201
|
Bugatti A, Filippini F, Messali S, Giovanetti M, Ravelli C, Zani A, Ciccozzi M, Caruso A, Caccuri F. The D405N Mutation in the Spike Protein of SARS-CoV-2 Omicron BA.5 Inhibits Spike/Integrins Interaction and Viral Infection of Human Lung Microvascular Endothelial Cells. Viruses 2023; 15:332. [PMID: 36851546 PMCID: PMC9962894 DOI: 10.3390/v15020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Severe COVID-19 is characterized by angiogenic features, such as intussusceptive angiogenesis, endothelialitis, and activation of procoagulant pathways. This pathological state can be ascribed to a direct SARS-CoV-2 infection of human lung ECs. Recently, we showed the capability of SARS-CoV-2 to infect ACE2-negative primary human lung microvascular endothelial cells (HL-mECs). This occurred through the interaction of an Arg-Gly-Asp (RGD) motif, endowed on the Spike protein at position 403-405, with αvβ3 integrin expressed on HL-mECs. HL-mEC infection promoted the remodeling of cells toward a pro-inflammatory and pro-angiogenic phenotype. The RGD motif is distinctive of SARS-CoV-2 Spike proteins up to the Omicron BA.1 subvariant. Suddenly, a dominant D405N mutation was expressed on the Spike of the most recently emerged Omicron BA.2, BA.4, and BA.5 subvariants. Here we demonstrate that the D405N mutation inhibits Omicron BA.5 infection of HL-mECs and their dysfunction because of the lack of Spike/integrins interaction. The key role of ECs in SARS-CoV-2 pathogenesis has been definitively proven. Evidence of mutations retrieving the capability of SARS-CoV-2 to infect HL-mECs highlights a new scenario for patients infected with the newly emerged SARS-CoV-2 Omicron subvariants, suggesting that they may display less severe disease manifestations than those observed with previous variants.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Marta Giovanetti
- Laboratório de Flavivirus, Instituto Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil
- Department of Science and Technology for Humans and the Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Cosetta Ravelli
- Section of General Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
- Institute of Human Virology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
202
|
Wiscovitch-Russo R, Ibáñez-Prada ED, Serrano-Mayorga CC, Sievers BL, Engelbride MA, Padmanabhan S, Tan GS, Vashee S, Bustos IG, Pachecho C, Mendez L, Dube PH, Singh H, Reyes LF, Gonzalez-Juarbe N. Necroptosis Drives Major Adverse Cardiovascular Events During Severe COVID-19. RESEARCH SQUARE 2023:rs.3.rs-2468706. [PMID: 36711834 PMCID: PMC9882644 DOI: 10.21203/rs.3.rs-2468706/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Background The mechanisms used by SARS-CoV-2 to induce major adverse cardiac events (MACE) are unknown. Thus, we aimed to determine if SARS-CoV-2 can infect the heart to kill cardiomyocytes and induce MACE in patients with severe COVID-19. Methods This observational prospective cohort study includes experiments with hamsters and human samples from patients with severe COVID-19. Cytokines and serum biomarkers were analyzed in human serum. Cardiac transcriptome analyses were performed in hamsters' hearts. Results From a cohort of 70 patients, MACE was documented in 26% (18/70). Those who developed MACE had higher Log copies/mL of SARS-CoV-2, troponin-I, and pro-BNP in serum. Also, the elevation of IP-10 and a major decrease in levels of IL-17ɑ, IL-6, and IL-1rɑ were observed. No differences were found in the ability of serum antibodies to neutralize viral spike proteins in pseudoviruses from variants of concern. In hamster models, we found a stark increase in viral titers in the hearts 4 days post-infection. The cardiac transcriptome evaluation resulted in the differential expression of ~ 9% of the total transcripts. Analysis of transcriptional changes of the effectors of necroptosis (mixed lineage kinase domain-like, MLKL) and pyroptosis (gasdermin D) showed necroptosis, but not pyroptosis, to be elevated. Active form of MLKL (phosphorylated MLKL, pMLKL) was elevated in hamster hearts and, most importantly, in the serum of MACE patients. Conclusion SARS-CoV-2 can reach the heart during severe COVID-19 and induce necroptosis in the heart of patients with MACE. Thus, pMLKL could be used as a biomarker of cardiac damage and a therapeutic target. Trial registration: Not applicable.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Peter H. Dube
- The University of Texas Health Science Center at San Antonio
| | | | | | | |
Collapse
|
203
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
204
|
Human Coronavirus Cell Receptors Provide Challenging Therapeutic Targets. Vaccines (Basel) 2023; 11:vaccines11010174. [PMID: 36680018 PMCID: PMC9862439 DOI: 10.3390/vaccines11010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Coronaviruses interact with protein or carbohydrate receptors through their spike proteins to infect cells. Even if the known protein receptors for these viruses have no evolutionary relationships, they do share ontological commonalities that the virus might leverage to exacerbate the pathophysiology. ANPEP/CD13, DPP IV/CD26, and ACE2 are the three protein receptors that are known to be exploited by several human coronaviruses. These receptors are moonlighting enzymes involved in several physiological processes such as digestion, metabolism, and blood pressure regulation; moreover, the three proteins are expressed in kidney, intestine, endothelium, and other tissues/cell types. Here, we spot the commonalities between the three enzymes, the physiological functions of the enzymes are outlined, and how blocking either enzyme results in systemic deregulations and multi-organ failures via viral infection or therapeutic interventions is addressed. It can be difficult to pinpoint any coronavirus as the target when creating a medication to fight them, due to the multiple processes that receptors are linked to and their extensive expression.
Collapse
|
205
|
Marwah H, Pant J, Yadav J, Shah K, Dewangan HK. Biosensor Detection of COVID-19 in Lung Cancer: Hedgehog and Mucin Signaling Insights. Curr Pharm Des 2023; 29:3442-3457. [PMID: 38270161 DOI: 10.2174/0113816128276948231204111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 01/26/2024]
Abstract
Coronavirus disease 2019 is a global pandemic, particularly affecting individuals with pre-existing lung conditions and potentially leading to pulmonary fibrosis. Age and healthcare system limitations further amplify susceptibility to both diseases, especially in low- and middle-income countries. The intricate relationship between Coronavirus disease 2019 and lung cancer highlights their clinical implications and the potential for early detection through biosensor techniques involving hedgehog and mucin signaling. This study highlights the connection between Coronavirus disease 2019 and lung cancer, focusing on the mucosa, angiotensin- altering enzyme 2 receptors, and their impact on the immune system. It details the inflammatory mechanisms triggered by Coronavirus disease 2019, which can result in pulmonary fibrosis and influence the cancer microenvironment. Various cytokines like Interleukins-6 and Tumor Necrosis Factor-alpha are examined for their roles in both diseases. Moreover, the review delves into the Hedgehog signaling pathways and their significance in lung cancer, particularly their influence on embryonic cell proliferation and tissue integrity. Mucin signaling is another vital aspect, highlighting the diverse mucin expression patterns in respiratory epithelial tissues and their potential as biomarkers. The review concludes with insights into diagnostic imaging techniques like chest computed tomography, Positron Emission Tomography and Computed Tomography, and Magnetic Resonance Imaging for early lung cancer detection, emphasizing the crucial role of biosensors in identifying specific biomarkers for early disease detection. This review provides a comprehensive overview of the clinical impact of Coronavirus disease 2019 on lung cancer patients and the potential for biosensors utilizing hedgehog and mucin signaling for early detection. It underscores the ongoing need for research and innovation to address these critical healthcare challenges.
Collapse
Affiliation(s)
- Harneet Marwah
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Janmejay Pant
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Jiten Yadav
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| | - Kamal Shah
- Institute of Pharmaceutical Research (IPR), GLA University Mathura, NH-2 Delhi Mathura Road, Po-CHaumuhan, Uttar Pradesh, India
| | - Hitesh Kumar Dewangan
- University Institute of Pharma Sciences (UIPS), Chandigarh University, NH-95 Chandigarh Ludhiana Highway, Mohali, Punjab, India
| |
Collapse
|
206
|
Bachour SP, Dalal R, Allegretti JR. The impact of the COVID-19 pandemic on Clostridioides difficile infection and utilization of fecal microbiota transplantation. Therap Adv Gastroenterol 2023; 16:17562848231165581. [PMID: 37091531 PMCID: PMC10107020 DOI: 10.1177/17562848231165581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/06/2023] [Indexed: 04/25/2023] Open
Abstract
Previous research has demonstrated that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) gains cell entry through the angiotensin-converting enzyme 2 receptor, which is abundantly found throughout the gastrointestinal (GI) tract, resulting in a wide array of GI manifestations of coronavirus disease 2019 (COVID-19). By gaining entry into the intestinal epithelial and stromal cells, SARS-CoV-2 has been observed to cause intestinal inflammation and gut dysbiosis. Alterations in gut microbiota are known to be involved in the pathophysiology of Clostridioides difficile infection (CDI). During the initial stages of the COVID-19 pandemic, rates of CDI were similar to historical data despite the increased use of antibiotics. This may be due to increased emphasis on hygiene and protective equipment and reduced C. difficile testing as diarrhea was presumed to be COVID-19 related. Studies also demonstrated additional risk factors for CDI in COVID-19 patients, including length of hospitalization and new abdominal pain during admission. Although not associated with increased mortality, CDI was associated with increased length of hospital stay among patients admitted with COVID-19. Due to fecal viral shedding and concern of oral-fecal transmission of SARS-CoV-2, increased safety regulations were introduced to fecal microbiota transplantation (FMT) leading to reduced rates of this procedure during the COVID-19 pandemic. FMT for recurrent CDI during the COVID-19 pandemic remained highly effective without any reports of SARS-CoV-2 transmission. In addition, limited data show that FMT may be effective in treating COVID-19 and restoring healthy gut microbiota. The goal of this article is to review the impact that the COVID-19 pandemic has had on hospital-acquired CDI and the utilization of FMT.
Collapse
Affiliation(s)
- Salam P. Bachour
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rahul Dalal
- Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women’s Hospital, Boston, MA, USA
| | | |
Collapse
|
207
|
Abstract
Bladder cancer as one of the main comorbid diseases might be more susceptible to develop COVID-19 infection with a higher mortality risk during the COVID-19 pandemic. The European Association of Urology (EAU) recommended a comprehensive panel for bladder cancer diagnosis and treatment during this global health problem. The urgent need for treatments of COVID-19 during the pandemic has persuaded researchers to evaluate the different medications, which may lead to drug shortages. Therefore, in this review paper, we have focused on the least recommendations of EAU about bladder cancer during of COVID-19 pandemic to provide a comprehensive panel for high-risk patients.
Collapse
Affiliation(s)
- Shahede Khansary
- Department of Gynecology, Faculty of Medicine, Hamadan university of Medical Sciences, Hamadan, Iran
| | - Heidar Tavilani
- Department of Clinical Biochemistry, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hadi Ghasemi
- Autophagy Research Center, Department of Biochemistry, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
208
|
Sohaei D, Hollenberg M, Janket SJ, Diamandis EP, Poda G, Prassas I. The therapeutic relevance of the Kallikrein-Kinin axis in SARS-cov-2-induced vascular pathology. Crit Rev Clin Lab Sci 2023; 60:25-40. [PMID: 35930434 DOI: 10.1080/10408363.2022.2102578] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
While coronavirus disease 2019 (COVID-19) begins as a respiratory infection, it progresses as a systemic disease involving multiorgan microthromboses that underly the pathology. SARS-CoV-2 enters host cells via attachment to the angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is widely expressed in a multitude of tissues, including the lung (alveolar cells), heart, intestine, kidney, testis, gallbladder, vasculature (endothelial cells), and immune cells. Interference in ACE2 signaling could drive the aforementioned systemic pathologies, such as endothelial dysfunction, microthromboses, and systemic inflammation, that are typically seen in patients with severe COVID-19. ACE2 is a component of the renin-angiotensin system (RAS) and is intimately associated with the plasma kallikrein-kinin system (KKS). As many papers are published on the role of ACE and ACE2 in COVID-19, we will review the role of bradykinin, and more broadly the KSS, in SARS-CoV-2-induced vascular dysfunction. Furthermore, we will discuss the possible therapeutic interventions that are approved and in development for the following targets: coagulation factor XII (FXII), tissue kallikrein (KLK1), plasma kallikrein (KLKB1), bradykinin (BK), plasminogen activator inhibitor (PAI-1), bradykinin B1 receptor (BKB1R), bradykinin B2 receptor (BKB2R), ACE, furin, and the NLRP3 inflammasome. Understanding these targets may prove of value in the treatment of COVID-19 as well as in other virus-induced coagulopathies in the future.
Collapse
Affiliation(s)
- Dorsa Sohaei
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Morley Hollenberg
- Department of Medicine, Faculty of Medicine, University of Calgary, Alberta, Canada
| | - Sok-Ja Janket
- Translational Oral Medicine Section, Forsyth Institute, Cambridge, MA, USA
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Gennady Poda
- Drug Discovery Program, Ontario Institute for Cancer Research, Toronto, Canada.,Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Ioannis Prassas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| |
Collapse
|
209
|
Du Y, Zhao W, Huang S, Huang Y, Chen Y, Zhang H, Guo H, Liu J. Two-year follow-up of brain structural changes in patients who recovered from COVID-19: A prospective study. Psychiatry Res 2023; 319:114969. [PMID: 36462292 PMCID: PMC9684092 DOI: 10.1016/j.psychres.2022.114969] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/08/2022] [Accepted: 11/18/2022] [Indexed: 11/25/2022]
Abstract
The long-term effects of COVID-19 on brain structure remain unclear. A prospective study was conducted to explore the changes in brain structure in COVID-19 survivors at one and two years after discharge (COVID-19one, COVID-19two). The difference in gray matter volume (GMV) was analyzed using the voxel-based morphometry method, and correlation analyses were conducted. The dynamic changes in clinical sequelae varied. The GMVs in the cerebellum and vermis were reduced in COVID-19one and COVID-19two, positively correlated with lymphocyte count, and negatively correlated with neutrophil count, neutrophil/lymphocyte ratio (COVID-19one), and systemic immune-inflammation index (COVID-19two). The decreased GMVs in the left middle frontal gyrus, inferior frontal gyrus of the operculum, right middle temporal gyrus, and inferior temporal gyrus returned to normal in COVID-19two. The decreased GMV in the left frontal lobe was negatively correlated with the Athens Insomnia Scale (AIS). The GMV in the left temporal lobe was aggravated in COVID-19two and positively correlated with C-reactive protein. In conclusion, GMV recovery coexisted with injury, which was associated with AIS and inflammatory factors. This may shed some light on the dynamic changes in brain structure and the possible predictors that may be related to GMV changes in COVID-19two.
Collapse
Affiliation(s)
- Yanyao Du
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China
| | - Wei Zhao
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Changsha, Hunan Province 410011, China
| | - Sihong Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China
| | - Yijie Huang
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China
| | - Yanjing Chen
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China
| | - Huiting Zhang
- MR Scientific Marketing, Siemens Healthineers Ltd., Wuhan 430000, China
| | - Hu Guo
- MR Application, Siemens Healthineers Ltd., Changsha 410011, China
| | - Jun Liu
- Department of Radiology, Second Xiangya Hospital of Central South University, Changsha, Hunan Province 410011, China; Clinical Research Center for Medical Imaging in Hunan Province, Changsha, Hunan 410011, China; Department of Radiology Quality Control Center, Changsha, Hunan Province 410011, China.
| |
Collapse
|
210
|
Braga DPAF, Setti AS, Iaconelli A, Borges E. Previous infection with SARS-CoV-2 impacts embryo morphokinetics but not clinical outcomes in a time-lapse imaging system. Mol Reprod Dev 2023; 90:53-58. [PMID: 36576971 PMCID: PMC9880701 DOI: 10.1002/mrd.23658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/01/2022] [Accepted: 11/20/2022] [Indexed: 12/29/2022]
Abstract
The goal for the present study was to investigate whether previous infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may compromise embryo morphokinetics and implantation. For that, a historical cohort study was performed in a private university-affiliated in vitro fertilization center. The study included 1628 embryos from 88 patients undergoing intracytoplasmic sperm injection (ICSI) cycles. Patients were age-matched in a 1:3 ratio to either a coronavirus disease (COVID) group, including patients with a positive SARS-CoV-2 immunoglobulin test (n = 22 patients, 386 embryos), or a control group, including patients with a negative SARS-CoV-2 immunoglobulin test (n = 66, 1242 embryos). The effect of previous infection with SARS-CoV-2 on morphokinetic events and ICSI outcomes was evaluated. Embryos derived from patients in the COVID group presented longer time to pronuclei appearance and fading, time to form two, three, four and five cells, and time to blastulation. The durations of the third cell cycle and to time to complete synchronous divisions were also significantly increased in the COVID group compared with the control group, whereas known implantation diagnosis score Day 5 ranked significantly lower in the COVID group. No differences were observed between the COVID and control groups on clinical outcomes. In conclusion, patients planning parenthood, who have recovered from COVID-19 infection, must be aware of a possible effect of the infection on embryo development potential.
Collapse
Affiliation(s)
- Daniela P. A. F. Braga
- Fertility Medical GroupSão PauloBrazil,Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | - Amanda S. Setti
- Fertility Medical GroupSão PauloBrazil,Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | - Assumpto Iaconelli
- Fertility Medical GroupSão PauloBrazil,Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| | - Edson Borges
- Fertility Medical GroupSão PauloBrazil,Instituto Sapientiae – Centro de Estudos e Pesquisa em Reprodução Humana AssistidaSão PauloBrazil
| |
Collapse
|
211
|
Abraham B, Mathew SD, Sridharan K. A Systematic Review of Arterial Dissections in COVID-19 Patients. Curr Cardiol Rev 2023; 19:e280622206435. [PMID: 35762547 PMCID: PMC10201876 DOI: 10.2174/1573403x18666220628093303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/30/2022] [Accepted: 04/04/2022] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION COVID-19 is often seen presenting with a myriad of signs and symptoms of multiorgan dysfunction including arterial dissection. METHODS Various theories have been proposed such as endothelial dysfunction triggered by hyperinflammatory response that results in rupture of atherosclerotic plaque and subsequent dissection. RESULTS However, the exact incidence is unknown and only case reports and case series have been published till date. CONCLUSION Here we carried out a systematic analysis of published case reports/series related to dissection of the aorta, coronary, cerebral, vertebral, cervical, renal, and splanchnic arteries.
Collapse
Affiliation(s)
- Betsy Abraham
- Department of Intensive Care, Salmaniya Medical Complex, Manama, Kingdom of Bahrain
| | | | - Kannan Sridharan
- Department of Pharmacology & Therapeutics, College of Medicine & Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
212
|
Taghioff SM, Slavin BR, Mehra S, Holton T, Singh D. The impact of influenza vaccination on surgical outcomes in COVID-19 positive patients: An analysis of 43,580 patients. PLoS One 2023; 18:e0281990. [PMID: 36897891 PMCID: PMC10004617 DOI: 10.1371/journal.pone.0281990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Multiple recent studies suggest a possible protective effect of the influenza vaccine against severe acute respiratory coronavirus 2 (SARS-CoV-2). This effect has yet to be evaluated in surgical patients. This study utilizes a continuously updated federated electronic medical record (EMR) network (TriNetX, Cambridge, MA) to analyze the influence of the influenza vaccine against post-operative complications in SARS-CoV-2-positive patients. METHODS The de-identified records of 73,341,020 patients globally were retrospectively screened. Two balanced cohorts totaling 43,580 surgical patients were assessed from January 2020-January 2021. Cohort One received the influenza vaccine six months-two weeks prior to SARS-CoV-2-positive diagnosis, while Cohort Two did not. Post-operative complications within 30, 60, 90, and 120 days of undergoing surgery were analyzed using common procedural terminology(CPT) codes. Outcomes were propensity score matched for characteristics including age, race, gender, diabetes, obesity, and smoking. RESULTS SARS-CoV-2-positive patients receiving the influenza vaccine experienced significantly decreased risks of sepsis, deep vein thrombosis, dehiscence, acute myocardial infarction, surgical site infections, and death across multiple time points(p<0.05, Bonferroni Correction p = 0.0011). Number needed to vaccinate (NNV) was calculated for all significant and nominally significant findings. CONCLUSION Our analysis examines the potential protective effect of influenza vaccination in SARS-CoV-2-positive surgical patients. Limitations include this study's retrospective nature and reliance on accuracy of medical coding. Future prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Susan M. Taghioff
- Division of Plastic & Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Surgery, Luminis Health-Anne Arundel Medical Center, Annapolis, Maryland, United States of America
| | - Benjamin R. Slavin
- Division of Plastic & Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Shefali Mehra
- Division of Plastic & Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Tripp Holton
- Department of Surgery, Luminis Health-Anne Arundel Medical Center, Annapolis, Maryland, United States of America
| | - Devinder Singh
- Division of Plastic & Reconstructive Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
213
|
Chaube U, Patel BD, Bhatt HG. A hypothesis on designing strategy of effective RdRp inhibitors for the treatment of SARS-CoV-2. 3 Biotech 2023; 13:12. [PMID: 36532857 PMCID: PMC9755803 DOI: 10.1007/s13205-022-03430-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Vaccines are used as one of the major weapons for the eradication of pandemic. However, the rise of different variants of the SARS-CoV-2 virus is creating doubts regarding the end of the pandemic. Hence, there is an urgent need to develop more drug candidates which can be useful for the treatment of COVID-19. In the present research for the scientific hypothesis, emphasis was given on the direct antiviral therapy available for the treatment of COVID-19. In lieu of this, the available molecular targets which include Severe Acute Respiratory Syndrome Chymotrypsin-like Protease (SARS-3CLpro), Papain-Like Cysteine Protease (PLpro), and RNA-Dependent RNA Polymerase (RdRp) were explored. As per the current scientific reports and literature, among all the available molecular targets, RNA-Dependent RNA Polymerase (RdRp) was found to be a crucial molecular target for the treatment of COVID-19. Most of the inhibitors which are reported against this target consisted of the free amine group and carbonyl group which might be playing an important role in the binding interaction with the RdRp protein. Among all the reported RdRp inhibitors, remdesivir, favipiravir, and molnupiravir were found to be the most promising drugs against COVID-19. Overall, the structural features of this RNA-Dependent RNA Polymerase (RdRp) inhibitors proved the importance of pyrrolo-triazine and pyrimidine scaffolds. Previous computational models of these drug molecules indicated that substitution with the polar functional group, hydrogen bond donor, and electronegative atoms on these scaffolds may increase the activity against the RdRp protein. Hence, in line with the proposed hypothesis, in the present research work for the evaluation of the hypothesis, new molecules were designed from the pyrrolo-triazine and pyrimidine scaffolds. Further, molecular docking and MD simulation studies were performed with these designed molecules. All these designed molecules (DM-1, DM-2, and DM-3) showed the results as per the proposed hypothesis. Among all the designed molecules, DM-1 showed promising results against the RdRp protein of SARS-CoV-2. In the future, these structural features can be used for the development of new RdRp inhibitors with improved activity. Also, in the future lead compound DM-1 can be explored against the RdRp protein for the treatment of COVID-19.
Collapse
Affiliation(s)
- Udit Chaube
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Bhumika D. Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| | - Hardik G. Bhatt
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat 382481 India
| |
Collapse
|
214
|
Manfra A, Chen C, Batra K, Min Tun K, Kioka MJ. Factors associated with improved outcome of inhaled corticosteroid use in COVID-19: A single institutional study. Medicine (Baltimore) 2022; 101:e32420. [PMID: 36595838 PMCID: PMC9794212 DOI: 10.1097/md.0000000000032420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Asthmatics seem less prone to adverse outcomes in coronavirus disease 2019 (COVID-19) and some data shows that inhaled corticosteroids (ICS) are protective. We gathered data on anecdotal ICS and outcomes of patients hospitalized with COVID-19, given there is literature supporting ICS may reduce risk of severe infection. In addition, we fill gaps in current literature evaluating Charlson Comorbidity Index (CCI) as a risk assessment tool for COVID-19. This was a single-center, retrospective study designed and conducted to identify factors associated intubation and inpatient mortality. A multivariate logistic regression model was fit to generate adjusted odds ratios (OR). Intubation was associated with male gender (OR, 2.815; 95% confidence interval [CI], 1.348-5.881; P = .006) and increasing body mass index (BMI) (OR, 1.053; 95% CI, 1.009-1.099; P = .019). Asthma was associated with lower odds for intubation (OR, 0.283; 95% CI, 0.108-0.74; P = .01). 80% of patients taking pre-hospital ICS were not intubated (n = 8). In-patient mortality was associated with male gender (OR, 2.44; 95% CI, 1.167-5.1; P = .018), older age (OR, 1.096; 95% CI, 1.052-1.142; P = <.001), and increasing BMI (OR, 1.079; 95% CI, 1.033-1.127; P = .001). Asthma was associated with lower in-patient mortality (OR, 0.221; 95% CI, 0.057-0.854; P = .029). CCI did not correlate with intubation (OR, 1.262; 95% CI, 0.923-1.724; P = .145) or inpatient mortality (OR, 0.896; 95% CI, 0.665-1.206; P = .468). Asthmatics hospitalized for COVID-19 had less adverse outcomes, and most patients taking pre-hospital ICS were not intubated. CCI score was not associated with intubation or inpatient mortality.
Collapse
Affiliation(s)
- Andrew Manfra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Nevada Las Vegas, Nevada, Las Vegas, USA
| | - Claire Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Nevada Las Vegas, Nevada, Las Vegas, USA
| | - Kavita Batra
- Department of Medical Education and Office of Research, University of Nevada Las Vegas, Nevada, Las Vegas, USA
| | - Kyaw Min Tun
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Nevada Las Vegas, Nevada, Las Vegas, USA
| | - Mutsumi John Kioka
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Nevada Las Vegas, Nevada, Las Vegas, USA
- * Correspondence: Mutsumi John Kioka, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Nevada, Las Vegas School of Medicine, 1701 W. Charleston Blvd., Suite 230, Las Vegas, NV 89102, USA (e-mail: )
| |
Collapse
|
215
|
Singh VK, Chaurasia H, Kumari P, Som A, Mishra R, Srivastava R, Naaz F, Singh A, Singh RK. Design, synthesis, and molecular dynamics simulation studies of quinoline derivatives as protease inhibitors against SARS-CoV-2. J Biomol Struct Dyn 2022; 40:10519-10542. [PMID: 34253149 DOI: 10.1080/07391102.2021.1946716] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A new series of quinoline derivatives has been designed and synthesized as probable protease inhibitors (PIs) against severe acute respiratory syndrome coronavirus 2. In silico studies using DS v20.1.0.19295 software have shown that these compounds behaved as PIs while interacting at the allosteric site of target Mpro enzyme (6LU7). The designed compounds have shown promising docking results, which revealed that all compounds formed hydrogen bonds with His41, His164, Glu166, Tyr54, Asp187, and showed π-interaction with His41, the highly conserved amino acids in the target protein. Toxicity Prediction by Komputer Assisted Technology results confirmed that the compounds were found to be less toxic than the reference drug. Further, molecular dynamics simulations were performed on compound 5 and remdesivir with protease enzyme. Analysis of conformational stability, residue flexibility, compactness, hydrogen bonding, solvent accessible surface area (SASA), and binding free energy revealed comparable stability of protease:5 complex to the protease: remdesivir complex. The result of hydrogen bonding showed a large number of intermolecular hydrogen bonds formed between protein residues (Glu166 and Gln189) and ligand 5, indicating strong interaction, which validated the docking result. Further, compactness analysis, SASA and interactions like hydrogen-bonding demonstrated inhibitory properties of compound 5 similar to the existing reference drug. Thus, the designed compound 5 might act as a potential inhibitor against the protease enzyme.Communicated by Ramaswamy H. SarmaHighlightsQuinoline derivatives have been designed as protease inhibitors against SARS-CoV-2.The compounds were docked at the allosteric site of SARS-CoV-2-Mpro enzyme (PDB ID: 6LU7) to study the stability of protein-ligand complex.Docking studies indicated the stable ligand-protein complexes for all designed compounds.The Toxicity Prediction by Komputer Assisted Technology protocol in DS v20.1.0.19295 software was used to evaluate the toxicity of the designed quinoline derivatives.Molecular dynamics studies indicated the formation of stable ligand-Mpro complexes.
Collapse
Affiliation(s)
- Vishal K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Himani Chaurasia
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Priyanka Kumari
- Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Anup Som
- Centre of Bioinformatics, University of Allahabad, Prayagraj, India
| | - Richa Mishra
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ritika Srivastava
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Farha Naaz
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Anuradha Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| | - Ramendra K Singh
- Bioorganic Research Laboratory, Department of Chemistry, University of Allahabad, Prayagraj, India
| |
Collapse
|
216
|
Neuromasts and Olfactory Organs of Zebrafish Larvae Represent Possible Sites of SARS-CoV-2 Pseudovirus Host Cell Entry. J Virol 2022; 96:e0141822. [PMID: 36448804 PMCID: PMC9769390 DOI: 10.1128/jvi.01418-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the acute respiratory disease coronavirus disease 2019 (COVID-19), which has resulted in millions of deaths globally. Here, we explored the mechanism of host cell entry of a luciferase-ZsGreen spike (SARS-CoV-2)-pseudotyped lentivirus using zebrafish embryos/larvae as an in vivo model. Successful pseudovirus entry was demonstrated via the expression of the luciferase (luc) gene, which was validated by reverse transcription-PCR (RT-PCR). Treatment of larvae with chloroquine (a broad-spectrum viral inhibitor that blocks membrane fusion) or bafilomycin A1 (a specific inhibitor of vacuolar proton ATPases, which blocks endolysosomal trafficking) significantly reduced luc expression, indicating the possible involvement of the endolysosomal system in the viral entry mechanism. The pharmacological inhibition of two-pore channel (TPC) activity or use of the tpcn2dhkz1a mutant zebrafish line also led to diminished luc expression. The localized expression of ACE2 and TPC2 in the anterior neuromasts and the forming olfactory organs was demonstrated, and the occurrence of endocytosis in both locations was confirmed. Together, our data indicate that zebrafish embryos/larvae are a viable and tractable model to explore the mechanism of SARS-CoV-2 host cell entry, that the peripheral sense organs are a likely site for viral host cell entry, and that TPC2 plays a key role in the translocation of the virus through the endolysosomal system. IMPORTANCE Despite the development of effective vaccines to combat the COVID-19 pandemic, which help prevent the most life-threatening symptoms, full protection cannot be guaranteed, especially with the emergence of new viral variants. Moreover, some resistance to vaccination remains in certain age groups and cultures. As such, there is an urgent need for the development of new strategies and therapies to help combat this deadly disease. Here, we provide compelling evidence that the peripheral sensory organs of zebrafish possess several key components required for SARS-CoV-2 host cell entry. The nearly transparent larvae provide a most amenable complementary platform to investigate the key steps of viral entry into host cells, as well as its spread through the tissues and organs. This will help in the identification of key viral entry steps for therapeutic intervention, provide an inexpensive model for screening novel antiviral compounds, and assist in the development of new and more effective vaccines.
Collapse
|
217
|
Nishimura Y, Nomiyama K, Okamoto S, Igarashi M, Yorifuji Y, Sato Y, Kamezaki A, Morihara A, Kuribayashi F, Yamauchi A. Identification of anti-SARS-CoV-2 agents based on flavor/fragrance compositions that inhibit the interaction between the virus receptor binding domain and human angiotensin converting enzyme 2. PLoS One 2022; 17:e0279182. [PMID: 36534650 PMCID: PMC9762593 DOI: 10.1371/journal.pone.0279182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) pandemic poses a threat to human beings and numerous cases of infection as well as millions of victims have been reported. The binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (RBD) to human angiotensin converting enzyme 2 (hACE2) is known to promote the engulfment of the virus by host cells. Employment of flavor/fragrance compositions to prevent SARS-CoV-2 infection by inhibiting the binding of viral RBD (vRBD) to hACE2 might serve as a favorable, simple, and easy method for inexpensively preventing COVID-19, as flavor/fragrance compositions are known to directly interact with the mucosa in the respiratory and digestive systems and have a long history of use and safety assessment. Herein we report the results of screening of flavor/fragrance compositions that inhibit the binding of vRBD to hACE2. We found that the inhibitory effect was observed with not only the conventional vRBD, but also variant vRBDs, such as L452R, E484K, and N501Y single-residue variants, and the K417N+E484K+N501Y triple-residue variant. Most of the examined flavor/fragrance compositions are not known to have anti-viral effects. Cinnamyl alcohol and Helional inhibited the binding of vRBD to VeroE6 cells, a monkey kidney cell line expressing ACE2. We termed the composition with inhibitory effect on vRBD-hACE2 binding as "the molecularly targeted flavor/fragrance compositions". COVID-19 development could be prevented by using these compositions with reasonable administration methods such as inhalation, oral administration, and epidermal application.
Collapse
Affiliation(s)
| | - Kenta Nomiyama
- Shiono Koryo Kaisha, LTD, 1-6 Doshomachi 3-Chome, Chuo-ku, Osaka, Japan
| | - Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Mika Igarashi
- Shiono Koryo Kaisha, LTD, 1-6 Doshomachi 3-Chome, Chuo-ku, Osaka, Japan
| | - Yusuke Yorifuji
- Shiono Koryo Kaisha, LTD, 1-6 Doshomachi 3-Chome, Chuo-ku, Osaka, Japan
| | - Yukino Sato
- Shiono Koryo Kaisha, LTD, 1-6 Doshomachi 3-Chome, Chuo-ku, Osaka, Japan
| | - Ayasa Kamezaki
- Department of Hygiene, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Aya Morihara
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, Okayama, Japan
- * E-mail:
| |
Collapse
|
218
|
Bereda G. Ischemic Stroke in a COVID-19-Infected Patient: A Case Report and Literature Review.. [DOI: 10.21203/rs.3.rs-2385606/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Abstract
Ischemic stroke is a recognized neurological consequence of acute COVID-19 infection. A 61-year-old black African farmer with right-sided weakness was sent to the emergency hospital on September 19, 2022, within three hours of the onset of the impairment. He suffered a serious accident while working in the rural region fifteen years prior. Generalized body weakness, including weakness in the right upper and lower extremities while he was moving around, left facial paralysis, an inability to walk without assistance, difficulty swallowing, difficulty speaking, a two-day fever, a headache, and shortness of breath were all reasons why the patient was brought into the emergency room. An X-ray of the chest was taken, and it revealed scattered reticulations, coarse, somewhat bilateral crepitation, and diffuse bilateral infiltrates. The patient's cardiovascular checkup revealed nothing unusual. According to the Glasgow Coma Scale, the eye opening reaction was 1/4, the motor response was 3/6 (abnormal flexion), and the verbal response was 3/5 (inappropriate words). He started having trouble breathing and needed five intranasal doses of oxygen per minute to stay saturated. He began taking 81 mg of low-dose aspirin every day for a month. For ten days, he took 75 mg of clopidogrel orally once every day.
Collapse
|
219
|
Mensah BA, Ndong IC, Quashie PK, Guichet E, Abuaku B, Effah-Baafi Y, Tapela K, Asiedu K, Appiedu-Addo SNA, Obbeng LB, Amponsah JA, Kusi KA, Ofori M, Ayouba A, Courtin D, Tahar R, Delaporte E, Awandare G, Ndam NT. Population-based sero-epidemiological investigation of the dynamics of SARS-CoV-2 infections in the Greater Accra Region of Ghana. Sci Rep 2022; 12:21582. [PMID: 36517505 PMCID: PMC9748398 DOI: 10.1038/s41598-022-25598-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/01/2022] [Indexed: 12/15/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic devastated countries worldwide, and resulted in a global shutdown. Not all infections are symptomatic and hence the extent of SARS-CoV-2 infection in the community is unknown. The paper presents the dynamics of the SARS-CoV-2 epidemic in the Greater Accra Metropolis, describing the evolution of seroprevalence through time and by age group. Three repeated independent population-based surveys at 6-week intervals were conducted in from November 2020 to July 2021. The global and by age-groups weighted seroprevalences were estimated and the risk factors for SARS-CoV-2 antibody seropositivity were assessed using logistic regression. The overall age-standardized SARS-CoV-2 antibody seroprevalence for both spike and nucleocapsid increased from 13.8% (95% CI 11.9, 16.1) in November 2020 to 39.6% (95% CI 34.8, 44.6) in July 2021. After controlling for gender, marital status, education level, and occupation, the older age group over 40 years had a higher odds of seropositivity than the younger age group (OR 3.0 [95% CI 1.1-8.5]) in the final survey. Pupils or students had 3.3-fold increased odds of seropositivity (OR 3.2 [95% CI 1.1-8.5]) compared to the unemployed. This study reinforces that, SARS-CoV-2 infections have been significantly higher than reported.
Collapse
Affiliation(s)
| | - Ignatius Cheng Ndong
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Biochemistry, Catholic University of Cameroon, Bamenda, Cameroon
| | - Peter Kojo Quashie
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Emilande Guichet
- TransVIHMI, University of Montpellier, IRD and Institut National de La Santé Et de La Recherche Médicale (INSERM), Montpellier, France
| | - Benjamin Abuaku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Yaw Effah-Baafi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kesego Tapela
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Kwame Asiedu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | | | - Louisa Baaba Obbeng
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - Jones Amo Amponsah
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Kwadwo Asamoah Kusi
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Michael Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ahidjo Ayouba
- TransVIHMI, University of Montpellier, IRD and Institut National de La Santé Et de La Recherche Médicale (INSERM), Montpellier, France
| | - David Courtin
- MERIT, IRD, Université de Paris, 75006, Paris, France
| | - Rachida Tahar
- MERIT, IRD, Université de Paris, 75006, Paris, France
| | - Eric Delaporte
- TransVIHMI, University of Montpellier, IRD and Institut National de La Santé Et de La Recherche Médicale (INSERM), Montpellier, France
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | | |
Collapse
|
220
|
Krznarić J, Vince A. The Role of Non-Alcoholic Fatty Liver Disease in Infections. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122052. [PMID: 36556417 PMCID: PMC9788238 DOI: 10.3390/life12122052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, affecting one third of the Western population. The hallmark of the disease is excessive storage of fat in the liver. Most commonly, it is caused by metabolic syndrome (or one of its components). Even though the development of NAFLD has multiple effects on the human organism resulting in systemic chronic low-grade inflammation, this review is focused on NAFLD as a risk factor for the onset, progression, and outcomes of infectious diseases. The correlation between NAFLD and infections is still unclear. Multiple factors (obesity, chronic inflammation, altered immune system function, insulin resistance, altered intestinal microbiota, etc.) have been proposed to play a role in the development and progression of infections in people with NAFLD, although the exact mechanism and the interplay of mentioned factors is still mostly hypothesized. In this article we review only the selection of well-researched topics on NAFLD and infectious diseases (bacterial pneumonia, COVID, H. pylori, urinary tract infections, C. difficile, bacteremia, hepatitis B, hepatitis C, HIV, and periodontitis).
Collapse
Affiliation(s)
- Juraj Krznarić
- Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
| | - Adriana Vince
- Department for Infectious Diseases, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Department for Viral Hepatitis, University Hospital for Infectious Diseases, 10000 Zagreb, Croatia
- Correspondence:
| |
Collapse
|
221
|
Sun H, Du Y, Kumar R, Buchkovich N, He P. Increased circulating microparticles contribute to severe infection and adverse outcomes of COVID-19 in patients with diabetes. Am J Physiol Heart Circ Physiol 2022; 323:H1176-H1193. [PMID: 36269646 PMCID: PMC9678425 DOI: 10.1152/ajpheart.00409.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 12/14/2022]
Abstract
Patients with diabetes infected with COVID-19 have greater mortality than those without comorbidities, but the underlying mechanisms remain unknown. This study aims to identify the mechanistic interactions between diabetes and severe COVID-19. Microparticles (MPs), the cell membrane-derived vesicles released on cell activation, are largely increased in patients with diabetes. To date, many mechanisms have been postulated for increased severity of COVID-19 in patients with underlying conditions, but the contributions of excessive MPs in patients with diabetes have been overlooked. This study characterizes plasma MPs from normal human subjects and patients with type 2 diabetes in terms of amount, cell origins, surface adhesive properties, ACE2 expression, spike protein binding capacity, and their roles in SARS-CoV-2 infection. Results showed that over 90% of plasma MPs express ACE2 that binds the spike protein of SARS-CoV-2. MPs in patients with diabetes increase 13-fold in quantity and 11-fold in adhesiveness when compared with normal subjects. Perfusion of human plasma with pseudo-typed SARS-CoV-2 virus or spike protein-bound MPs into human endothelial cell-formed microvessels-on-a chip demonstrated that MPs from patients with diabetes, not normal subjects, interact with endothelium and carry SARS-CoV-2 into cells through endocytosis, providing additional virus entry pathways and enhanced infection. Results also showed a large percentage of platelet-derived tissue factor-bearing MPs in diabetic plasma, which could contribute to thrombotic complications with SARS-CoV-2 infection. This study reveals a dual role of diabetic MPs in promoting SARS-CoV-2 entry and propagating vascular inflammation. These findings provide novel mechanistic insight into the high prevalence of COVID-19 in patients with diabetes and their propensity to develop severe vascular complications.NEW & NOTEWORTHY This study provides the first evidence that over 90% of human plasma microparticles express ACE2 that binds SARS-CoV-2 S protein with high affinity. Thus, the highly elevated adhesive circulating microparticles identified in patients with diabetes not only have greater SARS-CoV-2 binding capacity but also enable additional viral entry through virus-bound microparticle-endothelium interactions and enhanced infection. These findings reveal a novel mechanistic insight into the adverse outcomes of COVID-19 in patients with diabetes.
Collapse
Affiliation(s)
- Haoyu Sun
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Yong Du
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Rinki Kumar
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Nicholas Buchkovich
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| | - Pingnian He
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, Pennsylvania
| |
Collapse
|
222
|
Stein SR, Ramelli SC, Grazioli A, Chung JY, Singh M, Yinda CK, Winkler CW, Sun J, Dickey JM, Ylaya K, Ko SH, Platt AP, Burbelo PD, Quezado M, Pittaluga S, Purcell M, Munster VJ, Belinky F, Ramos-Benitez MJ, Boritz EA, Lach IA, Herr DL, Rabin J, Saharia KK, Madathil RJ, Tabatabai A, Soherwardi S, McCurdy MT, Peterson KE, Cohen JI, de Wit E, Vannella KM, Hewitt SM, Kleiner DE, Chertow DS. SARS-CoV-2 infection and persistence in the human body and brain at autopsy. Nature 2022; 612:758-763. [PMID: 36517603 PMCID: PMC9749650 DOI: 10.1038/s41586-022-05542-y] [Citation(s) in RCA: 487] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19) is known to cause multi-organ dysfunction1-3 during acute infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with some patients experiencing prolonged symptoms, termed post-acute sequelae of SARS-CoV-2 (refs. 4,5). However, the burden of infection outside the respiratory tract and time to viral clearance are not well characterized, particularly in the brain3,6-14. Here we carried out complete autopsies on 44 patients who died with COVID-19, with extensive sampling of the central nervous system in 11 of these patients, to map and quantify the distribution, replication and cell-type specificity of SARS-CoV-2 across the human body, including the brain, from acute infection to more than seven months following symptom onset. We show that SARS-CoV-2 is widely distributed, predominantly among patients who died with severe COVID-19, and that virus replication is present in multiple respiratory and non-respiratory tissues, including the brain, early in infection. Further, we detected persistent SARS-CoV-2 RNA in multiple anatomic sites, including throughout the brain, as late as 230 days following symptom onset in one case. Despite extensive distribution of SARS-CoV-2 RNA throughout the body, we observed little evidence of inflammation or direct viral cytopathology outside the respiratory tract. Our data indicate that in some patients SARS-CoV-2 can cause systemic infection and persist in the body for months.
Collapse
Affiliation(s)
- Sydney R. Stein
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Sabrina C. Ramelli
- grid.410305.30000 0001 2194 5650Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - Alison Grazioli
- grid.419635.c0000 0001 2203 7304Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD USA
| | - Joon-Yong Chung
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Manmeet Singh
- grid.94365.3d0000 0001 2297 5165Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Claude Kwe Yinda
- grid.94365.3d0000 0001 2297 5165Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Clayton W. Winkler
- grid.94365.3d0000 0001 2297 5165Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Junfeng Sun
- grid.410305.30000 0001 2194 5650Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA
| | - James M. Dickey
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Kris Ylaya
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Sung Hee Ko
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Andrew P. Platt
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Peter D. Burbelo
- grid.419633.a0000 0001 2205 0568National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD USA
| | - Martha Quezado
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Stefania Pittaluga
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Madeleine Purcell
- grid.411024.20000 0001 2175 4264University of Maryland School of Medicine, Baltimore, MD USA
| | - Vincent J. Munster
- grid.94365.3d0000 0001 2297 5165Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Frida Belinky
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Marcos J. Ramos-Benitez
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA ,grid.280785.00000 0004 0533 7286Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD USA
| | - Eli A. Boritz
- grid.419681.30000 0001 2164 9667Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Izabella A. Lach
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Daniel L. Herr
- grid.411024.20000 0001 2175 4264R Adams Cowley Shock Trauma Center, Department of Medicine and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD USA
| | - Joseph Rabin
- grid.411024.20000 0001 2175 4264R Adams Cowley Shock Trauma Center, Department of Surgery and Program in Trauma, University of Maryland School of Medicine, Baltimore, MD USA
| | - Kapil K. Saharia
- grid.411024.20000 0001 2175 4264Department of Medicine, Division of Infectious Disease, University of Maryland School of Medicine, Baltimore, MD USA ,grid.411024.20000 0001 2175 4264Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ronson J. Madathil
- grid.411024.20000 0001 2175 4264Department of Surgery, Division of Cardiac Surgery, University of Maryland School of Medicine, Baltimore, MD USA
| | - Ali Tabatabai
- grid.411024.20000 0001 2175 4264Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD USA
| | - Shahabuddin Soherwardi
- grid.417209.90000 0004 0429 3816Hospitalist Department, TidalHealth Peninsula Regional, Salisbury, MD USA
| | - Michael T. McCurdy
- grid.411024.20000 0001 2175 4264Department of Medicine, Division of Pulmonary and Critical Care Medicine, University of Maryland School of Medicine, Baltimore, MD USA ,grid.416700.40000 0004 0440 9540Division of Critical Care Medicine, Department of Medicine, University of Maryland St. Joseph Medical Center, Towson, MD USA
| | | | - Karin E. Peterson
- grid.94365.3d0000 0001 2297 5165Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Jeffrey I. Cohen
- grid.419681.30000 0001 2164 9667Medical Virology Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Emmie de Wit
- grid.94365.3d0000 0001 2297 5165Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Hamilton, MT USA
| | - Kevin M. Vannella
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| | - Stephen M. Hewitt
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - David E. Kleiner
- grid.417768.b0000 0004 0483 9129Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD USA
| | - Daniel S. Chertow
- grid.410305.30000 0001 2194 5650Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD USA ,grid.419681.30000 0001 2164 9667Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
223
|
Chen X, Li H, Song H, Wang J, Zhang X, Han P, Wang X. Meet changes with constancy: Defence, antagonism, recovery, and immunity roles of extracellular vesicles in confronting SARS-CoV-2. J Extracell Vesicles 2022; 11:e12288. [PMID: 36450704 PMCID: PMC9712136 DOI: 10.1002/jev2.12288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has wrought havoc on the world economy and people's daily lives. The inability to comprehensively control COVID-19 is due to the difficulty of early and timely diagnosis, the lack of effective therapeutic drugs, and the limited effectiveness of vaccines. The body contains billions of extracellular vesicles (EVs), which have shown remarkable potential in disease diagnosis, drug development, and vaccine carriers. Recently, increasing evidence has indicated that EVs may participate or assist the body in defence, antagonism, recovery and acquired immunity against SARS-CoV-2. On the one hand, intercepting and decrypting the general intelligence carried in circulating EVs from COVID-19 patients will provide an important hint for diagnosis and treatment; on the other hand, engineered EVs modified by gene editing in the laboratory will amplify the effectiveness of inhibiting infection, replication and destruction of ever-mutating SARS-CoV-2, facilitating tissue repair and making a better vaccine. To comprehensively understand the interaction between EVs and SARS-CoV-2, providing new insights to overcome some difficulties in the diagnosis, prevention and treatment of COVID-19, we conducted a rounded review in this area. We also explain numerous critical challenges that these tactics face before they enter the clinic, and this work will provide previous 'meet change with constancy' lessons for responding to future similar public health disasters. Extracellular vesicles (EVs) provide a 'meet changes with constancy' strategy to combat SARS-CoV-2 that spans defence, antagonism, recovery, and acquired immunity. Targets for COVID-19 diagnosis, therapy, and prevention of progression may be found by capture of the message decoding in circulating EVs. Engineered and biomimetic EVs can boost effects of the natural EVs, especially anti-SARS-CoV-2, targeted repair of damaged tissue, and improvement of vaccine efficacy.
Collapse
Affiliation(s)
- Xiaohang Chen
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
- Fujian Key Laboratory of Oral Diseases, School and Hospital of StomatologyFujian Medical UniversityFuzhouChina
| | - Huifei Li
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Haoyue Song
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Jie Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Xiaoxuan Zhang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| | - Pengcheng Han
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
- School of MedicineZhongda Hospital, Southeast UniversityNanjingChina
| | - Xing Wang
- Shanxi Medical University School and Hospital of StomatologyTaiyuanChina
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New MaterialsTaiyuanChina
| |
Collapse
|
224
|
Oral intake of Kluyveromyces marxianus B0399 plus Lactobacillus rhamnosus CECT 30579 to mitigate symptoms in COVID-19 patients: A randomized open label clinical trial. MEDICINE IN MICROECOLOGY 2022; 14:100061. [PMID: 36035620 PMCID: PMC9398813 DOI: 10.1016/j.medmic.2022.100061] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/08/2022] [Accepted: 08/18/2022] [Indexed: 12/01/2022] Open
Abstract
At the beginning of the SARS-CoV-2 pandemic, developing of new treatments to control the spread of infection and decrease morbidity and mortality are necessary. This prospective, open-label, case-control intervention study evaluates the impact of the oral intake of the probiotic yeast Kluyveromyces marxianus B0399 together with Lactobacillus rhamnosus CECT 30579, administered for 30 days, on the evolution of COVID-19 patients. Analysis of the digestive symptoms at the end of the follow up shows a benefit of the probiotic in the number of patients without pyrosis (100% vs 33.3%; p 0.05) and without abdominal pain (100% vs 62.5%; p 0.04). Results also show a better evolution when evaluating the difference in the overall number of patients without non-digestive symptoms at the end of the follow-up (41.7%, vs 13%; p 0.06). The percentage of improvement in the digestive symptoms (65% vs 88%; p value 0.06) and the global symptoms (digestive and non-digestive) (88.6% vs 70.8%; p value 0.03) is higher in the probiotic group. The probiotic was well tolerated with no relevant side effects and high adherence among patients. In conclusion, this coadjutant treatment seems to be promising, although results should be confirmed in new studies with higher number of patients.
Collapse
|
225
|
Muacevic A, Adler JR, Ture Yuce Z, Sevim DG, Temizyurek O, Polat OA, Horozoglu F. The Effect of Corticosteroid Therapy on Choroidal Thickness in Patients With Covid-19 Infection: A Prospective, Comparative, and Observational Study. Cureus 2022; 14:e32835. [PMID: 36699792 PMCID: PMC9870188 DOI: 10.7759/cureus.32835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (Covid-19) has many different ocular manifestations. This study evaluates the effects of the disease and the steroid used in this disease on ocular structures. PURPOSE To evaluate the effects of Covid-19 and the steroids used in the treatment of severe infection on ocular structures and choroidal thickness. METHODS This prospective study included 76 eyes of 76 patients who were hospitalized due to Covid-19 and 30 eyes of 30 healthy volunteering controls. Group I included 35 eyes who were hospitalized due to moderate-to-severe involvement that received steroid treatment, group II included 41 eyes with moderate involvement that did not require steroid treatment, and group III included 30 eyes with age- and gender-matched control subjects. Ophthalmological examination and imaging results of the patients obtained in the third week and third month after the diagnosis were compared between the groups. RESULTS Mean age of all participants was 40.2 ± 6.1 years. In the third week after the diagnosis of Covid-19, choroidal thickness in all regions (subfoveal, nasal, and temporal) was significantly greater in group I than in group II (for all, p<0.001). Moreover, choroidal thicknesses were significantly higher in group I and group II than in the control group (for all, p<0.001). In the third month, all the groups had similar choroidal thickness values (for subfoveal, nasal, and temporal; p=0.058, p=0.111, p=0.079, respectively). CONCLUSION Our findings showed that Covid-19 infection causes choroidal thickening by affecting the choroidal layer and that steroid treatment further increases this thickness in the acute period. In addition, the reversal of this thickening to the normal level within a period of three months indicates that the effect of the disease on the choroid is reversible.
Collapse
|
226
|
Vadi S, Pednekar A, Raut A. Spectrum of Vascular Thrombosis in Critically Ill COVID-19 Patients: From Bench to the Bedside. Indian J Crit Care Med 2022; 26:1237-1243. [PMID: 36755627 PMCID: PMC9886015 DOI: 10.5005/jp-journals-10071-24369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Proinflammatory cytokines and procoagulant factors released by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lead to thrombosis and ischemia. Pathogenesis and clinical significance of hypercoagulability and an ensuing gamut of vascular complications are explained here. How to cite this article Vadi S, Pednekar A, Raut A. Spectrum of Vascular Thrombosis in Critically Ill COVID-19 Patients: From Bench to the Bedside. Indian J Crit Care Med 2022;26(12):1237-1243.
Collapse
Affiliation(s)
- Sonali Vadi
- Department of Intensive Care Medicine, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, Maharashtra, India
| | - Ashwini Pednekar
- Department of Intensive Care Medicine, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, Maharashtra, India
| | - Abhijit Raut
- Department of Radiology, Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, Maharashtra, India
| |
Collapse
|
227
|
Li L, Wu Y, Wang J, Yan H, Lu J, Wang Y, Zhang B, Zhang J, Yang J, Wang X, Zhang M, Li Y, Miao L, Zhang H. Potential Treatment of COVID-19 with Traditional Chinese Medicine: What Herbs Can Help Win the Battle with SARS-CoV-2? ENGINEERING (BEIJING, CHINA) 2022; 19:139-152. [PMID: 34729244 PMCID: PMC8552808 DOI: 10.1016/j.eng.2021.08.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/28/2021] [Accepted: 08/03/2021] [Indexed: 05/05/2023]
Abstract
Traditional Chinese medicine (TCM) has been successfully applied worldwide in the treatment of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the pharmacological mechanisms underlying this success remain unclear. Hence, the aim of this review is to combine pharmacological assays based on the theory of TCM in order to elucidate the potential signaling pathways, targets, active compounds, and formulas of herbs that are involved in the TCM treatment of COVID-19, which exhibits combatting viral infections, immune regulation, and amelioration of lung injury and fibrosis. Extensive reports on target screening are elucidated using virtual prediction via docking analysis or network pharmacology based on existing data. The results of these reports indicate that an intricate regulatory mechanism is involved in the pathogenesis of COVID-19. Therefore, more pharmacological research on the natural herbs used in TCM should be conducted in order to determine the association between TCM and COVID-19 and account for the observed therapeutic effects of TCM against COVID-19.
Collapse
Affiliation(s)
- Lin Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Laboratory of Pharmacology of TCM Formulae Co-Constructed by the Province-Ministry, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiabao Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huimin Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jia Lu
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Boli Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Junhua Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jian Yang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoying Wang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Min Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Miao
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Han Zhang
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
228
|
Tiryaki Demir S, Dalgic N, Keles Yesiltas S, Akbas Ozyurek EB, Karapapak M, Uke Uzun S, Guven D. OCT and OCTA evaluation of vascular and morphological structures in the retina in recovered pediatric patients with COVID-19. Photodiagnosis Photodyn Ther 2022; 40:103157. [PMID: 36244680 PMCID: PMC9561386 DOI: 10.1016/j.pdpdt.2022.103157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/08/2022] [Accepted: 10/11/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Using OCT and OCTA imaging, we aimed to determine whether COVID-19 induces pathological changes in vascular and morphological structures in the pediatric retina. METHODS The current prospective, cross-sectional, observational clinical study included recovered pediatric patients with COVID-19 evaluated between May 2020 and June 2020. Retinal vascular (radial peripapillary, superficial, and deep capillary plexus vessel densities) and morphological (peripapillary retinal nerve fiber, ganglion cell layer, retinal, and choroidal thickness) in the optic disk and macula regions were quantitively assessed using OCT and OCTA. Data were compared between COVID-19 patients and age-matched controls. RESULTS The COVID-19 group included 32 eyes of 16 patients and the control group included 32 eyes of 16 cases. Fundus and biomicroscopic examinations revealed no signs of pathology in the COVID-19 group. Mean peripapillary retinal nerve fiber, ganglion cell layer, and choroidal thickness values were significantly greater in the COVID-19 group than in the control group (p<0.05). OCTA indicated that mean superficial and deep capillary plexus vessel densities, and choriocapillaris flow area values were significantly lower in the COVID-19 group than in the control group, whereas mean radial peripapillary capillary plexus vessel density values were significantly higher (p<0.05). CONCLUSIONS Even if fundus examination results appear normal in pediatric patients with COVID-19, vascular and morphological changes may be observed in the retina. Further studies with larger numbers of patients are needed to elucidate the clinical significance of vascular and morphological changes in this population.
Collapse
Affiliation(s)
- Semra Tiryaki Demir
- Department of Ophthalmology, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey.
| | - Nazan Dalgic
- Department of Pediatric Infectious Diseases, Sarıyer Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Sumeyra Keles Yesiltas
- Department of Ophthalmology, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Emine Betul Akbas Ozyurek
- Department of Ophthalmology, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Murat Karapapak
- Department of Ophthalmology, Basaksehir City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Saniye Uke Uzun
- Department of Ophthalmology, Sisli Hamidiye Etfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Dilek Guven
- Department of Ophthalmology, Acibadem Maslak Hospital, Istanbul, Turkey
| |
Collapse
|
229
|
Schultz MD, Suschak JJ, Botta D, Silva-Sanchez A, King RG, Detchemendy TW, Meshram CD, Foote JB, Zhou F, Tipper JL, Zhang J, Harrod KS, Leal SM, Randall TD, Roberts MS, Georges B, Lund FE. A single intranasal administration of AdCOVID protects against SARS-CoV-2 infection in the upper and lower respiratory tracts. Hum Vaccin Immunother 2022; 18:2127292. [PMID: 36194255 PMCID: PMC9746417 DOI: 10.1080/21645515.2022.2127292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/19/2022] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has illustrated the critical need for effective prophylactic vaccination to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Intranasal vaccination is an attractive approach for preventing COVID-19 as the nasal mucosa is the site of initial SARS-CoV-2 entry and viral replication prior to aspiration into the lungs. We previously demonstrated that a single intranasal administration of a candidate adenovirus type 5-vectored vaccine encoding the receptor-binding domain of the SARS-CoV-2 spike protein (AdCOVID) induced robust immunity in both the airway mucosa and periphery, and completely protected K18-hACE2 mice from lethal SARS-CoV-2 challenge. Here we show that a single intranasal administration of AdCOVID limits viral replication in the nasal cavity of K18-hACE2 mice. AdCOVID also induces sterilizing immunity in the lungs of mice as reflected by the absence of infectious virus. Finally, AdCOVID prevents SARS-CoV-2 induced pathological damage in the lungs of mice. These data show that AdCOVID not only limits viral replication in the respiratory tract, but it also prevents virus-induced inflammation and immunopathology following SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Michael D. Schultz
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Davide Botta
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - R. Glenn King
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Thomas W. Detchemendy
- Department of Pathology, Division of Laboratory Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Chetan D. Meshram
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeremy B. Foote
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Fen Zhou
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jennifer L. Tipper
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Kevin S. Harrod
- Department of Anesthesiology and Perioperative Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sixto M. Leal
- Department of Pathology, Division of Laboratory Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Troy D. Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Frances E. Lund
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
230
|
Sun TK, Huang WC, Sun YW, Deng JS, Chien LH, Chou YN, Jiang WP, Lin JG, Huang GJ. Schizophyllum commune Reduces Expression of the SARS-CoV-2 Receptors ACE2 and TMPRSS2. Int J Mol Sci 2022; 23:ijms232314766. [PMID: 36499094 PMCID: PMC9740160 DOI: 10.3390/ijms232314766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
The current global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) of COVID-19 has infected hundreds of millions of people, killed millions, and continues to pose a threat. It has become one of the largest epidemics in human history, causing enormous damage to people's lives and economies in the whole world. However, there are still many uncertainties and continued attention to the impact of SARS-CoV-2 on human health. The entry of SARS-CoV-2 into host cells is facilitated by the binding of the spike protein on the virus surface to the cell surface receptor angiotensin-converting enzyme 2 (ACE2). Furthermore, transmembrane protease serine 2 (TMPRSS2) is a host surface protease that cleaves and proteolytically activates its S protein, which is necessary for viral infection. Thus, SARS-CoV-2 uses the ACE2 receptor for cell entry and initiates the S protein using the protease TMPRSS2. Schizophyllum commune (SC) is one of the most widely distributed fungi, often found on the rotten wood of trees that has been found to have various health benefits, including anticancer, antimicrobial activity, antiparasitic, and immunomodulatory function. In this article, SC significantly diminished the expression ACE2 and TMPRSS2 protein in vitro and in vivo without cell damage. In addition, adenosine from SC was also proven in this experiment to reduce the ACE2 and TMPRSS2 expression. Thus, our findings suggest that SC and adenosine exhibit potential for the repression of SARS-CoV-2 infection via the ACE2 and TMPRSS2 axis.
Collapse
Affiliation(s)
- Te-Kai Sun
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan
| | - Wen-Chin Huang
- Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung 404, Taiwan
| | - Yu-Wen Sun
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Jeng-Shyan Deng
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
| | - Liang-Hsuan Chien
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Ya-Ni Chou
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
| | - Wen-Ping Jiang
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
| | - Jaung-Geng Lin
- School of Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Correspondence: (J.-G.L.); (G.-J.H.); Tel.: +886-4-2205-3366 (ext. 3311) (J.-G.L.); +886-4-2205-3366 (ext. 5508) (G.-J.H.)
| | - Guan-Jhong Huang
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Chinese Medicine, China Medical University, Taichung 404, Taiwan
- Department of Food Nutrition and Healthy Biotechnology, Asia University, Taichung 413, Taiwan
- Correspondence: (J.-G.L.); (G.-J.H.); Tel.: +886-4-2205-3366 (ext. 3311) (J.-G.L.); +886-4-2205-3366 (ext. 5508) (G.-J.H.)
| |
Collapse
|
231
|
Suprewicz Ł, Tran KA, Piktel E, Fiedoruk K, Janmey PA, Galie PA, Bucki R. Recombinant human plasma gelsolin reverses increased permeability of the blood-brain barrier induced by the spike protein of the SARS-CoV-2 virus. J Neuroinflammation 2022; 19:282. [PMID: 36434734 PMCID: PMC9694610 DOI: 10.1186/s12974-022-02642-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Plasma gelsolin (pGSN) is an important part of the blood actin buffer that prevents negative consequences of possible F-actin deposition in the microcirculation and has various functions during host immune response. Recent reports reveal that severe COVID-19 correlates with reduced levels of pGSN. Therefore, using an in vitro system, we investigated whether pGSN could attenuate increased permeability of the blood-brain barrier (BBB) during its exposure to the portion of the SARS-CoV-2 spike protein containing the receptor binding domain (S1 subunit). MATERIALS AND METHODS Two- and three-dimensional models of the human BBB were constructed using the human cerebral microvascular endothelial cell line hCMEC/D3 and exposed to physiologically relevant shear stress to mimic perfusion in the central nervous system (CNS). Trans-endothelial electrical resistance (TEER) as well as immunostaining and Western blotting of tight junction (TJ) proteins assessed barrier integrity in the presence of the SARS-CoV-2 spike protein and pGSN. The IncuCyte Live Imaging system evaluated the motility of the endothelial cells. Magnetic bead-based ELISA was used to determine cytokine secretion. Additionally, quantitative real-time PCR (qRT-PCR) revealed gene expression of proteins from signaling pathways that are associated with the immune response. RESULTS pGSN reversed S1-induced BBB permeability in both 2D and 3D BBB models in the presence of shear stress. BBB models exposed to pGSN also exhibited attenuated pro-inflammatory signaling pathways (PI3K, AKT, MAPK, NF-κB), reduced cytokine secretion (IL-6, IL-8, TNF-α), and increased expression of proteins that form intercellular TJ (ZO-1, occludin, claudin-5). CONCLUSION Due to its anti-inflammatory and protective effects on the brain endothelium, pGSN has the potential to be an alternative therapeutic target for patients with severe SARS-CoV-2 infection, especially those suffering neurological complications of COVID-19.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Kiet A Tran
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland
| | - Paul A Janmey
- Department of Physiology and Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, 08028, USA
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222, Białystok, Poland.
| |
Collapse
|
232
|
Vulturar DM, Neag MA, Vesa ȘC, Maierean AD, Gherman D, Buzoianu AD, Orăsan OH, Todea DA. Therapeutic Efficacy and Outcomes of Remdesivir versus Remdesivir with Tocilizumab in Severe SARS-CoV-2 Infection. Int J Mol Sci 2022; 23:ijms232214462. [PMID: 36430945 PMCID: PMC9698366 DOI: 10.3390/ijms232214462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
The infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated many challenges to find an effective drug combination for hospitalized patients with severe forms of coronavirus disease 2019 (COVID-19) pneumonia. We conducted a retrospective cohort study, including 182 patients with severe COVID-19 pneumonia hospitalized between March and October 2021 in a Pneumology Hospital from Cluj-Napoca, Romania. Among patients treated with standard of care, 100 patients received remdesivir (R group) and 82 patients received the combination of remdesivir plus tocilizumab (RT group). We compared the clinical outcomes, the inflammatory markers, superinfections, oxygen requirement, intensive care unit (ICU) admission and mortality rate before drug administration and 7 days after in R group and RT group. Borg score and oxygen support showed an improvement in the R group (p < 0.005). Neutrophiles, C-reactive protein (CRP) and serum ferritin levels decreased significantly in RT group but with a higher rate of superinfection in this group. ICU admission and death did not differ significantly between groups. The combination of remdesivir plus tocilizumab led to a significantly improvement in the inflammatory markers and a decrease in the oxygen requirement. Although the superinfection rate was higher in RT group than in R group, no significant difference was found in the ICU admission and mortality rate between the groups.
Collapse
Affiliation(s)
- Damiana-Maria Vulturar
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania
| | - Maria Adriana Neag
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Correspondence:
| | - Ștefan Cristian Vesa
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Diana Maierean
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania
| | - Diana Gherman
- Department of Radiology, Iuliu Hatieganu University of Medicine and Pharmacy, 400347 Cluj-Napoca, Romania
| | - Anca Dana Buzoianu
- Pharmacology, Toxicology and Clinical Pharmacology Department, Iuliu Hațieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Olga Hilda Orăsan
- 5th Department Internal Medicine, 4th Medical Clinic, Iuliu Hațieganu University of Medicine and Pharmacy, 400015 Cluj-Napoca, Romania
| | - Doina-Adina Todea
- Department of Pneumology, Iuliu Hațieganu University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania
| |
Collapse
|
233
|
Khairy Y, Naghibi D, Moosavi A, Sardareh M, Azami-Aghdash S. Prevalence of hypertension and associated risks in hospitalized patients with COVID-19: a meta-analysis of meta-analyses with 1468 studies and 1,281,510 patients. Syst Rev 2022; 11:242. [PMID: 36397129 PMCID: PMC9672558 DOI: 10.1186/s13643-022-02111-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Since the COVID-19 outbreak, preliminary research has shown that some risk-associated conditions increase death and severe complications of the disease, hypertension being one of them. Thus, numerous meta-analyses have been conducted to explore this issue. Therefore, this umbrella review aims to perform a meta-analysis of the meta-analyses to estimate the prevalence and associated risks of hypertension in patients with COVID-19. METHODS PubMed, Scopus, Web of Knowledge, Embase, and Cochrane databases were searched for the published meta-analyses up to January 1, 2022. Google Scholar, citation check, reference check, and Grey literature were also manually searched. A random-effect model approach was used for analysis. RESULTS The overall death rate was estimated at 12%. Hypertension was present in 25% of the patients as a comorbid disease. The overall RR for death, disease severity, and the possibility of ICU admission were estimated at 1.79 [1.68-1.89 with 95% CI], 1.74 [1.66-1.83 with 95% CI], and 1.91 [1.48-2.34 with 95% CI], respectively. The meta-regression results showed that being "male" significantly increases the risk of disease severity and ICU admission. CONCLUSIONS The results indicated that hypertension is a common comorbid disease in hospitalized patients with COVID-19, which significantly increases mortality risk, the severity of the disease, and the probability of ICU admission. SYSTEMATIC REVIEW REGISTRATION This study has been registered in PROSPERO (CRD42021231844).
Collapse
Affiliation(s)
- Yousof Khairy
- Center for the Development of Interdisciplinary Research in Islamic Sciences and Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Deniz Naghibi
- Department of Public Health Sciences, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | - Ahmad Moosavi
- Department of Health and Community Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Mehran Sardareh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saber Azami-Aghdash
- Tabriz Health Services Management Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
234
|
Sano H, Imagawa A. Re-Enlightenment of Fulminant Type 1 Diabetes under the COVID-19 Pandemic. BIOLOGY 2022; 11:1662. [PMID: 36421377 PMCID: PMC9687436 DOI: 10.3390/biology11111662] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/26/2024]
Abstract
Fulminant type 1 diabetes (FT1D) is a subtype of type 1 diabetes (T1D) that is characterized by the rapid progression to diabetic ketoacidosis against the background of rapid and almost complete pancreatic islet destruction. The HbA1c level at FT1D onset remains normal or slightly elevated despite marked hyperglycemia, reflecting the rapid clinical course of the disease, and is an important marker for diagnosis. FT1D often appears following flu-like symptoms, and there are many reports of its onset being linked to viral infections. In addition, disease-susceptibility genes have been identified in FT1D, suggesting the involvement of host factors in disease development. In most cases, islet-related autoantibodies are not detected, and histology of pancreatic tissue reveals macrophage and T cell infiltration of the islets in the early stages of FT1D, suggesting that islet destruction occurs via an immune response different from that occurring in autoimmune type 1 diabetes. From 2019, coronavirus disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spread worldwide and became a serious problem. Reports on the association between SARS-CoV-2 and T1D are mixed, with some suggesting an increase in T1D incidence due to the COVID-19 pandemic. When discussing the association between COVID-19 and T1D, it is also necessary to focus on FT1D. However, it is not easy to diagnose this subtype without understanding the concept. Therefore, authors hereby review the concept and the latest findings of FT1D, hoping that the association between COVID-19 and T1D will be adequately evaluated in the future.
Collapse
Affiliation(s)
- Hiroyuki Sano
- Department of Internal Medicine (I), Osaka Medical and Pharmaceutical University, Takatsuki 569-8686, Japan
| | | |
Collapse
|
235
|
Ranjbar T, Oza PP, Kashfi K. The Renin-Angiotensin-Aldosterone System, Nitric Oxide, and Hydrogen Sulfide at the Crossroads of Hypertension and COVID-19: Racial Disparities and Outcomes. Int J Mol Sci 2022; 23:ijms232213895. [PMID: 36430371 PMCID: PMC9699619 DOI: 10.3390/ijms232213895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 is caused by SARS-CoV-2 and is more severe in the elderly, racial minorities, and those with comorbidities such as hypertension and diabetes. These pathologies are often controlled with medications involving the renin-angiotensin-aldosterone system (RAAS). RAAS is an endocrine system involved in maintaining blood pressure and blood volume through components of the system. SARS-CoV-2 enters the cells through ACE2, a membrane-bound protein related to RAAS. Therefore, the use of RAAS inhibitors could worsen the severity of COVID-19's symptoms, especially amongst those with pre-existing comorbidities. Although a vaccine is currently available to prevent and reduce the symptom severity of COVID-19, other options, such as nitric oxide and hydrogen sulfide, may also have utility to prevent and treat this virus.
Collapse
Affiliation(s)
- Tara Ranjbar
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Palak P. Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10016, USA
- Correspondence:
| |
Collapse
|
236
|
Shifeng P, Boopathi V, Murugesan M, Mathiyalagan R, Ahn J, Xiaolin C, Yang DU, Kwak GY, Kong BM, Yang DC, Kang SC, Hao Z. Molecular Docking and Dynamics Simulation Studies of Ginsenosides with SARS-CoV-2 Host and Viral Entry Protein Targets. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221134331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Despite the contemporary advancements in the field of science and medicine, combating the coronavirus disease 2019 (COVID-19) is extremely challenging in many aspects as the virus keeps spreading and mutating rapidly. As there is no effective and conclusive drug therapy to date, it is crucial to explore plant-based natural compounds for their potential to inhibit SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2). Recent research highly focuses on screening various phytochemicals to elucidate their anti-viral efficacy. However, very few studies were published investigating the anti-viral efficacy of ginsenosides. Hence, the main aim of this study was to investigate the inhibitory potential of the available 122 ginsenosides from Panax ginseng against SARS-CoV-2-related proteins using a molecular docking and molecular dynamics approach. The major bioactive compounds “ginsenosides” of P. ginseng were docked to six vital SAR-CoV-2 host entry-related proteins such as ACE2, Spike RBD, ACE2 and Spike RBD complex, Spike (pre-fused), Spike (post-fused), and HR domain, with lowest binding energies of −9.5 kcal/mol, −8.1 kcal/mol, −10.4 kcal/mol, −10.4 kcal/mol, −9.3 kcal/mol, and −8.2 kcal/mol, respectively. Almost all the ginsenosides have shown low binding energies and were found to be favourable for efficient docking and resultant inhibition of the viral proteins. However, ACE2 has shown the highest interaction capability. Hence, the top five ginsenosides with the highest binding energy with ACE2 were subjected to MD, post MD analysis, and MM/PBSA calculations. MD simulation results have shown higher stability, flexibility, and mobility of the selected compounds. Additionally, MM-PBSA also affirms the docking results. The results obtained from this study have provided highly potential candidates for developing natural inhibitors against COVID-19.
Collapse
Affiliation(s)
- Pang Shifeng
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130112, China
| | - Vinothini Boopathi
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - Mohanapriya Murugesan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - Ramya Mathiyalagan
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - JongChan Ahn
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - Chen Xiaolin
- Ginseng Antler Office of Jilin Province (TCM Development Centre of Department of Agriculture and Rural Affairs of Jilin Provincial), Changchun 130033, China
| | - Dong-Uk Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
| | - Gi-Young Kwak
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Byoung Man Kong
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Deok-Chun Yang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Se Chan Kang
- Graduate School of Biotechnology, College of Life Sciences, Kyung Hee University, Yongin si, Gyeonggi 17104, Korea
- Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Zhang Hao
- Institute of Special Animal and Plant Sciences of CAAS, Changchun 130112, China
| |
Collapse
|
237
|
Newhouse A, Kritzer MD, Eryilmaz H, Praschan N, Camprodon JA, Fricchione G, Chemali Z. Neurocircuitry Hypothesis and Clinical Experience in Treating Neuropsychiatric Symptoms of Postacute Sequelae of Severe Acute Respiratory Syndrome Coronavirus 2. J Acad Consult Liaison Psychiatry 2022; 63:619-627. [PMID: 36030055 PMCID: PMC9404079 DOI: 10.1016/j.jaclp.2022.08.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 12/15/2022]
Abstract
Persistent symptoms following COVID-19 infection have been termed postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. Many of these symptoms are neuropsychiatric, such as inattention, impaired memory, and executive dysfunction; these are often colloquially termed "brain fog". These symptoms are common and often persist long after the acute phase. The pattern of these deficits combined with laboratory, neuroimaging, electroencephalographic, and neuropsychological data suggest that these symptoms may be driven by direct and indirect damage to the frontal-subcortical neural networks. Here, we review this evidence, share our clinical experience at an academic medical center, and discuss potential treatment implications. While the exact etiology remains unknown, a neurocircuit-informed understanding of postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection can help guide pharmacology, neuromodulation, and physical and psychological therapeutic approaches.
Collapse
Affiliation(s)
- Amy Newhouse
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Medicine, Massachusetts General Hospital, Boston, MA.
| | - Michael D Kritzer
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Hamdi Eryilmaz
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Nathan Praschan
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Gregory Fricchione
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | - Zeina Chemali
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
238
|
Zhang M, Zhang P, Liang Y, Du B, Li L, Yu Z, Wang H, Wang Q, Zhang X, Zhang W. A systematic review of current status and challenges of vaccinating children against SARS-CoV-2. J Infect Public Health 2022; 15:1212-1224. [PMID: 36257126 PMCID: PMC9557115 DOI: 10.1016/j.jiph.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 12/04/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has inflicted immense damage to countries, economies and societies worldwide. Authorized COVID-19 vaccines based on different platforms have been widely inoculated in adults, showing up to 100% immunogenicity with significant efficacy in preventing SARS-CoV-2 infections and the occurrence of severe COVID-19. It has also greatly slowed the evolution of SARS-CoV-2 variants, as shown in clinical trials and real-world evidence. However, the total dosage of COVID-19 vaccines for children is much smaller than that for adults due to limitations from parental concern of vaccine safety, presenting a potential obstacle in ending the COVID-19 pandemic. SARS-CoV-2 not only increases the risk of severe multisystem inflammatory syndrome (MIS-C) in children, but also negatively affects children's psychology and academics, indirectly hindering the maintenance and progress of normal social order. Therefore, this article examines the clinical manifestations of children infected with SARS-CoV-2, the status of vaccination against COVID-19 in children, vaccination-related adverse events, and the unique immune mechanisms of children. In particular, the necessity and challenges of vaccinating children against SARS-CoV-2 were highlighted from the perspectives of society and family. In summary, parental hesitancy is unnecessary as adverse events after COVID-19 vaccination have been proven to be infrequent, comprise of mild symptoms, and have a good prognosis.
Collapse
Affiliation(s)
- Mengxin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Pin Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Ying Liang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Bang Du
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Lifeng Li
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Zhidan Yu
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Huanmin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Qionglin Wang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Xianwei Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| | - Wancun Zhang
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China.
| |
Collapse
|
239
|
Özdemir Ö, Göksu Erol AY, Dikici Ü. Mast Cell's Role in Cytokine Release Syndrome and Related Manifestations of COVID-19 Disease. Curr Pharm Des 2022; 28:3261-3268. [PMID: 36305137 DOI: 10.2174/1381612829666221027114123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/16/2022] [Indexed: 01/28/2023]
Abstract
In this narrative review, firstly, we describe the characteristics of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the pathogenesis of its infection in humans. Later, the importance of mast cells in SARS-CoV-2 infection and their role in Coronavirus Disease 2019 (COVID-19) will be discussed. SARS-CoV-2 is a transmissible agent frequently detected in some mammalian species and also in humans. Literature data published in PubMed that covered mast cells' role in cytokine release syndrome and related manifestations of COVID-19 disease were reviewed by the authors independently and collectively. Recommendations for the management of cytokine release syndrome and related manifestations were made by the authors. Mast cells are concentrated in environments where they encounter viruses, bacteria, and toxins, especially in the skin, nasal mucosa, lungs, airways, gastrointestinal tract, and meninges, to prevent their entry into the human body. Once SARS-CoV-2 enters the host, it stimulates one of the mast cells, together with pre-existing innate immune cells that form a defensive barrier in the submucosa of the respiratory tract and nasal cavities against pathogenic microorganisms. The roles of mast cells in SARS-CoV-2-induced hyperinflammation and cytokine storms have recently been one of the hot topics in the literature. Physicians should keep in mind the mast cells' role in cytokine release syndrome and related manifestations of COVID-19 disease. Mast cell-targeting therapies (e.g., H1 and H2 receptor antagonists) can reduce the severity and course of the disease when used after complications associated with COVID-19 are suspected or seen.
Collapse
Affiliation(s)
- Öner Özdemir
- Department of Pediatrics, Division of Allergy and Immunology, Sakarya University, Faculty of Medicine, Research and Training Hospital of Sakarya University, Sakarya, Türkiye
| | - Azize Yasemin Göksu Erol
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Türkiye
| | - Ümmügülsüm Dikici
- Department of Pediatrics, Division of Allergy and Immunology, Sakarya University, Faculty of Medicine, Research and Training Hospital of Sakarya University, Sakarya, Türkiye
| |
Collapse
|
240
|
A population-based cohort study of sex and risk of severe outcomes in covid-19. Eur J Epidemiol 2022; 37:1159-1169. [PMID: 36301399 PMCID: PMC9607822 DOI: 10.1007/s10654-022-00919-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/16/2022] [Indexed: 11/23/2022]
Abstract
There is a male sex disadvantage in morbidity and mortality due to COVID-19. Proposed explanations to this disparity include gender-related health behaviors, differential distribution of comorbidities and biological sex differences. In this study, we investigated the association between sex and risk of severe COVID-19 while adjusting for comorbidities, socioeconomic factors, as well as unmeasured factors shared by cohabitants which are often left unadjusted. We conducted a total-population-based cohort study (n = 1,854,661) based on individual-level register data. Cox models was used to estimate the associations between sex and risk for severe COVID-19. We additionally used a within-household design and conditional Cox models aiming to account for unmeasured factors shared by cohabitants. A secondary aim was to compare the risk of COVID-19 related secondary outcomes between men and women hospitalized due to COVID-19 using logistic regression. Men were at higher risk for hospitalization (HR = 1.63;95%CI = 1.57–1.68), ICU admission (HR = 2.63;95%CI = 2.38–2.91) and death (HR = 1.81;95%CI = 1.68–1.95) due to COVID-19, based on fully adjusted models. However, the effect of sex varied significantly across age groups: Among people in their 50s, men had > four times higher risk of COVID-19 death. The within-household design did not provide any further explanation to the sex disparity. Among patients hospitalized due to COVID-19, men had an increased risk for viral pneumonia, acute respiratory distress syndrome, acute respiratory insufficiency, acute kidney injury, and sepsis which persisted in fully adjusted models. Recognition of the combined effect of sex and age on COVID-19 outcomes has implications for policy strategies to reduce the adverse effects of the disease.
Collapse
|
241
|
Dehghani J, Movafeghi A, Mathieu-Rivet E, Mati-Baouche N, Calbo S, Lerouge P, Bardor M. Microalgae as an Efficient Vehicle for the Production and Targeted Delivery of Therapeutic Glycoproteins against SARS-CoV-2 Variants. Mar Drugs 2022; 20:md20110657. [PMID: 36354980 PMCID: PMC9698596 DOI: 10.3390/md20110657] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/27/2022] Open
Abstract
Severe acute respiratory syndrome–Coronavirus 2 (SARS-CoV-2) can infect various human organs, including the respiratory, circulatory, nervous, and gastrointestinal ones. The virus is internalized into human cells by binding to the human angiotensin-converting enzyme 2 (ACE2) receptor through its spike protein (S-glycoprotein). As S-glycoprotein is required for the attachment and entry into the human target cells, it is the primary mediator of SARS-CoV-2 infectivity. Currently, this glycoprotein has received considerable attention as a key component for the development of antiviral vaccines or biologics against SARS-CoV-2. Moreover, since the ACE2 receptor constitutes the main entry route for the SARS-CoV-2 virus, its soluble form could be considered as a promising approach for the treatment of coronavirus disease 2019 infection (COVID-19). Both S-glycoprotein and ACE2 are highly glycosylated molecules containing 22 and 7 consensus N-glycosylation sites, respectively. The N-glycan structures attached to these specific sites are required for the folding, conformation, recycling, and biological activity of both glycoproteins. Thus far, recombinant S-glycoprotein and ACE2 have been produced primarily in mammalian cells, which is an expensive process. Therefore, benefiting from a cheaper cell-based biofactory would be a good value added to the development of cost-effective recombinant vaccines and biopharmaceuticals directed against COVID-19. To this end, efficient protein synthesis machinery and the ability to properly impose post-translational modifications make microalgae an eco-friendly platform for the production of pharmaceutical glycoproteins. Notably, several microalgae (e.g., Chlamydomonas reinhardtii, Dunaliella bardawil, and Chlorella species) are already approved by the U.S. Food and Drug Administration (FDA) as safe human food. Because microalgal cells contain a rigid cell wall that could act as a natural encapsulation to protect the recombinant proteins from the aggressive environment of the stomach, this feature could be used for the rapid production and edible targeted delivery of S-glycoprotein and soluble ACE2 for the treatment/inhibition of SARS-CoV-2. Herein, we have reviewed the pathogenesis mechanism of SARS-CoV-2 and then highlighted the potential of microalgae for the treatment/inhibition of COVID-19 infection.
Collapse
Affiliation(s)
- Jaber Dehghani
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Ali Movafeghi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz 5166616471, Iran
| | - Elodie Mathieu-Rivet
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Narimane Mati-Baouche
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Sébastien Calbo
- Université de Rouen Normandie, Inserm U1234, F-76000 Rouen, France
| | - Patrice Lerouge
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
| | - Muriel Bardor
- Université de Rouen Normandie, Laboratoire GlycoMEV UR 4358, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, F-76000 Rouen, France
- Correspondence: ; Tel.: +33-2-35-14-67-51
| |
Collapse
|
242
|
Bepouka B, Mayasi N, Mandina M, Longokolo M, Odio O, Mangala D, Mbula M, Kayembe JM, Situakibanza H. Risk factors for mortality in COVID-19 patients in sub-Saharan Africa: A systematic review and meta-analysis. PLoS One 2022; 17:e0276008. [PMID: 36251715 PMCID: PMC9576083 DOI: 10.1371/journal.pone.0276008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/27/2022] [Indexed: 11/05/2022] Open
Abstract
Aim Mortality rates of coronavirus-2019 (COVID-19) disease continue to increase worldwide and in Africa. In this study, we aimed to summarize the available results on the association between sociodemographic, clinical, biological, and comorbidity factors and the risk of mortality due to COVID-19 in sub-Saharan Africa. Methods We followed the PRISMA checklist (S1 Checklist). We searched PubMed, Google Scholar, and European PMC between January 1, 2020, and September 23, 2021. We included observational studies with Subjects had to be laboratory-confirmed COVID-19 patients; had to report risk factors or predictors of mortality in COVID-19 patients, Studies had to be published in English, include multivariate analysis, and be conducted in the sub-Saharan region. Exclusion criteria included case reports, review articles, commentaries, errata, protocols, abstracts, reports, letters to the editor, and repeat studies. The methodological quality of the studies included in this meta-analysis was assessed using the methodological items for nonrandomized studies (MINORS). Pooled hazard ratios (HR) or odds ratios (OR) and 95% confidence intervals (CI) were calculated separately to identify mortality risk. In addition, publication bias and subgroup analysis were assessed. Results and discussion Twelve studies with a total of 43598 patients met the inclusion criteria. The outcomes of interest were mortality. The results of the analysis showed that the pooled prevalence of mortality in COVID-19 patients was 4.8%. Older people showed an increased risk of mortality from SARS-Cov-2. The pooled hazard ratio (pHR) and odds ratio (pOR) were 9.01 (95% CI; 6.30–11.71) and 1.04 (95% CI; 1.02–1.06), respectively. A significant association was found between COVID-19 mortality and men (pOR = 1.52; 95% CI 1.04–2). In addition, the risk of mortality in patients hospitalized with COVID-19 infection was strongly influenced by chronic kidney disease (CKD), hypertension, severe or critical infection on admission, cough, and dyspnea. The major limitations of the present study are that the data in the meta-analysis came mainly from studies that were published, which may lead to publication bias, and that the causal relationship between risk factors and poor outcome in patients with COVID-19 cannot be confirmed because of the inherent limitations of the observational study. Conclusions Advanced age, male sex, CKD, hypertension, severe or critical condition on admission, cough, and dyspnea are clinical risk factors for fatal outcomes associated with coronavirus. These findings could be used for research, control, and prevention of the disease and could help providers take appropriate measures and improve clinical outcomes in these patients.
Collapse
Affiliation(s)
- Ben Bepouka
- Infectious Diseases Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
- * E-mail:
| | - Nadine Mayasi
- Infectious Diseases Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Madone Mandina
- Infectious Diseases Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Murielle Longokolo
- Infectious Diseases Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Ossam Odio
- Infectious Diseases Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Donat Mangala
- Infectious Diseases Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Marcel Mbula
- Infectious Diseases Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jean Marie Kayembe
- Pneumology Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Hippolyte Situakibanza
- Infectious Diseases Unit, Kinshasa University Hospital, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
243
|
Duran M, Uygun T, Kurtipek E. Assessment of Long-Term Sequelae of Pulmonary Dysfunction Associated with COVID-19 Using Pulmonary Pulse Transit Time. J Cardiovasc Echogr 2022; 32:200-204. [PMID: 36994124 PMCID: PMC10041403 DOI: 10.4103/jcecho.jcecho_31_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/16/2022] [Accepted: 07/30/2022] [Indexed: 03/31/2023] Open
Abstract
Background Studies report deleterious impacts of severe acute respiratory syndrome coronavirus 2 on multiple organs in the human body, not only in the acute infection period but also in the long-term sequelae. Recently defined pulmonary pulse transit time (pPTT) was found to be a useful parameter regarding the evaluation of pulmonary hemodynamics. The purpose of this study was to determine whether pPTT might be a favorable tool for detecting the long-term sequelae of pulmonary dysfunction associated with coronavirus disease 2019 (COVID-19). Materials and Methods We evaluated 102 eligible patients with a prior history of laboratory-confirmed COVID-19 hospitalization at least 1 year ago and 100 age- and sex-matched healthy controls. All participants' medical records and clinical and demographic features were analyzed and underwent detailed 12-lead electrocardiography, echocardiographic assessment, and pulmonary function tests. Results According to our study, pPTT was positively correlated with forced expiratory volume in the 1st s, peak expiratory flow, and tricuspid annular plane systolic excursion (r = 0.478, P < 0.001; r = 0.294, P = 0.047; and r = 0.314, P = 0.032, respectively) as well as negatively correlated with systolic pulmonary artery pressure (r = -0.328, P = 0.021). Conclusion Our data indicate that pPTT might be a convenient method for early prediction of pulmonary dysfunction among COVID-19 survivors.
Collapse
Affiliation(s)
- Mustafa Duran
- Department of Cardiology, Konya City Hospital, Konya, Turkey
| | - Turgut Uygun
- Department of Cardiology, Konya City Hospital, Konya, Turkey
| | - Ercan Kurtipek
- Department of Pulmonology, Konya City Hospital, Konya, Turkey
| |
Collapse
|
244
|
Hejazian SS, Hejazian SM, Farnood F, Abedi Azar S. Dysregulation of immunity in COVID-19 and SLE. Inflammopharmacology 2022; 30:1517-1531. [PMID: 36028612 PMCID: PMC9417079 DOI: 10.1007/s10787-022-01047-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/30/2022] [Indexed: 12/15/2022]
Abstract
The immune response plays a crucial role in preventing diseases, such as infections. There are two types of immune responses, specific and innate immunity, each of which consists of two components: cellular immunity and humoral immunity. Dysfunction in any immune system component increases the risk of developing certain diseases. Systemic lupus erythematosus (SLE), an autoimmune disease in the human body, develops an immune response against its own components. In these patients, due to underlying immune system disorders and receipt of immunosuppressive drugs, the susceptibility to infections is higher than in the general population and is the single largest cause of mortality in this group. COVID-19 infection, which first appeared in late 2019, has caused several concerns in patients with SLE. However, there is no strong proof of additional risk of developing COVID-19 in patients with SLE, and in some cases, studies have shown less severity of the disease in these individuals. This review paper discusses the immune disorders in SLE and COVID-19.
Collapse
Affiliation(s)
- Seyyed Sina Hejazian
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sima Abedi Azar
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
245
|
Pulido Perez P, Póndigo de los Angeles JA, Perez Peralta A, Ramirez Mojica E, Torres Rasgado E, Hernandez-Hernandez ME, Romero JR. Reduction in Serum Magnesium Levels and Renal Function Are Associated with Increased Mortality in Obese COVID-19 Patients. Nutrients 2022; 14:nu14194054. [PMID: 36235704 PMCID: PMC9571102 DOI: 10.3390/nu14194054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 12/02/2022] Open
Abstract
Several studies provide evidence that obesity is a significant risk factor for adverse outcomes in coronavirus disease 2019 (COVID-19). Altered renal function and disturbances in magnesium levels have been reported to play important pathophysiological roles in COVID-19. However, the relationship between obesity, renal function, circulating magnesium levels, and mortality in patients with COVID-19 remains unclear. In this retrospective cohort study, we characterized 390 hospitalized patients with COVID-19 that were categorized according to their body mass index (BMI). Patients were clinically characterized and biochemical parameters, renal function, and electrolyte markers measured upon admission. We found that in patients who died, BMI was associated with reduced estimated glomerular filtration rate (eGFR, Rho: −0.251, p = 0.001) and serum magnesium levels (Rho: −0.308, p < 0.0001). Multiple linear regression analyses showed that death was significantly associated with obesity (p = 0.001). The Cox model for obese patients showed that magnesium levels were associated with increased risk of death (hazard ratio: 0.213, 95% confidence interval: 0.077 to 0.586, p = 0.003). Thus, reduced renal function and lower magnesium levels were associated with increased mortality in obese COVID-19 patients. These results suggest that assessment of kidney function, including magnesium levels, may assist in developing effective treatment strategies to reduce mortality among obese COVID-19 patients.
Collapse
Affiliation(s)
- Patricia Pulido Perez
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
| | | | - Alonso Perez Peralta
- Internal Medicine Department, University Hospital of Puebla, Mexico. Av 27 Poniente, Los Volcanes, Puebla 72410, Mexico
| | - Eloisa Ramirez Mojica
- Internal Medicine Department, University Hospital of Puebla, Mexico. Av 27 Poniente, Los Volcanes, Puebla 72410, Mexico
| | - Enrique Torres Rasgado
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
- Correspondence: ; Tel.: +52-(222)-229-5500; Fax: +52-(222)-240-5032
| | - Maria Elena Hernandez-Hernandez
- Faculty of Medicine, Autonomous University of Puebla, 13 Sur 2901 Col. Volcanes, Puebla 72420, Mexico
- Doctorate in Biological Science, Autonomous University of Tlaxcala, La Loma Xicohtencatl, Tlaxcala 90070, Mexico
| | - Jose R. Romero
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
246
|
Ertaş K, Eryilmaz R, Yokuş A, Körpe K, Gedük N, Özkan M, Aslan R. Examining changes on testicular structure and sperm analysis of COVID-19 patients. Andrologia 2022; 54:e14609. [PMID: 36163628 PMCID: PMC9538576 DOI: 10.1111/and.14609] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
This study aimed to examine the testicular functions with sperm analysis of patients with COVID‐19. The study was carried out with male patients aged between 18 and 50 years with positive RT‐PCR test and SARS‐CoV‐2 virus between December 2020 and April 2021. A total of 103 participants were included in the study. The mean age was 31.24 ± 5.67 (19–45) years and the mean body mass index of the participants was 28.41 ± 4.68 kg/m2. The patients were divided into two groups, group‐1 was patients who had COVID‐19, group‐2 was healthy men. A semen analysis of both groups was performed, and the serum total testosterone, FSH, LH, anti‐mullerian hormone and Inhibin‐B tests were analysed and recorded. The testicular dimensions and testicular densities were examined by ultrasound and elastography for both groups. Comparing the patient and control groups results, this study found that the sperm count per 1 cc (p = 0.01) and total motility (p = 0.01) in group‐1 was lower than in the control group, the testicular dimensions decreased (for right testis group‐2 was 15.39 ± 4.78 ml versus group‐1 was 12.11 ± 4.62 cm3p < 0.01, for left testis group‐2 was 16.01 ± 5.12 versus group‐1 was 11.92 ± 4.78 cm3; p < 0.01), and the shear wave velocities were significantly higher in group‐1 patients. In conclusion, sperm parameters deteriorate in men who have symptomatic disease with SARS‐CoV‐2 infection. The fact that the cause of this deterioration is characterized by changes at the cellular level in the testis raises doubts about the persistence of this condition.
Collapse
Affiliation(s)
- Kasım Ertaş
- Department of Urology, School of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Recep Eryilmaz
- Department of Urology, School of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Adem Yokuş
- Department of Radiology, School of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Kadir Körpe
- Department of Urology, University of Health Sciences, Van Training & Research Hospital, Van, Turkey
| | - Nurullah Gedük
- Department of Urology, School of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Mazlum Özkan
- Department of Urology, School of Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Rahmi Aslan
- Department of Urology, School of Medicine, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
247
|
Kumar R, Kumar V, Arya R, Anand U, Priyadarshi RN. Association of COVID-19 with hepatic metabolic dysfunction. World J Virol 2022; 11:237-251. [PMID: 36188741 PMCID: PMC9523326 DOI: 10.5501/wjv.v11.i5.237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/25/2022] [Accepted: 06/20/2022] [Indexed: 02/05/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to be a global problem with over 438 million cases reported so far. Although it mostly affects the respiratory system, the involvement of extrapulmonary organs, including the liver, is not uncommon. Since the beginning of the pandemic, metabolic com-orbidities, such as obesity, diabetes, hypertension, and dyslipidemia, have been identified as poor prognostic indicators. Subsequent metabolic and lipidomic studies have identified several metabolic dysfunctions in patients with COVID-19. The metabolic alterations appear to be linked to the course of the disease and inflammatory reaction in the body. The liver is an important organ with high metabolic activity, and a significant proportion of COVID-19 patients have metabolic comorbidities; thus, this factor could play a key role in orchestrating systemic metabolic changes during infection. Evidence suggests that metabolic dysregulation in COVID-19 has both short- and long-term metabolic implications. Furthermore, COVID-19 has adverse associations with metabolic-associated fatty liver disease. Due to the ensuing effects on the renin-angiotensin-aldosterone system and ammonia metabolism, COVID-19 can have significant implications in patients with advanced chronic liver disease. A thorough understanding of COVID-19-associated metabolic dysfunction could lead to the identification of important plasma biomarkers and novel treatment targets. In this review, we discuss the current understanding of metabolic dysfunction in COVID-19, focusing on the liver and exploring the underlying mechanistic pathogenesis and clinical implications.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Vijay Kumar
- Department of Medicine, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rahul Arya
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Utpal Anand
- Department of Surgical Gastroenterology, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| | - Rajeev Nayan Priyadarshi
- Department of Radiodiagnosis, All India Institute of Medical Sciences, Patna, Patna 801507, Bihar, India
| |
Collapse
|
248
|
Ji XS, Chen B, Ze B, Zhou WH. Human genetic basis of severe or critical illness in COVID-19. Front Cell Infect Microbiol 2022; 12:963239. [PMID: 36204639 PMCID: PMC9530247 DOI: 10.3389/fcimb.2022.963239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to considerable morbidity and mortality worldwide. The clinical manifestation of COVID-19 ranges from asymptomatic or mild infection to severe or critical illness, such as respiratory failure, multi-organ dysfunction or even death. Large-scale genetic association studies have indicated that genetic variations affecting SARS-CoV-2 receptors (angiotensin-converting enzymes, transmembrane serine protease-2) and immune components (Interferons, Interleukins, Toll-like receptors and Human leukocyte antigen) are critical host determinants related to the severity of COVID-19. Genetic background, such as 3p21.31 and 9q34.2 loci were also identified to influence outcomes of COVID-19. In this review, we aimed to summarize the current literature focusing on human genetic factors that may contribute to the observed diversified severity of COVID-19. Enhanced understanding of host genetic factors and viral interactions of SARS-CoV-2 could provide scientific bases for personalized preventive measures and precision medicine strategies.
Collapse
Affiliation(s)
- Xiao-Shan Ji
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bin Chen
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Bi Ze
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Wen-Hao Zhou
- Department of Neonatology, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| |
Collapse
|
249
|
Agostinis C, Toffoli M, Spazzapan M, Balduit A, Zito G, Mangogna A, Zupin L, Salviato T, Maiocchi S, Romano F, Crovella S, Fontana F, Braga L, Confalonieri M, Ricci G, Kishore U, Bulla R. SARS-CoV-2 modulates virus receptor expression in placenta and can induce trophoblast fusion, inflammation and endothelial permeability. Front Immunol 2022; 13:957224. [PMID: 36177036 PMCID: PMC9513489 DOI: 10.3389/fimmu.2022.957224] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/16/2022] [Indexed: 11/13/2022] Open
Abstract
SARS-CoV-2 is a devastating virus that induces a range of immunopathological mechanisms including cytokine storm, apoptosis, inflammation and complement and coagulation pathway hyperactivation. However, how the infection impacts pregnant mothers is still being worked out due to evidence of vertical transmission of the SARS-CoV-2, and higher incidence of pre-eclampsia, preterm birth, caesarian section, and fetal mortality. In this study, we assessed the levels of the three main receptors of SARS-CoV-2 (ACE2, TMPRSS2 and CD147) in placentae derived from SARS-CoV-2 positive and negative mothers. Moreover, we measured the effects of Spike protein on placental cell lines, in addition to their susceptibility to infection. SARS-CoV-2 negative placentae showed elevated levels of CD147 and considerably low amount of TMPRSS2, making them non-permissive to infection. SARS-CoV-2 presence upregulated TMPRSS2 expression in syncytiotrophoblast and cytotrophoblast cells, thereby rendering them amenable to infection. The non-permissiveness of placental cells can be due to their less fusogenicity due to infection. We also found that Spike protein was capable of inducing pro-inflammatory cytokine production, syncytiotrophoblast apoptosis and increased vascular permeability. These events can elicit pre-eclampsia-like syndrome that marks a high percentage of pregnancies when mothers are infected with SARS-CoV-2. Our study raises important points relevant to SARS-CoV-2 mediated adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Chiara Agostinis
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Miriam Toffoli
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | | | - Andrea Balduit
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
- *Correspondence: Andrea Balduit,
| | - Gabriella Zito
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Alessandro Mangogna
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Tiziana Salviato
- Department of Diagnostic, Clinic and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Serena Maiocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy
- Functional Cell Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Federico Romano
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Francesco Fontana
- Division of Laboratory Medicine, Azienda Sanitaria Universitaria Giuliano Isontina (ASU GI), Trieste, Italy
| | - Luca Braga
- Functional Cell Biology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Marco Confalonieri
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University of London, London, United Kingdom
- Department of Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
250
|
Elkazzaz M, Ahmed A, Abo-Amer YEE, Hydara T, Haikal A, Razek DNAE, Eltayb WA, Wang X, Karpiński TM, Hamza D, Jabbar B, Shamkh IM. In Silico Discovery of GPCRs and GnRHRs as Novel Binding Receptors of SARS-CoV-2 Spike Protein Could Explain Neuroendocrine Disorders in COVID-19. Vaccines (Basel) 2022; 10:1500. [PMID: 36146578 PMCID: PMC9504287 DOI: 10.3390/vaccines10091500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Despite the intense research work since the beginning of the pandemic, the pathogenesis of COVID-19 is not yet clearly understood. The previous mechanism of COVID-19, based on ACE2 tropism and explained through a single receptor, is insufficient to explain the pathogenesis due to the absence of angiotensin-converting enzyme 2 (ACE2) receptors in most of the affected organs. In the current study, we used the PatchDock server to run a molecular docking study of both the gonadotropin-releasing hormone receptor (GnRHR) and G-protein-coupled-receptor (GPCR) with the SARS-CoV-2 spike protein. Molecular Dynamics (MD) simulations were run to analyze the stability of the complexes using the GROMACS package. The docking results showed a high affinity between the spike protein with the GnRHR (-1424.9 kcal/mol) and GPCR (-1451.8 kcal/mol). The results of the MD simulations revealed the significant stability of the spike protein with the GnRHR and GPCR up to 100 ns. The SARS-CoV-2 spike protein had strong binding interactions with the GPCRs and GnRHRs, which are highly expressed in the brain, endocrine organs, and olfactory neurons. This study paves the way towards understanding the complex mechanism of neuroendocrine involvement and peripheral organ involvement, may explain the changing symptoms in patients due to new variants, and may lead to the discovery of new drug targets for COVID-19. In vitro studies involving genetic engineering or gene knockdown of the GPCRs and GnRHRs are needed to further investigate the role of these receptors in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Mahmoud Elkazzaz
- Department of Chemistry and Biochemistry, Faculty of Science, Damietta University, Damietta 7952567, Egypt
| | - Amr Ahmed
- Director of Tuberculosis Ghubera Mobile Team, Public Health Department, First Health Cluster, Ministry of Health, Riyadh 966-11, Saudi Arabia
| | - Yousry Esam-Eldin Abo-Amer
- Hepatology, Gastroenterology, and Infectious Diseases Department, Mahala Hepatology Teaching Hospital, El-Mahalla el-Kubra 31951, Egypt
| | - Tamer Hydara
- Department of Internal Medicine, Faculty of Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Abdullah Haikal
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | | | - Wafa Ali Eltayb
- Biotechnology Department, Faculty of Science and Technology, Shendi University, Shendi 11111, Nher Anile, Sudan
| | - Xiling Wang
- Chinese Academy of Sciences Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao 266000, China
- Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao 266000, China
| | - Tomasz M. Karpiński
- Chair and Department of Medical Microbiology, Poznań University of Medical Sciences, Wieniawskiego 3, 61-712 Poznań, Poland
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Basit Jabbar
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 53700, Pakistan
| | - Israa M. Shamkh
- Chemo and Bioinformatics Lab, Bio Search Research Institution BSRI, Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|