201
|
Gietl M, Burkert F, Hofer S, Gostner JM, Sonnweber T, Tancevski I, Pizzini A, Sahanic S, Schroll A, Brigo N, Egger A, Bellmann-Weiler R, Löffler-Ragg J, Weiss G, Kurz K. Laboratory parameters related to disease severity and physical performance after reconvalescence of acute COVID-19 infection. Sci Rep 2024; 14:10388. [PMID: 38710760 DOI: 10.1038/s41598-024-57448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/18/2024] [Indexed: 05/08/2024] Open
Abstract
Research into the molecular basis of disease trajectory and Long-COVID is important to get insights toward underlying pathophysiological processes. The objective of this study was to investigate inflammation-mediated changes of metabolism in patients with acute COVID-19 infection and throughout a one-year follow up period. The study enrolled 34 patients with moderate to severe COVID-19 infection admitted to the University Clinic of Innsbruck in early 2020. The dynamics of multiple laboratory parameters (including inflammatory markers [C-reactive protein (CRP), interleukin-6 (IL-6), neopterin] as well as amino acids [tryptophan (Trp), phenylalanine (Phe) and tyrosine (Tyr)], and parameters of iron and vitamin B metabolism) was related to disease severity and patients' physical performance. Also, symptom load during acute illness and at approximately 60 days (FU1), and one year after symptom onset (FU2) were monitored and related with changes of the investigated laboratory parameters: During acute infection many investigated laboratory parameters were elevated (e.g., inflammatory markers, ferritin, kynurenine, phenylalanine) and enhanced tryptophan catabolism and phenylalanine accumulation were found. At FU2 nearly all laboratory markers had declined back to reference ranges. However, kynurenine/tryptophan ratio (Kyn/Trp) and the phenylalanine/tyrosine ratio (Phe/Tyr) were still exceeding the 95th percentile of healthy controls in about two thirds of our cohort at FU2. Lower tryptophan concentrations were associated with B vitamin availability (during acute infection and at FU1), patients with lower vitamin B12 levels at FU1 had a prolonged and more severe impairment of their physical functioning ability. Patients who had fully recovered (ECOG 0) presented with higher concentrations of iron parameters (ferritin, hepcidin, transferrin) and amino acids (phenylalanine, tyrosine) at FU2 compared to patients with restricted ability to work. Persistent symptoms at FU2 were tendentially associated with IFN-γ related parameters. Women were affected by long-term symptoms more frequently. Conclusively, inflammation-mediated biochemical changes appear to be related to symptoms of patients with acute and Long Covid.
Collapse
Affiliation(s)
- Mario Gietl
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Francesco Burkert
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Stefanie Hofer
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Johanna M Gostner
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innrain 80, 6020, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Ivan Tancevski
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alex Pizzini
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Sabina Sahanic
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Andrea Schroll
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Natascha Brigo
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Alexander Egger
- Central Institute for Medical and Chemical Laboratory Diagnostics (ZIMCL), Tirol Kliniken GmbH, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Rosa Bellmann-Weiler
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Judith Löffler-Ragg
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| | - Katharina Kurz
- Department of Internal Medicine II, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
202
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
203
|
da Silva GB, de Carvalho Braga G, Simões JLB, Kempka AP, Bagatini MD. Cytokine storm in human monkeypox: A possible involvement of purinergic signaling. Cytokine 2024; 177:156560. [PMID: 38447385 DOI: 10.1016/j.cyto.2024.156560] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 03/08/2024]
Abstract
Some evidence has indicated that monkeypox can induce a cytokine storm. Purinergic signaling is a cell pathway related to the cytokine storm. However, the precise mechanisms that lead to cytokine storms in monkeypox infections and the possible involvement of purinergic signaling in the immune response to this virus remain unknown. In this review article, we aimed to highlight a body of scientific evidence that consolidates the role of the cytokine storm in monkeypox infection and proposes a new hypothesis regarding the roles of purinergic signaling in this immune-mediated mechanism. We further suggested some purinergic signaling modulators to mitigate the deleterious and aggravating effects of immune dysregulation in human monkeypox virus infection by inhibiting P2X3, P2X7, P2Y2, and P2Y12, reducing inflammation, and activating A1 and A2A receptors to promote an anti-inflammatory response.
Collapse
Affiliation(s)
- Gilnei Bruno da Silva
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil.
| | | | | | - Aniela Pinto Kempka
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil
| | - Margarete Dulce Bagatini
- Multicentric Postgraduate Program in Biochemistry and Molecular Biology, State University of Santa Catarina, Lages, SC, Brazil; Postgraduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil.
| |
Collapse
|
204
|
Bhat AA, Gupta G, Goyal A, Thapa R, Almalki WH, Kazmi I, Alzarea SI, Kukreti N, Sekar M, Meenakshi DU, Singh SK, MacLoughlin R, Dua K. Unwinding circular RNA's role in inflammatory pulmonary diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2567-2588. [PMID: 37917370 DOI: 10.1007/s00210-023-02809-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Circular RNAs (circRNAs) have emerged as pivotal regulators of gene expression and cellular processes in various physiological and pathological conditions. In recent years, there has been a growing interest in investigating the role of circRNAs in inflammatory lung diseases, owing to their potential to modulate inflammation-associated pathways and contribute to disease pathogenesis. Inflammatory lung diseases, like asthma, chronic obstructive pulmonary disease (COPD), and COVID-19, pose significant global health challenges. The dysregulation of inflammatory responses demonstrates a pivotal function in advancing these diseases. CircRNAs have been identified as important players in regulating inflammation by functioning as miRNA sponges, engaging with RNA-binding proteins, and participating in intricate ceRNA networks. These interactions enable circRNAs to regulate the manifestation of key inflammatory genes and signaling pathways. Furthermore, emerging evidence suggests that specific circRNAs are differentially expressed in response to inflammatory stimuli and exhibit distinct patterns in various lung diseases. Their involvement in immune cell activation, cytokine production, and tissue remodeling processes underscores their possible capabilities as therapeutic targets and diagnostic biomarkers. Harnessing the knowledge of circRNA-mediated regulation in inflammatory lung diseases could lead to the development of innovative strategies for disease management and intervention. This review summarizes the current understanding of the role of circRNAs in inflammatory lung diseases, focusing on their regulatory mechanisms and functional implications.
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India.
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun, 248007, India
| | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
205
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS-COV-2 targeting main protease and papain-like protease. IUBMB Life 2024; 76:228-241. [PMID: 38059400 DOI: 10.1002/iub.2793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 12/08/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS-CoV-2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi-organ failure. Thus, drug molecules targeting the SARS-CoV-2 virus-specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain-like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct-acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti-inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half-maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti-SARS-CoV-2 activity in cell-based assays, with half-maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti-inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID-19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type-I interferon response (IFN-α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS-CoV-2-specific enzymes and also host immune pathways involved in virus-mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Ankur Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases), All India Institute of Medical Sciences (AIIMS), Rishikesh, India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD), Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, India
| |
Collapse
|
206
|
Duan Y, Li H, Huang S, Li Y, Chen S, Xie L. Phloretin inhibits transmissible gastroenteritis virus proliferation via multiple mechanisms. J Gen Virol 2024; 105. [PMID: 38814698 DOI: 10.1099/jgv.0.001996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, has caused huge economic losses to the pig industry, with 100% mortality in piglets aged 2 weeks and intestinal injury in pigs of other ages. However, there is still a shortage of safe and effective anti-TGEV drugs in clinics. In this study, phloretin, a naturally occurring dihydrochalcone glycoside, was identified as a potent antagonist of TGEV. Specifically, we found phloretin effectively inhibited TGEV proliferation in PK-15 cells, dose-dependently reducing the expression of TGEV N protein, mRNA, and virus titer. The anti-TGEV activity of phloretin was furthermore refined to target the internalization and replication stages. Moreover, we also found that phloretin could decrease the expression levels of proinflammatory cytokines induced by TGEV infection. In addition, we expanded the potential key targets associated with the anti-TGEV effect of phloretin to AR, CDK2, INS, ESR1, ESR2, EGFR, PGR, PPARG, PRKACA, and MAPK14 with the help of network pharmacology and molecular docking techniques. Furthermore, resistant viruses have been selected by culturing TGEV with increasing concentrations of phloretin. Resistance mutations were reproducibly mapped to the residue (S242) of main protease (Mpro). Molecular docking analysis showed that the mutation (S242F) significantly disrupted phloretin binding to Mpro, suggesting Mpro might be a potent target of phloretin. In summary, our findings indicate that phloretin is a promising drug candidate for combating TGEV, which may be helpful for developing pharmacotherapies for TGEV and other coronavirus infections.
Collapse
Affiliation(s)
- Yuting Duan
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi, PR China
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, PR China
| | - Haichuan Li
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, PR China
| | - Shuai Huang
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, PR China
| | - Yaoming Li
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, PR China
| | - Shuyi Chen
- College of Life Science and Technology, Wuhan University of Bioengineering, Wuhan, PR China
| | - Lilan Xie
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, PR China
- Hubei Key Laboratory of Renal Disease Occurrence and Intervention, Medical School, Hubei Polytechnic University, Huangshi, PR China
- Center of Applied Biotechnology, Wuhan Institute of Bioengineering, Wuhan, PR China
| |
Collapse
|
207
|
Choudhary S, Nehul S, Singh A, Panda PK, Kumar P, Sharma GK, Tomar S. Unraveling antiviral efficacy of multifunctional immunomodulatory triterpenoids against SARS‐COV‐2 targeting main protease and papain‐like protease. IUBMB Life 2024; 76:228-241. [DOI: 10.1002/iub.2793 | pmid: 38059400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/20/2023] [Indexed: 05/15/2025]
Abstract
AbstractThe coronavirus disease 2019 (COVID‐19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) may be over, but its variants continue to emerge, and patients with mild symptoms having long COVID is still under investigation. SARS‐CoV‐2 infection leading to elevated cytokine levels and suppressed immune responses set off cytokine storm, fatal systemic inflammation, tissue damage, and multi‐organ failure. Thus, drug molecules targeting the SARS‐CoV‐2 virus‐specific proteins or capable of suppressing the host inflammatory responses to viral infection would provide an effective antiviral therapy against emerging variants of concern. Evolutionarily conserved papain‐like protease (PLpro) and main protease (Mpro) play an indispensable role in the virus life cycle and immune evasion. Direct‐acting antivirals targeting both these viral proteases represent an attractive antiviral strategy that is also expected to reduce viral inflammation. The present study has evaluated the antiviral and anti‐inflammatory potential of natural triterpenoids: azadirachtin, withanolide_A, and isoginkgetin. These molecules inhibit the Mpro and PLpro proteolytic activities with half‐maximal inhibitory concentrations (IC50) values ranging from 1.42 to 32.7 μM. Isothermal titration calorimetry (ITC) analysis validated the binding of these compounds to Mpro and PLpro. As expected, the two compounds, withanolide_A and azadirachtin, exhibit potent anti‐SARS‐CoV‐2 activity in cell‐based assays, with half‐maximum effective concentration (EC50) values of 21.73 and 31.19 μM, respectively. The anti‐inflammatory roles of azadirachtin and withanolide_A when assessed using HEK293T cells, were found to significantly reduce the levels of CXCL10, TNFα, IL6, and IL8 cytokines, which are elevated in severe cases of COVID‐19. Interestingly, azadirachtin and withanolide_A were also found to rescue the decreased type‐I interferon response (IFN‐α1). The results of this study clearly highlight the role of triterpenoids as effective antiviral molecules that target SARS‐CoV‐2‐specific enzymes and also host immune pathways involved in virus‐mediated inflammation.
Collapse
Affiliation(s)
- Shweta Choudhary
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Sanketkumar Nehul
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Ankur Singh
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Prasan Kumar Panda
- Department of Internal Medicine (Division of Infectious diseases) All India Institute of Medical Sciences (AIIMS) Rishikesh India
| | - Pravindra Kumar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| | - Gaurav Kumar Sharma
- Centre for Animal Disease Research and Diagnosis (CADRAD) Indian Veterinary Research Institute Bareilly Uttar Pradesh India
| | - Shailly Tomar
- Department of Biosciences and Bioengineering Indian Institute of Technology Roorkee Roorkee India
| |
Collapse
|
208
|
Chen C, Song X, Murdock DJ, Marcus A, Hussein M, Jalbert JJ, Geba GP. Association between allergic conditions and COVID-19 susceptibility and outcomes. Ann Allergy Asthma Immunol 2024; 132:637-645.e7. [PMID: 38242353 DOI: 10.1016/j.anai.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND The relationship between underlying type 2 inflammation and immune response to COVID-19 is unclear. OBJECTIVE To assess the relationships between allergic conditions and COVID-19 susceptibility and outcomes. METHODS In the Optum database, adult patients with and without major allergic conditions (asthma, atopic dermatitis [AD], allergic rhinitis, food allergy, anaphylaxis, or eosinophilic esophagitis) and patients with and without severe asthma/AD were identified. Adjusted incidence rate ratios for COVID-19 were compared among patients with vs without allergic conditions or severe asthma/AD vs non-severe asthma/AD during April 1, 2020, to December 31, 2020. Among patients with COVID-19, adjusted hazard ratios (aHRs) of 30-day COVID-19-related hospitalization/all-cause mortality were estimated for the same comparisons during April 1, 2020, to March 31, 2022. RESULTS Patients with (N = 1,273,231; asthma, 47.2%; AD, 1.5%; allergic rhinitis, 58.6%; food allergy, 5.1%; anaphylaxis, 4.1%; eosinophilic esophagitis, 0.9%) and without allergic conditions (N = 2,278,571) were identified. Allergic conditions (adjusted incidence rate ratios [95% CI], 1.22 [1.21-1.24]) and asthma severity (1.12 [1.09-1.15]) were associated with increased incidence of COVID-19. Among patients with COVID-19 (patients with [N = 261,076] and without allergic conditions [N = 1,098,135] were matched on age, sex, region, index month), having an allergic condition had minimal impact on 30-day COVID-19-related hospitalization/all-cause mortality (aHR [95% CI] 0.96 [0.95-0.98]) but was associated with a lower risk of mortality (0.80 [0.78-0.83]). Asthma was associated with a higher risk of COVID-19-related hospitalization/all-cause mortality vs non-asthma allergic conditions (aHR [95% CI], 1.27 [1.25-1.30]), mostly driven by higher hospitalization. CONCLUSION Allergic conditions were associated with an increased risk of receiving COVID-19 diagnosis but reduced mortality after infection.
Collapse
Affiliation(s)
- Chao Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | - Xue Song
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | - Andrea Marcus
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York
| | | | | | | |
Collapse
|
209
|
Wang C, Wang X, Zhang S, Xu P, Cheng L. Causal relationships between interleukins, interferons and COVID-19 risk: a Mendelian randomization study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2387-2396. [PMID: 37660260 DOI: 10.1080/09603123.2023.2252461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Observational studies have shown close associations between COVID-19 risk and cytokines, especially interleukins (ILs) and interferons (IFNs). However, the causal relationships between ILs, IFNs and COVID-19 were still unclear. To resolve the problem, we conducted a Mendelian randomization analysis between COVID-19 and 47 cytokines, including 35 ILs and 12 IFNs. First, three methods were applied to estimate causal effects by using single nucleotide polymorphisms as instrumental variables (IVs). Subsequently, the MR-Egger method was used to estimate the horizontal pleiotropy of IVs. Finally, sensitivity analyses were applied to assess the robustness of results. As a result, one IFN (IFN-W1) and five ILs (IL-5, IL-6, IL-13, IL-16 and IL-37) were identified to significantly decrease the COVID-19 risk. In contrast, one IFN (IFNG) and five ILs (IL-3, IL-8, IL-27, IL-31 and IL-36β) were found to be significantly associated with an increased risk of COVID-19. In summary, the findings of this study provide insights into potential therapeutic interventions for COVID-19.
Collapse
Affiliation(s)
- Chao Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin Wang
- College of Basic Medicine, Harbin Medical University, Harbin, Heilongjiang, China
| | - Sainan Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Peigang Xu
- Chongqing Research Institute of Harbin Institute of Technology, Harbin, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang, China
- NHC Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
210
|
Zhang Z, Tang L, Guo Y, Guo X, Pan Z, Ji X, Gao C. Development of Biomarkers and Prognosis Model of Mortality Risk in Patients with COVID-19. J Inflamm Res 2024; 17:2445-2457. [PMID: 38681069 PMCID: PMC11048291 DOI: 10.2147/jir.s449497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 04/04/2024] [Indexed: 05/01/2024] Open
Abstract
Background As of 30 April 2023, the COVID-19 pandemic has resulted in over 6.9 million deaths worldwide. The virus continues to spread and mutate, leading to continuously evolving pathological and physiological processes. It is imperative to reevaluate predictive factors for identifying the risk of early disease progression. Methods A retrospective study was conducted on a cohort of 1379 COVID-19 patients who were discharged from Xin Hua Hospital affiliated with Shanghai Jiao Tong University School of Medicine between 15 December 2022 and 15 February 2023. Patient symptoms, comorbidities, demographics, vital signs, and laboratory test results were systematically documented. The dataset was split into testing and training sets, and 15 different machine learning algorithms were employed to construct prediction models. These models were assessed for accuracy and area under the receiver operating characteristic curve (AUROC), and the best-performing model was selected for further analysis. Results AUROC for models generated by 15 machine learning algorithms all exceeded 90%, and the accuracy of 10 of them also surpassed 90%. Light Gradient Boosting model emerged as the optimal choice, with accuracy of 0.928 ± 0.0006 and an AUROC of 0.976 ± 0.0028. Notably, the factors with the greatest impact on in-hospital mortality were growth stimulation expressed gene 2 (ST2,19.3%), interleukin-8 (IL-8,17.2%), interleukin-6 (IL-6,6.4%), age (6.1%), NT-proBNP (5.1%), interleukin-2 receptor (IL-2R, 5%), troponin I (TNI,4.6%), congestive heart failure (3.3%) in Light Gradient Boosting model. Conclusion ST-2, IL-8, IL-6, NT-proBNP, IL-2R, TNI, age and congestive heart failure were significant predictors of in-hospital mortality among COVID-19 patients.
Collapse
Affiliation(s)
- Zhishuo Zhang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Lujia Tang
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yiran Guo
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Xin Guo
- School of Information Science and Technology, Sanda University, Shanghai, Pudong District, 201209, China
| | - Zhiying Pan
- School of Information Science and Technology, Sanda University, Shanghai, Pudong District, 201209, China
| | - Xiaojing Ji
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chengjin Gao
- Department of Emergency, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| |
Collapse
|
211
|
Gelpi F, Wu MA, Bari V, Cairo B, De Maria B, Fossali T, Colombo R, Porta A. Autonomic Function and Baroreflex Control in COVID-19 Patients Admitted to the Intensive Care Unit. J Clin Med 2024; 13:2228. [PMID: 38673501 PMCID: PMC11050480 DOI: 10.3390/jcm13082228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Background: Autonomic function and baroreflex control might influence the survival rate of coronavirus disease 2019 (COVID-19) patients admitted to the intensive care unit (ICU) compared to respiratory failure patients without COVID-19 (non-COVID-19). This study describes physiological control mechanisms in critically ill COVID-19 patients admitted to the ICU in comparison to non-COVID-19 individuals with the aim of improving stratification of mortality risk. Methods: We evaluated autonomic and baroreflex control markers extracted from heart period (HP) and systolic arterial pressure (SAP) variability acquired at rest in the supine position (REST) and during a modified head-up tilt (MHUT) in 17 COVID-19 patients (age: 63 ± 10 years, 14 men) and 33 non-COVID-19 patients (age: 60 ± 12 years, 23 men) during their ICU stays. Patients were categorized as survivors (SURVs) or non-survivors (non-SURVs). Results: We found that COVID-19 and non-COVID-19 populations exhibited similar vagal and sympathetic control markers; however, non-COVID-19 individuals featured a smaller baroreflex sensitivity and an unexpected reduction in the HP-SAP association during the MHUT compared to the COVID-19 group. Nevertheless, none of the markers of the autonomic and baroreflex functions could distinguish SURVs from non-SURVs in either population. Conclusions: We concluded that COVID-19 patients exhibited a more preserved baroreflex control compared to non-COVID-19 individuals, even though this information is ineffective in stratifying mortality risk.
Collapse
Affiliation(s)
- Francesca Gelpi
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.); (A.P.)
| | - Maddalena Alessandra Wu
- Department of Biomedical and Clinical Sciences, University of Milan, 20157 Milan, Italy;
- Division of Internal Medicine, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, 20157 Milan, Italy
| | - Vlasta Bari
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.); (A.P.)
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.); (A.P.)
| | | | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy; (T.F.); (R.C.)
| | - Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli-Sacco, Luigi Sacco Hospital, 20157 Milan, Italy; (T.F.); (R.C.)
| | - Alberto Porta
- Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy; (F.G.); (B.C.); (A.P.)
- Department of Cardiothoracic, Vascular Anaesthesia and Intensive Care, IRCCS Policlinico San Donato, 20097 Milan, Italy
| |
Collapse
|
212
|
Domingo JC, Battistini F, Cordobilla B, Zaragozá MC, Sanmartin-Sentañes R, Alegre-Martin J, Cambras T, Castro-Marrero J. Association of circulating biomarkers with illness severity measures differentiates myalgic encephalomyelitis/chronic fatigue syndrome and post-COVID-19 condition: a prospective pilot cohort study. J Transl Med 2024; 22:343. [PMID: 38600563 PMCID: PMC11005215 DOI: 10.1186/s12967-024-05148-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/30/2024] [Indexed: 04/12/2024] Open
Abstract
BACKGROUND Accumulating evidence suggests that autonomic dysfunction and persistent systemic inflammation are common clinical features in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID. However, there is limited knowledge regarding their potential association with circulating biomarkers and illness severity in these conditions. METHODS This single-site, prospective, cross-sectional, pilot cohort study aimed to distinguish between the two patient populations by using self-reported outcome measures and circulating biomarkers of endothelial function and systemic inflammation status. Thirty-one individuals with ME/CFS, 23 individuals with long COVID, and 31 matched sedentary healthy controls were included. All study participants underwent non-invasive cardiovascular hemodynamic challenge testing (10 min NASA lean test) for assessment of orthostatic intolerance. Regression analysis was used to examine associations between outcome measures and circulating biomarkers in the study participants. Classification across groups was based on principal component and discriminant analyses. RESULTS Four ME/CFS patients (13%), 1 with long COVID (4%), and 1 healthy control (3%) presented postural orthostatic tachycardia syndrome (POTS) using the 10-min NASA lean test. Compared with matched healthy controls, ME/CFS and long COVID subjects showed higher levels of ET-1 (p < 0.05) and VCAM-1 (p < 0.001), and lower levels of nitrites (NOx assessed as NO2- + NO3-) (p < 0.01). ME/CFS patients also showed higher levels of serpin E1 (PAI-1) and E-selectin than did both long COVID and matched control subjects (p < 0.01 in all cases). Long COVID patients had lower TSP-1 levels than did ME/CFS patients and matched sedentary healthy controls (p < 0.001). As for inflammation biomarkers, both long COVID and ME/CFS subjects had higher levels of TNF-α than did matched healthy controls (p < 0.01 in both comparisons). Compared with controls, ME/CFS patients had higher levels of IL-1β (p < 0.001), IL-4 (p < 0.001), IL-6 (p < 0.01), IL-10 (p < 0.001), IP-10 (p < 0.05), and leptin (p < 0.001). Principal component analysis supported differentiation between groups based on self-reported outcome measures and biomarkers of endothelial function and inflammatory status in the study population. CONCLUSIONS Our findings revealed that combining biomarkers of endothelial dysfunction and inflammation with outcome measures differentiate ME/CFS and Long COVID using robust discriminant analysis of principal components. Further research is needed to provide a more comprehensive characterization of these underlying pathomechanisms, which could be promising targets for therapeutic and preventive strategies in these conditions.
Collapse
Affiliation(s)
- Joan Carles Domingo
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | - Federica Battistini
- Molecular Modelling and Bioinformatics Group, Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, Barcelona, 08028, Spain
| | - Begoña Cordobilla
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain
| | | | - Ramón Sanmartin-Sentañes
- Division of Rheumatology, Clinical Unit in ME/CFS and Long COVID, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
- Division of Rheumatology, Research Unit in ME/CFS and Long COVID, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Jose Alegre-Martin
- Division of Rheumatology, Clinical Unit in ME/CFS and Long COVID, Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
- Division of Rheumatology, Research Unit in ME/CFS and Long COVID, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain
| | - Trinitat Cambras
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, Barcelona, 08028, Spain.
| | - Jesus Castro-Marrero
- Division of Rheumatology, Research Unit in ME/CFS and Long COVID, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, 08035, Spain.
| |
Collapse
|
213
|
Zhao G, Tang Y, Dan R, Xie M, Zhang T, Li P, He F, Li N, Peng Y. Pasteurella multocida activates apoptosis via the FAK-AKT-FOXO1 axis to cause pulmonary integrity loss, bacteremia, and eventually a cytokine storm. Vet Res 2024; 55:46. [PMID: 38589976 PMCID: PMC11003142 DOI: 10.1186/s13567-024-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/19/2024] [Indexed: 04/10/2024] Open
Abstract
Pasteurella multocida is an important zoonotic respiratory pathogen capable of infecting a diverse range of hosts, including humans, farm animals, and wild animals. However, the precise mechanisms by which P. multocida compromises the pulmonary integrity of mammals and subsequently induces systemic infection remain largely unexplored. In this study, based on mouse and rabbit models, we found that P. multocida causes not only lung damage but also bacteremia due to the loss of lung integrity. Furthermore, we demonstrated that bacteremia is an important aspect of P. multocida pathogenesis, as evidenced by the observed multiorgan damage and systemic inflammation, and ultimately found that this systemic infection leads to a cytokine storm that can be mitigated by IL-6-neutralizing antibodies. As a result, we divided the pathogenesis of P. multocida into two phases: the pulmonary infection phase and the systemic infection phase. Based on unbiased RNA-seq data, we discovered that P. multocida-induced apoptosis leads to the loss of pulmonary epithelial integrity. These findings have been validated in both TC-1 murine lung epithelial cells and the lungs of model mice. Conversely, the administration of Ac-DEVD-CHO, an apoptosis inhibitor, effectively restored pulmonary epithelial integrity, significantly mitigated lung damage, inhibited bacteremia, attenuated the cytokine storm, and reduced mortality in mouse models. At the molecular level, we demonstrated that the FAK-AKT-FOXO1 axis is involved in P. multocida-induced lung epithelial cell apoptosis in both cells and animals. Thus, our research provides crucial information with regard to the pathogenesis of P. multocida as well as potential treatment options for this and other respiratory bacterial diseases.
Collapse
Affiliation(s)
- Guangfu Zhao
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yunhan Tang
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Ruitong Dan
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Muhan Xie
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Tianci Zhang
- Department of Endocrinology and Metabolism, Center for Diabetes and Metabolism Research, West China Hospital, Sichuan University, Chengdu, China
| | - Pan Li
- Department of Environment and Safety Engineering, Taiyuan Institute of Technology, Taiyuan, China
| | - Fang He
- College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Nengzhang Li
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| | - Yuanyi Peng
- College of Veterinary Medicine, Southwest University, Chongqing, China.
| |
Collapse
|
214
|
Crupi L, Ardizzone A, Calapai F, Scuderi SA, Benedetto F, Esposito E, Capra AP. The Impact of COVID-19 on Amputation and Mortality Rates in Patients with Acute Limb Ischemia: A Systematic Review and Meta-Analysis. Diseases 2024; 12:74. [PMID: 38667532 PMCID: PMC11048752 DOI: 10.3390/diseases12040074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/02/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Since the inception of the SARS-CoV-2 pandemic, healthcare systems around the world observed an increased rate of Acute Limb Ischemia (ALI) in patients with a COVID-19 infection. Despite several pieces of evidence suggesting that COVID-19 infection may also worsen the prognosis associated with ALI, only a small number of published studies include a direct comparison regarding the outcomes of both COVID-19 and non-COVID-19 ALI patients. Based on the above, a systematic review and a meta-analysis of the literature were conducted, evaluating differences in the incidence of two major outcomes (amputation and mortality rate) between patients concurrently affected by COVID-19 and negative ALI subjects. PubMed (MEDLINE), Web of Science, and Embase (OVID) databases were scrutinized from January 2020 up to 31 December 2023, and 7906 total articles were recovered. In total, 11 studies (n: 15,803 subjects) were included in the systematic review, and 10 of them (15,305 patients) were also included in the meta-analysis. Across all the studies, COVID-19-positive ALI patients experienced worse outcomes (mortality rates ranging from 6.7% to 47.2%; amputation rates ranging from 7.0% to 39.1%) compared to non-infected ALI patients (mortality rates ranging from 3.1% to 16.7%; amputation rates ranging from 2.7% to 18%). Similarly, our meta-analysis shows that both the amputation rate (OR: 2.31; 95% CI: 1.68-3.17; p < 0.00001) and mortality (OR: 3.64; 95% CI: 3.02-4.39; p < 0.00001) is significantly higher in COVID-19 ALI patients compared to ALI patients.
Collapse
Affiliation(s)
- Lelio Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (L.C.); (A.A.); (F.C.); (S.A.S.); (A.P.C.)
| | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (L.C.); (A.A.); (F.C.); (S.A.S.); (A.P.C.)
| | - Fabrizio Calapai
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (L.C.); (A.A.); (F.C.); (S.A.S.); (A.P.C.)
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (L.C.); (A.A.); (F.C.); (S.A.S.); (A.P.C.)
| | - Filippo Benedetto
- Unit of Vascular Surgery, Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico G. Martino, University of Messina, 98125 Messina, Italy;
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (L.C.); (A.A.); (F.C.); (S.A.S.); (A.P.C.)
| | - Anna Paola Capra
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 31, 98166 Messina, Italy; (L.C.); (A.A.); (F.C.); (S.A.S.); (A.P.C.)
| |
Collapse
|
215
|
Rasyid A, Harris S, Kurniawan M, Mesiano T, Hidayat R, Wiyarta E. Predictive value of admission D-dimer levels in patient with acute ischaemic stroke and COVID-19: a second-wave prospective cohort study. BMJ Open 2024; 14:e077500. [PMID: 38580372 PMCID: PMC11002405 DOI: 10.1136/bmjopen-2023-077500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/21/2024] [Indexed: 04/07/2024] Open
Abstract
OBJECTIVES This study aimed to evaluate the predictive value of admission D-dimer levels for in-hospital mortality in patients with COVID-19 and acute ischaemic stroke. DESIGN Cohort (prospective). SETTING Tertiary referral hospital in the capital city of Indonesia conducted from June to December 2021. PARTICIPANTS 60 patients with acute ischaemic stroke and COVID-19 were included. Patients were classified into D-dimer groups (low and high) according to a 2 110 ng/mL cut-off value, determined via receiver operating characteristic analysis. PRIMARY AND SECONDARY OUTCOME MEASURES The primary outcome was in-hospital mortality, with admission D-dimer levels as the major predictor. Secondary outcomes included associations between other demographic and clinical variables and the admission D-dimer value. Kaplan-Meier method was used to carry out survival analysis, with univariable and multivariable Cox regression performed to assess the association of D-dimer levels and other confounding variables (including demographic, clinical and laboratory parameters) with in-hospital mortality. RESULTS The findings demonstrated an association between elevated admission D-dimer levels (≥2 110 ng/mL) and an increased likelihood of death during hospitalisation. The adjusted HR was 14.054 (95% CI 1.710 to 115.519; p=0.014), demonstrating an increase in mortality risk after accounting for confounders such as age and diabetes history. Other significant predictors of mortality included a history of diabetes and increased white blood cell count. CONCLUSIONS Admission D-dimer levels may be a useful predictive indicator for the likelihood of death during hospitalisation in individuals with COVID-19 and acute ischaemic stroke.
Collapse
Affiliation(s)
- Al Rasyid
- Department of Neurology, Faculty of Medicine, Universitas Indonesia-Dr Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Salim Harris
- Department of Neurology, Faculty of Medicine, Universitas Indonesia-Dr Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Mohammad Kurniawan
- Department of Neurology, Faculty of Medicine, Universitas Indonesia-Dr Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Taufik Mesiano
- Department of Neurology, Faculty of Medicine, Universitas Indonesia-Dr Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Rakhmad Hidayat
- Department of Neurology, Faculty of Medicine, Universitas Indonesia-Dr Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| | - Elvan Wiyarta
- Department of Neurology, Faculty of Medicine, Universitas Indonesia-Dr Cipto Mangunkusumo National Hospital, Jakarta, Indonesia
| |
Collapse
|
216
|
Wild JM, Gleeson FV, Svenningsen S, Grist JT, Saunders LC, Collier GJ, Sharma M, Tcherner S, Mozaffaripour A, Matheson AM, Parraga G. Review of Hyperpolarized Pulmonary Functional 129 Xe MR for Long-COVID. J Magn Reson Imaging 2024; 59:1120-1134. [PMID: 37548112 DOI: 10.1002/jmri.28940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023] Open
Abstract
The respiratory consequences of acute COVID-19 infection and related symptoms tend to resolve 4 weeks post-infection. However, for some patients, new, recurrent, or persisting symptoms remain beyond the acute phase and persist for months, post-infection. The symptoms that remain have been referred to as long-COVID. A number of research sites employed 129 Xe magnetic resonance imaging (MRI) during the pandemic and evaluated patients post-infection, months after hospitalization or home-based care as a way to better understand the consequences of infection on 129 Xe MR gas-exchange and ventilation imaging. A systematic review and comprehensive search were employed using MEDLINE via PubMed (April 2023) using the National Library of Medicine's Medical Subject Headings and key words: post-COVID-19, MRI, 129 Xe, long-COVID, COVID pneumonia, and post-acute COVID-19 syndrome. Fifteen peer-reviewed manuscripts were identified including four editorials, a single letter to the editor, one review article, and nine original research manuscripts (2020-2023). MRI and MR spectroscopy results are summarized from these prospective, controlled studies, which involved small sample sizes ranging from 9 to 76 participants. Key findings included: 1) 129 Xe MRI gas-exchange and ventilation abnormalities, 3 months post-COVID-19 infection, and 2) a combination of MRI gas-exchange and ventilation abnormalities alongside persistent symptoms in patients hospitalized and not hospitalized for COVID-19, 1-year post-infection. The persistence of respiratory symptoms and 129 Xe MRI abnormalities in the context of normal or nearly normal pulmonary function test results and chest computed tomography (CT) was consistent. Longitudinal improvements were observed in long-term follow-up of long-COVID patients but mean 129 Xe gas-exchange, ventilation heterogeneity values and symptoms remained abnormal, 1-year post-infection. Pulmonary functional MRI using inhaled hyperpolarized 129 Xe gas has played a role in detecting gas-exchange and ventilation abnormalities providing complementary information that may help develop our understanding of the root causes of long-COVID. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Jim M Wild
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Fergus V Gleeson
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Sarah Svenningsen
- Department of Medicine, Firestone Institute for Respiratory Health, McMaster University, Hamilton, Ontario, Canada
| | - James T Grist
- Department of Radiology, Oxford University Hospitals, Oxford, UK
| | - Laura C Saunders
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Guilhem J Collier
- POLARIS, Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| | - Maksym Sharma
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Sam Tcherner
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Ali Mozaffaripour
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Alexander M Matheson
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
| | - Grace Parraga
- Robarts Research Institute, Western University, London, Ontario, Canada
- Department of Medical Biophysics, Western University, London, Ontario, Canada
- Division of Respirology, Department of Medicine, Western University, London, Ontario, Canada
| |
Collapse
|
217
|
Iancu IV, Diaconu CC, Plesa A, Fudulu A, Albulescu A, Neagu AI, Pitica IM, Dragu LD, Bleotu C, Chivu‐Economescu M, Matei L, Mambet C, Nedeianu S, Popescu CP, Sultana C, Ruta SM, Botezatu A. LncRNAs expression profile in a family household cluster of COVID-19 patients. J Cell Mol Med 2024; 28:e18226. [PMID: 38501860 PMCID: PMC10949602 DOI: 10.1111/jcmm.18226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/19/2024] [Accepted: 02/24/2024] [Indexed: 03/20/2024] Open
Abstract
More than 3 years after the start of SARS-CoV-2 pandemic, the molecular mechanisms behind the viral pathogenesis are still not completely understood. Long non-coding RNAs (lncRNAs), well-known players in viral infections, can represent prime candidates for patients' risk stratification. The purpose of the current study was to investigate the lncRNA profile in a family cluster of COVID-19 cases with different disease progression, during the initial wave of the pandemic and to evaluate their potential as biomarkers for COVID-19 evolution. LncRNA expression was investigated in nasopharyngeal swabs routinely collected for diagnosis. Distinct expression patterns of five lncRNAs (HOTAIR, HOTAIRM1, TMEVPG1, NDM29 and snaR) were identified in all the investigated cases, and they were associated with disease severity. Additionally, a significant increase in the expression of GAS5-family and ZFAS1 lncRNAs, which target factors involved in the inflammatory response, was observed in the sample collected from the patient with the most severe disease progression. An lncRNA prognostic signature was defined, opening up novel research avenues in understanding the interactions between lncRNAs and SARS-CoV-2.
Collapse
Affiliation(s)
| | | | - Adriana Plesa
- Stefan S Nicolau Institute of VirologyBucharestRomania
| | - Alina Fudulu
- Stefan S Nicolau Institute of VirologyBucharestRomania
| | - Adrian Albulescu
- Stefan S Nicolau Institute of VirologyBucharestRomania
- Department of PharmacologyNational Institute for Chemical Pharmaceutical Research and DevelopmentBucharestRomania
| | - Ana Iulia Neagu
- Stefan S Nicolau Institute of VirologyBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | | | | | | | | | - Lilia Matei
- Stefan S Nicolau Institute of VirologyBucharestRomania
| | | | | | - Corneliu Petru Popescu
- Carol Davila University of Medicine and PharmacyBucharestRomania
- Dr Victor Babes Infectious and Tropical Diseases Clinical HospitalBucharestRomania
| | - Camelia Sultana
- Stefan S Nicolau Institute of VirologyBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - Simona Maria Ruta
- Stefan S Nicolau Institute of VirologyBucharestRomania
- Carol Davila University of Medicine and PharmacyBucharestRomania
| | - Anca Botezatu
- Stefan S Nicolau Institute of VirologyBucharestRomania
| |
Collapse
|
218
|
Xi Y, Mao Y, Zhu W, Xi P, Huang F, Tan H, Liao X, Zhou L. IL-6 is a predictor and potential therapeutic target for coronavirus disease 2019-related heart failure: A single-center retrospective study. Cytokine 2024; 176:156514. [PMID: 38277928 DOI: 10.1016/j.cyto.2024.156514] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Inflammation is linked to coronavirus disease 2019 (COVID-19)-related heart failure (HF), but the specific mechanisms are unclear. This study aimed to assess the relationship between specific inflammatory factors, such as interleukin (IL)-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, interferon (IFN)-α, and IFN-γ, and COVID-19-related HF. METHODS We retrospectively identified 212 adult patients with COVID-19 who were hospitalized at Shanghai Public Health Center from March 1 to May 30, 2022 (including 80 patients with HF and 132 without HF). High-sensitivity C-reactive protein (hs-CRP), procalcitonin (PCT), and inflammatory factors, including IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17, IFN-α, and IFN-γ, were compared between patients with COVID-19 with and without HF. RESULTS Patients with COVID-19 having and not having HF differed with regard to sex, age, hs-CRP, PCT, and IL-6 levels (p < 0.05). Logistic regression analysis indicated a significant positive association between IL and 6 and HF (odds ratio = 1.055; 95 % confidence interval: 1.019-1.093, p < 0.005). Sex, age, and hs-CRP were also associated with HF. Women had a greater risk of HF than men. Older age, higher levels of hs-CRP, and IL-6 were associated with a greater risk of HF. CONCLUSIONS In patients with COVID-19, increased IL-6 levels are significantly associated with COVID-19-related HF.
Collapse
Affiliation(s)
- Yan Xi
- Department of General Practice, Tongji Hospital, School of Medicine, Tongji University, Shanghai 20065, China
| | - Yu Mao
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Wei Zhu
- General Hospital of Eastern Theater Command, Nanjing City, Jiangsu Province 210000, China
| | - Peng Xi
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Feifei Huang
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Hongwei Tan
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Xudong Liao
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China
| | - Lin Zhou
- Department of Cardiology, Tongji Hospital, Tongji University, Shanghai 20065, China.
| |
Collapse
|
219
|
Ghadery AH, Abbasian L, Jafari F, Yazdi NA, Ahmadinejad Z. Correlation of clinical, laboratory, and short-term outcomes of immunocompromised and immunocompetent COVID-19 patients with semi-quantitative chest CT score findings: A case-control study. Immun Inflamm Dis 2024; 12:e1239. [PMID: 38577996 PMCID: PMC10996371 DOI: 10.1002/iid3.1239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND As the effects of immunosuppression are not still clear on COVID-19 patients, we conducted this study to identify clinical and laboratory findings associated with pulmonary involvement in both immunocompromised and immunocompetent patients. METHODS A case-control of 107 immunocompromised and 107 immunocompetent COVID-19 patients matched for age and sex with either positive RT-PCR or clinical-radiological findings suggestive of COVID-19 enrolled in the study. Their initial clinical features, laboratory findings, chest CT scans, and short-term outcomes (hospitalization time and intensive care unit [ICU] admission) were recorded. In addition, pulmonary involvement was assessed with the semi-quantitative scoring system (0-25). RESULTS Pulmonary involvement was significantly lower in immunocompromised patients in contrast to immunocompetent patients, especially in RLL (p = 0.001), LUL (p = 0.023), and both central and peripheral (p = 0.002), and peribronchovascular (p = 0.004) sites of lungs. Patchy (p < 0.001), wedged (p = 0.002), confluent (p = 0.002) lesions, and ground glass with consolidation pattern (p < 0.001) were significantly higher among immunocompetent patients. Initial signs and symptoms of immunocompromised patients including dyspnea (p = 0.008) and hemoptysis (p = 0.036), respiratory rate of over 25 (p < 0.001), and spo2 of below 93% (p = 0.01) were associated with higher pulmonary involvement. Total chest CT score was also associated with longer hospitalization (p = 0.016) and ICU admission (p = 0.04) among immunocompromised patients. CONCLUSIONS Pulmonary involvement score was not significantly different among immunocompromised and immunocompetent patients. Initial clinical findings (dyspnea, hemoptysis, higher RR, and lower Spo2) of immunocompromised patients could better predict pulmonary involvement than laboratory findings.
Collapse
Affiliation(s)
- Abdolkarim Haji Ghadery
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center(ADIR)Tehran University of Medical SciencesTehranIran
| | - Ladan Abbasian
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Department of Infectious Diseases, Imam Khomeini Hospital Complex, School of MedicineTehran University of Medical SciencesTehranIran
| | - Fatemeh Jafari
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High Risk Behaviors, Department of Infectious Diseases, Imam Khomeini Hospital Complex, School of MedicineTehran University of Medical SciencesTehranIran
| | - Niloofar Ayoobi Yazdi
- Department of Radiology, Advanced Diagnostic and Interventional Radiology Research Center (ADIR)Tehran University of Medical SciencesTehranIran
| | - Zahra Ahmadinejad
- Department of Infectious Diseases, Liver Transplantation Research Center, Imam Khomeini Hospital ComplexTehran University of Medical SciencesTehranIran
| |
Collapse
|
220
|
Beck-Schimmer B, Schadde E, Pietsch U, Filipovic M, Dübendorfer-Dalbert S, Fodor P, Hübner T, Schuepbach R, Steiger P, David S, Krüger BD, Neff TA, Schläpfer M. Early sevoflurane sedation in severe COVID-19-related lung injury patients. A pilot randomized controlled trial. Ann Intensive Care 2024; 14:41. [PMID: 38536545 PMCID: PMC10973324 DOI: 10.1186/s13613-024-01276-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/11/2024] [Indexed: 06/01/2024] Open
Abstract
BACKGROUND This study aimed to assess a potential organ protective effect of volatile sedation in a scenario of severe inflammation with an early cytokine storm (in particular IL-6 elevation) in patients suffering from COVID-19-related lung injury with invasive mechanical ventilation and sedation. METHODS This is a small-scale pilot multicenter randomized controlled trial from four tertiary hospitals in Switzerland, conducted between April 2020 and May 2021. 60 patients requiring mechanical ventilation due to severe COVID-19-related lung injury were included and randomized to 48-hour sedation with sevoflurane vs. continuous intravenous sedation (= control) within 24 h after intubation. The primary composite outcome was determined as mortality or persistent organ dysfunction (POD), defined as the need for mechanical ventilation, vasopressors, or renal replacement therapy at day 28. Secondary outcomes were the length of ICU and hospital stay, adverse events, routine laboratory parameters (creatinine, urea), and plasma inflammatory mediators. RESULTS 28 patients were randomized to sevoflurane, 32 to the control arm. The intention-to-treat analysis revealed no difference in the primary endpoint with 11 (39%) sevoflurane and 13 (41%) control patients (p = 0.916) reaching the primary outcome. Five patients died within 28 days in each group (16% vs. 18%, p = 0.817). Of the 28-day survivors, 6 (26%) and 8 (30%) presented with POD (p = 0.781). There was a significant difference regarding the need for vasopressors (1 (4%) patient in the sevoflurane arm, 7 (26%) in the control one (p = 0.028)). Length of ICU stay, hospital stay, and registered adverse events within 28 days were comparable, except for acute kidney injury (AKI), with 11 (39%) sevoflurane vs. 2 (6%) control patients (p = 0.001). The blood levels of IL-6 in the first few days after the onset of the lung injury were less distinctly elevated than expected. CONCLUSIONS No evident benefits were observed with short sevoflurane sedation on mortality and POD. Unexpectedly low blood levels of IL-6 might indicate a moderate injury with therefore limited improvement options of sevoflurane. Acute renal issues suggest caution in using sevoflurane for sedation in COVID-19. TRIAL REGISTRATION The trial was registered on ClinicalTrials.gov (NCT04355962) on 2020/04/21.
Collapse
Affiliation(s)
- Beatrice Beck-Schimmer
- Institute of Anesthesiology, University Hospital Zurich University of Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Erik Schadde
- Institute of Physiology, University of Zurich, Zurich, Switzerland
- Department of Surgery, Rush University, Chicago, IL, USA
| | - Urs Pietsch
- Division of Anesthesiology, Intensive Care, Rescue and Pain Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Miodrag Filipovic
- Division of Anesthesiology, Intensive Care, Rescue and Pain Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | | | - Patricia Fodor
- Institute of Anesthesia and Intensive Care Medicine, City Hospital Triemli, Zurich, Switzerland
| | - Tobias Hübner
- Department of Anesthesia and Intensive Care Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
| | - Reto Schuepbach
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Peter Steiger
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sascha David
- Institute of Intensive Care Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Bernard D Krüger
- Institute of Anesthesiology, University Hospital Zurich University of Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland
| | - Thomas A Neff
- Department of Anesthesia and Intensive Care Medicine, Cantonal Hospital Muensterlingen, Muensterlingen, Switzerland
| | - Martin Schläpfer
- Institute of Anesthesiology, University Hospital Zurich University of Zurich, Raemistrasse 100, Zurich, CH-8091, Switzerland.
- Institute of Physiology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
221
|
Caldwell BA, Wu Y, Wang J, Li L. Altered DNA methylation underlies monocyte dysregulation and immune exhaustion memory in sepsis. Cell Rep 2024; 43:113894. [PMID: 38442017 PMCID: PMC11654472 DOI: 10.1016/j.celrep.2024.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/12/2024] [Accepted: 02/14/2024] [Indexed: 03/07/2024] Open
Abstract
Monocytes can develop an exhausted memory state characterized by reduced differentiation, pathogenic inflammation, and immune suppression that drives immune dysregulation during sepsis. Chromatin alterations, notably via histone modifications, underlie innate immune memory, but the contribution of DNA methylation remains poorly understood. Using an ex vivo sepsis model, we show altered DNA methylation throughout the genome of exhausted monocytes, including genes implicated in immune dysregulation during sepsis and COVID-19 infection (e.g., Plac8). These changes are recapitulated in septic mice induced by cecal slurry injection. Methylation profiles developed in septic mice are maintained during ex vivo culture, supporting the involvement of DNA methylation in stable monocyte exhaustion memory. Methylome reprogramming is driven in part by Wnt signaling inhibition in exhausted monocytes and can be reversed with DNA methyltransferase inhibitors, Wnt agonists, or immune training molecules. Our study demonstrates the significance of altered DNA methylation in the maintenance of stable monocyte exhaustion memory.
Collapse
Affiliation(s)
- Blake A Caldwell
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Yajun Wu
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Jing Wang
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061-0910, USA.
| |
Collapse
|
222
|
Jiao Y, Zhou L, Huo J, Li H, Zhu H, Chen D, Lu Y. Flavonoid substituted polysaccharides from Tamarix chinensis Lour. alleviate H1N1-induced acute lung injury via inhibiting complement system. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117651. [PMID: 38135232 DOI: 10.1016/j.jep.2023.117651] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Viral pneumonia is a highly pathogenic respiratory infectious disease associated with excessive activation of the complement system. Our previous studies found that the anticomplement polysaccharides from some medicinal plants could significantly alleviate H1N1-induced acute lung injury (H1N1-ALI). The leaves and twigs of Tamarix chinensis Lour. are traditionally used as a Chinese medicine Xiheliu for treating inflammatory disorders. Interestingly, its crude polysaccharides (MBAP90) showed potent anticomplement activity in vitro. AIM OF THE STUDY To evaluate the therapeutic effects and possible mechanism of MBAP90 on viral pneumonia and further isolate and characterize the key active substance of MBAP90. MATERIALS AND METHODS The protective effects of MBAP90 were evaluated by survival tests and pharmacodynamic experiments on H1N1-ALI mice. Histopathological changes, viral load, inflammatory markers, and complement deposition in lungs were analyzed by H&E staining, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC), respectively. An anticomplement homogenous polysaccharide (MBAP-3) was obtained from MBAP90 by bio-guided separation, and its structure was further characterized by methylation analysis and NMR spectroscopy. RESULTS Oral administration of MBAP90 at a dose of 400 mg/kg significantly increased the survival rate of mice infected with the lethal H1N1 virus. In H1N1-induced ALI, mice treated with MBAP90 (200 and 400 mg/kg) could decrease the lung index, lung pathological injury, the levels of excessive proinflammatory cytokines (IL-6, TNF-α, MCP-1, IL-18, and IL-1β), and complement levels (C3c and C5b-9). In addition, MBAP-3 was characterized as a novel homogenous polysaccharide with potent in vitro anticomplement activity (CH50: 0.126 ± 0.002 mg/mL), containing 10.51% uronic acids and 9.67% flavonoids, which were similar to the composition of MBAP90. The backbone of MBAP-3 consisted of →4)-α-D-Glcp-(1→, →3,4,6)-α-D-Glcp-(1→, and →3,4)-α-D-Glcp-(1→, with branches comprising α-L-Araf-(1→, α-D-GlcpA-(1→, →4,6)-α-D-Manp-(1→ and →4)-β-D-Galp-(1 → . Particularly, O-6 of →4)-β-D-Galp-(1→ was conjugated with a flavonoid, myricetin. CONCLUSIONS MBAP90 could ameliorate H1N1-ALI by inhibiting inflammation and over-activation of the complement system. These polysaccharides (MBAP90 and MBAP-3) with relative high contents of uronic acid and flavonoid substituent might be vital components of T. chinensis for treating viral pneumonia.
Collapse
Affiliation(s)
- Yukun Jiao
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Lishuang Zhou
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Jiangyan Huo
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Hong Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of ImmunoTherapeutics, School of Pharmacy, Fudan University, Shanghai, China.
| | - Daofeng Chen
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China; Institutes of Integrative Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| | - Yan Lu
- Department of Natural Medicine, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
223
|
Hatch CJ, Piombo SD, Fang JS, Gach JS, Ewald ML, Van Trigt WK, Coon BG, Tong JM, Forthal DN, Hughes CCW. SARS-CoV-2 infection of endothelial cells, dependent on flow-induced ACE2 expression, drives hypercytokinemia in a vascularized microphysiological system. Front Cardiovasc Med 2024; 11:1360364. [PMID: 38576426 PMCID: PMC10991679 DOI: 10.3389/fcvm.2024.1360364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for COVID-19, has caused nearly 7 million deaths worldwide. Severe cases are marked by an aggressive inflammatory response known as hypercytokinemia, contributing to endothelial damage. Although vaccination has reduced hospitalizations, hypercytokinemia persists in breakthrough infections, emphasizing the need for disease models mimicking this response. Using a 3D microphysiological system (MPS), we explored the vascular role in SARS-CoV-2-induced hypercytokinemia. Methods The vascularized micro-organ (VMO) MPS, consisting of human-derived primary endothelial cells (ECs) and stromal cells within an extracellular matrix, was used to model SARS-CoV-2 infection. A non-replicative pseudotyped virus fused to GFP was employed, allowing visualization of viral entry into human ECs under physiologic flow conditions. Expression of ACE2, TMPRSS2, and AGTR1 was analyzed, and the impact of viral infection on ACE2 expression, vascular inflammation, and vascular morphology was assessed. Results The VMO platform facilitated the study of COVID-19 vasculature infection, revealing that ACE2 expression increased significantly in direct response to shear stress, thereby enhancing susceptibility to infection by pseudotyped SARS-CoV-2. Infected ECs secreted pro-inflammatory cytokines, including IL-6 along with coagulation factors. Cytokines released by infected cells were able to activate downstream, non-infected EC, providing an amplification mechanism for inflammation and coagulopathy. Discussion Our findings highlight the crucial role of vasculature in COVID-19 pathogenesis, emphasizing the significance of flow-induced ACE2 expression and subsequent inflammatory responses. The VMO provides a valuable tool for studying SARS-CoV-2 infection dynamics and evaluating potential therapeutics.
Collapse
Affiliation(s)
- Christopher J. Hatch
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Sebastian D. Piombo
- Department of Pediatrics, School of Medicine, Institute for Clinical and Translational Science, University of California, Irvine, CA, United States
| | - Jennifer S. Fang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Johannes S. Gach
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Makena L. Ewald
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - William K. Van Trigt
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Brian G. Coon
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Jay M. Tong
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Donald N. Forthal
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
- Division of Infectious Diseases, School of Medicine, University of California, Irvine, CA, United States
| | - Christopher C. W. Hughes
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| |
Collapse
|
224
|
Bartels M, Sala Solé E, Sauerschnig LM, Rijkers GT. Back to the Future: Immune Protection or Enhancement of Future Coronaviruses. Microorganisms 2024; 12:617. [PMID: 38543668 PMCID: PMC10975256 DOI: 10.3390/microorganisms12030617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 11/12/2024] Open
Abstract
Before the emergence of SARS-CoV-1, MERS-CoV, and most recently, SARS-CoV-2, four other coronaviruses (the alpha coronaviruses NL63 and 229E and the beta coronaviruses OC43 and HKU1) had already been circulating in the human population. These circulating coronaviruses all cause mild respiratory illness during the winter seasons, and most people are already infected in early life. Could antibodies and/or T cells, especially against the beta coronaviruses, have offered some form of protection against (severe) COVID-19 caused by infection with SARS-CoV-2? Related is the question of whether survivors of SARS-CoV-1 or MERS-CoV would be relatively protected against SARS-CoV-2. More importantly, would humoral and cellular immunological memory generated during the SARS-CoV-2 pandemic, either by infection or vaccination, offer protection against future coronaviruses? Or rather than protection, could antibody-dependent enhancement have taken place, a mechanism by which circulating corona antibodies enhance the severity of COVID-19? Another related phenomenon, the original antigenic sin, would also predict that the effectiveness of the immune response to future coronaviruses would be impaired because of the reactivation of memory against irrelevant epitopes. The currently available evidence indicates that latter scenarios are highly unlikely and that especially cytotoxic memory T cells directed against conserved epitopes of human coronaviruses could at least offer partial protection against future coronaviruses.
Collapse
Affiliation(s)
| | | | | | - Ger T. Rijkers
- Science and Engineering Department, University College Roosevelt, 4331 CB Middelburg, The Netherlands; (M.B.); (E.S.S.); (L.M.S.)
| |
Collapse
|
225
|
Liu H, Guo N, Zheng Q, Zhang Q, Chen J, Cai Y, Luo Q, Xu Q, Chen X, Yang S, Zhang S. Association of interleukin-6, ferritin, and lactate dehydrogenase with venous thromboembolism in COVID-19: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:324. [PMID: 38493138 PMCID: PMC10943892 DOI: 10.1186/s12879-024-09205-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/07/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is frequntly accompanied by venous thromboembolism (VTE), and its mechanism may be related to the abnormal inflammation and immune status of COVID-19 patients. It has been proved that interleukin-6 (IL-6), ferritin and lactate dehydrogenase (LDH) may play an important role in the occurrence of VTE in COVID-19 infection. But whether they can server as predictors for VTE in COVID-19 is still unclear. In this study, we performed a systematic review and meta-analysis to compare IL-6, ferritin and LDH in VTE and non-VTE COVID-19 patients in order to shed light on the prevention and treatment of VTE. METHODS Related literatures were searched in PubMed, Embase, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), WANGFANG. COVID-19 patients were divided into VTE group and non-VTE group. Meta-analysis was then conducted to compare levels of IL-6, ferritin and LDH between the two groups. RESULTS We finally included and analyzed 17 literatures from January 2019 to October 2022. There was a total of 7,035 COVID-19 patients, with a weighted mean age of 60.01 years. Males accounted for 62.64% and 61.34% patients were in intensive care unit (ICU). Weighted mean difference (WMD) of IL-6, ferritin and LDH was 31.15 (95% CI: 9.82, 52.49), 257.02 (95% CI: 51.70, 462.33) and 41.79 (95% CI: -19.38, 102.96), respectively. The above results indicated that than compared with non-VTE group, VTE group had significantly higher levels of IL-6 and ferritin but similar LDH. CONCLUSION This systematic review and meta-analysis pointed out that elevated levels of IL-6 and ferritin were significantly possitive associated with VTE, thus could be used as biological predictive indicators of VTE among COVID-19 patients. However, no association was found between level of LDH and VTE. Therefore, close monitoring of changes in IL-6 and ferritin concentrations is of great value in assisting clinicans to rapidly identify thrombotic complications among COVID-19 patients, hence facilitating the timely effective managment. Further studies are required in terms of the clinical role of cytokines in the occurrence of VTE among COVID-19 infection, with more reliable systematic controls and interventional trials.
Collapse
Affiliation(s)
- Haiyu Liu
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Ningjing Guo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Qixian Zheng
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Qianyuan Zhang
- Department of General Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Jinghan Chen
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Yuanyuan Cai
- Department of General Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Qiong Luo
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Qian Xu
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China
| | - Xiangqi Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian, 350001, P.R. China.
| | - Sheng Yang
- Department of Oncology Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fuzhou, Fujian, 350001, P.R. China.
| | - Suyun Zhang
- Department of Internal Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, P.R. China.
| |
Collapse
|
226
|
Ji R, Wu Y, Ye Y, Li Y, Li Y, Zhong G, Fan W, Feng C, Chen H, Teng X, Wu Y, Xu J. Stimulation of PSTPIP1 to trigger proinflammatory responses in asymptomatic SARS-CoV-2 infections. Heliyon 2024; 10:e26886. [PMID: 38463809 PMCID: PMC10920375 DOI: 10.1016/j.heliyon.2024.e26886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024] Open
Abstract
Background A hyperinflammatory response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection gravely worsens the clinical progression of coronavirus disease 2019 (COVID-19). Although the undesirable effects of inflammasome activation have been correlated to the severity of COVID-19, the mechanisms of this process in the asymptomatic infection and disease progression have not yet been clearly elucidated. Methods We performed strand-specific RNA sequencing in 39 peripheral blood mononuclear cell (PBMC) samples from asymptomatic individuals(n = 10), symptomatic patients(n = 16) and healthy donors(n = 13). Results Dysregulation of pyrin inflammasomes along with the proline-serine-threonine phosphatase-interacting protein 1 (PSTPIP1) gene was identified in SARS-COV-2 infection. Notably, the PSTPIP1 expression level showed a significant negative correlation with an adjacent long-noncoding RNA (lncRNA) RP11-797A18.6 in the asymptomatic individuals compared with the healthy controls. In addition, a decline in the nuclear factor kappa B subunit 1 (NFKB1) gene expression was observed in asymptomatic infection, followed by a rise in the mild and moderate disease stages, suggesting that altered NFKB1 expression and associated proinflammatory signals may trigger a disease progression. Conclusions Overall, our results indicate that PSTPIP1-dependent pyrin inflammasomes-mediated pyroptosis and NF-κB activation might be potential preventive targets for COVID-19 disease development and progression.
Collapse
Affiliation(s)
- Ruili Ji
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yue Wu
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanling Li
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Yizhe Li
- Department of Laboratory Science, West China TianFu Hospital, Sichuan University, Sichuan, China
| | - Guojiu Zhong
- Department of Respiratory, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, Guangdong, China
| | - Wentao Fan
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Chengjuan Feng
- Department of Clinical Laboratory, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, Guangdong, China
| | - Hui Chen
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Xiangyun Teng
- Department of Clinical Laboratory, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, Guangdong, China
| | - Yunli Wu
- Guangzhou Huayin Medical Laboratory Center Ltd., Guangzhou, Guangdong, China
| | - Jianhua Xu
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
- Department of Clinical Laboratory, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming 525000, Guangdong, China
| |
Collapse
|
227
|
Samarelli F, Graziano G, Gambacorta N, Graps EA, Leonetti F, Nicolotti O, Altomare CD. Small Molecules for the Treatment of Long-COVID-Related Vascular Damage and Abnormal Blood Clotting: A Patent-Based Appraisal. Viruses 2024; 16:450. [PMID: 38543815 PMCID: PMC10976273 DOI: 10.3390/v16030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 05/23/2024] Open
Abstract
People affected by COVID-19 are exposed to, among others, abnormal clotting and endothelial dysfunction, which may result in deep vein thrombosis, cerebrovascular disorders, and ischemic and non-ischemic heart diseases, to mention a few. Treatments for COVID-19 include antiplatelet (e.g., aspirin, clopidogrel) and anticoagulant agents, but their impact on morbidity and mortality has not been proven. In addition, due to viremia-associated interconnected prothrombotic and proinflammatory events, anti-inflammatory drugs have also been investigated for their ability to mitigate against immune dysregulation due to the cytokine storm. By retrieving patent literature published in the last two years, small molecules patented for long-COVID-related blood clotting and hematological complications are herein examined, along with supporting evidence from preclinical and clinical studies. An overview of the main features and therapeutic potentials of small molecules is provided for the thromboxane receptor antagonist ramatroban, the pan-caspase inhibitor emricasan, and the sodium-hydrogen antiporter 1 (NHE-1) inhibitor rimeporide, as well as natural polyphenolic compounds.
Collapse
Affiliation(s)
- Francesco Samarelli
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Giovanni Graziano
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Nicola Gambacorta
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Elisabetta Anna Graps
- ARESS Puglia—Agenzia Regionale Strategica per la Salute ed il Sociale, I-70121 Bari, Italy;
| | - Francesco Leonetti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | - Orazio Nicolotti
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, I-70125 Bari, Italy; (F.S.); (G.G.); (N.G.); (F.L.); (O.N.)
| | | |
Collapse
|
228
|
Zhu J, Zhou J, Feng B, Pan Q, Yang J, Lang G, Shang D, Zhou J, Li L, Yu J, Cao H. MSCs alleviate LPS-induced acute lung injury by inhibiting the proinflammatory function of macrophages in mouse lung organoid-macrophage model. Cell Mol Life Sci 2024; 81:124. [PMID: 38466420 PMCID: PMC10927843 DOI: 10.1007/s00018-024-05150-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/10/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Acute lung injury (ALI) is an inflammatory disease associated with alveolar injury, subsequent macrophage activation, inflammatory cell infiltration, and cytokine production. Mesenchymal stem cells (MSCs) are beneficial for application in the treatment of inflammatory diseases due to their immunomodulatory effects. However, the mechanisms of regulatory effects by MSCs on macrophages in ALI need more in-depth study. Lung tissues were collected from mice for mouse lung organoid construction. Alveolar macrophages (AMs) derived from bronchoalveolar lavage and interstitial macrophages (IMs) derived from lung tissue were co-cultured, with novel matrigel-spreading lung organoids to construct an in vitro model of lung organoids-immune cells. Mouse compact bone-derived MSCs were co-cultured with organoids-macrophages to confirm their therapeutic effect on acute lung injury. Changes in transcriptome expression profile were analyzed by RNA sequencing. Well-established lung organoids expressed various lung cell type-specific markers. Lung organoids grown on spreading matrigel had the property of functional cells growing outside the lumen. Lipopolysaccharide (LPS)-induced injury promoted macrophage chemotaxis toward lung organoids and enhanced the expression of inflammation-associated genes in inflammation-injured lung organoids-macrophages compared with controls. Treatment with MSCs inhibited the injury progress and reduced the levels of inflammatory components. Furthermore, through the nuclear factor-κB pathway, MSC treatment inhibited inflammatory and phenotypic transformation of AMs and modulated the antigen-presenting function of IMs, thereby affecting the inflammatory phenotype of lung organoids. Lung organoids grown by spreading matrigel facilitate the reception of external stimuli and the construction of in vitro models containing immune cells, which is a potential novel model for disease research. MSCs exert protective effects against lung injury by regulating different functions of AMs and IMs in the lung, indicating a potential mechanism for therapeutic intervention.
Collapse
Affiliation(s)
- Jiaqi Zhu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jiahang Zhou
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Jinfeng Yang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Guanjing Lang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Dandan Shang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Jianya Zhou
- Department of Respiratory Disease, Thoracic Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd, Hangzhou, 310003, China
- National Medical Center for Infectious Diseases, 79 Qingchun Rd, Hangzhou City, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd, Hangzhou, 310003, China.
- National Medical Center for Infectious Diseases, 79 Qingchun Rd, Hangzhou City, 310003, China.
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd, Hangzhou, 310003, China.
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Rd, Hangzhou, 310003, China.
- National Medical Center for Infectious Diseases, 79 Qingchun Rd, Hangzhou City, 310003, China.
- Zhejiang Key Laboratory of Diagnosis and Treatment of Physic-Chemical Injury Diseases, 79 Qingchun Rd, Hangzhou, 310003, China.
| |
Collapse
|
229
|
Bektaş M, Ay M, Hamdi Uyar M, İkbal Kılıç M. Combination therapy of high-dose intravenous anakinra and baricitinib in patients with critical COVID-19: Promising results from retrospective observational study. Int Immunopharmacol 2024; 129:111586. [PMID: 38309091 DOI: 10.1016/j.intimp.2024.111586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/05/2024]
Abstract
INTRODUCTION In this study, we aimed to evaluate the safety and efficacy of combination treatment of high-dose intravenous anakinra and baricitinib in patients with critically ill COVID-19. MATERIAL AND METHODS This retrospective observational study was conducted in a tertiary center with diagnosis of COVID-19 patients.Study population consisted of patients with positive polymerase chain reaction and computer tomography findings compatible with COVID-19 as well as critical illness. RESULTS Data of 15 patients in combination group and 43 patients in control group were evaluated and included into the study. Overall mortality was 46.7 % (n = 7) in combination arm and 69.8 % (n = 30) in control group although it was not statistically significant (p = 0.1). Similarly, need of intubation was also lower in combination arm (46.7 %) compared to control group (69.8 %), it was not significantly different (p = 0.1). ICU admission was significantly lower in combination (46.7 %, n = 7) arm than control group (76.7 %, n = 33) (p = 0.03, Odds ratio [OR]:4.7). Development of severe infection (20 %, n = 3 vs 25 %, n = 9/36), pulmonary embolism (6.7 %, n = 1 vs 0), myocardial infarction (6.7 %, n = 1 vs 2.6 %, n = 1/38) and pneumothorax (13.3 %, n = 2 vs 2.6 %, n = 1/38) were not different between two groups (p = 0.7, p = 0.3, p = 0.5 and p = 0.2). In multivariable analysis only cHIS score was associated with high mortality (p = 0.018, OR:2.8, [95 % confidence interval: 1.2-6.6]). In survival analysis, mortality rate was significantly lower in combination arm than control group (Log-Rank:p = 0.04). CONCLUSION Combination therapy of high-dose anakinra and baricitinib may be an adequate treatment option in patients with COVID-19 who had critical disease and has acceptable safety profile.
Collapse
Affiliation(s)
- Murat Bektaş
- Division of Rheumatology, Department of Internal Medicine, Istanbul Aydın University, Istanbul, Turkey; Division of Rheumatology, Department of Internal Medicine, Aksaray Training and Research Hospital, Aksaray, Turkey.
| | - Mustafa Ay
- Department of Emergency Medicine, Aksaray Training and Research Hospital, Aksaray, Turkey
| | - Muhammed Hamdi Uyar
- Department of Emergency Medicine, Aksaray Training and Research Hospital, Aksaray, Turkey
| | - Muhammed İkbal Kılıç
- Department of Internal Medicine, Aksaray Training and Research Hospital, Aksaray, Turkey
| |
Collapse
|
230
|
Wu W, Zhang J, Qiao Y, Ren Y, Rao X, Xu Z, Liu B. Mendelian randomization supports genetic liability to hospitalization for COVID-19 as a risk factor of pre-eclampsia. Front Cardiovasc Med 2024; 11:1327497. [PMID: 38525192 PMCID: PMC10957568 DOI: 10.3389/fcvm.2024.1327497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Background Pre-eclampsia and eclampsia are among the major threats to pregnant women and fetuses, but they can be mitigated by prevention and early screening. Existing observational research presents conflicting evidence regarding the causal effects of coronavirus disease 2019 (COVID-19) on pre-eclampsia risk. Through Mendelian randomization (MR), this study aims to investigate the causal effect of three COVID-19 severity phenotypes on the risk of pre-eclampsia and eclampsia to provide more rigorous evidence. Methods Two-sample MR was utilized to examine causal effects. Summary-level data from genome-wide association studies (GWAS) of individuals of European ancestry were acquired from the GWAS catalog and FinnGen databases. Single-nucleotide polymorphisms associated with COVID-19 traits at p < 5 × -8 were obtained and pruned for linkage disequilibrium to generate instrumental variables for COVID-19. Inverse variance weighted estimates were used as the primary MR results, with weighted median and MR-Egger as auxiliary analyses. The robustness of the MR findings was also evaluated through sensitivity analyses. Bonferroni correction was applied to primary results, with a p < 0.0083 considered significant evidence and a p within 0.083-0.05 considered suggestive evidence. Results Critical ill COVID-19 [defined as hospitalization for COVID-19 with either a death outcome or respiratory support, OR (95% CI): 1.17 (1.03-1.33), p = 0.020] and hospitalized COVID-19 [defined as hospitalization for COVID-19, OR (95% CI): 1.10 (1.01-1.19), p = 0.026] demonstrated suggestive causal effects on pre-eclampsia, while general severe acute respiratory syndrome coronavirus 2 infection did not exhibit a significant causal effect on pre-eclampsia. None of the three COVID-19 severity phenotypes exhibited a significant causal effect on eclampsia. Conclusions Our investigation demonstrates a suggestive causal effect of genetic susceptibility to critical ill COVID-19 and hospitalized COVID-19 on pre-eclampsia. The COVID-19 severity exhibited a suggestive positive dose-response relationship with the risk of pre-eclampsia. Augmented attention should be paid to pregnant women hospitalized for COVID-19, especially those needing respiratory support.
Collapse
Affiliation(s)
- Weizhen Wu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| | - Junning Zhang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Yizhuo Qiao
- Department of Gynecology, Xiyuan Hospital of China Academy of Chinese Medical Science, Beijing, China
| | - Yuehan Ren
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xuezhi Rao
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Zhijie Xu
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Baoxing Liu
- Department of Andrology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
231
|
Ferrer MD, Reynés C, Jiménez L, Malagraba G, Monserrat-Mesquida M, Bouzas C, Sureda A, Tur JA, Pons A. Nitrite Attenuates the In Vitro Inflammatory Response of Immune Cells to the SARS-CoV-2 S Protein without Interfering in the Antioxidant Enzyme Activation. Int J Mol Sci 2024; 25:3001. [PMID: 38474248 DOI: 10.3390/ijms25053001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
SARS-CoV-2 induces a hyperinflammatory reaction due to the excessive release of cytokines during the immune response. The bacterial endotoxin lipopolysaccharide (LPS) contributes to the low-grade inflammation associated with the metabolic syndrome, enhancing the hyperinflammatory reaction induced by the SARS-CoV-2 infection. The intake of sodium nitrate, a precursor of nitrite and nitric oxide, influences the antioxidant and pro-inflammatory gene expression profile after immune stimulation with LPS in peripheral blood mononuclear cells from metabolic syndrome patients. We aimed to assess the inflammatory and antioxidant responses of immune cells from metabolic syndrome patients to exposure to the SARS-CoV-2 spike protein (S protein) together with LPS and the effect of nitrite in these responses. Whole blood samples obtained from six metabolic syndrome patients were cultured for 16 h at 37 °C with four different media: control medium, control medium plus LPS (100 ng/mL), control medium plus LPS (100 ng/mL) plus S protein (10 ng/mL), and control medium plus LPS (100 ng/mL) plus S protein (10 ng/mL) plus nitrite (5 µM). Immune stimulation with the LPS/S protein enhanced nitrate biosynthesis from nitrite oxidation and probably from additional organic precursors. In vitro incubations with the LPS/S protein enhanced the expression and/or release of pro-inflammatory TNFα, IL-6, IL-1β, and TLR4, as well as the expression of the anti-inflammatory IL-1ra and IL-10 and antioxidant enzymes. Nitrite attenuated the pro- and anti-inflammatory response induced by the S protein without interfering with the activation of TLR4 and antioxidant enzyme expression, raising the possibility that nitrite could have potential as a coadjutant in the treatment of COVID-19.
Collapse
Affiliation(s)
- Miguel D Ferrer
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
| | - Clara Reynés
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Laura Jiménez
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Gianluca Malagraba
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
| | - Margalida Monserrat-Mesquida
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Josep A Tur
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| | - Antoni Pons
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands-IUNICS, 07122 Palma, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, 28029 Madrid, Spain
| |
Collapse
|
232
|
Wang M, Gu H, Zhai Y, Li X, Huang L, Li H, Xie Z, Wen C. Vaccination and the risk of systemic lupus erythematosus: a meta-analysis of observational studies. Arthritis Res Ther 2024; 26:60. [PMID: 38433222 PMCID: PMC10910799 DOI: 10.1186/s13075-024-03296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE This meta-analysis aims to explore the potential link between vaccines and systemic lupus erythematosus (SLE). METHODS We systematically searched PubMed, Cochrane Library, and Embase for observational studies from inception to September 3, 2023, using medical subject headings (MeSH) and keywords. Study quality was assessed using the NOS scale. Statistical analyses were conducted using STATA software (version 14.0). Publication bias was evaluated using funnel plots and Egger's regression. RESULTS The meta-analysis incorporated 17 studies, encompassing 45,067,349 individuals with follow-up periods ranging from 0.5 to 2 years. The pooled analysis revealed no significant association between vaccinations and an increased risk of SLE [OR = 1.14, 95% CI (0.86-1.52), I2 = 78.1%, P = 0.348]. Subgroup analyses indicated that HBV vaccination was significantly associated with an elevated risk of SLE [OR =2.11, 95% CI (1.11-4.00), I2 = 63.3%, P = 0.02], HPV vaccination was slightly associated with an increased risk of SLE [OR = 1.43, 95% CI (0.88-2.31), I2 = 72.4%, P = 0.148], influenza vaccination showed no association with an increased risk of SLE [OR = 0.96, 95% CI (0.82-1.12), I2 = 0.0%, P = 0.559], and COVID-19 vaccine was marginally associated with a decreased risk of SLE [OR = 0.44, 95% CI (0.18-1.21), I2 = 91.3%, P = 0.118]. CONCLUSIONS This study suggests that vaccinations are not linked to an increased risk of SLE. Our meta-analysis results provide valuable insights, alleviating concerns about SLE risk post-vaccination and supporting further vaccine development efforts.
Collapse
Affiliation(s)
- Meijiao Wang
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Huanpeng Gu
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Yingqi Zhai
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Xuanlin Li
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Lin Huang
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Haichang Li
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China
| | - Zhijun Xie
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China.
| | - Chengping Wen
- Research Institute of Chinese Medicine Clinical Foundation and Immunology, School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Binwen Road, Binjiang Dsitrict, Hangzhou, China.
| |
Collapse
|
233
|
Chakraborty C, Bhattacharya M, Lee SS. Regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses: A comprehensive review. Rev Med Virol 2024; 34:e2526. [PMID: 38446531 DOI: 10.1002/rmv.2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/07/2024]
Abstract
miRNAs are single-stranded ncRNAs that act as regulators of different human body processes. Several miRNAs have been noted to control the human immune and inflammatory response during severe acute respiratory infection syndrome (SARS-CoV-2) infection. Similarly, many miRNAs were upregulated and downregulated during different respiratory virus infections. Here, an attempt has been made to capture the regulatory role of miRNAs in the human immune and inflammatory response during the infection of SARS-CoV-2 and other respiratory viruses. Firstly, the role of miRNAs has been depicted in the human immune and inflammatory response during the infection of SARS-CoV-2. In this direction, several significant points have been discussed about SARS-CoV-2 infection, such as the role of miRNAs in human innate immune response; miRNAs and its regulation of granulocytes; the role of miRNAs in macrophage activation and polarisation; miRNAs and neutrophil extracellular trap formation; miRNA-related inflammatory response; and miRNAs association in adaptive immunity. Secondly, the miRNAs landscape has been depicted during human respiratory virus infections such as human coronavirus, respiratory syncytial virus, influenza virus, rhinovirus, and human metapneumovirus. The article will provide more understanding of the miRNA-controlled mechanism of the immune and inflammatory response during COVID-19, which will help more therapeutics discoveries to fight against the future pandemic.
Collapse
Affiliation(s)
- Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| | | | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Gangwon-do, Republic of Korea
| |
Collapse
|
234
|
Zheng Y, Li Y, Li M, Wang R, Jiang Y, Zhao M, Lu J, Li R, Li X, Shi S. COVID-19 cooling: Nanostrategies targeting cytokine storm for controlling severe and critical symptoms. Med Res Rev 2024; 44:738-811. [PMID: 37990647 DOI: 10.1002/med.21997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/16/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023]
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants continue to wreak havoc worldwide, the "Cytokine Storm" (CS, also known as the inflammatory storm) or Cytokine Release Syndrome has reemerged in the public consciousness. CS is a significant contributor to the deterioration of infected individuals. Therefore, CS control is of great significance for the treatment of critically ill patients and the reduction of mortality rates. With the occurrence of variants, concerns regarding the efficacy of vaccines and antiviral drugs with a broad spectrum have grown. We should make an effort to modernize treatment strategies to address the challenges posed by mutations. Thus, in addition to the requirement for additional clinical data to monitor the long-term effects of vaccines and broad-spectrum antiviral drugs, we can use CS as an entry point and therapeutic target to alleviate the severity of the disease in patients. To effectively combat the mutation, new technologies for neutralizing or controlling CS must be developed. In recent years, nanotechnology has been widely applied in the biomedical field, opening up a plethora of opportunities for CS. Here, we put forward the view of cytokine storm as a therapeutic target can be used to treat critically ill patients by expounding the relationship between coronavirus disease 2019 (COVID-19) and CS and the mechanisms associated with CS. We pay special attention to the representative strategies of nanomaterials in current neutral and CS research, as well as their potential chemical design and principles. We hope that the nanostrategies described in this review provide attractive treatment options for severe and critical COVID-19 caused by CS.
Collapse
Affiliation(s)
- Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuke Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mao Li
- Health Management Centre, Clinical Medical College & Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, China
| | - Rujing Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuhong Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Mengnan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
235
|
Massa F, Vigo T, Bellucci M, Giunti D, Emanuela MM, Visigalli D, Capodivento G, Cerne D, Assini A, Boni S, Rizzi D, Narciso E, Grisanti GS, Coco E, Uccelli A, Schenone A, Franciotta D, Benedetti L. COVID-19-associated serum and cerebrospinal fluid cytokines in post- versus para-infectious SARS-CoV-2-related Guillain-Barré syndrome. Neurol Sci 2024; 45:849-859. [PMID: 38169013 DOI: 10.1007/s10072-023-07279-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
INTRODUCTION Guillain-Barré syndrome associated with Coronavirus-2-related severe acute respiratory syndrome (COV-GBS) occurs as para- or post-infectious forms, depending on the timing of disease onset. In these two forms, we aimed to compare the cerebrospinal fluid (CSF) and serum proinflammatory cytokine profiles to evaluate differences that could possibly have co-pathogenic relevance. MATERIALS AND METHODS We studied a retrospective cohort of 26 patients with either post-COV-GBS (n = 15), with disease onset occurring > 7 days after SARS-CoV-2 infection, or para-COV-GBS (n = 11), with disease onset 7 days or less. TNF-α, IL-6, and IL-8 were measured in the serum with SimplePlex™ Ella™ immunoassay. In addition to the para-/post-COV-GBS patients, serum levels of these cytokines were determined in those with non-COVID-associated-GBS (NC-GBS; n = 43), paucisymptomatic SARS-CoV-2 infection without GBS (COVID, n = 20), and in healthy volunteers (HV; n = 12). CSF cytokine levels were measured in patients with para-/post-COV-GBS, in those with NC-GBS (n = 29), or with Alzheimer's disease (AD; n = 24). RESULTS Serum/CSF cytokine levels did not differ in para- vs post-COV-GBS. We found that SARS-CoV-2 infection raises the serum levels of TNF-α, IL-6, and IL-8, as well as an increase of IL-6 (in serum and CSF) and IL-8 (in CSF) in either NC-GBS or COV-GBS than controls. CSF and serum cytokine levels resulted independent one with another. CONCLUSIONS The change of cytokines linked to SARS-CoV-2 in COV-GBS appears to be driven by viral infection, although it has unique characteristics in GBS as such and does not account for cases with para- or post-infectious onset.
Collapse
Affiliation(s)
- Federico Massa
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.
| | - Tiziana Vigo
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Margherita Bellucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
| | - Debora Giunti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | | | - Davide Visigalli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Giovanna Capodivento
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Denise Cerne
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
| | - Andrea Assini
- Neurology Unit, Galliera Hospital, Via Mura Delle Cappuccine 14, 1628, Genova, Italy
| | - Silvia Boni
- Department of Infectious Diseases, Galliera Hospital, Via Mura Delle Cappuccine 14, 1628, Genoa, Italy
| | - Domenica Rizzi
- Neurology Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Eleonora Narciso
- Department of Neurology, ASL3 Genovese, Corso Onofrio Scassi 1, 16149, Genova, Italy
| | - Giuseppe Stefano Grisanti
- Department of Neurology, Santa Corona Hospital, Viale XXV Aprile 38, 17027, Pietra Ligure, Savona, Italy
| | - Elena Coco
- Department of Neurology, Santa Corona Hospital, Viale XXV Aprile 38, 17027, Pietra Ligure, Savona, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | | | - Luana Benedetti
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genova, Largo Paolo Daneo 3, 16132, Genova, Italy
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| |
Collapse
|
236
|
Mohsenzadeh T, Ziaee M, Salehiniya H, Mohsenzadeh H, Mirsani A, Raeesi V. A multicenter study of severity and prognosis of symptomatic COVID-19 in end-stage renal disease and non-dialysis patients in East of Iran. Immun Inflamm Dis 2024; 12:e1188. [PMID: 38456616 PMCID: PMC10921896 DOI: 10.1002/iid3.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVES This study aimed to assess the severity and related factors of symptomatic COVID-19 in end-stage renal disease (ESRD) patients from several centers in Eastern Iran. METHODS In this retrospective cohort study, after obtaining ethical approval, 410 patients diagnosed with COVID-19 were included for analysis. Patients were categorized into two groups based on their dialysis status: the dialysis group (ESRD patients undergoing hemodialysis) and the non-dialysis group (those without chronic dialysis). Demographic information, clinical symptoms, laboratory tests at admission, length of hospitalization, ICU admission, need for mechanical ventilation, and mortality data were extracted from their medical records and entered into researcher-developed checklists. RESULTS In this multicenter study, 104 dialysis patients with a mean age of 64.81 ± 16.04 were compared to 316 non-dialysis patients with a mean age of 60.92 ± 17.89. Patients were similar in terms of age and gender, but a higher percentage of the dialysis group was aged over 65 years (p = .008). Altered consciousness, dyspnea, headache, myalgia, anorexia, and cough were statistically significantly more common in the dialysis group when evaluating clinical symptoms (p < .05). The dialysis group had significantly higher levels of white blood cell (WBC), potassium, calcium, urea, creatinine, blood pH, INR, ALT, ESR, and CRP, and lower levels of red blood cell, Hb, platelets, sodium, and LDH compared to the non-dialysis group. Profoundly altered consciousness was more common among deceased patients (p < .001), and this group had higher WBC counts, urea levels, AST, ALT (p < .05), and lower blood pH (p = .001). CONCLUSION Based on the results of this study, it is plausible to suggest a hypothesis of greater severity and worse prognosis of COVID-19 in ESRD patients. Underlying comorbidities, such as liver disorders or more severe clinical symptoms like altered consciousness, may also be indicative of a worse prognosis in dialysis patients with COVID-19.
Collapse
Affiliation(s)
- Tara Mohsenzadeh
- Department of MedicineBirjand University of Medical SciencesBirjandIran
| | - Masood Ziaee
- Department of Infectious Diseases, School of Medicine, Infectious Diseases Research CenterBirjand University of Medical SciencesBirjandIran
| | - Hamid Salehiniya
- Department of Epidemiology and Biostatistics, School of Health, Social Determinants of Health Research CenterBirjand University of Medical SciencesBirjandIran
| | | | - Amin Mirsani
- Department of MedicineGonabad University of Medical SciencesGonabadIran
| | - Vajehallah Raeesi
- Department of Internal Medicine, School of MedicineBirjand University of Medical SciencesBirjandIran
| |
Collapse
|
237
|
Alkhattabi NA, Alharbi HM, Basabrain MA, Al-Zahrani MH, Alghamdi RA, Joharjy H, Khalifa R, Tarbiah NI. Studying the correlation of inflammatory cytokines to COVID-19 disease. Pathol Res Pract 2024; 255:155215. [PMID: 38412656 DOI: 10.1016/j.prp.2024.155215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 02/29/2024]
Abstract
Extreme response of the immune system develops cytokine storm which might be crucial in the pathology of COVID-19. The research aims to evaluate the serum level of IL-6, TNF-α, and IP-10 in severe, mild, and pre-vaccinated one-dose COVID-19 patients and investigate their clinical value and effect in the disease development among different groups of patients. A total of 72 samples were collected 18 as healthy control and 54 from confirmed COVID-19 patients including 18 mild, 18 severe, and 18 pre-vaccinated (one dose). It was confirmed that the severe group of COVID-19 patients had the highest circulating IL-6, TNF- α, and IP-10. IL-6 level in mild and pre-vaccinated (one dose) was significantly lower than in severe. In conclusion, IL-6, TNF-α, and IP-10 are associated with the pathogenicity of COVID-19, furthermore, vaccination could help to control severity of the disease.
Collapse
Affiliation(s)
- Nuha A Alkhattabi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hajer M Alharbi
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Mohammad A Basabrain
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Saudi Arabia.
| | - Maryam H Al-Zahrani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Rana A Alghamdi
- Department of Chemistry, Science and Art College, King Abdulaziz University, Rabigh, Saudi Arabia.
| | - Husam Joharjy
- Public Health and Infection Control Department, King Abdulaziz Hospital, Ministry of Health, Jeddah, Saudi Arabia.
| | - Reham Khalifa
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Ain Shams, Egypt.
| | - Nesrin I Tarbiah
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
238
|
Bľandová G, Janoštiaková N, Kodada D, Pastorek M, Lipták R, Hodosy J, Šebeková K, Celec P, Krasňanská G, Eliaš V, Wachsmannová L, Konečný M, Repiská V, Baldovič M. Mitochondrial DNA variability and Covid-19 in the Slovak population. Mitochondrion 2024; 75:101827. [PMID: 38135240 DOI: 10.1016/j.mito.2023.101827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/27/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Recent studies have shown that mitochondria are involved in the pathogenesis of Covid-19. Mitochondria play a role in production of reactive oxygen species and induction of an innate immune response, both important during infections. Common variability of mitochondrial DNA (mtDNA) can affect oxidative phosphorylation and the risk or lethality of cardiovascular, neurodegenerative diseases and sepsis. However, it is unclear whether susceptibility of severe Covid-19 might be affected by mtDNA variation. Thus, we have analyzed mtDNA in a sample of 446 Slovak patients hospitalized due to Covid-19 and a control population group consisting of 1874 individuals. MtDNA variants in the HVRI region have been analyzed and classified into haplogroups at various phylogenetic levels. Binary logistic regression was used to assess the risk of Covid-19. Haplogroups T1, H11, K and variants 16256C > T, 16265A > C, 16293A > G, 16311 T > C and 16399A > G were associated with an increased Covid-19 risk. On contrary, Haplogroup J1, haplogroup clusters H + U5b and T2b + U5b, and the mtDNA variant 16189 T > C were associated with decreased risk of Covid-19. Following the application of the Bonferroni correction, statistical significance was observed exclusively for the cluster of haplogroups H + U5b. Unsurprisingly, the most significant factor contributing to the mortality of patients with Covid-19 is the age of patients. Our findings suggest that mtDNA haplogroups can play a role in Covid-19 pathogenesis, thus potentially useful in identifying susceptibility to its severe form. To confirm these associations, further studies taking into account the nuclear genome or other non-biological influences are needed.
Collapse
Affiliation(s)
- Gabriela Bľandová
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia.
| | - Nikola Janoštiaková
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Dominik Kodada
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Michal Pastorek
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Róbert Lipták
- Department of Emergency Medicine, University Hospital, Bratislava, Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Emergency Medicine, University Hospital, Bratislava, Slovakia
| | - Katarína Šebeková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Gabriela Krasňanská
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Vladimír Eliaš
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia
| | - Lenka Wachsmannová
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia
| | - Michal Konečný
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Biology, Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of St. Cyril and Methodius, Trnava, Slovakia
| | - Vanda Repiská
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Marian Baldovič
- Laboratory of Genomic Medicine, GHC GENETICS SK, Science Park Comenius University, Bratislava, Slovakia; Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
239
|
Zhang J, Kuang T, Liu X. Advances in researches on long coronavirus disease in children: a narrative review. Transl Pediatr 2024; 13:318-328. [PMID: 38455739 PMCID: PMC10915432 DOI: 10.21037/tp-23-472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/31/2023] [Indexed: 03/09/2024] Open
Abstract
Background and Objective In the context of the global pandemic of coronavirus disease 2019 (COVID-19), more than 700 million infections and millions of deaths have occurred in countries around the world. Currently, two main sequelae of this disease are considered to occur in children, namely, multi-system inflammatory syndrome in children and long COVID. Among these two, the incidence of long COVID is higher and its impact on the population is more extensive, which is the focus of us. However, due to the lack of relevant studies and the limitations of most studies, the studies on sequelae of COVID-19 infection lag behind those of adults, but they have begun to attract the attention of some clinicians and researchers. We aim to summarize the current knowledge of long COVID in children, helping pediatricians and researchers to better understand this disease and providing guidance on research and clinical treatment of it. Methods We reviewed all the studies on "long COVID", pediatric, children, adolescent, post-COVID syndrome in PubMed published after 2019. Key Content and Findings This review summarizes the latest researches on epidemiology, pathogenesis, clinical manifestations, prevention and treatment of long COVID in children. Based on the existing research data, we summarized and analyzed the characteristics of long COVID in children, discovering the means to decipher the diagnosis of COVID-19 in children and some potential therapeutic treatments. Conclusions We aim to summarize existing research on long COVID in children and help pediatricians and government agencies quickly understand the disease so that it can be used for clinical diagnosis, treatment and prevention in the population. In addition, providing a research basis for further researches on the cellular and even molecular level to explain the occurrence and development of diseases, and has a guiding role for future research direction.
Collapse
|
240
|
Bohmwald K, Diethelm-Varela B, Rodríguez-Guilarte L, Rivera T, Riedel CA, González PA, Kalergis AM. Pathophysiological, immunological, and inflammatory features of long COVID. Front Immunol 2024; 15:1341600. [PMID: 38482000 PMCID: PMC10932978 DOI: 10.3389/fimmu.2024.1341600] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/09/2024] [Indexed: 04/12/2024] Open
Abstract
The COVID-19 pandemic continues to cause severe global disruption, resulting in significant excess mortality, overwhelming healthcare systems, and imposing substantial social and economic burdens on nations. While most of the attention and therapeutic efforts have concentrated on the acute phase of the disease, a notable proportion of survivors experience persistent symptoms post-infection clearance. This diverse set of symptoms, loosely categorized as long COVID, presents a potential additional public health crisis. It is estimated that 1 in 5 COVID-19 survivors exhibit clinical manifestations consistent with long COVID. Despite this prevalence, the mechanisms and pathophysiology of long COVID remain poorly understood. Alarmingly, evidence suggests that a significant proportion of cases within this clinical condition develop debilitating or disabling symptoms. Hence, urgent priority should be given to further studies on this condition to equip global public health systems for its management. This review provides an overview of available information on this emerging clinical condition, focusing on the affected individuals' epidemiology, pathophysiological mechanisms, and immunological and inflammatory profiles.
Collapse
Affiliation(s)
- Karen Bohmwald
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Benjamín Diethelm-Varela
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Linmar Rodríguez-Guilarte
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Thomas Rivera
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia A. Riedel
- Millennium Institute on Immunology and Immunotherapy, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo A. González
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy. Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
241
|
Moraes VT, Caires FJ, da Silva-Neto PV, Mendonça JN, Fraga-Silva TFC, Fontanezi BB, Marcato PD, Deperon Bonato VL, Sorgi CA, Beraldo Moraes LA, Clososki GC. Naphthoquinone derivatives as potential immunomodulators: prospective for COVID-19 treatment. RSC Adv 2024; 14:6532-6541. [PMID: 38390504 PMCID: PMC10880745 DOI: 10.1039/d3ra08173g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Inflammation plays a crucial role in COVID-19, and when it becomes dysregulated, it can lead to severe outcomes, including death. Naphthoquinones, a class of cyclic organic compounds widely distributed in nature, have attracted significant interest due to their potential biological benefits. One such naphthoquinone is 3,5,8-trihydroxy-6-methoxy-2-(5-oxohexa-1,3-dienyl)-naphthanthene-1,4-dione (3,5,8-TMON), a compound produced by fungi. Despite its structural similarity to shikonin, limited research has been conducted to investigate its biological properties. Therefore, the objective of this study was to evaluate the effects of 3,5,8-TMON and its synthetic derivatives in the context of inflammation induced by lipopolysaccharide (LPS) and SARS-CoV-2 infection in vitro using cell cultures. 3,5,8-TMON was obtained by acid treatment of crude extracts of fermentation medium from Cordyceps sp., and two derivatives were accessed by reaction with phenylhydrazine under different conditions. The results revealed that the crude extract of the fungi (C. Ex) inhibited the activity of transcription factor NF-kB, as well as the production of nitric oxide (NO) and interleukin-6 (IL-6) when LPS induced it in RAW 264.7 cells. This inhibitory effect was observed at effective concentrations of 12.5 and 3.12 μg mL-1. In parallel, 3,5,8-TMON and the new derivatives 3 and 4 demonstrated the ability to decrease IL-6 production while increasing TNF, with a specific effect depending on the concentration. These concentration-dependent agonist and antagonist effects were observed in THP-1 cells. Furthermore, 3,5,8-TMON inhibited IL-6 production at concentrations of 12.5 and 3.12 μg mL-1 in Calu-3 cells during SARS-CoV-2 viral infection. These findings present promising opportunities for further research into the therapeutic potential of this class of naphthoquinone in the management of inflammation and viral infections.
Collapse
Affiliation(s)
- Vitor Tassara Moraes
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil +55 16 3315-4208
| | - Franco Jazon Caires
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil +55 16 3315-4208
| | - Pedro V da Silva-Neto
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP Ribeirão Preto 14040-901 SP Brazil
| | - Jacqueline Nakau Mendonça
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil +55 16 3315-4208
| | - Thais F C Fraga-Silva
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Alagoas-UFAL Maceió 57072-900 AL Brazil
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP Ribeirão Preto 14040-900 SP Brazil
| | - Bianca Bueno Fontanezi
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil
| | - Priscyla Daniely Marcato
- Departamento de Ciências Farmacêuticas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil
| | - Vania Luiza Deperon Bonato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto-FMRP, Universidade de São Paulo-USP Ribeirão Preto 14040-900 SP Brazil
| | - Carlos Arterio Sorgi
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP Ribeirão Preto 14040-901 SP Brazil
| | - Luiz Alberto Beraldo Moraes
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto-FFCLRP, Universidade de São Paulo-USP Ribeirão Preto 14040-901 SP Brazil
| | - Giuliano Cesar Clososki
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo-USP Ribeirão Preto 14040-903 SP Brazil +55 16 3315-4208
| |
Collapse
|
242
|
Valencia I, Lumpuy-Castillo J, Magalhaes G, Sánchez-Ferrer CF, Lorenzo Ó, Peiró C. Mechanisms of endothelial activation, hypercoagulation and thrombosis in COVID-19: a link with diabetes mellitus. Cardiovasc Diabetol 2024; 23:75. [PMID: 38378550 PMCID: PMC10880237 DOI: 10.1186/s12933-023-02097-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Early since the onset of the COVID-19 pandemic, the medical and scientific community were aware of extra respiratory actions of SARS-CoV-2 infection. Endothelitis, hypercoagulation, and hypofibrinolysis were identified in COVID-19 patients as subsequent responses of endothelial dysfunction. Activation of the endothelial barrier may increase the severity of the disease and contribute to long-COVID syndrome and post-COVID sequelae. Besides, it may cause alterations in primary, secondary, and tertiary hemostasis. Importantly, these responses have been highly decisive in the evolution of infected patients also diagnosed with diabetes mellitus (DM), who showed previous endothelial dysfunction. In this review, we provide an overview of the potential triggers of endothelial activation related to COVID-19 and COVID-19 under diabetic milieu. Several mechanisms are induced by both the viral particle itself and by the subsequent immune-defensive response (i.e., NF-κB/NLRP3 inflammasome pathway, vasoactive peptides, cytokine storm, NETosis, activation of the complement system). Alterations in coagulation mediators such as factor VIII, fibrin, tissue factor, the von Willebrand factor: ADAMST-13 ratio, and the kallikrein-kinin or plasminogen-plasmin systems have been reported. Moreover, an imbalance of thrombotic and thrombolytic (tPA, PAI-I, fibrinogen) factors favors hypercoagulation and hypofibrinolysis. In the context of DM, these mechanisms can be exacerbated leading to higher loss of hemostasis. However, a series of therapeutic strategies targeting the activated endothelium such as specific antibodies or inhibitors against thrombin, key cytokines, factor X, complement system, the kallikrein-kinin system or NETosis, might represent new opportunities to address this hypercoagulable state present in COVID-19 and DM. Antidiabetics may also ameliorate endothelial dysfunction, inflammation, and platelet aggregation. By improving the microvascular pathology in COVID-19 and post-COVID subjects, the associated comorbidities and the risk of mortality could be reduced.
Collapse
Affiliation(s)
- Inés Valencia
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, IIS Hospital Universitario de La Princesa, 28009, Madrid, Spain.
| | - Jairo Lumpuy-Castillo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain
| | - Giselle Magalhaes
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Carlos F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain
| | - Óscar Lorenzo
- Laboratory of Diabetes and Vascular Pathology, IIS-Fundación Jiménez Díaz, 28040, Madrid, Spain.
- Spanish Biomedical Research Centre On Diabetes and Associated Metabolic Disorders (CIBERDEM) Network, Madrid, Spain.
| | - Concepción Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain.
- Vascular Pharmacology and Metabolism (FARMAVASM), IdiPAZ, Madrid, Spain.
| |
Collapse
|
243
|
Norollahi SE, Babaei K, Balooei V, Karouei SMH, Ashoobi MT, Asghari Gharakhyli E, Samadani AA. Bioinformatic-based Study to Investigate the Structure and Function of Pro-inflammatory Cytokines TNFα and IL-6 Involved in the Pathogenesis of COVID-19. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:205-217. [PMID: 39118801 PMCID: PMC11304465 DOI: 10.30699/ijp.2024.2015557.3211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/06/2024] [Indexed: 08/10/2024]
Abstract
Background & Objective Besides the clinical and laboratory research on the COVID-19 virus, the bioinformatics study in the field of genetics of immunity to COVID-19 is of particular importance. In this account, studies show that in patients with COVID-19, the level of tumor necrosis alpha (TNFα) and interleukin-6 (IL-6) is high and in severe cases of COVID-19, the production of IL-6, TNF-α, and other cytokines increases profoundly. On the other hand, investigating the molecular structure and receptors of IL-6 and TNFα and the structural analysis of the receptor proteins may potentially help to develop new therapeutic plans for COVID-19 infection. Methods To identify genes with significant and different expressions in patients with COVID-19 in a microarray data set containing transcriptional profiles from GEO as a functional genomic database the GEO query package version 2.64.2 in a programming language R version 4.2.1 was downloaded. In this way, functional enrichment analysis for DEGs, WikiPathways, REGO, gene ontology, and STRING database was also investigated and employed. Results The structure and function of pro-inflammatory cytokines TNFα and IL-6 involved in the pathogenesis of COVID-19 were investigated, and in general, after performing various analyses in this study and extracting A series of genes with different expressions from the KEGG database, the final 5 DEGs include CXCL14, CXCL6, CCL8, CXCR1, TNFRSF10, and the relationship and expression effects of them were observed in different pathways. Conclusion IL-6 and TNFα were involved in immunological processes that had a direct and indirect relationship with the activation of cytokines, including IL6 and TNF-a, and cytokine storm, and this indicates their role in the formation of problems and complications, including ARDS, in COVID-19 patients. Of course, determining the effectiveness of each of these genes requires more specialized and clinical studies.
Collapse
Affiliation(s)
- Seyedeh Elham Norollahi
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Kosar Babaei
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Vida Balooei
- Department of Veterinary Medicine, Babol Branch, Islamic Azad University, Babol, Iran
| | | | - Mohammad Taghi Ashoobi
- Department of Surgery, School of Medicine, Razi Hospital, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Ali Akbar Samadani
- Guilan Road Trauma Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
244
|
Wu F, Wang C, Li S, Ye Y, Cui M, Liu Y, Jiang S, Qian J, Yuan J, Shu Y, Sun C. Association between Statins Administration and Influenza Susceptibility: A Systematic Review and Meta-Analysis of Longitudinal Studies. Viruses 2024; 16:278. [PMID: 38400053 PMCID: PMC10893112 DOI: 10.3390/v16020278] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/06/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Previous studies reported that the association between statins use and influenza infection was contradictory. A systematic review and meta-analysis of longitudinal studies were performed to determine the association between statins use and influenza susceptibility. The literature search was conducted in PubMed, Embase, and Web of Science, from each database's inception to 21 May 2023. The fixed effect model and random effects model were used for data synthesis. In our study, a total of 1,472,239 statins users and 1,486,881 statins non-users from five articles were included. The pooled risk ratio (RR) of all included participants was 1.05 (95% CI: 1.03-1.07), and there were still significant differences after adjusting for vaccination status. Of note, RR values in statins users were 1.06 (95% CI: 1.03-1.08) in people aged ≥60 years old and 1.05 (95% CI: 1.03-1.07) in participant groups with a higher proportion of females. Administration of statins might be associated with an increased risk of influenza infection, especially among females and elderly people. For those people using statins, we should pay more attention to surveillance of their health conditions and take measures to prevent influenza infection.
Collapse
Affiliation(s)
- Fan Wu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Congcong Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Shunran Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Ying Ye
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Mingting Cui
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Yajie Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Shiqiang Jiang
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Jun Qian
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
| | - Jianhui Yuan
- Nanshan District Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Yuelong Shu
- NHC Key Laboratory of System Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; (F.W.); (C.W.); (S.L.)
- Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou 514400, China
| |
Collapse
|
245
|
Minakata D, Uchida T, Nakano A, Takase K, Tsukada N, Kosugi H, Kawata E, Nakane T, Takahashi H, Endo T, Nishiwaki S, Fujiwara H, Saito AM, Saito TI, Akashi K, Matsumura I, Mitani K. Characteristics and prognosis of patients with COVID-19 and hematological diseases in Japan: a cross-sectional study. Int J Hematol 2024; 119:183-195. [PMID: 38172385 PMCID: PMC10830869 DOI: 10.1007/s12185-023-03685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
The Japanese Society of Hematology performed an observational cross-sectional study to clarify the morbidity, prognosis, and prognostic factors in patients with COVID-19 with hematological diseases (HDs) in Japan. The study included patients with HDs who enrolled in our epidemiological survey and had a COVID-19 diagnosis and a verified outcome of up to 2 months. The primary endpoints were characteristics and short-term prognosis of COVID-19 in patients with HDs. A total of 367 patients from 68 institutes were enrolled over 1 year, and the collected data were analyzed. The median follow-up among survivors was 73 days (range, 1-639 days). The 60-day overall survival (OS) rate was 86.6%. In the multivariate analysis, albumin ≤ 3.3 g/dL and a need for oxygen were independently associated with inferior 60-day OS rates (hazard ratio [HR] 4.026, 95% confidence interval (CI) 1.954-8.294 and HR 14.55, 95% CI 3.378-62.64, respectively), whereas 60-day survival was significantly greater in patients with benign rather than malignant disease (HR 0.095, 95% CI 0.012-0.750). Together, these data suggest that intensive treatment may be necessary for patients with COVID-19 with malignant HDs who have low albumin levels and require oxygen at the time of diagnosis.
Collapse
Affiliation(s)
- Daisuke Minakata
- Division of Hematology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Tomoyuki Uchida
- Department of Hematology, Eiju General Hospital, Tokyo, Japan
| | - Aya Nakano
- Division of Clinical Oncology and Hematology, Department of Internal Medicine, The Jikei University School of Medicine Tokyo, Tokyo, Japan
| | - Ken Takase
- Department of Haematology, Clinical Research Centre, National Hospital Organization Kyushu Medical Centre, Fukuoka, Japan
| | - Nodoka Tsukada
- Department of Hematology/Oncology, Asahikawa Kosei General Hospital, Asahikawa, Japan
| | - Hiroshi Kosugi
- Department of Hematology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Eri Kawata
- Department of Hematology, Panasonic Health Insurance Organization Matsushita Memorial Hospital, Moriguchi, Japan
| | - Takahiko Nakane
- Department of Hematology, Osaka Saiseikai Nakatsu Hospital, Osaka, Japan
| | - Hiroyuki Takahashi
- Department of Hematology and Medical Oncology, Kanagawa Cancer Center, Kanagawa, Japan
| | - Tomoyuki Endo
- Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Nishiwaki
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hideaki Fujiwara
- Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan
| | - Akiko M Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Toshiki I Saito
- Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Science, Fukuoka, Japan
| | - Itaru Matsumura
- Department of Hematology and Rheumatology, Faculty of Medicine, Kindai University, Osakasayama, Japan
| | - Kinuko Mitani
- Department of Hematology and Oncology, Dokkyo Medical University, 880, Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| |
Collapse
|
246
|
Cyril AC, Ali NM, Nelliyulla Parambath A, Vazhappilly CG, Jan RK, Karuvantevida N, Aburamadan H, Lozon Y, Radhakrishnan R. Nigella sativa and its chemical constituents: pre-clinical and clinical evidence for their potential anti-SARS-CoV-2 effects. Inflammopharmacology 2024; 32:273-285. [PMID: 37966624 DOI: 10.1007/s10787-023-01385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/24/2023] [Indexed: 11/16/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused over 500 million reported cases of COVID-19 worldwide with relatively high morbidity and mortality. Although global vaccination drive has helped control the pandemic, the newer variant of the virus still holds the world in ransom. Several medicinal herbs with antiviral properties have been reported, and one such promising herb is Nigella sativa (NS). Recent molecular docking, pre-clinical, and clinical studies have shown that NS extracts may have the potential to prevent the entry of coronaviruses into the host cell as well as to treat and manage COVID-19 symptoms. Several active compounds from NS, such as nigelledine, α-hederin, dithymoquinone (DTQ), and thymoquinone (TQ), have been proposed as excellent ligands to target angiotensin-converting enzyme 2 (ACE2 receptors) and other targets on host cells as well as the spike protein (S protein) on SARS-CoV-2. By binding to these target proteins, these ligands could potentially prevent the binding between ACE2 and S protein. Though several articles have been published on the promising therapeutic role of NS and its constituents against SARS-CoV-2 infection, in this review, we consolidate the published information on NS and SARS-CoV-2, focusing on pre-clinical in silico studies as well as clinical trials reported between 2012 and 2023.
Collapse
Affiliation(s)
- Asha Caroline Cyril
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.
| | - Najma Mohamed Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Anagha Nelliyulla Parambath
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Reem Kais Jan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Haneen Aburamadan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Yosra Lozon
- Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Rajan Radhakrishnan
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
247
|
Song J, Choi S, Jeong S, Chang JY, Park SJ, Oh YH, Kim JS, Cho Y, Byeon K, Choi JY, Lee S, Park SM. Protective effect of vaccination on the risk of cardiovascular disease after SARS-CoV-2 infection. Clin Res Cardiol 2024; 113:235-245. [PMID: 37522901 DOI: 10.1007/s00392-023-02271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
OBJECTIVE This study investigated the incidence of CVDs after COVID-19. METHODS Data for 2,146,130 infected people were collected, including the vaccination status. COVID-19 patients were classified according to the number of the received vaccine doses: no, first, second, and ≥ third. To evaluate the short-term risk of CVDs after infection, adjusted odds ratios (aOR) and 95% confidence intervals (CIs) were calculated by multivariable logistic regression analysis after adjustments for covariates. RESULTS Compared to non-infected people, aORs [95% CIs; p value] for CVDs within a month after infection were 2.80 [2.64-2.97; < 0.001] in overall infected people and 4.62 [4.23-5.05; < 0.001], 4.20 [3.45-5.11; < 0.001], 2.79 [2.55-3.05; < 0.001], and 2.07 [1.91-2.24; < 0.001] in those who were infected after receiving no, first, second, and ≥ third vaccine doses, respectively. Among participants who received second doses of vaccine prior to contracting COVID-19, the aOR in those vaccinated with only the mRNA-based vaccine (BNT162b2 and mRNA-1273; Reference) was lower than those vaccinated with the virus-derived vaccine (ChAdOx1 nCov-19 and AD26.COV2-S; aOR 1.25 [1.06-1.48; < 0.01]). CONCLUSION Although COVID-19 increased the CVD risk, the inverse association in the risk of CVDs according to vaccine doses was significant in a dose-response manner. Our findings suggest that ≥ second doses of the COVID-19 vaccine prevent the risk of CVDs after SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Jihun Song
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Seulggie Choi
- Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Seogsong Jeong
- Department of Biomedical Informatics, School of Medicine, CHA University, Seongnam, Republic of Korea
| | - Joo Young Chang
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Sun Jae Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea
| | - Yun Hwan Oh
- Department of Family Medicine, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Republic of Korea
| | - Ji Soo Kim
- International Healthcare Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Yoosun Cho
- School of Medicine, Total Healthcare Center, Kangbuk Samsung Hospital, Sungkyunkwan University, Seoul, Republic of Korea
| | - Kyeonghyang Byeon
- Big Data Department, National Health Insurance Service, Wonju, Republic of Korea
| | - Jun Yong Choi
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seju Lee
- Division of Infectious Diseases, Department of Internal Medicine, Inha University College of Medicine, Incheon, Republic of Korea
| | - Sang Min Park
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul, Republic of Korea.
- Department of Family Medicine, Seoul National University Hospital, 101, Daehak-ro, Jongno-gu, Seoul, Republic of Korea.
| |
Collapse
|
248
|
Chang YY, Wei AC. Transcriptome and machine learning analysis of the impact of COVID-19 on mitochondria and multiorgan damage. PLoS One 2024; 19:e0297664. [PMID: 38295140 PMCID: PMC10830027 DOI: 10.1371/journal.pone.0297664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/09/2024] [Indexed: 02/02/2024] Open
Abstract
The effects of coronavirus disease 2019 (COVID-19) primarily concern the respiratory tract and lungs; however, studies have shown that all organs are susceptible to infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). COVID-19 may involve multiorgan damage from direct viral invasion through angiotensin-converting enzyme 2 (ACE2), through inflammatory cytokine storms, or through other secondary pathways. This study involved the analysis of publicly accessible transcriptome data from the Gene Expression Omnibus (GEO) database for identifying significant differentially expressed genes related to COVID-19 and an investigation relating to the pathways associated with mitochondrial, cardiac, hepatic, and renal toxicity in COVID-19. Significant differentially expressed genes were identified and ranked by statistical approaches, and the genes derived by biological meaning were ranked by feature importance; both were utilized as machine learning features for verification. Sample set selection for machine learning was based on the performance, sample size, imbalanced data state, and overfitting assessment. Machine learning served as a verification tool by facilitating the testing of biological hypotheses by incorporating gene list adjustment. A subsequent in-depth study for gene and pathway network analysis was conducted to explore whether COVID-19 is associated with cardiac, hepatic, and renal impairments via mitochondrial infection. The analysis showed that potential cardiac, hepatic, and renal impairments in COVID-19 are associated with ACE2, inflammatory cytokine storms, and mitochondrial pathways, suggesting potential medical interventions for COVID-19-induced multiorgan damage.
Collapse
Affiliation(s)
- Yu-Yu Chang
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - An-Chi Wei
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
249
|
Shida H, Komamine M, Kajiyama K, Waki T, Maruyama H, Uyama Y. Real-world prescription of anti-COVID-19 drugs in hospitalized patients with COVID-19 in Japan. PLoS One 2024; 19:e0297679. [PMID: 38277429 PMCID: PMC10817178 DOI: 10.1371/journal.pone.0297679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/11/2024] [Indexed: 01/28/2024] Open
Abstract
OBJECTIVE Prescription trends and patterns of anti-COVID-19 drugs in hospitalized patients were examined based on real world data to understand the use of anti-COVID-19 drugs in clinical practice in Japan. DESIGN The longitudinal and cross-sectional study was conducted utilizing data from January 1, 2019 to December 31, 2021 of the MID-NET® medical information database, which stored the electronic medical records, administrative claim data, and diagnosis procedure combination data of patients in Japan. PARTICIPANTS Hospitalized patients with a COVID-19-related diagnosis who received at least one anti-COVID-19 drug between April 1, 2020 and December 31, 2021. EXPOSURES The following 14 drugs were included in this study: remdesivir, baricitinib, combination product of casirivimab and imdevimab, favipiravir, dexamethasone, ivermectin, azithromycin, nafamostat mesylate, camostat mesylate, ciclesonide, tocilizumab, sarilumab, combination product of lopinavir and ritonavir, and hydroxychloroquine. RESULTS We identified 5,717 patients hospitalized with COVID-19 and prescribed at least one anti-COVID-19 drug. The entire cohort generally included patients over 41-50 years and more males. The most common prescription pattern was dexamethasone monotherapy (22.9%), followed by the concomitant use of remdesivir and dexamethasone (15.0%), azithromycin monotherapy (15.0%), remdesivir monotherapy (10.2%), and nafamostat mesylate monotherapy (8.5%). However, an often prescribed anti-COVID-19 drug differed depending on the period. CONCLUSIONS AND RELEVANCE This study revealed the real-world situation of anti-COVID-19 drug prescriptions in hospitalized COVID-19 patients in Japan. A prescribed drug would depend on the latest scientific evidence, such as efficacy, safety, and approval status, at the time of prescription. Understanding the prescription of anti-COVID-19 drugs will be important for providing the most up-to-date treatments to patients and evaluating the benefit and/or risk of anti-COVID-19 drugs based on the utilization of an electronic medical record database.
Collapse
Affiliation(s)
- Haruka Shida
- Office of Medical Informatics and Epidemiology, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Maki Komamine
- Office of Medical Informatics and Epidemiology, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Kazuhiro Kajiyama
- Office of Medical Informatics and Epidemiology, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Takashi Waki
- Office of Medical Informatics and Epidemiology, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Hotaka Maruyama
- Office of Medical Informatics and Epidemiology, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| | - Yoshiaki Uyama
- Office of Medical Informatics and Epidemiology, Pharmaceuticals and Medical Devices Agency, Tokyo, Japan
| |
Collapse
|
250
|
Móvio MI, de Almeida GWC, Martines IDGL, Barros de Lima G, Sasaki SD, Kihara AH, Poole E, Nevels M, Carlan da Silva MC. SARS-CoV-2 ORF8 as a Modulator of Cytokine Induction: Evidence and Search for Molecular Mechanisms. Viruses 2024; 16:161. [PMID: 38275971 PMCID: PMC10819295 DOI: 10.3390/v16010161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/11/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024] Open
Abstract
Severe cases of SARS-CoV-2 infection are characterized by an immune response that leads to the overproduction of pro-inflammatory cytokines, resulting in lung damage, cardiovascular symptoms, hematologic symptoms, acute kidney injury and multiple organ failure that can lead to death. This remarkable increase in cytokines and other inflammatory molecules is primarily caused by viral proteins, and particular interest has been given to ORF8, a unique accessory protein specific to SARS-CoV-2. Despite plenty of research, the precise mechanisms by which ORF8 induces proinflammatory cytokines are not clear. Our investigations demonstrated that ORF8 augments production of IL-6 induced by Poly(I:C) in human embryonic kidney (HEK)-293 and monocyte-derived dendritic cells (mono-DCs). We discuss our findings and the multifaceted roles of ORF8 as a modulator of cytokine response, focusing on type I interferon and IL-6, a key component of the immune response to SARS-CoV-2. In addition, we explore the hypothesis that ORF8 may act through pattern recognition receptors of dsRNA such as TLRs.
Collapse
Affiliation(s)
- Marília Inês Móvio
- Laboratório de Neurogenética, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (M.I.M.)
| | - Giovana Waner Carneiro de Almeida
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Isabella das Graças Lopes Martines
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Gilmara Barros de Lima
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Sergio Daishi Sasaki
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (M.I.M.)
| | - Emma Poole
- Division of Virology, Department of Pathology, Cambridge University, Level 5, Addenbrooke’s Hospital, Hills Road, Cambridge CB2 0QQ, UK
| | - Michael Nevels
- School of Biology, University of St Andrews, St Andrews KY16 9ST, UK;
| | - Maria Cristina Carlan da Silva
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do UFABC (UFABC), São Bernardo do Campo, São Paulo 09606-070, Brazil; (G.W.C.d.A.); (G.B.d.L.); (S.D.S.)
| |
Collapse
|