201
|
Wu Q, Sun Y, Gao J, Chen L, Dong S, Luo G, Li H, Wang L, Zhao L. Ionic liquid-functionalized graphene quantum dot-bonded silica as multi-mode HPLC stationary phase with enhanced selectivity for acid compounds. NEW J CHEM 2018. [DOI: 10.1039/c7nj05200f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel IL/GQD/SiO2 stationary phase for reversed-phase/normal-phase/ionic exchange and hydrophilic interaction liquid chromatography.
Collapse
Affiliation(s)
- Qi Wu
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yaming Sun
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Jie Gao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Lixiao Chen
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Shuqing Dong
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Guoying Luo
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hui Li
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Litao Wang
- Department of Pharmacy
- Jining Medical University
- Rizhao
- China
| | - Liang Zhao
- Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province
- Lanzhou Institute of Chemical Physics
- Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
202
|
Jaffuel G, Chappuis L, Guillarme D, Turlings TC, Glauser G. Improved separation by at-column dilution in preparative hydrophilic interaction chromatography. J Chromatogr A 2018; 1532:136-143. [DOI: 10.1016/j.chroma.2017.11.071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 10/18/2022]
|
203
|
Desfontaine V, Goyon A, Veuthey JL, Charve J, Guillarme D. Development of a LC-MS/MS method for the determination of isomeric glutamyl peptides in food ingredients. J Sep Sci 2017; 41:847-855. [PMID: 29193742 DOI: 10.1002/jssc.201701182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 11/12/2022]
Abstract
A liquid chromatography with tandem mass spectrometry method was developed for the determination of 27 glutamyl di- and tripeptides in food ingredients. Such compounds are of importance for the food industry, as they can modulate the perception of basic tastes (sweet, salty, and umami). Due to their high polarity, the hydrophilic interaction chromatography mode was selected to have sufficient retention on the column and the best separation was obtained on an amide hybrid silica stationary phase packed with 1.7 μm particles. Thorough optimization of the mobile phase was performed as the start-composition had to be free of ammonium to avoid on-column cis-trans isomerization of the first eluting proline dipeptide. A baseline separation was achieved for all α and γ isomers whereas only a partial resolution was obtained for γ-Glu-Leu and γ-Glu-Ile, for which only the position of a methyl group differs. A fast sample preparation, based on successive dilutions, was performed before injection into the liquid chromatography with tandem mass spectrometry system. The developed method was then applied for the semi-quantification of glutamyl di- and tri-peptides in four different food ingredients. The methodology will further support the optimization of production processes to select the conditions for which the peptide concentrations would be the highest.
Collapse
Affiliation(s)
- Vincent Desfontaine
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Alexandre Goyon
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | - Jean-Luc Veuthey
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| | | | - Davy Guillarme
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
204
|
Logotheti M, Theochari K, Kostakis M, Pasias IN, Thomaidis NS. Development and validation of a HILIC-UV method for the determination of nucleotides in fish samples. Food Chem 2017; 248:70-77. [PMID: 29329872 DOI: 10.1016/j.foodchem.2017.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 12/07/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
The aim of this work was the development of a simple, novel and accurate method for the determination of adenosine triphosphate (ATP) and its first five catabolites: adenosine diphosphate (ADP), adenosine monophosphate (AMP), inosine monophosphate (IMP), inosine (Ino) and hypoxanthine (Hx), in fish tissue, based on hydrophilic interaction liquid chromatography (HILIC). For this purpose, a stationary phase for polar and hydrophilic compounds (ZIC-pHILIC) was used. The effect of different chromatographic parameters and the molecular mechanism based on the van't Hoff plot were examined. The t-test and Dixon's Q-test were applied in order to examine statistical differences and outlier values. The recovery of the method ranged between 82.7% and 127% and the %RSD values were lower than 10% for all analytes determined. The method was applied in frozen sea bream samples stored at 0-4 °C. The Ki-, G-, H- and F values were calculated for the estimation of the level of fish freshness.
Collapse
Affiliation(s)
- Maria Logotheti
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Konstantina Theochari
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Marios Kostakis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Ioannis N Pasias
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece
| | - Nikolaos S Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece.
| |
Collapse
|
205
|
1H-Tetrazole-5-amine Immobilized on Substituted Polymer Gel/Silica as a New Stationary Phase for Hydrophilic Interaction Chromatography. Chromatographia 2017. [DOI: 10.1007/s10337-017-3452-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
206
|
Pirok BW, Molenaar SR, van Outersterp RE, Schoenmakers PJ. Applicability of retention modelling in hydrophilic-interaction liquid chromatography for algorithmic optimization programs with gradient-scanning techniques. J Chromatogr A 2017; 1530:104-111. [DOI: 10.1016/j.chroma.2017.11.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/09/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022]
|
207
|
Jandera P, Hájek T. Mobile phase effects on the retention on polar columns with special attention to the dual hydrophilic interaction-reversed-phase liquid chromatography mechanism, a review. J Sep Sci 2017; 41:145-162. [DOI: 10.1002/jssc.201701010] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 10/04/2017] [Accepted: 10/04/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Pavel Jandera
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| | - Tomáš Hájek
- Department of Analytical Chemistry; Faculty of Chemical Technology; University of Pardubice; Pardubice Czech Republic
| |
Collapse
|
208
|
Pirok BWJ, Gargano AFG, Schoenmakers PJ. Optimizing separations in online comprehensive two-dimensional liquid chromatography. J Sep Sci 2017; 41:68-98. [PMID: 29027363 PMCID: PMC5814945 DOI: 10.1002/jssc.201700863] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/16/2022]
Abstract
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations.
Collapse
Affiliation(s)
- Bob W J Pirok
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands.,TI-COAST, Science Park, Amsterdam, The Netherlands
| | - Andrea F G Gargano
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands.,Vrije Universiteit Amsterdam, Department of Bioanalytical Chemistry, Amsterdam Institute for Molecules, Medicines and Systems, Amsterdam, The Netherlands
| | - Peter J Schoenmakers
- University of Amsterdam, Analytical-Chemistry Group, van 't Hoff Institute for Molecular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
209
|
Kokotou MG, Thomaidis NS. Characterization of the Retention of Artificial Sweeteners by Hydrophilic Interaction Liquid Chromatography. ANAL LETT 2017. [DOI: 10.1080/00032719.2017.1326124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Maroula G. Kokotou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos S. Thomaidis
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
210
|
Sichler S, Höfner G, Rappenglück S, Wein T, Niessen KV, Seeger T, Worek F, Thiermann H, Paintner FF, Wanner KT. Development of MS Binding Assays targeting the binding site of MB327 at the nicotinic acetylcholine receptor. Toxicol Lett 2017; 293:172-183. [PMID: 29146291 DOI: 10.1016/j.toxlet.2017.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/09/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023]
Abstract
The bispyridinium compound MB327 has been shown previously to have a positive pharmacological effect against poisoning with organophosphorous compounds (OPCs). The mechanism by which it exerts its therapeutic effect seems to be directly mediated by the nicotinic acetylcholine receptor (nAChR). In the present study, the development of mass spectrometry based binding assays (MS Binding Assays) for characterization of the binding site of MB327 at the nAChR from Torpedo californica is described. MS Binding Assays follow the principle of radioligand binding assays, but do not, in contrast to the latter, require a radiolabeled reporter ligand, as the readout is in this case based on mass spectrometric detection. For [2H6]MB327, a deuterated MB327 analogue employed as reporter ligand in the MS Binding Assays, an LC-ESI-MS/MS method was established allowing for its fast and reliable quantification in samples resulting from binding experiments. Using centrifugation for separation of non-bound [2H6]MB327 from target-bound [2H6]MB327 in saturation and autocompetition experiments (employing native MB327 as competitor) enabled reliable determination of specific binding. In this way, the affinities for [2H6]MB327 (Kd=15.5±0.9μmolL-1) and for MB327 (Ki=18.3±2.6μmolL-1) towards the nAChR could be determined for the first time. The almost exactly matching affinities for MB327 and [2H6]MB327 obtained in the MS Binding Assays are in agreement with potencies previously found in functional studies. In summary, our results demonstrate that the established MS Binding Assays represent a promising tool for affinity determination of test compounds towards the binding site of MB327 at the nAChR.
Collapse
Affiliation(s)
- S Sichler
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - G Höfner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - S Rappenglück
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - T Wein
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - K V Niessen
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - T Seeger
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - F Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - H Thiermann
- Bundeswehr Institute of Pharmacology and Toxicology, Neuherbergstr. 11, 80937 Munich, Germany
| | - F F Paintner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany
| | - K T Wanner
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
211
|
One-step preparation of zirconia coated silica microspheres and modification with d-fructose 1, 6-bisphosphate as stationary phase for hydrophilic interaction chromatography. J Chromatogr A 2017; 1522:30-37. [PMID: 28958759 DOI: 10.1016/j.chroma.2017.09.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/23/2022]
Abstract
In this study, ZrO2 layer coated silica microspheres (ZrO2/SiO2) were successfully prepared by a facile one-step surfactant-free hydrothermal route under low pH condition. The synthesized ZrO2/SiO2 material was then modified with d-fructose 1, 6-bisphosphate (FDP) to improve the chromatographic separation property of the material. Fused-silica capillary columns were prepared with the modified material for evaluation. Phenolic, nucleobases and alkaloids compounds in hydrophilic interaction chromatographic (HILIC) mode showed symmetrical peaks. The FDP-ZrO2/SiO2 stationary phase showed better performance than ZrO2/SiO2 packing material and demonstrated great potential for application in HILIC mode.
Collapse
|
212
|
McCalley DV. Understanding and manipulating the separation in hydrophilic interaction liquid chromatography. J Chromatogr A 2017; 1523:49-71. [DOI: 10.1016/j.chroma.2017.06.026] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/05/2017] [Accepted: 06/11/2017] [Indexed: 10/19/2022]
|
213
|
Stajić A, Anđelković M, Dikić N, Rašić J, Vukašinović-Vesić M, Ivanović D, Jančić-Stojanović B. Determination of higenamine in dietary supplements by UHPLC/MS/MS method. J Pharm Biomed Anal 2017; 146:48-52. [DOI: 10.1016/j.jpba.2017.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/09/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
|
214
|
Taraji M, Haddad PR, Amos RIJ, Talebi M, Szucs R, Dolan JW, Pohl CA. Chemometric-assisted method development in hydrophilic interaction liquid chromatography: A review. Anal Chim Acta 2017; 1000:20-40. [PMID: 29289311 DOI: 10.1016/j.aca.2017.09.041] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/24/2017] [Indexed: 02/09/2023]
Abstract
With an enormous growth in the application of hydrophilic interaction liquid chromatography (HILIC), there has also been significant progress in HILIC method development. HILIC is a chromatographic method that utilises hydro-organic mobile phases with a high organic content, and a hydrophilic stationary phase. It has been applied predominantly in the determination of small polar compounds. Theoretical studies in computer-aided modelling tools, most importantly the predictive, quantitative structure retention relationship (QSRR) modelling methods, have attracted the attention of researchers and these approaches greatly assist the method development process. This review focuses on the application of computer-aided modelling tools in understanding the retention mechanism, the classification of HILIC stationary phases, prediction of retention times in HILIC systems, optimisation of chromatographic conditions, and description of the interaction effects of the chromatographic factors in HILIC separations. Additionally, what has been achieved in the potential application of QSRR methodology in combination with experimental design philosophy in the optimisation of chromatographic separation conditions in the HILIC method development process is communicated. Developing robust predictive QSRR models will undoubtedly facilitate more application of this chromatographic mode in a broader variety of research areas, significantly minimising cost and time of the experimental work.
Collapse
Affiliation(s)
- Maryam Taraji
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Paul R Haddad
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia.
| | - Ruth I J Amos
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Mohammad Talebi
- Australian Centre for Research on Separation Science (ACROSS), School of Physical Sciences-Chemistry, University of Tasmania, Private Bag 75, Hobart 7001, Australia
| | - Roman Szucs
- Pfizer Global Research and Development, CT13 9NJ, Sandwich, UK
| | - John W Dolan
- LC Resources, 1795 NW Wallace Rd., McMinnville, OR 97128, USA
| | | |
Collapse
|
215
|
Schriewer A, Cadenas C, Hayen H. Hydrophilic interaction liquid chromatography tandem mass spectrometry analysis of malonyl-coenzyme A in breast cancer cell cultures applying online solid-phase extraction. J Sep Sci 2017; 40:4303-4310. [PMID: 28877409 DOI: 10.1002/jssc.201700617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022]
Abstract
Cofactors such as coenzyme A and its derivatives acetyl-coenzyme A and malonyl-coenzyme A are involved in many metabolic pathways. Due to trace level concentrations in biological samples and the high reactivity of cofactors, a fast, sensitive, and selective method for quantification is mandatory. In this study, online solid-phase extraction was coupled successfully to hydrophilic interaction liquid chromatography with tandem mass spectrometry for isolation of analytes in complex matrix and quantification by external calibration. Online solid-phase extraction was carried out by application of a weak anion-exchange column, whereas hydrophilic interaction liquid chromatography separation was performed on an amide modified stationary phase. Sample preparation of the extracts before the analysis was reduced to a centrifugation and dilution step. Moreover, the applied online solid-phase extraction significantly reduced matrix effects and increased the signal-to-noise ratio. The limit of detection and the limit of quantification were in the lower nanomolar range. Finally, the applicability of this method was demonstrated on MCF-7 breast cancer cell cultures, a commonly used model system, where acetyl-coenzyme A and malonyl-coenzyme A were determined using standard addition procedure in concentrations of 1.98 μM and 41 nM, respectively.
Collapse
Affiliation(s)
- Alexander Schriewer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Cristina Cadenas
- Leibniz-Research Centre for Working Environment and Human Factors, University of Dortmund, Dortmund, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
216
|
Iguiniz M, Heinisch S. Two-dimensional liquid chromatography in pharmaceutical analysis. Instrumental aspects, trends and applications. J Pharm Biomed Anal 2017; 145:482-503. [DOI: 10.1016/j.jpba.2017.07.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 10/19/2022]
|
217
|
“Thiol-ene” grafting of silica particles with three-dimensional branched copolymer for HILIC/cation-exchange chromatographic separation and N-glycopeptide enrichment. Anal Bioanal Chem 2017; 410:1019-1027. [DOI: 10.1007/s00216-017-0626-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022]
|
218
|
Veillon L, Huang Y, Peng W, Dong X, Cho BG, Mechref Y. Characterization of isomeric glycan structures by LC-MS/MS. Electrophoresis 2017; 38:2100-2114. [PMID: 28370073 PMCID: PMC5581235 DOI: 10.1002/elps.201700042] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 02/21/2017] [Accepted: 03/12/2017] [Indexed: 12/12/2022]
Abstract
The characterization of glycosylation is critical for obtaining a comprehensive view of the regulation and functions of glycoproteins of interest. Due to the complex nature of oligosaccharides, stemming from variable compositions and linkages, and ion suppression effects, the chromatographic separation of glycans, including isomeric structures, is necessary for exhaustive characterization by MS. This review introduces the fundamental principles underlying the techniques in LC utilized by modern day glycomics researchers. Recent advances in porous graphitized carbon, reverse phase, ion exchange, and hydrophilic interaction LC utilized in conjunction with MS, for the characterization of protein glycosylation, are described with an emphasis on methods capable of resolving isomeric glycan structures.
Collapse
Affiliation(s)
- Lucas Veillon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | | | | | | | - Byeong G. Cho
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061
| |
Collapse
|
219
|
Salas D, Borrull F, Fontanals N, Marcé RM. Hydrophilic interaction liquid chromatography coupled to mass spectrometry-based detection to determine emerging organic contaminants in environmental samples. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
220
|
Wang N, Boswell PG. Accurate prediction of retention in hydrophilic interaction chromatography by back calculation of high pressure liquid chromatography gradient profiles. J Chromatogr A 2017; 1520:75-82. [PMID: 28864110 DOI: 10.1016/j.chroma.2017.08.050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/01/2017] [Accepted: 08/18/2017] [Indexed: 01/20/2023]
Abstract
Gradient retention times are difficult to project from the underlying retention factor (k) vs. solvent composition (φ) relationships. A major reason for this difficulty is that gradients produced by HPLC pumps are imperfect - gradient delay, gradient dispersion, and solvent mis-proportioning are all difficult to account for in calculations. However, we recently showed that a gradient "back-calculation" methodology can measure these imperfections and take them into account. In RPLC, when the back-calculation methodology was used, error in projected gradient retention times is as low as could be expected based on repeatability in the k vs. φ relationships. HILIC, however, presents a new challenge: the selectivity of HILIC columns drift strongly over time. Retention is repeatable in short time, but selectivity frequently drifts over the course of weeks. In this study, we set out to understand if the issue of selectivity drift can be avoid by doing our experiments quickly, and if there any other factors that make it difficult to predict gradient retention times from isocratic k vs. φ relationships when gradient imperfections are taken into account with the back-calculation methodology. While in past reports, the accuracy of retention projections was >5%, the back-calculation methodology brought our error down to ∼1%. This result was 6-43 times more accurate than projections made using ideal gradients and 3-5 times more accurate than the same retention projections made using offset gradients (i.e., gradients that only took gradient delay into account). Still, the error remained higher in our HILIC projections than in RPLC. Based on the shape of the back-calculated gradients, we suspect the higher error is a result of prominent gradient distortion caused by strong, preferential water uptake from the mobile phase into the stationary phase during the gradient - a factor our model did not properly take into account. It appears that, at least with the stationary phase we used, column distortion is an important factor to take into account in retention projection in HILIC that is not usually important in RPLC.
Collapse
Affiliation(s)
- Nu Wang
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Ave., St. Paul, MN 55108, USA.
| | - Paul G Boswell
- Department of Plant and Microbial Biology, University of Minnesota, 1479 Gortner Ave., St. Paul, MN 55108, USA
| |
Collapse
|
221
|
Miękus N, Konieczna L, Kowiański P, Moryś J, Bączek T. HILIC-MS Rat Brain Analysis, A New Approach for the Study of Ischemic Attack. Transl Neurosci 2017; 8:70-75. [PMID: 28828183 PMCID: PMC5558183 DOI: 10.1515/tnsci-2017-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/19/2017] [Indexed: 02/06/2023] Open
Abstract
Clinicians often rely on selected small molecular compounds from body fluids for the detection, screening or monitoring of numerous life-threatening diseases. Among others, important monoamines - biogenic amines (BAs) - and their metabolites serve as sensitive biomarkers to study the progression or even early detection of on-going brain pathologies or tumors of neuroendocrine origins. Undertaking the task to optimize a reliable method for the simultaneous analysis of the most relevant BAs in biological matrices is of utmost importance for scientists. Hydrophilic interaction liquid chromatography (HILIC) with mass spectrometry (MS) detection provides a specific and sensitive technique for the separation and assessment of several neurotransmitter concentrations in body fluids (blood, urine, tissues). The present study was focused on the optimization of a straightforward, sensitive and reliable method for the simultaneous analysis of the ten most important BAs and their acidic metabolites from homogenates of rat brain tissues by use of HILIC-MS. Here, we present the optimized experimental workflow in terms of sample preparation, buffer compositions, HILIC and MS settings and data analysis. The presented method is reliable, straightforward and sensitive. Our method permits the unbiased, qualitative and quantitative determination of several BAs and their metabolites simultaneously. The optimized method was applied to the analysis of rat brain tissue samples from healthy hemispheres or those with induced transient ischemic attack (TIA). The undertaken pilot study demonstrated that the proposed approach could be applied to reveal the perturbation in neurotransmitters concentration after TIA in rat brains.
Collapse
Affiliation(s)
- Natalia Miękus
- Department of Animal and Human Physiology, University of Gdańsk, Wita Stwosza 59, 80-308Gdańsk, Poland.,Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416Gdańsk, Poland
| | - Lucyna Konieczna
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416Gdańsk, Poland
| | - Przemysław Kowiański
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Dębinki 1, 80-211Gdańsk, Poland
| | - Janusz Moryś
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Dębinki 1, 80-211Gdańsk, Poland
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, Gen. J. Hallera 107, 80-416Gdańsk, Poland
| |
Collapse
|
222
|
Kalíková K, Boublík M, Kučerová G, Kozlík P. The effect of buffer concentration and cation type in the mobile phase on retention of amino acids and dipeptides in hydrophilic interaction liquid chromatography. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0265-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
223
|
Jiang Z, Li H, Cao X, Du P, Shao H, Jin F, Jin M, Wang J. Determination of hymexazol in 26 foods of plant origin by modified QuEChERS method and liquid chromatography tandem-mass spectrometry. Food Chem 2017; 228:411-419. [DOI: 10.1016/j.foodchem.2017.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 01/28/2017] [Accepted: 02/05/2017] [Indexed: 10/20/2022]
|
224
|
Schulze C, Strehle A, Merdivan S, Mundt S. Carbohydrates in microalgae: Comparative determination by TLC, LC-MS without derivatization, and the photometric thymol-sulfuric acid method. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
225
|
Lindahl A, Sääf S, Lehtiö J, Nordström A. Tuning Metabolome Coverage in Reversed Phase LC-MS Metabolomics of MeOH Extracted Samples Using the Reconstitution Solvent Composition. Anal Chem 2017; 89:7356-7364. [PMID: 28613827 DOI: 10.1021/acs.analchem.7b00475] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Considering the physicochemical diversity of the metabolome, untargeted metabolomics will inevitably discriminate against certain compound classes. Efforts are nevertheless made to maximize the metabolome coverage. Contrary to the main steps of a typical liquid chromatography-mass spectrometry (LC-MS) metabolomics workflow, such as metabolite extraction, the sample reconstitution step has not been optimized for maximal metabolome coverage. This sample concentration step typically occurs after metabolite extraction, when dried samples are reconstituted in a solvent for injection on column. The aim of this study was to evaluate the impact of the sample reconstitution solvent composition on metabolome coverage in untargeted LC-MS metabolomics. Lysogeny Broth medium samples reconstituted in MeOH/H2O ratios ranging from 0 to 100% MeOH and analyzed with untargeted reversed phase LC-MS showed that the highest number of metabolite features (n = 1500) was detected in samples reconstituted in 100% H2O. As compared to a commonly used reconstitution solvent mixture of 50/50 MeOH/H2O, our results indicate that the small fraction of compounds increasing in peak area response by the addition of MeOH to H2O, 5%, is outweighed by the fraction of compounds with decreased response, 57%. We evaluated our results on human serum samples from lymphoma patients and healthy control subjects. Reconstitution in 100% H2O resulted in a higher number of significant metabolites discriminating between these two groups than both 50% and 100% MeOH. These findings show that the sample reconstitution step has a clear impact on the metabolome coverage of MeOH extracted biological samples, highlighting the importance of the reconstitution solvent composition for untargeted discovery metabolomics.
Collapse
Affiliation(s)
- Anna Lindahl
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet , Stockholm SE-171 21, Sweden
| | - Siv Sääf
- Department of Molecular Biology, Umeå University , Umeå SE-901 87, Sweden
| | - Janne Lehtiö
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet , Stockholm SE-171 21, Sweden
| | - Anders Nordström
- Department of Molecular Biology, Umeå University , Umeå SE-901 87, Sweden.,Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institutet , Stockholm SE-171 21, Sweden
| |
Collapse
|
226
|
A review of high performance liquid chromatographic-mass spectrometric urinary methods for anticancer drug exposure of health care workers. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:316-324. [PMID: 28654869 DOI: 10.1016/j.jchromb.2017.06.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/14/2017] [Accepted: 06/17/2017] [Indexed: 12/15/2022]
Abstract
This review describes published high performance liquid chromatography/mass spectrometry (HPLC-MS) methods for the determination of anticancer drugs in human urine as non-invasive tool for monitoring of health care worker exposure to antineoplastic and cytotoxic drugs. HPLC-MS is a sensitive and specific method for analysis of anticancer drugs and their metabolites in biological fluids. In this review, a tabular summary and overview of published HPLC-MS methods are presented, as well as future trends and limitations in this area of research.
Collapse
|
227
|
Furuki K, Toyo'oka T. Retention of glycopeptides analyzed using hydrophilic interaction chromatography is influenced by charge and carbon chain length of ion-pairing reagent for mobile phase. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/15/2017] [Accepted: 04/06/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Kenichiro Furuki
- Process Lab II, Biotechnology Labs, Astellas Pharma Inc; Ibaraki Japan
- School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| | - Toshimasa Toyo'oka
- School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka Japan
| |
Collapse
|
228
|
Abbood A, Smadja C, Taverna M, Herrenknecht C. Hydrophilic interaction liquid chromatography for dalargin separation from its structural analogues and side products. J Chromatogr A 2017; 1498:155-162. [DOI: 10.1016/j.chroma.2017.01.085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/23/2017] [Accepted: 01/29/2017] [Indexed: 12/21/2022]
|
229
|
Ambati CSR, Yuan F, Abu-Elheiga LA, Zhang Y, Shetty V. Identification and Quantitation of Malonic Acid Biomarkers of In-Born Error Metabolism by Targeted Metabolomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:929-938. [PMID: 28315235 DOI: 10.1007/s13361-017-1631-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/13/2017] [Accepted: 02/17/2017] [Indexed: 06/06/2023]
Abstract
Malonic acid (MA), methylmalonic acid (MMA), and ethylmalonic acid (EMA) metabolites are implicated in various non-cancer disorders that are associated with inborn-error metabolism. In this study, we have slightly modified the published 3-nitrophenylhydrazine (3NPH) derivatization method and applied it to derivatize MA, MMA, and EMA to their hydrazone derivatives, which were amenable for liquid chromatography- mass spectrometry (LC-MS) quantitation. 3NPH was used to derivatize MA, MMA, and EMA, and multiple reaction monitoring (MRM) transitions of the corresponding derivatives were determined by product-ion experiments. Data normalization and absolute quantitation were achieved by using 3NPH derivatized isotopic labeled compounds 13C2-MA, MMA-D3, and EMA-D3. The detection limits were found to be at nanomolar concentrations and a good linearity was achieved from nanomolar to millimolar concentrations. As a proof of concept study, we have investigated the levels of malonic acids in mouse plasma with malonyl-CoA decarboxylase deficiency (MCD-D), and we have successfully applied 3NPH method to identify and quantitate all three malonic acids in wild type (WT) and MCD-D plasma with high accuracy. The results of this method were compared with that of underivatized malonic acid standards experiments that were performed using hydrophilic interaction liquid chromatography (HILIC)-MRM. Compared with HILIC method, 3NPH derivatization strategy was found to be very efficient to identify these molecules as it greatly improved the sensitivity, quantitation accuracy, as well as peak shape and resolution. Furthermore, there was no matrix effect in LC-MS analysis and the derivatized metabolites were found to be very stable for longer time. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Chandra Shekar R Ambati
- Metabolomics Core Facility, Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Furong Yuan
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lutfi A Abu-Elheiga
- Department of Biochemistry, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yiqing Zhang
- Metabolomics Core Facility, Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Vivekananda Shetty
- Metabolomics Core Facility, Molecular and Cellular Biology, Alkek Center for Molecular Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
230
|
Okamoto H, Hamaguchi R, Kuroda Y. Hydrophilic interaction chromatography with a focus on the drug–phosphate interaction in drug screening to determine the phospholipidosis induction risk. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1051:33-40. [DOI: 10.1016/j.jchromb.2017.02.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 02/20/2017] [Accepted: 02/22/2017] [Indexed: 11/26/2022]
|
231
|
Wu Q, Sun Y, Zhang X, Zhang X, Dong S, Qiu H, Wang L, Zhao L. Multi-mode application of graphene quantum dots bonded silica stationary phase for high performance liquid chromatography. J Chromatogr A 2017; 1492:61-69. [DOI: 10.1016/j.chroma.2017.02.067] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 02/24/2017] [Accepted: 02/27/2017] [Indexed: 11/25/2022]
|
232
|
Zeng J, Liu S, Wang M, Yao S, Chen Y. The synthesis of weak acidic type hybrid monolith via thiol-ene click chemistry and its application in hydrophilic interaction chromatography. Electrophoresis 2017; 38:1325-1333. [DOI: 10.1002/elps.201600526] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/05/2017] [Accepted: 02/05/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Jiao Zeng
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering; Hunan University; Changsha P. R. China
| | - Shengquan Liu
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering; Hunan University; Changsha P. R. China
| | - Menglin Wang
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering; Hunan University; Changsha P. R. China
| | - Shouzhuo Yao
- State Key Laboratory of Chemo/Biosensing & Chemometrics, College of Chemistry & Chemical Engineering; Hunan University; Changsha P. R. China
| | - Yingzhuang Chen
- Key Laboratory of Phytochemical R&D of Hunan Province; Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education; Hunan Normal University; Changsha P. R. China
| |
Collapse
|
233
|
Wang X, Bo C, Wang C, Wei Y. Controllable preparation of a hydrophilic/ion-exchange mixed-mode stationary phase by surface-initiated atom transfer radical polymerization using a mixture of two functional monomers. J Sep Sci 2017; 40:1861-1868. [PMID: 28247469 DOI: 10.1002/jssc.201601292] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/08/2017] [Accepted: 02/19/2017] [Indexed: 11/06/2022]
Abstract
Mixed-mode chromatographic stationary phases require functionalization with at least two functional groups to yield multiple interactions with analytes. Departing from reported methods, a mixture of two different monomers, glycidyl methacrylate and 2-dimethylaminoethylmethacrylate, was grafted onto the surface of silica by a one-step surface-initiated atom transfer radical polymerization to prepare a novel hydrophilic interaction/anion-exchange mixed-mode chromatographic stationary phase. The grafted amounts of functional groups were controlled via varying the ratio of monomers in the polymerization system. The influences of water content, salt concentration and pH in the mobile phase were investigated to illustrate the mixed interaction between the stationary phase and analytes. The retention of various solutes on three columns, especially acidic and basic solutes, showed an obvious dependence on the ratio of the two monomers in the polymerization system. The results indicated that the strategy proposed in this work was beneficial to develop various types of mixed-mode chromatographic stationary phases with adjustable selectivity to meet the needs of complex samples. Finally, the column was successfully employed in the isolation of melamine in liquid milk.
Collapse
Affiliation(s)
- Xiaomeng Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, P.R. China
| | - Chunmiao Bo
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, P.R. China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, P.R. China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, Key Laboratory of Modern Separation Science in Shaanxi Province, College of Chemistry and Materials Science, Northwest University, Xi'an, P.R. China
| |
Collapse
|
234
|
Lu X, Zheng Z, Miao S, Li H, Guo Z, Zhang Y, Zheng Y, Zheng B, Xiao J. Separation of Oligosaccharides from Lotus Seeds via Medium-pressure Liquid Chromatography Coupled with ELSD and DAD. Sci Rep 2017; 7:44174. [PMID: 28276495 PMCID: PMC5343441 DOI: 10.1038/srep44174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
Lotus seeds were identified by the Ministry of Public Health of China as both food and medicine. One general function of lotus seeds is to improve intestinal health. However, to date, studies evaluating the relationship between bioactive compounds in lotus seeds and the physiological activity of the intestine are limited. In the present study, by using medium pressure liquid chromatography coupled with evaporative light-scattering detector and diode-array detector, five oligosaccharides were isolated and their structures were further characterized by electrospray ionization-mass spectrometry and gas chromatography-mass spectrometry. In vitro testing determined that LOS3-1 and LOS4 elicited relatively good proliferative effects on Lactobacillus delbrueckii subsp. bulgaricus. These results indicated a structure-function relationship between the physiological activity of oligosaccharides in lotus seeds and the number of probiotics applied, thus providing room for improvement of this particular feature. Intestinal probiotics may potentially become a new effective drug target for the regulation of immunity.
Collapse
Affiliation(s)
- Xu Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co.Cork, Ireland
- Institute of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhichang Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Song Miao
- Teagasc Food Research Centre, Food Chemistry and Technology Department, Moorepark, Fermoy, Co.Cork, Ireland
| | - Huang Li
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zebin Guo
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Zhang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yafeng Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baodong Zheng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Food Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jianbo Xiao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Taipa, Macau
| |
Collapse
|
235
|
Gritti F, Sehajpal J, Fairchild J. Using the fundamentals of adsorption to understand peak distortion due to strong solvent effect in hydrophilic interaction chromatography. J Chromatogr A 2017; 1489:95-106. [DOI: 10.1016/j.chroma.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/31/2017] [Accepted: 02/02/2017] [Indexed: 10/25/2022]
|
236
|
HILIC Stationary Phase Based on Monodisperse-Porous Polymethacrylate Beads Functionalized with Zwitterionic Molecular Brushes. Chromatographia 2017. [DOI: 10.1007/s10337-017-3271-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
237
|
Prediction of retention in hydrophilic interaction liquid chromatography using solute molecular descriptors based on chemical structures. J Chromatogr A 2017; 1486:59-67. [DOI: 10.1016/j.chroma.2016.12.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/07/2016] [Accepted: 12/11/2016] [Indexed: 11/23/2022]
|
238
|
Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography. Anal Bioanal Chem 2017; 409:2401-2410. [DOI: 10.1007/s00216-017-0187-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/26/2016] [Accepted: 01/03/2017] [Indexed: 02/07/2023]
|
239
|
Stability-Indicating HILIC Method for the Determination of Citicoline and Characterization of its Degradation Products by LC–MS/TOF, 1H and 13C NMR. Chromatographia 2017. [DOI: 10.1007/s10337-016-3235-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
240
|
DONG S, YAN Z, YANG H, LONG Z. Fast and Simple Determination of 3-Aminopiperidine without Derivatization Using High Performance Liquid Chromatography–Charged Aerosol Detector with an Ion-Exchange/Reversed-Phase Mixed-mode Column. ANAL SCI 2017; 33:293-298. [DOI: 10.2116/analsci.33.293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
241
|
Bo C, Wei Y. Preparation and evaluation of surface-grafted block copolymers and random copolymers via surface-initiated atom transfer radical polymerization for hydrophilic/ion-exchange stationary phases. RSC Adv 2017. [DOI: 10.1039/c7ra09124a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mixed-mode chromatographic (MMC) stationary phases must be functionalized with at least two functional groups to yield multiple interactions.
Collapse
Affiliation(s)
- Chunmiao Bo
- Key Laboratory of Energy and Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- Key Laboratory of Modern Separation Science in Shaanxi Province
- College of Chemistry & Materials Science
- Northwest University
- Xi'an 710127
| |
Collapse
|
242
|
Begou O, Gika HG, Wilson ID, Theodoridis G. Hyphenated MS-based targeted approaches in metabolomics. Analyst 2017; 142:3079-3100. [DOI: 10.1039/c7an00812k] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Review of targeted metabolomics, with a focus on the description of analytical methods.
Collapse
Affiliation(s)
- O. Begou
- Department of Chemistry
- Aristotle University
- 54124 Thessaloniki
- Greece
| | - H. G. Gika
- Department of Medicine
- Aristotle University
- 54124 Thessaloniki
- Greece
| | - I. D. Wilson
- Division of Computational and Systems Medicine
- Department of Surgery and Cancer
- Imperial College
- London
- UK
| | - G. Theodoridis
- Department of Chemistry
- Aristotle University
- 54124 Thessaloniki
- Greece
| |
Collapse
|
243
|
|
244
|
Cirillo G, Restuccia D, Curcio M, Iemma F, Spizzirri UG. Food Analysis: A Brief Overview. Food Saf (Tokyo) 2016. [DOI: 10.1002/9781119160588.ch1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
245
|
Novel Two-Dimensional Liquid Chromatography–Tandem Mass Spectrometry for the Analysis of Twenty Antibiotics Residues in Dairy Products. FOOD ANAL METHOD 2016. [DOI: 10.1007/s12161-016-0763-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
246
|
Xu X, Gevaert B, Bracke N, Yao H, Wynendaele E, De Spiegeleer B. Hydrophilic interaction liquid chromatography method development and validation for the assay of HEPES zwitterionic buffer. J Pharm Biomed Anal 2016; 135:227-233. [PMID: 27993432 DOI: 10.1016/j.jpba.2016.11.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/22/2016] [Accepted: 11/29/2016] [Indexed: 11/30/2022]
Abstract
HEPES is a zwitterionic buffer component used as a raw material in the GMP-manufacturing of advanced therapy medicinal products (ATMPs), hence requiring an adequate assay method with sufficient selectivity toward related impurities. Therefore, a hydrophilic interaction chromatography (HILIC) method was developed. Different factors were investigated towards the retention behavior of HEPES, its analogue EPPS and its starting material isethionate: pH, ion concentration and organic solvent ratio of the mobile phase, as well as column temperature. Moreover, stress testing resulted in the N-oxide degradant, identified by high resolution MS. The final method consisted of an isocratic system with an aqueous (pH 2.0 with H3PO4) acetonitrile (35:65, v/v) mobile phase on a zwitterionic HILIC (Obelisc N) column with a flow rate of 0.5mL/min and UV detection at 195nm. The assay method of HEPES was validated, obtaining adequate linearity (R2=0.999), precision (RSD of 0.5%) and accuracy (recovery of 100.08%). Finally, the applicability of the validated method was demonstrated by analysis of samples from different suppliers.
Collapse
Affiliation(s)
- Xiaolong Xu
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bert Gevaert
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Nathalie Bracke
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Han Yao
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Evelien Wynendaele
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Bart De Spiegeleer
- Drug Quality and Registration (DruQuaR) Group, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium.
| |
Collapse
|
247
|
It is all about the solvent: on the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal Bioanal Chem 2016; 409:529-538. [PMID: 27909778 PMCID: PMC5203826 DOI: 10.1007/s00216-016-0051-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/08/2016] [Accepted: 10/21/2016] [Indexed: 11/06/2022]
Abstract
Glycopeptide enrichment is a crucial step in glycoproteomics for which hydrophilic interaction chromatography (HILIC) has extensively been applied due to its low bias towards different glycan types. A systematic evaluation of applicable HILIC mobile phases on glycopeptide enrichment efficiency and selectivity is, to date, however, still lacking. Here, we present a novel, simplified technique for HILIC enrichment termed “Drop-HILIC”, which was applied to systematically evaluate the mobile phase effect on ZIC-HILIC (zwitterionic type of hydrophilic interaction chromatography) glycopeptide enrichment. The four most commonly used MS compatible organic solvents were investigated: (i) acetonitrile, (ii) methanol, (iii) ethanol and (iv) isopropanol. Glycopeptide enrichment efficiencies were evaluated for each solvent system using samples of increasing complexity ranging from well-defined synthetic glycopeptides spiked into different concentrations of tryptic BSA peptides, followed by standard glycoproteins, and a complex sample derived from human (depleted and non-depleted) serum. ZIC-HILIC glycopeptide efficiency largely relied upon the used solvent. Different organic mobile phases enriched distinct glycopeptide subsets in a peptide backbone hydrophilicity-dependant manner. Acetonitrile provided the best compromise for the retention of both hydrophilic and hydrophobic glycopeptides, whereas methanol was confirmed to be unsuitable for this purpose. The enrichment efficiency of ethanol and isopropanol towards highly hydrophobic glycopeptides was compromised as considerable co-enrichment of unmodified peptides occurred, though for some hydrophobic glycopeptides isopropanol showed the best enrichment properties. This study shows that even minor differences in the peptide backbone and solvent do significantly influence HILIC glycopeptide enrichment and need to be carefully considered when employed for glycopeptide enrichment. The organic solvent plays a crucial role in ZIC-HILIC glycopeptide enrichment ![]()
Collapse
|
248
|
Kohler I, Giera M. Recent advances in liquid-phase separations for clinical metabolomics. J Sep Sci 2016; 40:93-108. [DOI: 10.1002/jssc.201600981] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Isabelle Kohler
- Division of Analytical Biosciences, Leiden Academic Centre for Drug Research; Leiden University; Leiden The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics; Leiden University Medical Center; Leiden The Netherlands
| |
Collapse
|
249
|
Gevi F, Zolla L, Gabriele S, Persico AM. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol Autism 2016; 7:47. [PMID: 27904735 PMCID: PMC5121959 DOI: 10.1186/s13229-016-0109-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is still diagnosed through behavioral observation, due to a lack of laboratory biomarkers, which could greatly aid clinicians in providing earlier and more reliable diagnoses. Metabolomics on human biofluids provides a sensitive tool to identify metabolite profiles potentially usable as biomarkers for ASD. Initial metabolomic studies, analyzing urines and plasma of ASD and control individuals, suggested that autistic patients may share some metabolic abnormalities, despite several inconsistencies stemming from differences in technology, ethnicity, age range, and definition of “control” status. Methods ASD-specific urinary metabolomic patterns were explored at an early age in 30 ASD children and 30 matched controls (age range 2–7, M:F = 22:8) using hydrophilic interaction chromatography (HILIC)-UHPLC and mass spectrometry, a highly sensitive, accurate, and unbiased approach. Metabolites were then subjected to multivariate statistical analysis and grouped by metabolic pathway. Results Urinary metabolites displaying the largest differences between young ASD and control children belonged to the tryptophan and purine metabolic pathways. Also, vitamin B6, riboflavin, phenylalanine-tyrosine-tryptophan biosynthesis, pantothenate and CoA, and pyrimidine metabolism differed significantly. ASD children preferentially transform tryptophan into xanthurenic acid and quinolinic acid (two catabolites of the kynurenine pathway), at the expense of kynurenic acid and especially of melatonin. Also, the gut microbiome contributes to altered tryptophan metabolism, yielding increased levels of indolyl 3-acetic acid and indolyl lactate. Conclusions The metabolic pathways most distinctive of young Italian autistic children largely overlap with those found in rodent models of ASD following maternal immune activation or genetic manipulations. These results are consistent with the proposal of a purine-driven cell danger response, accompanied by overproduction of epileptogenic and excitotoxic quinolinic acid, large reductions in melatonin synthesis, and gut dysbiosis. These metabolic abnormalities could underlie several comorbidities frequently associated to ASD, such as seizures, sleep disorders, and gastrointestinal symptoms, and could contribute to autism severity. Their diagnostic sensitivity, disease-specificity, and interethnic variability will merit further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s13229-016-0109-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Federica Gevi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Lello Zolla
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Stefano Gabriele
- Unit of Child and Adolescent Neuropsychiatry, Laboratory of Molecular Psychiatry and Neurogenetics, University Campus Bio-Medico, Rome, Italy
| | - Antonio M Persico
- Unit of Child and Adolescent Neuropsychiatry, Interdepartmental Program "Autism 0-90", "Gaetano Martino" University Hospital, University of Messina, Messina, Italy ; Mafalda Luce Center for Pervasive Developmental Disorders, Milan, Italy
| |
Collapse
|
250
|
Pazourek J, Šmejkal K. Feasibility of Fraction Collection in HPLC Systems with Evaporative Light Scattering Detector: Analysis of Pectinatella magnifica. Molecules 2016; 21:molecules21111495. [PMID: 27834833 PMCID: PMC6274552 DOI: 10.3390/molecules21111495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/28/2016] [Accepted: 10/30/2016] [Indexed: 11/16/2022] Open
Abstract
The use of a liquid chromatography (LC) splitter inserted between an HPLC column and an evaporative light scattering detector (ELSD) is described. This paper aims to show the feasibility of using the splitter in an HPLC-ELSD system to fractionate a model mixture of analytes, namely salicin (2-(hydroxymethyl)-phenyl-β-d-glucopyranoside) and glucose. The retention factors and efficiency of the separation were studied under various temperatures and water contents in the mobile phase in order to clarify the mechanism of polyols separation on a diol column under the conditions of hydrophilic liquid chromatography (HILIC). Finally, the system was applied to a biological sample (a lyophilized colony gel of Pectinatella magnifica), where the presence of fructose and glucose was confirmed.
Collapse
Affiliation(s)
- Jiří Pazourek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tr. 1946/1, Brno 61242, Czech Republic.
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackého tr. 1946/1, Brno 61242, Czech Republic.
| |
Collapse
|