamanetworkopen.2020.29411] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
Importance Genotype-guided prescribing in pediatrics could prevent adverse drug reactions and improve therapeutic response. Clinical pharmacogenetic implementation guidelines are available for many medications commonly prescribed to children. Frequencies of medication prescription and actionable genotypes (genotypes where a prescribing change may be indicated) inform the potential value of pharmacogenetic implementation. Objective To assess potential opportunities for genotype-guided prescribing in pediatric populations among multiple health systems by examining the prevalence of prescriptions for each drug with the highest level of evidence (Clinical Pharmacogenetics Implementation Consortium level A) and estimating the prevalence of potential actionable prescribing decisions. Design, Setting, and Participants This serial cross-sectional study of prescribing prevalences in 16 health systems included electronic health records data from pediatric inpatient and outpatient encounters from January 1, 2011, to December 31, 2017. The health systems included academic medical centers with free-standing children's hospitals and community hospitals that were part of an adult health care system. Participants included approximately 2.9 million patients younger than 21 years observed per year. Data were analyzed from June 5, 2018, to April 14, 2020. Exposures Prescription of 38 level A medications based on electronic health records. Main Outcomes and Measures Annual prevalence of level A medication prescribing and estimated actionable exposures, calculated by combining estimated site-year prevalences across sites with each site weighted equally. Results Data from approximately 2.9 million pediatric patients (median age, 8 [interquartile range, 2-16] years; 50.7% female, 62.3% White) were analyzed for a typical calendar year. The annual prescribing prevalence of at least 1 level A drug ranged from 7987 to 10 629 per 100 000 patients with increasing trends from 2011 to 2014. The most prescribed level A drug was the antiemetic ondansetron (annual prevalence of exposure, 8107 [95% CI, 8077-8137] per 100 000 children). Among commonly prescribed opioids, annual prevalence per 100 000 patients was 295 (95% CI, 273-317) for tramadol, 571 (95% CI, 557-586) for codeine, and 2116 (95% CI, 2097-2135) for oxycodone. The antidepressants citalopram, escitalopram, and amitriptyline were also commonly prescribed (annual prevalence, approximately 250 per 100 000 patients for each). Estimated prevalences of actionable exposures were highest for oxycodone and ondansetron (>300 per 100 000 patients annually). CYP2D6 and CYP2C19 substrates were more frequently prescribed than medications influenced by other genes. Conclusions and Relevance These findings suggest that opportunities for pharmacogenetic implementation among pediatric patients in the US are abundant. As expected, the greatest opportunity exists with implementing CYP2D6 and CYP2C19 pharmacogenetic guidance for commonly prescribed antiemetics, analgesics, and antidepressants.
Collapse
Affiliation(s)
- Laura B. Ramsey
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio
- Divisions of Research in Patient Services and Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Henry H. Ong
- Vanderbilt Institute for Clinical and Translational Research, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Yaping Shi
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leigh Anne Tang
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - J. Kevin Hicks
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nihal El Rouby
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Larisa H. Cavallari
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville
| | - Sony Tuteja
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia
| | | | | | - Daniel L. Lemkin
- Department of Emergency Medicine, University of Maryland, Baltimore
| | - Kathryn V. Blake
- Center for Pharmacogenomics and Translational Research, Nemours Children’s Health System, Jacksonville, Florida
| | - Helen Williams
- Nemours Research Institute, Nemours Children’s Health System, Jacksonville, Florida
| | | | | | - Nita A. Limdi
- Department of Neurology, University of Alabama at Birmingham
| | - Philip E. Empey
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christopher M. Horvat
- Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David P. Kao
- Department of Medicine, School of Medicine, University of Colorado, Aurora
| | - Gloria P. Lipori
- University of Florida Health and University of Florida Health Sciences Center, Gainesville
| | - Marc B. Rosenman
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis
- Department of Pediatrics, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois
| | - Todd C. Skaar
- Department of Medicine, Indiana University School of Medicine, Indianapolis
| | | | - Almut G. Winterstein
- Department of Pharmaceutical Outcomes and Policy and Center for Drug Evaluation and Safety, University of Florida, Gainesville
| | - Aniwaa Owusu Obeng
- The Charles Bronfman Institute for Personalized Medicine, Departments of Medicine and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Daria Salyakina
- Personalized Medicine Initiative, Nicklaus Children’s Health System, Miami, Florida
| | - Apeksha Gupta
- Personalized Medicine Initiative, Nicklaus Children’s Health System, Miami, Florida
| | - Joshua Gruber
- Personalized Medicine Initiative, Nicklaus Children’s Health System, Miami, Florida
| | | | - Jeffrey R. Bishop
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis
- Department of Psychiatry, University of Minnesota Medical School, Minneapolis
| | - Zach Rivers
- Department of Pharmaceutical Care and Health Systems, University of Minnesota College of Pharmacy, Minneapolis
| | - Ashley Benner
- Clinical and Translational Science Institute, University of Minnesota, Minneapolis
| | - Bani Tamraz
- School of Pharmacy, University of California, San Francisco
| | | | - Josh F. Peterson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Sara L. Van Driest
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
247
|
Nguyen TT, Pearson RA, Mohamed ME, Schladt DP, Berglund D, Rivers Z, Skaar DJ, Wu B, Guan W, van Setten J, Keating BJ, Dorr C, Remmel RP, Matas AJ, Mannon RB, Israni AK, Oetting WS, Jacobson PA. Pharmacogenomics in kidney transplant recipients and potential for integration into practice. J Clin Pharm Ther 2020; 45:1457-1465. [PMID: 32662547 PMCID: PMC7719579 DOI: 10.1111/jcpt.13223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/14/2020] [Accepted: 06/11/2020] [Indexed: 11/29/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Pharmacogenomic biomarkers are now used in many clinical care settings and represent one of the successes of precision medicine. Genetic variants are associated with pharmacokinetic and pharmacodynamic changes leading to medication adverse effects and changes in clinical response. Actionable pharmacogenomic variants are common in transplant recipients and have implications for medications used in transplant, but yet are not broadly incorporated into practice. METHODS From the Clinical Pharmacogenetics Implementation Consortium and Dutch Pharmacogenetics Working Group guidelines, and PharmGKB databases, 12 pharmacogenomic genes with 30 variants were selected and used to create diplotypes and actionable pharmacogenomic phenotypes. A total of 853 kidney allograft recipients who had genomic information available from a genome-wide association study were included. RESULTS Each recipient had at least one actionable pharmacogenomic diplotype/phenotype, whereas the majority (58%) had three or four actionable diplotypes/phenotypes and 17.4% had five or more among the 12 genes. The participants carried actionable diplotypes/phenotypes for multiple medications, including tacrolimus, azathioprine, clopidogrel, warfarin, simvastatin, voriconazole, antidepressants and proton-pump inhibitors. WHAT IS NEW AND CONCLUSION Pharmacogenomic variants are common in transplant recipients, and transplant recipients receive medications that have actionable variants. CLINICAL TRIAL Genomics of Transplantation, clinicaltrials.gov (NCT01714440).
Collapse
Affiliation(s)
- Tam T Nguyen
- College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | | | - Moataz E Mohamed
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
- Department of Pharmacy Practice, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - David P Schladt
- Chronic Disease Research Group, Minneapolis Medical Research Foundation, Minneapolis, MN, USA
| | - Danielle Berglund
- Complex Care Core Analytics, Fairview University of Minnesota, Minneapolis, MN, USA
| | - Zachary Rivers
- Social and Administrative Pharmacy, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Debra J Skaar
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Baolin Wu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Jessica van Setten
- Department of Cardiology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Brendan J Keating
- Penn Transplant Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casey Dorr
- Minneapolis Medical Research Foundation and Division of Nephrology, Hennepin Healthcare, Minneapolis, MN, USA
| | - Rory P Remmel
- Department of Medicinal Chemistry, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Arthur J Matas
- Department of Surgery, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Roslyn B Mannon
- Department of Nephrology, School of Medicine, University of Nebraska, Omaha, NE, USA
| | - Ajay K Israni
- Division of Nephrology, Hennepin Healthcare, Minneapolis, MN, USA
- Epidemiology & Community Health, University of Minnesota, Minneapolis, MN, USA
| | - William S Oetting
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| | - Pamala A Jacobson
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
248
|
Zastrozhin MS, Skryabin VY, Torrado M, Petrovna A, Sorokin AS, Grishina EA, Ryzhikova KA, Bedina IA, Buzik OZ, Chumakov EM, Savchenko LM, Brun EA, Sychev DA. Effects of CYP2C19*2 polymorphisms on the efficacy and safety of phenazepam in patients with anxiety disorder and comorbid alcohol use disorder. Pharmacogenomics 2020; 21:111-123. [PMID: 31957548 DOI: 10.2217/pgs-2019-0019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Introduction: Phenazepam therapy can often be ineffective and some patients develop dose-related adverse drug reactions. Aim. The purpose of this research was to study the effect of the CYP2C19*2 (681G>A, rs4244285) in patients with anxiety disorders and alcohol dependence taking phenazepam therapy. Materials & methods: Patients (175 males, average age: 37.16 ± 7.84 years) received phenazepam in tablet form for 5 days. Genotyping was performed by real-time polymerase chain reaction. Results: The statistically significant differences in the UKU Side-Effect Rating Scale scores on the fifth day of therapy: (CYP2C19*1/*1) 2.00 [1.00; 2.00), (CYP2C19*1/*2) 7.00 (7.00; 7.00), (CYP2C19*2/*2) 9.00 (8.00; 9.00), p < 0.001. Conclusion: This study demonstrated the different efficacy and safety of phenazepam in patients with different genotypes of CYP2C19*2.
Collapse
Affiliation(s)
- Michael S Zastrozhin
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Valentin Y Skryabin
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Marco Torrado
- University of Lisbon, Faculty of Medicine, ISAMB (Instituto de Saúde Ambiental) venida Professor Egas Moniz (Edifício comum ao Hospital de Santa Maria), 1649-028 Lisboa, Portugal
| | - Anastasiya Petrovna
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Alexander S Sorokin
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Elena A Grishina
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Kristina A Ryzhikova
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Inessa A Bedina
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Oleg Z Buzik
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation
| | - Egor M Chumakov
- Saint-Petersburg State University, Department of Psychiatry & Addictions, Saint-Petersburg, Russian Federation.,Saint-Petersburg Psychiatric Hospital No. 1 named after PP Kaschenko, Day In-Patient Department, Saint-Petersburg, Russian Federation
| | - Ludmila M Savchenko
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Evgeny A Brun
- Moscow Research & Practical Centre on Addictions of the Moscow Department of Healthcare, 37/1 Lyublinskaya Street, Moscow 109390, Russian Federation.,Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| | - Dmitry A Sychev
- Russian Medical Academy of Continuous Professional Education of the Ministry of Health of the Russian Federation, 2/1 Barrikadnaya Street, Moscow 123995, Russian Federation
| |
Collapse
|
249
|
Asiimwe IG, Zhang EJ, Osanlou R, Jorgensen AL, Pirmohamed M. Warfarin dosing algorithms: A systematic review. Br J Clin Pharmacol 2020; 87:1717-1729. [PMID: 33080066 PMCID: PMC8056736 DOI: 10.1111/bcp.14608] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
Aims Numerous algorithms have been developed to guide warfarin dosing and improve clinical outcomes. We reviewed the algorithms available for various populations and the covariates, performances and risk of bias of these algorithms. Methods We systematically searched MEDLINE up to 20 May 2020 and selected studies describing the development, external validation or clinical utility of a multivariable warfarin dosing algorithm. Two investigators conducted data extraction and quality assessment. Results Of 10 035 screened records, 266 articles were included in the review, describing the development of 433 dosing algorithms, 481 external validations and 52 clinical utility assessments. Most developed algorithms were for dose initiation (86%), developed by multiple linear regression (65%) and mostly applicable to Asians (49%) or Whites (43%). The most common demographic/clinical/environmental covariates were age (included in 401 algorithms), concomitant medications (270 algorithms) and weight (229 algorithms) while CYP2C9 (329 algorithms), VKORC1 (319 algorithms) and CYP4F2 (92 algorithms) variants were the most common genetic covariates. Only 26% and 7% algorithms were externally validated and evaluated for clinical utility, respectively, with <2% of algorithm developments and external validations being rated as having a low risk of bias. Conclusion Most warfarin dosing algorithms have been developed in Asians and Whites and may not be applicable to under‐served populations. Few algorithms have been externally validated, assessed for clinical utility, and/or have a low risk of bias which makes them unreliable for clinical use. Algorithm development and assessment should follow current methodological recommendations to improve reliability and applicability, and under‐represented populations should be prioritized.
Collapse
Affiliation(s)
- Innocent G Asiimwe
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Eunice J Zhang
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Rostam Osanlou
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| | - Andrea L Jorgensen
- Department of Biostatistics, Institute of Population Health Sciences, University of Liverpool, United Kingdom
| | - Munir Pirmohamed
- The Wolfson Centre for Personalized Medicine, MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, United Kingdom
| |
Collapse
|
250
|
Al-Eitan LN, Elsaqa BZ, Almasri AY, Aman HA, Khasawneh RH, Alghamdi MA. Influence of PSRC1, CELSR2, and SORT1 Gene Polymorphisms on the Variability of Warfarin Dosage and Susceptibility to Cardiovascular Disease. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:619-632. [PMID: 33235484 PMCID: PMC7680183 DOI: 10.2147/pgpm.s274246] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/27/2022]
Abstract
Background Cardiovascular disease is one of the most common causes of morbidity and mortality worldwide. Several cardiovascular diseases require therapy with warfarin, an anticoagulant with large interindividual variability resulting in dosing difficulties. The selected genes and their polymorphisms have been implicated in several Genome-Wide Association Study (GWAS) to be associated with cardiovascular disease. Objective The goal of this study is to discover if there are any associations between rs646776 of PSRC1, rs660240 and rs12740374 of CELSR2, and rs602633 of SORT1 to coronary heart disease (CHD) and warfarin dose variability in patients diagnosed with cardiovascular disease undergoing warfarin therapy. Methods The study was directed at the Queen Alia Hospital Anticoagulation Clinic in Amman, Jordan. DNA was extracted and genotyped using the Mass ARRAY™ system, statistical analysis was done using SPSS. Results The study found several associations between the selected SNPs with warfarin, but none with cardiovascular disease. All 4 studied SNPs were found to be correlated to warfarin sensitivity during the stabilization phase except rs602633 and with warfarin dose variability at the initiation phase. CELSR2 SNPs also showed association with dose variability during the stabilization phase. Also, rs646776 and rs12740374 were linked to warfarin sensitivity over the initiation phase. Only rs602633 was associated with INR treatment outcomes. Conclusion The findings presented in this study found new pharmacogenomic associations for warfarin, that warrant further research in the field of genotype-guided warfarin dosing.
Collapse
Affiliation(s)
- Laith N Al-Eitan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Barakat Z Elsaqa
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayah Y Almasri
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Hatem A Aman
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Rame H Khasawneh
- Department of Hematopathology, King Hussein Medical Center (KHMC), Royal Medical Services (RMS), Amman 11118, Jordan
| | - Mansour A Alghamdi
- Department of Anatomy, College of Medicine, King Khalid University, Abha 61421, Saudi Arabi.,Genomics and Personalized Medicine Unit, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|