201
|
3H-1,2-Dithiole-3-thione as a novel therapeutic agent for the treatment of ischemic stroke through Nrf2 defense pathway. Brain Behav Immun 2017; 62:180-192. [PMID: 28132764 DOI: 10.1016/j.bbi.2017.01.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 01/17/2017] [Accepted: 01/25/2017] [Indexed: 12/13/2022] Open
Abstract
Cerebral ischemic stroke accounts for more than 80% of all stroke cases. During cerebral ischemia, reactive oxygen species produced in brain tissue induce oxidative stress and inflammatory responses. D3T, the simplest compound of the cyclic, sulfur-containing dithiolethiones, is found in cruciferous vegetables and has been reported to induce antioxidant genes and glutathione biosynthesis through activation of Nrf2. In addition to antioxidant activity, D3T was also reported to possess anti-inflammatory effects. In this study, we evaluated the therapeutic potential of D3T for the treatment of ischemic stroke and investigated the mechanisms underlying the protective effects of D3T in ischemic stroke. Mice subjected to transient middle cerebral artery occlusion/reperfusion (tMCAO/R) were administered with vehicle or D3T to evaluate the effect of D3T in cerebral brain injury. We observed D3T reduced infarct size, decreased brain edema, lessened blood-brain barrier disruption, and ameliorated neurological deficits. Further investigation revealed D3T suppressed microglia (MG) activation and inhibited peripheral inflammatory immune cell infiltration of CNS in the ischemic brain. The protective effect of D3T in ischemic stroke is mediated through Nrf2 induction as D3T-attenuated brain injury was abolished in Nrf2 deficient mice subjected to tMCAO/R. In addition, in vitro results indicate the induction of Nrf2 by D3T is required for its suppressive effect on MG activation and cytokine production. In summary, we demonstrate for the first time that D3T confers protection against ischemic stroke, which is mediated through suppression of MG activation and inhibition of CNS peripheral cell infiltration, and that the protective effect of D3T in ischemic stroke is dependent on the activation of Nrf2.
Collapse
|
202
|
Revisiting ‘progressive stroke’: incidence, predictors, pathophysiology, and management of unexplained early neurological deterioration following acute ischemic stroke. J Neurol 2017; 265:216-225. [DOI: 10.1007/s00415-017-8490-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/07/2017] [Accepted: 04/07/2017] [Indexed: 12/22/2022]
|
203
|
Abraham P, Scott Pannell J, Santiago-Dieppa DR, Cheung V, Steinberg J, Wali A, Gupta M, Rennert RC, Lee RR, Khalessi AA. Vessel wall signal enhancement on 3-T MRI in acute stroke patients after stent retriever thrombectomy. Neurosurg Focus 2017; 42:E20. [PMID: 28366071 DOI: 10.3171/2017.1.focus16492] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In vivo and in vitro studies have demonstrated histological evidence of iatrogenic endothelial injury after stent retriever thrombectomy. However, noncontrast vessel wall (VW)-MRI is insufficient to demonstrate vessel injury. Authors of this study prospectively evaluated iatrogenic endothelial damage after stent retriever thrombectomy in humans by utilizing high-resolution contrast-enhanced VW-MRI. Characterization of VW-MRI changes in vessels subject to mechanical injury from thrombectomy may allow better understanding of the biological effects of this intervention. METHODS The authors prospectively recruited 11 patients for this study. The treatment group included 6 postthrombectomy patients and the control group included 5 subjects undergoing MRI for nonvascular indications. All subjects were evaluated on a Signa HD× 3.0-T MRI scanner with an 8-channel head coil. Both pre- and postcontrast T1-weighted Cube VW images as well as MR angiograms were acquired. Sequences obtained for evaluation of the brain parenchyma included diffusion-weighted, gradient echo, and T2-FLAIR imaging. Two independent neuroradiologists, who were blinded to the treatment status of each patient, determined the presence of VW enhancement. Patient age, National Institutes of Health Stroke Scale score on presentation, location of occlusion, stroke etiology, type of device used, number of device deployments, Thrombolysis in Cerebral Infarction (TICI) reperfusion score, stroke volume, and 90-day modified Rankin Scale score were also noted. RESULTS Postcontrast T1-weighted VW enhancement was detected in the M2 segment in 100% of the thrombectomy patients, in the M1 segment in 83%, and in the internal carotid artery in 50%. One patient also demonstrated A1 segment enhancement, which was attributable to thrombectomy treatment of that vessel segment during the same procedure. None of the control patients demonstrated VW enhancement of their intracranial vasculature on T1-weighted images. CONCLUSIONS The study findings suggest that VW injury incurred during stent retriever thrombectomy can be reliably detected utilizing contrast-enhanced 3-T VW-MRI. The results further demonstrate that endothelial injury is associated with oversizing of stent retrievers relative to the treated vessel. Further studies are needed to evaluate the clinical significance of endothelial injury and to characterize the differential effects of various devices.
Collapse
Affiliation(s)
- Peter Abraham
- Department of Neurosurgery, University of California, San Diego, California
| | - J Scott Pannell
- Department of Neurosurgery, University of California, San Diego, California
| | | | - Vincent Cheung
- Department of Neurosurgery, University of California, San Diego, California
| | - Jeffrey Steinberg
- Department of Neurosurgery, University of California, San Diego, California
| | - Arvin Wali
- Department of Neurosurgery, University of California, San Diego, California
| | - Mihir Gupta
- Department of Neurosurgery, University of California, San Diego, California
| | - Robert C Rennert
- Department of Neurosurgery, University of California, San Diego, California
| | - Roland R Lee
- Department of Neurosurgery, University of California, San Diego, California
| | | |
Collapse
|
204
|
Brzica H, Abdullahi W, Ibbotson K, Ronaldson PT. Role of Transporters in Central Nervous System Drug Delivery and Blood-Brain Barrier Protection: Relevance to Treatment of Stroke. J Cent Nerv Syst Dis 2017; 9:1179573517693802. [PMID: 28469523 PMCID: PMC5392046 DOI: 10.1177/1179573517693802] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/22/2017] [Indexed: 01/01/2023] Open
Abstract
Ischemic stroke is a leading cause of morbidity and mortality in the United States. The only approved pharmacologic treatment for ischemic stroke is thrombolysis via recombinant tissue plasminogen activator (r-tPA). A short therapeutic window and serious adverse events (ie, hemorrhage, excitotoxicity) greatly limit r-tPA therapy, which indicates an essential need to develop novel stroke treatment paradigms. Transporters expressed at the blood-brain barrier (BBB) provide a significant opportunity to advance stroke therapy via central nervous system delivery of drugs that have neuroprotective properties. Examples of such transporters include organic anion–transporting polypeptides (Oatps) and organic cation transporters (Octs). In addition, multidrug resistance proteins (Mrps) are transporter targets in brain microvascular endothelial cells that can be exploited to preserve BBB integrity in the setting of stroke. Here, we review current knowledge on stroke pharmacotherapy and demonstrate how endogenous BBB transporters can be targeted for improvement of ischemic stroke treatment.
Collapse
Affiliation(s)
- Hrvoje Brzica
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Wazir Abdullahi
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| | - Kathryn Ibbotson
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, USA
| | - Patrick T Ronaldson
- Department of Pharmacology, College of Medicine, The University of Arizona, Tucson, AZ, USA
| |
Collapse
|
205
|
Baek AE, Sutton NR, Petrovic-Djergovic D, Liao H, Ray JJ, Park J, Kanthi Y, Pinsky DJ. Ischemic Cerebroprotection Conferred by Myeloid Lineage-Restricted or Global CD39 Transgene Expression. Circulation 2017; 135:2389-2402. [PMID: 28377485 DOI: 10.1161/circulationaha.116.023301] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 03/22/2017] [Indexed: 01/06/2023]
Abstract
BACKGROUND Cerebral tissue damage after an ischemic event can be exacerbated by inflammation and thrombosis. Elevated extracellular ATP and ADP levels are associated with cellular injury, inflammation, and thrombosis. Ectonucleoside triphosphate diphosphohydrolase-1 (CD39), an enzyme expressed on the plasmalemma of leukocytes and endothelial cells, suppresses platelet activation and leukocyte infiltration by phosphohydrolyzing ATP/ADP. To investigate the effects of increased CD39 in an in vivo cerebral ischemia model, we developed a transgenic mouse expressing human CD39 (hCD39). METHODS A floxed-stop sequence was inserted between the promoter and the hCD39 transcriptional start site, generating a mouse in which the expression of hCD39 can be controlled tissue-specifically using Cre recombinase mice. We generated mice that express hCD39 globally or in myeloid-lineage cells only. Cerebral ischemia was induced by middle cerebral artery occlusion. Infarct volumes were quantified by MRI after 48 hours. RESULTS Both global and transgenic hCD39- and myeloid lineage CD39-overexpressing mice (transgenic, n=9; myeloid lineage, n=6) demonstrated significantly smaller cerebral infarct volumes compared with wild-type mice. Leukocytes from ischemic and contralateral hemispheres were analyzed by flow cytometry. Although contralateral hemispheres had equal numbers of macrophages and neutrophils, ischemic hemispheres from transgenic mice had less infiltration (n=4). Transgenic mice showed less neurological deficit compared with wild-type mice (n=6). CONCLUSIONS This is the first report of transgenic overexpression of CD39 in mice imparting a protective phenotype after stroke, with reduced leukocyte infiltration, smaller infarct volumes, and decreased neurological deficit. CD39 overexpression, either globally or in myeloid lineage cells, quenches postischemic leukosequestration and reduces stroke-induced neurological injury.
Collapse
Affiliation(s)
- Amy E Baek
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Nadia R Sutton
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Danica Petrovic-Djergovic
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Hui Liao
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Jessica J Ray
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Joan Park
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - Yogendra Kanthi
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.)
| | - David J Pinsky
- From Department of Molecular and Integrative Physiology (A.E.B., D.J.P.) and Department of Internal Medicine (N.R.S., D.P.-D, H.L., J.R., Y.K., D.J.P.), Division of Cardiovascular Medicine University of Michigan Medical Center, Ann Arbor; and Section of Cardiology, VA Ann Arbor Healthcare System, MI (J.P.).
| |
Collapse
|
206
|
Lio CF, Lee YH, Chan HY, Yu CC, Peng NJ, Chan HP. Posterior reversible encephalopathy syndrome in a postpartum hemorrhagic woman without hypertension: A case report. Medicine (Baltimore) 2017; 96:e6690. [PMID: 28422884 PMCID: PMC5406100 DOI: 10.1097/md.0000000000006690] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
RATIONALE Posterior reversible encephalopathy syndrome (PRES), which diagnosis is based on clinical symptoms and radiological features, is a neurotoxic disease characterized by a set of clinical manifestations, such as seizure, headache, visual, and/or consciousness disturbance. It is the first case of PRES followed by postpartum hemorrhage (PPH) without underlying disease. PATIENT CONCERNS A 37-year-old healthy woman had PPH after caesarean section. Six days after delivery, headache occurred suddenly, followed by episodes of clonus seizure. DIAGNOSES Brain computed tomography showed ischemic stroke. However, magnetic resonance imaging revealed characteristics consistent with PRES. INTERVENTIONS The patient received phenytoin for seizure control. OUTCOMES Seizure was under good control over the following days. Three months later, repeated magnetic resonance imaging showed complete remission. LESSONS PRES may be triggered by PPH and is not necessarily secondary to typical predisposing factors such as hypertension or pre/eclampsia. Hormone fluctuation, increased blood pressure variation, and massive blood transfusion may be contributed to the development of PRES in our case. Also, it is necessary to rule out those life-threatening diseases, such as cavernoma hemorrhage, cerebral venous thrombosis, and ischemic stroke before the diagnosis of PRES.
Collapse
Affiliation(s)
- Chon-Fu Lio
- Centro Hospitalar Conde de São Januário, Macao, China
| | - Ying-Hua Lee
- Department of Medicine, National Defense Medical Center, Taipei City
| | - Hung-Yen Chan
- Department of Emergency, E-Da Hospital, Kaohsiung City
| | - Chang-Ching Yu
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| | - Nan-Jing Peng
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Hung-Pin Chan
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung City, Taiwan
| |
Collapse
|
207
|
Srivastava S, Singh D, Patel S, Singh MR. Role of enzymatic free radical scavengers in management of oxidative stress in autoimmune disorders. Int J Biol Macromol 2017; 101:502-517. [PMID: 28342757 DOI: 10.1016/j.ijbiomac.2017.03.100] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 03/17/2017] [Accepted: 03/18/2017] [Indexed: 02/03/2023]
Abstract
Autoimmune disorders are distinct with over production and accumulation of free radicals due to its undisclosed genesis. The cause of numerous disorders as cancer, arthritis, psoriasis, diabetes, alzheimer's, cardiovascular disease, Parkinson's, respiratory distress syndrome, colitis, crohn's, pulmonary fibrosis, obesity and ageing have been associated with immune dysfunction and oxidative stress. In an oxidative stress, reactive oxygen species generally provoke the series of oxidation at cellular level. The buildup of free radicals in turn triggers various inflammatory cells causing release of various inflammatory interleukins, cytokines, chemokines, and tumor necrosis factors which mediate signal transduction and transcription pathways as nuclear factor- kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1 (HIF-1α) and nuclear factor-erythroid 2-related factor (Nrf2). The imbalance could only be combat by supplementing natural defensive antioxidant enzymes such as superoxide dismutase and catalase. The efficiency of these enzymes is enhanced by use of colloidal carriers which include cellular carriers, vesicular and particulate systems like erythrocytes, leukocytes, platelets, liposomes, transferosomes, solid lipid nanoparticles, microspheres, emulsions. Thus this review provides a platform for understanding importance of antioxidant enzymes and its therapeutic applications in treatment of various autoimmune disorders.
Collapse
Affiliation(s)
- Shikha Srivastava
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Deependra Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Satish Patel
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India
| | - Manju R Singh
- University Institute of Pharmacy, Pt. Ravishankar Shukla University, Raipur, Chattissgarh, 492010, India.
| |
Collapse
|
208
|
Tuorkey MJ. Kidney remote ischemic preconditioning as a novel strategy to explore the accurate protective mechanisms underlying remote ischemic preconditioning. Interv Med Appl Sci 2017; 9:20-26. [PMID: 28932492 PMCID: PMC5598118 DOI: 10.1556/1646.9.2017.1.12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION This study reports a novel strategy for investigating the key factors responsible for the protective effect of remote ischemic preconditioning (RIPC) against renal ischemia-reperfusion (IR) injury, which remains the leading cause of the acute kidney injury that increase the morbidity and mortality in patients with renal impairment. METHODS The renal blood flow of the right kidneys in kidney remote ischemic preconditioning (KRIPC) group was occluded for 20 min. After 48 h, the renal blood flow of the left kidneys of both KRIPC and IPC groups was occluded for 30 min, and mice were dissected after 7 days of the last surgery. Blood samples were analyzed by an animal blood counter. The levels of creatinine, urea nitrogen, lipid peroxidation, nitric oxide (NO), and high-density lipoproteins (HDLs) were estimated in the plasma of mice. Kidney slices were stained with 2% triphenyltetrazolium chloride (TTC) to estimate the renal infarction. RESULTS Unlike KRIPC group, data from IPC group revealed a massive reduction in neutrophils count, a significant increase in creatinine, urea nitrogen, and HDLs levels, and an increase in the renal infarction compared with control group. CONCLUSION This is the first study demonstrating KRIPC as a novel and applicable model with the goal of defining the accurate protective mechanisms underlying RIPC against IR injury.
Collapse
Affiliation(s)
- Muobarak J Tuorkey
- Zoology Department, Division of Physiology, Faculty of Science, Damanhour University, Damanhour, Egypt
| |
Collapse
|
209
|
Zhou H, Huang S, Sunnassee G, Guo W, Chen J, Guo Y, Tan S. Neuroprotective effects of adjunctive treatments for acute stroke thrombolysis: a review of clinical evidence. Int J Neurosci 2017; 127:1036-1046. [PMID: 28110588 DOI: 10.1080/00207454.2017.1286338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The narrow therapeutic time window and risk of intracranial hemorrhage largely restrict the clinical application of thrombolysis in acute ischemic stroke. Adjunctive treatments added to rt-PA may be beneficial to improve the capacity of neural cell to withstand ischemia, and to reduce the hemorrhage risk as well. This review aims to evaluate the neuroprotective effects of adjunctive treatments in combination with thrombolytic therapy for acute ischemic stroke. Relevant studies were searched in the PubMed, Web of Science and EMBASE database. In this review, we first interpret the potential role of adjunctive treatments to thrombolytic therapy in acute ischemic stroke. Furthermore, we summarize the current clinical evidence for the combination of intravenous recombinant tissue plasminogen activator and various adjunctive therapies in acute ischemic stroke, either pharmacological or non-pharmacological therapy, and discuss the mechanisms of some promising treatments, including uric acid, fingolimod, minocycline, remote ischemic conditioning, hypothermia and transcranial laser therapy. Even though fingolimod, minocycline, hypothermia and remote ischemic conditioning have yielded promising results, they still need to be rigorously investigated in further clinical trials. Further trials should also focus on neuroprotective approach with pleiotropic effects or combined agents with multiple protective mechanisms.
Collapse
Affiliation(s)
- Hongxing Zhou
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Suyun Huang
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Gavin Sunnassee
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Weiyu Guo
- b Department of Ultrasound , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Jian Chen
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Yang Guo
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| | - Sheng Tan
- a Department of Neurology , Zhujiang Hospital of Southern Medical University , Guangzhou , China
| |
Collapse
|
210
|
Urgent Bypass Surgery Following Failed Endovascular Treatment in Acute Symptomatic Stroke Patient With MCA Occlusion. Neurologist 2017; 22:14-17. [DOI: 10.1097/nrl.0000000000000086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
211
|
Singh V, Krishan P, Singh N, Kumar A, Shri R. Amelioration of ischemia-reperfusion induced functional and biochemical deficit in mice by Ocimum kilimandscharicum leaf extract. Biomed Pharmacother 2017; 85:556-563. [DOI: 10.1016/j.biopha.2016.11.064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/29/2023] Open
|
212
|
Wang W, Liu L, Jiang P, Chen C, Zhang T. Levodopa improves learning and memory ability on global cerebral ischemia-reperfusion injured rats in the Morris water maze test. Neurosci Lett 2016; 636:233-240. [PMID: 27856221 DOI: 10.1016/j.neulet.2016.11.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/01/2016] [Accepted: 11/10/2016] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that levodopa (L-dopa) for 1-7days improved the consciousness level of certain patients who suffered from ischemia-reperfusion injury and were comatose for a long time period after cerebral resuscitation treatment. It also has an awakening effect on patients with disorders of consciousness. This study aimed to investigate whether L-dopa, which is used clinically to treat Parkinson's disease, might also ameliorate the behavior of rats following global cerebral ischemia-reperfusion injury. Fifty-six healthy adult male Sprague-Dawley rats were randomly divided into four groups: shamoperated, global cerebral ischemia mode, 25mg/kg/d L-dopa intervention, and 50mg/kg/d L-dopa intervention. The level of consciousness and modified neurological severity score (NSS) of the rats in each group were measured before reperfusion and 6, 24, and 72h and 1-4 weeks after reperfusion. The Morris water maze test was used to assess behavior of rats 1 week after reperfusion and 2 weeks after reperfusion in each group. The results showed that after global cerebral ischemiareperfusion injury, neurological deficits of rats are severe, and space exploration capacity and learning and memory capacity are significantly decreased. L-dopa can shorten the duration of coma in rats following global cerebral ischemia-reperfusion injury and improve the symptoms of neurological deficits and advanced learning and memory. In the range of the selected doses, the relationship between L-dopa and improvement of the neurological behavior in rats was not dose-dependent. Dopamine may be useful for treating severe ischemia-reperfusion brain injury.
Collapse
Affiliation(s)
- Wenzhu Wang
- Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, PR China; Neural Injury and Repair Center, Beijing Institute for Brain Disorders, Beijing, PR China
| | - Lixu Liu
- School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, PR China.
| | - Peng Jiang
- School of Rehabilitation, Capital Medical University, Beijing, PR China
| | - Chen Chen
- School of Rehabilitation, Capital Medical University, Beijing, PR China
| | - Tong Zhang
- School of Rehabilitation, Capital Medical University, Beijing, PR China; Beijing Bo'ai Hospital, China Rehabilitation Research Center, Beijing, PR China
| |
Collapse
|
213
|
Nielsen RK, Jensen W. Low-Frequency Intracortical Electrical Stimulation Decreases Sensorimotor Cortex Hyperexcitability in the Acute Phase of Ischemic Stroke. IEEE Trans Neural Syst Rehabil Eng 2016; 25:1287-1296. [PMID: 27654834 DOI: 10.1109/tnsre.2016.2610762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic stroke causes a series of complex pathophysiological events in the brain. Electrical stimulation of the brain has been considered as a novel neuroprotection intervention to save the penumbra. However, the effect on the cells' responsiveness and their ability to survive has yet to be established. The objective of the present study was to investigate the effects of low-frequency intracortical electrical stimulation (lf-ICES) applied to the ischemia-affected sensorimotor cortex immediately following ischemic stroke. Twenty male Sprague-Dawley rats were instrumented with an intracortical microelectrode array (IC MEA) and a cuff-electrode around the sciatic nerve. Photothrombosis intervention was performed within the sensorimotor cortex and the electrophysiological changes were assessed by analysis of the neural responses to stimulation of the sciatic nerve. Neuroprotection intervention consisted of eight 23 min lf-ICES blocks applied to the IC MEA during the initial 4 h following photothrombosis. Our results revealed that the area and magnitude of the sensorimotor cortex response significantly increased if ischemic stroke was allowed to progress uninterrupted, whereas this was not observed for the group of rats subjected to lf-ICES. Our findings indicate that low-frequency electrical stimulation is able to minimize hyperexcitability and may therefore be a candidate as neuroprotection intervention in the future.
Collapse
|
214
|
Gervois P, Wolfs E, Ratajczak J, Dillen Y, Vangansewinkel T, Hilkens P, Bronckaers A, Lambrichts I, Struys T. Stem Cell-Based Therapies for Ischemic Stroke: Preclinical Results and the Potential of Imaging-Assisted Evaluation of Donor Cell Fate and Mechanisms of Brain Regeneration. Med Res Rev 2016; 36:1080-1126. [DOI: 10.1002/med.21400] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/27/2016] [Accepted: 06/17/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Pascal Gervois
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Esther Wolfs
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Jessica Ratajczak
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Yörg Dillen
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Tim Vangansewinkel
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Petra Hilkens
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Annelies Bronckaers
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Ivo Lambrichts
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| | - Tom Struys
- Morphology Research Group, Biomedical Research Institute, Hasselt University; Campus Diepenbeek; Bioville Diepenbeek Belgium
| |
Collapse
|
215
|
Schönenberger S, Bösel J. [Peri-interventional management of acute endovascular stroke treatment]. DER NERVENARZT 2016; 86:1217-25. [PMID: 26311331 DOI: 10.1007/s00115-015-4269-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Due to the ground breaking consistent evidence that supports the effect of endovascular stroke treatment (EST), many acute care hospitals and stroke centers will have to be prepared to provide this treatment in an optimal way within the coming years. In addition to the intervention itself, patient preparation, stabilization and monitoring during the treatment as well as the aftercare represent significant challenges and have mostly not yet been sufficiently investigated. Under these aspects, the questions of optimal sedation and airway management have received the highest attention. Based on retrospective study results it already seems to be justified, respecting certain criteria, to prefer EST with the patient under conscious sedation (CS) in comparison to general anesthesia (GA) and to only switch to GA in cases of emergency until this question has been clarified by prospective studies. This and other aspects of peri-interventional management, such as logistics, monitoring, blood pressure, ventilation settings, postprocedural steps of intensive or stroke unit care and imaging follow-up are summarized in this overview. The clinical and radiological selection of patients and thus the decision for intervention or technical aspects of the intervention itself will not be part of this article.
Collapse
Affiliation(s)
- S Schönenberger
- Neurologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland.
| | - J Bösel
- Neurologische Klinik, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Deutschland
| |
Collapse
|
216
|
L L, X W, Z Y. Ischemia-reperfusion Injury in the Brain: Mechanisms and Potential Therapeutic Strategies. ACTA ACUST UNITED AC 2016; 5. [PMID: 29888120 DOI: 10.4172/2167-0501.1000213] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ischemia-reperfusion injury is a common feature of ischemic stroke, which occurs when blood supply is restored after a period of ischemia. Reperfusion can be achieved either by thrombolysis using thrombolytic reagents such as tissue plasminogen activator (tPA), or through mechanical removal of thrombi. Spontaneous reperfusion also occurs after ischemic stroke. However, despite the beneficial effect of restored oxygen supply by reperfusion, it also causes deleterious effect compared with permanent ischemia. With the recent advancement in endovascular therapy including thrombectomy and thrombus disruption, reperfusion-injury has become an increasingly critical challenge in stroke treatment. It is therefore of extreme importance to understand the mechanisms of ischemia-reperfusion injury in the brain in order to develop effective therapeutics. Accumulating experimental evidence have suggested that the mechanisms of ischemia-reperfusion injury include oxidative stress, leukocyte infiltration, platelet adhesion and aggregation, complement activation, mitochondrial mediated mechanisms, and blood-brain-barrier (BBB) disruption, which altogether ultimately lead to edema or hemorrhagic transformation (HT) in the brain. Potential therapeutic strategies against ischemia-reperfusion injury may be developed targeting these mechanisms. In this review, we briefly discuss the pathophysiology and cellular and molecular mechanisms of cerebral ischemia-reperfusion injury, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Lin L
- Institute of Molecular Pharmacology, Wenzhou Medical University, Wenzhou 325035, PR China.,Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wang X
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yu Z
- Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
217
|
Eswaradass P, Appireddy R, Evans J, Tham C, Dey S, Najm M, Menon BK. Imaging in acute stroke. Expert Rev Cardiovasc Ther 2016; 14:963-75. [DOI: 10.1080/14779072.2016.1196134] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
218
|
Ghanbarabadi M, Iranshahi M, Amoueian S, Mehri S, Motamedshariaty VS, Mohajeri SA. Neuroprotective and memory enhancing effects of auraptene in a rat model of vascular dementia: Experimental study and histopathological evaluation. Neurosci Lett 2016; 623:13-21. [PMID: 27130820 DOI: 10.1016/j.neulet.2016.04.047] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/14/2023]
Abstract
Vascular dementia and Alzheimer disease are most common type of dementia. These diseases have been associated with cognitive decline and affected personal behavioral activities. Moreover, the pattern of cerebral blood flow in mild cognitive disorder has appeared as a predictive indication for the development into Alzheimer's disease. Permanent, bilateral occlusion of the common carotid arteries (2VO) is a standard animal model to study vascular dementia and chronic cerebral hypoperfusion. In present study neuroprotective and memory enhancing effects of auraptene (AUR), a citrus coumarin, were studied in 2VO rats. Different doses (25, 8 & 4mg/kg) of AUR were administered orally. The spatial memory performance was tested with Morris water maze after 2VO induction. Biochemical experiments and histopathological evaluations were also applied to investigate the neuroprotective effect of AUR in brain tissue. In comparison with 2VO group, AUR could significantly decrease the scape latency time in treated rats. Also AUR increased the percentage of time spent and traveled pathway in target quadrant on final trial test day. All behavioral results were confirmed by biochemical and histopathological data. Biochemical data indicated that AUR could decrease malondialdehyde (MDA), as lipid peroxidation indicator, and increase glutathione (GSH) content in cortex and hippocampus tissues. Histopathological data showed that AUR could protect cerebrocortical and hippocampus neurons against ischemia. This study demonstrated the memory enhancing effect and neuroprotective activity of AUR after induction of brain ischemia in a rat model of vascular dementia.
Collapse
Affiliation(s)
- Mustafa Ghanbarabadi
- Student Research Committee (SRC), Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sakineh Amoueian
- Pathology department, Imam Reza hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Ahmad Mohajeri
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
219
|
Tang Y, Liu X, Zhao J, Tan X, Liu B, Zhang G, Sun L, Han D, Chen H, Wang M. Hypothermia-induced ischemic tolerance is associated with Drp1 inhibition in cerebral ischemia-reperfusion injury of mice. Brain Res 2016; 1646:73-83. [PMID: 27235868 DOI: 10.1016/j.brainres.2016.05.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/22/2016] [Accepted: 05/24/2016] [Indexed: 01/04/2023]
Abstract
Excessive mitochondrial fission activation has been implicated in cerebral ischemia-reperfusion (IR) injury. Hypothermia is effective in preventing cerebral ischemic damage. However, effects of hypothermia on ischemia-induced mitochondrial fission activation is not well known. Therefore, the aim of this study was to investigate whether hypothermia protect the brain by inhibiting mitochondrial fission-related proteins activation following cerebral IR injury. Adult male C57BL/6 mice were subjected to transient forebrain ischemia induced by 15min of bilateral common carotid artery occlusion (BCCAO). Mice were divided into three groups (n=48 each): Hypothermia (HT) group, with mild hypothermia (32-34°C) for 4h; Normothermia (NT) group, similarly as HT group except for cooling; Sham group, with vessels exposed but without occlusion or cooling. Hematoxylin and eosin (HE), Nissl staining, Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining and behavioral testing (n=6 each) demonstrated that hypothermia significantly decreased ischemia-induced neuronal injury. The expressions of Dynamin related protein 1 (Drp1) and Cytochrome C (Cyto C) (n=6 each) in mice hippocampus were measured at 3, 6, 24, and 72h of reperfusion. IR injury significantly increased expressions of total Drp1, phosphorylated Drp1 (P-Drp1 S616) and Cyto C under normothermia. However, mild hypothermia inhibited Drp1 activation and Cyto C cytosolic release, preserved neural cells integrity and reduced neuronal necrosis and apoptosis. These findings indicated that mild hypothermia-induced neuroprotective effects against ischemia-reperfusion injury is associated with suppressing mitochondrial fission-related proteins activation and apoptosis execution.
Collapse
Affiliation(s)
- Yingying Tang
- Department of Anesthesiology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China; Department of Anesthesiology, Women's Hospital, School of Medicine, Zhejiang University, Xueshi Road 1, Hangzhou, Zhejiang 310006, China
| | - Xiaojie Liu
- Department of Anesthesiology, Qingdao Central Hospital, Shandong, China
| | - Jie Zhao
- Department of Anesthesiology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Xueying Tan
- Department of Hepatobiliary Surgery, Qingdao Municipal Hospital, Shandong, China
| | - Bing Liu
- Department of Anesthesiology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Gaofeng Zhang
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China
| | - Lixin Sun
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China
| | - Dengyang Han
- Department of Anesthesiology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Huailong Chen
- Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China.
| | - Mingshan Wang
- Department of Anesthesiology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China; Department of Anesthesiology, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Shandong, China.
| |
Collapse
|
220
|
Normobaric Hyperoxia Extends Neuro- and Vaso-Protection of N-Acetylcysteine in Transient Focal Ischemia. Mol Neurobiol 2016; 54:3418-3427. [PMID: 27177548 DOI: 10.1007/s12035-016-9932-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/04/2016] [Indexed: 01/04/2023]
Abstract
N-acetylcysteine (NAC), a precursor of glutathione that reduces reperfusion-induced injury, has been shown protection when it was administered pre-ischemia. However, less is known about the effect when it was given post-ischemia and there is no positive result associated with anti-oxidant in clinical trials. This study investigated the neuro- and vaso-protection of post-ischemia NAC administration as well as combining NAC with normobaric hyperoxia (NBO). Male Sprague-Dawley rats were exposed to NBO or normoxia during 2-h occlusion of the middle cerebral artery, followed by 48-h reperfusion. NAC or vehicle was intraperitoneally administered to rats immediately before reperfusion onset. NAC and NBO treatments produced 1.2 and 30 % reduction of infarction volume, respectively, and combination treatment showed greater reduction (59.8 %) as well as more decrease of hemispheric swelling volume. Of note, combination therapy showed improved neurological assessment and motor function which were sustained for 7 days after reperfusion. We also determined that the combination therapy showed greater inhibitory effects on tight junction protein degradation accompanied by Evan's blue extravasation, hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) induction, and poly ADP-ribose polymerase (PARP)-1 activation in ischemic brain tissue. Our results showed that although post-ischemia NAC administration had limited protection, combination treatment of NAC plus NBO effectively prevented blood-brain barrier (BBB) damage and significantly improved the outcome of brain injury, providing new evidence to support the concept that "cocktail" treatment targeting different stages provides better neuro- and vaso-protection than current individual treatment that has all failed in their clinical trials.
Collapse
|
221
|
Park SM, Lee JC, Chen BH, Shin BN, Cho JH, Kim IH, Park JH, Won MH, Ahn JH, Tae HJ, Shin MC, Park CW, Cho JH, Lee HY. Difference in transient ischemia-induced neuronal damage and glucose transporter-1 immunoreactivity in the hippocampus between adult and young gerbils. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2016; 19:521-8. [PMID: 27403259 PMCID: PMC4923473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVES The alteration of glucose transporters is closely related with the pathogenesis of brain edema. We compared neuronal damage/death in the hippocampus between adult and young gerbils following transient cerebral ischemia/reperfusion and changes of glucose transporter-1(GLUT-1)-immunoreactive microvessels in their ischemic hippocampal CA1 region. MATERIALS AND METHODS Transient cerebral ischemia was developed by 5-min occlusion of both common carotid arteries. Neuronal damage was examined by cresyl violet staining, NeuN immunohistochemistry and Fluoro-Jade B histofluorescence staining and changes in GLUT-1 expression was carried out by immunohistochemistry. RESULTS About 90% of pyramidal neurons only in the adult CA1 region were damaged after ischemia/reperfusion; in the young, about 53 % of pyramidal neurons were damaged from 7 days after ischemia/reperfusion. The density of GLUT-1-immunoreactive microvessels was significantly higher in the young sham-group than that in the adult sham-group. In the ischemia-operated-groups, the density of GLUT-1-immunoreactive microvessels was significantly decreased in the adult and young at 1 and 4 days post-ischemia, respectively, thereafter, the density of GLUT-1-immunoreactive microvessels was gradually increased in both groups after ischemia/reperfusion. CONCLUSION CA1 pyramidal neurons of the young gerbil were damaged much later than that in the adult and that GLUT-1-immunoreactive microvessels were significantly decreased later in the young. These data indicate that GLUT-1 might differently contribute to neuronal damage according to age after ischemic insults.
Collapse
Affiliation(s)
- Seung Min Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea,Department of Emergency Medicine, Sacred Heart Hospital, College of Medicine, Hallym University, Anyang431-796, South Korea
| | - Jae-Chul Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Bai Hui Chen
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Bich-Na Shin
- Department of Physiology, College of Medicine, Hallym University, Chuncheon 200-702, South Korea
| | - Jeong Hwi Cho
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Joon Ha Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Hyun-Jin Tae
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon 200-702, South Korea
| | - Myoung Cheol Shin
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Chan Woo Park
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Jun Hwi Cho
- Department of Emergency Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea
| | - Hui Young Lee
- Department of Internal Medicine, School of Medicine, Kangwon National University, Chuncheon 200-701, South Korea,Corresponding author: Hui Young Lee. Department of internal Medicine, School of Medicine, Kangwon National University, Chuncheon 24341, South Korea. Tel: +82-33-258-2415; Fax: +82-33-258-245;
| |
Collapse
|
222
|
Liang LJ, Yang JM, Jin XC. Cocktail treatment, a promising strategy to treat acute cerebral ischemic stroke? Med Gas Res 2016; 6:33-38. [PMID: 27826421 PMCID: PMC5075681 DOI: 10.4103/2045-9912.179343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Up to now, over 1,000 experimental treatments found in cells and rodents have been difficult to translate to human ischemic stroke. Since ischemia and reperfusion, two separate stages of ischemic stroke, have different pathophysiological mechanisms leading to brain injury, a combination of protective agents targeting ischemia and reperfusion respectively may obtain substantially better results than a single agent. Normobaric hyperoxia (NBO) has been shown to exhibit neuro- and vaso-protective effects by improving tissue oxygenation when it is given during ischemia, however the effect of NBO would diminish when the duration of ischemia and reperfusion was extended. Therefore, during reperfusion drug treatment targeting inflammation, oxidative stress and free radical scavenger would be a useful adjuvant to extend the therapeutic window of tissue plasminogen activator, the only United States Food and Drug Administration (FDA) approved treatment for acute ischemic stroke. In this review, we discussed the neuro- and vaso-protective effects of NBO and recent finding of combining NBO with other drugs.
Collapse
Affiliation(s)
- Li-Jun Liang
- Children's Hospital of Shanxi Province, Taiyuan, Shanxi Province, China
| | - Jin-Ming Yang
- Children's Hospital of Shanxi Province, Taiyuan, Shanxi Province, China
| | - Xin-Chun Jin
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and Institute of Neuroscience, The Second Affiliated Hospital of Soochow University, Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
223
|
Affiliation(s)
- G Cattaneo
- Acandis GmbH and Co. KG Pforzheim, Germany
| | | | | | - H Urbach
- Department of Neuroradiology University Hospital Freiburg, Freiburg, Germany
| | - S Meckel
- Department of Neuroradiology University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
224
|
Wang W, Zhao L, Bai F, Zhang T, Dong H, Liu L. The protective effect of dopamine against OGD/R injury-induced cell death in HT22 mouse hippocampal cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 42:176-182. [PMID: 26867202 DOI: 10.1016/j.etap.2016.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/21/2016] [Accepted: 01/23/2016] [Indexed: 06/05/2023]
Abstract
Previous studies have shown that levo-dopamine (L-dopa) can improve the consciousness of certain patients with prolonged coma after cerebral ischemia-reperfusion injury, and promote cell growth in vivo. This study aimed to investigate whether L-dopa, which is used clinically to treat Parkinson's disease, might also ameliorate ischemia-reperfusion injury-induced cell death. The oxygen-glucose deprivation and re-oxygenation (OGD/R) model was used to mimic the ischemia-reperfusion pathological process in vitro. HT22 cells were treated with dopamine hydrochloride at different times (i.e., 2 h prior to OGD, during the period of OGD, during the period of R, and throughout the period of OGD/R) and at different concentrations (i.e., 25 μM, 50 μM, 100 μM). Lactate dehydrogenase (LDH) release, flow cytometry-annexin V, and propidium iodide staining with light microscopy showed that dopamine hydrochloride (added during re-oxygenation) promoted cell proliferation and facilitated maintenance of normal cell morphology. However, when present during oxygen-glucose deprivation for 18 h and present throughout OGD/R, dopamine hydrochloride increased cell damage as manifested by shrinkage, rounding up, and reduced viability. In conclusion, dopamine protected HT22 cells from OGD/R injury-induced cell death only at a particular point in time, suggesting that it may be useful for treating severe ischemia-reperfusion brain injury.
Collapse
Affiliation(s)
- Wenzhu Wang
- Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, PR China
| | - Lixi Zhao
- Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, PR China
| | - Fan Bai
- Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, PR China; Beijing Key Laboratory of Neural Injury and Rehabilitation, PR China
| | - Tong Zhang
- Beijing Bo Ai Hospital, China Rehabilitation Research Center, Beijing, PR China; School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China
| | - Hao Dong
- Beijing Bo Ai Hospital, China Rehabilitation Research Center, Beijing, PR China; Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, China Rehabilitation Research Center, Beijing, PR China
| | - Lixu Liu
- Beijing Bo Ai Hospital, China Rehabilitation Research Center, Beijing, PR China; School of Rehabilitation Medicine, Capital Medical University, Beijing, PR China.
| |
Collapse
|
225
|
Abstract
Ischemia-reperfusion (IR) injury occurs when blood supply to an organ is disrupted--ischemia--and then restored--reperfusion--leading to a burst of reactive oxygen species (ROS) from mitochondria. It has been tacitly assumed that ROS production during IR is a non-specific consequence of oxygen interacting with dysfunctional mitochondria upon reperfusion. Recently, this view has changed, suggesting that ROS production during IR occurs by a defined mechanism. Here we survey the metabolic factors underlying IR injury and propose a unifying mechanism for its causes that makes sense of the huge amount of disparate data in this area and provides testable hypotheses and new directions for therapies.
Collapse
|
226
|
Nicolson GL, de Mattos GF, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, La Valle J, Jimenez A, Ohta S. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijcm.2016.71005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
227
|
Zhang Y, Cao RY, Jia X, Li Q, Qiao L, Yan G, Yang J. Treadmill exercise promotes neuroprotection against cerebral ischemia-reperfusion injury via downregulation of pro-inflammatory mediators. Neuropsychiatr Dis Treat 2016; 12:3161-3173. [PMID: 28003752 PMCID: PMC5161395 DOI: 10.2147/ndt.s121779] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Stroke is one of the major causes of morbidity and mortality worldwide, which is associated with serious physical deficits that affect daily living and quality of life and produces immense public health and economic burdens. Both clinical and experimental data suggest that early physical training after ischemic brain injury may reduce the extent of motor dysfunction. However, the exact mechanisms have not been fully elucidated. The aim of this study was to investigate the effects of aerobic exercise on neuroprotection and understand the underlying mechanisms. MATERIALS AND METHODS Middle cerebral artery occlusion (MCAO) was conducted to establish a rat model of cerebral ischemia-reperfusion injury to mimic ischemic stroke. Experimental animals were divided into the following three groups: sham (n=34), MCAO (n=39), and MCAO plus treadmill exercise (n=28). The effects of aerobic exercise intervention on ischemic brain injury were evaluated using functional scoring, histological analysis, and Bio-Plex Protein Assays. RESULTS Early aerobic exercise intervention was found to improve motor function, prevent death of neuronal cells, and suppress the activation of microglial cells and astrocytes. Furthermore, it was observed that aerobic exercise downregulated the expression of the cytokine interleukin-1β and the chemokine monocyte chemotactic protein-1 after transient MCAO in experimental rats. CONCLUSION This study demonstrates that treadmill exercise rehabilitation promotes neuroprotection against cerebral ischemia-reperfusion injury via the downregulation of proinflammatory mediators.
Collapse
Affiliation(s)
| | - Richard Y Cao
- Laboratory of Immunology, Shanghai Xuhui Central Hospital, Shanghai Clinical Research Center, Chinese Academy of Sciences
| | - Xinling Jia
- School of Life sciences, Shanghai University
| | - Qing Li
- Department of Rehabilitation
| | | | - Guofeng Yan
- School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | | |
Collapse
|
228
|
Novel Interventions for Stroke: Nervous System Cooling. Transl Neurosci 2016. [DOI: 10.1007/978-1-4899-7654-3_27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
229
|
Cattaneo G, Schumacher M, Maurer C, Wolfertz J, Jost T, Büchert M, Keuler A, Boos L, Shah MJ, Foerster K, Niesen WD, Ihorst G, Urbach H, Meckel S. Endovascular Cooling Catheter for Selective Brain Hypothermia: An Animal Feasibility Study of Cooling Performance. AJNR Am J Neuroradiol 2015; 37:885-91. [PMID: 26705319 DOI: 10.3174/ajnr.a4625] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/21/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND AND PURPOSE Therapeutic hypothermia represents a promising neuroprotective treatment in acute ischemic stroke. Selective cerebral hypothermia applied early, prior to and during endovascular mechanical recanalization therapy, may be beneficial in the critical phase of reperfusion. We aimed to assess the feasibility of a new intracarotid cooling catheter in an animal model. MATERIALS AND METHODS Nine adult sheep were included. Temperature probes were introduced into the frontal and temporal brain cortices bilaterally. The cooling catheter system was introduced into a common carotid artery. Selective blood cooling was applied for 180 minutes. Systemic and local brain temperatures were measured during cooling and rewarming. Common carotid artery diameters and flow were measured angiographically and by Doppler sonography. RESULTS The common carotid artery diameter was between 6.7 and 7.3 mm. Common carotid artery blood flow velocities increased moderately during cooling and after catheter removal. Maximum cerebral cooling in the ipsilateral temporal cortex was -4.7°C (95% CI, -5.1 to -4.0°C). Ipsilateral brain temperatures dropped significantly faster and became lower compared with the contralateral cortex with maximum temperature difference of -1.3°C (95% CI, -1.5 to -1.0°C; P < .0001) and compared with systemic temperature (-1.4°C; 95% CI, -1.7 to -1.0°C; P < .0001). CONCLUSIONS Sheep proved a feasible animal model for the intracarotid cooling catheter. Fast induction of selective mild hypothermia was achieved within the cooled cerebral hemisphere, with stable temperature gradients in the contralateral brain and systemic blood. Further studies are required to demonstrate any therapeutic benefit of selective cerebral cooling in a stroke model.
Collapse
Affiliation(s)
- G Cattaneo
- From Acandis (G.C., J.W., T.J., M.B.), Pforzheim, Germany
| | - M Schumacher
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | - C Maurer
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | - J Wolfertz
- From Acandis (G.C., J.W., T.J., M.B.), Pforzheim, Germany
| | - T Jost
- From Acandis (G.C., J.W., T.J., M.B.), Pforzheim, Germany
| | - M Büchert
- From Acandis (G.C., J.W., T.J., M.B.), Pforzheim, Germany
| | - A Keuler
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | - L Boos
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | | | | | | | - G Ihorst
- University Study Center (G.I.), University Hospital Freiburg, Freiburg, Germany
| | - H Urbach
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| | - S Meckel
- Departments of Neuroradiology (M.S., C.M., A.K., L.B., H.U., S.M.)
| |
Collapse
|
230
|
The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2016:7463407. [PMID: 26770657 PMCID: PMC4685127 DOI: 10.1155/2016/7463407] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/18/2022]
Abstract
Cardiac arrest induces whole-body ischemia, which causes damage to multiple organs. Understanding how each organ responds to ischemia/reperfusion is important to develop better resuscitation strategies. Because direct measurement of organ function is not practicable in most animal models, we attempt to use mitochondrial respiration to test efficacy of resuscitation on the brain, heart, kidney, and liver following prolonged cardiac arrest. Male Sprague-Dawley rats are subjected to asphyxia-induced cardiac arrest for 30 min or 45 min, or 30 min cardiac arrest followed by 60 min cardiopulmonary bypass resuscitation. Mitochondria are isolated from brain, heart, kidney, and liver tissues and examined for respiration activity. Following cardiac arrest, a time-dependent decrease in state-3 respiration is observed in mitochondria from all four tissues. Following 60 min resuscitation, the respiration activity of brain mitochondria varies greatly in different animals. The activity after resuscitation remains the same in heart mitochondria and significantly increases in kidney and liver mitochondria. The result shows that inhibition of state-3 respiration is a good marker to evaluate the efficacy of resuscitation for each organ. The resulting state-3 respiration of brain and heart mitochondria following resuscitation reenforces the need for developing better strategies to resuscitate these critical organs following prolonged cardiac arrest.
Collapse
|
231
|
CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab 2015; 35:1937-49. [PMID: 26104286 PMCID: PMC4671113 DOI: 10.1038/jcbfm.2015.150] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/25/2015] [Accepted: 05/26/2015] [Indexed: 01/09/2023]
Abstract
Acute ischemic stroke is a cerebrovascular accident and it is the most common cause of physical disabilities around the globe. Patients may present with repeated ictuses, experiencing mental consequences, such as depression and cognitive disorders. Cyclin-dependent kinase 5 (CDK5) is a kinase that is involved in neurotransmission and plasticity, but its dysregulation contributes to cognitive disorders and dementia. Gene therapy targeting CDK5 was administered to the right hippocampus of ischemic rats during transient cerebral middle artery occlusion. Physiologic parameters (blood pressure, pH, pO2, and pCO2) were measured. The CDK5 downregulation resulted in neurologic and motor improvement during the first week after ischemia. Cyclin-dependent kinase 5 RNA interference (RNAi) prevented dysfunctions in learning, memory, and reversal learning at 1 month after ischemia. These observations were supported by the prevention of neuronal loss, the reduction of microtubule-associated protein 2 (MAP2) immunoreactivity, and a decrease in astroglial and microglia hyperreactivities and tauopathy. Additionally, CDK5 silencing led to an increase in the expression of brain-derived neurotrophic factor (BDNF), its Tropomyosin Receptor kinase B (TRKB) receptor, and activation of cyclic AMP response element-binding protein (CREB) and extracellular signal-regulated kinase (ERK), which are important targets in neuronal plasticity. Together, our findings suggest that gene therapy based on CDK5 silencing prevents cerebral ischemia-induced neurodegeneration and motor and cognitive deficits.
Collapse
|
232
|
Cattaneo G, Schumacher M, Wolfertz J, Jost T, Meckel S. Combined Selective Cerebral Hypothermia and Mechanical Artery Recanalization in Acute Ischemic Stroke: In Vitro Study of Cooling Performance. AJNR Am J Neuroradiol 2015; 36:2114-20. [PMID: 26251430 DOI: 10.3174/ajnr.a4434] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 03/31/2015] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Therapeutic hypothermia represents a promising neuroprotective treatment for patients with ischemic stroke. Selective, intracarotid blood cooling may initiate rapid and early brain hypothermia, reduce systemic effects, and allow combined endovascular mechanical thrombectomy. For this approach, a balloon cooling catheter system was designed and studied in vitro to optimize its cooling performance. MATERIALS AND METHODS Computational fluid dynamics of blood cooling was performed within the common carotid artery lumen by using 3 different catheter designs (1-, 2-, and 4-balloon array). On the basis of these results, a first catheter prototype was manufactured, and its heat-exchange performance was tested in an artificial in vitro circulation simulating the common carotid artery lumen at different flow rates (inflow temperature of 37°C). RESULTS In the computational fluid dynamics model, the catheter with the 4-balloon array achieved the highest cooling rate of -1.6°C, which may be attributed to disruption of the thermal boundary layers. In the in vitro study, cooling of the blood substitute at flow rates of 400 mL/min (normal common carotid artery flow) and 250 mL/min (reduced common carotid artery flow due to distal MCA occlusion) achieved a temperature drop inside the blood substitute along the cooling balloons of -1.6°C and -2.2°C, respectively. CONCLUSIONS The feasibility of intracarotid blood cooling using a new catheter system was demonstrated in vitro. A serial 4-balloon array led to an optimized cooling capacity approaching optimum target temperatures of mild therapeutic hypothermia. To determine the therapeutic efficacy of combined selective therapeutic hypothermia and mechanical thrombectomy, further in vivo studies by using a model of temporary ischemia with large-vessel occlusion and recanalization are required.
Collapse
Affiliation(s)
- G Cattaneo
- From Acandis GmbH & Co. KG (G.C., J.W., T.J.), Pforzheim, Germany
| | - M Schumacher
- Department of Neuroradiology (M.S., S.M.), University Hospital Freiburg, Freiburg, Germany
| | - J Wolfertz
- From Acandis GmbH & Co. KG (G.C., J.W., T.J.), Pforzheim, Germany
| | - T Jost
- From Acandis GmbH & Co. KG (G.C., J.W., T.J.), Pforzheim, Germany
| | - S Meckel
- Department of Neuroradiology (M.S., S.M.), University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
233
|
N2 extenuates experimental ischemic stroke through platelet aggregation inhibition. Thromb Res 2015; 136:1310-7. [PMID: 26553017 DOI: 10.1016/j.thromres.2015.10.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/13/2015] [Accepted: 10/28/2015] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Thromboxane A2 (TXA2) can induce the platelet aggregation and lead to thrombosis. This will cause the low-reflow phenomenon after ischemic stroke and aggravate the damage of brain issues. Therefore, it is potential to develop the drugs inhibiting TXA2 pathway to treat cerebral ischemia. AIM This study aims to prove the protective effect of N2 (4-(2-(1H-imidazol-1-yl) ethoxy)-3-methoxybenzoic acid) on focal cerebral ischemia and reperfusion injury through platelet aggregation inhibition. MATERIALS AND METHODS Middle cerebral artery occlusion/reperfusion (MCAO/R) is used as the animal model. Neurological deficit score, Morris water maze, postural reflex test, Limb-use asymmetry test, infarct volume, and water content were performed to evaluate the protective effect of N2 in MCAO/R rats. 9, 11-dieoxy-11α, 9α-methanoepoxyprostaglandin F2α (U46619) or adenosine diphosphate (ADP) was used as the inducer of platelet aggregation. RESULTS AND CONCLUSIONS N2 can improve the motor function, learning and memory ability in MCAO/R rats while reducing the infarct volume. N2 can inhibit TXA2 formation but promote PGI2, and can inhibit platelet aggregation induced by U46619 and ADP. Further, N2 inhibits thrombosis with a minor adverse effect of bleeding than Clopidogrel. In conclusion, N2 can produce the protective effect on MCAO/R brain injury through inhibiting TXA2 formation, platelet aggregation and thrombosis.
Collapse
|
234
|
Song SY, Ahn SY, Rhee JJ, Lee JW, Hur JW, Lee HK. Extent of Contrast Enhancement on Non-Enhanced Computed Tomography after Intra-Arterial Thrombectomy for Acute Infarction on Anterior Circulation: As a Predictive Value for Malignant Brain Edema. J Korean Neurosurg Soc 2015; 58:321-7. [PMID: 26587184 PMCID: PMC4651991 DOI: 10.3340/jkns.2015.58.4.321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 10/08/2015] [Accepted: 10/12/2015] [Indexed: 01/19/2023] Open
Abstract
Objective To determine whether the use of contrast enhancement (especially its extent) predicts malignant brain edema after intra-arterial thrombectomy (IAT) in patients with acute ischemic stroke. Methods We reviewed the records of patients with acute ischemic stroke who underwent IAT for occlusion of the internal carotid artery or the middle cerebral artery between January 2012 and March 2015. To estimate the extent of contrast enhancement (CE), we used the contrast enhancement area ratio (CEAR)-i.e., the ratio of the CE to the area of the hemisphere, as noted on immediate non-enhanced brain computed tomography (NECT) post-IAT. Patients were categorized into two groups based on the CEAR values being either greater than or less than 0.2. Results A total of 39 patients were included. Contrast enhancement was found in 26 patients (66.7%). In this subgroup, the CEAR was greater than 0.2 in 7 patients (18%) and less than 0.2 in the other 19 patients (48.7%). On univariate analysis, both CEAR ≥0.2 and the presence of subarachnoid hemorrhage were significantly associated with progression to malignant brain edema (p<0.001 and p=0.004), but on multivariate analysis, only CEAR ≥0.2 showed a statistically significant association (p=0.019). In the group with CEAR ≥0.2, the time to malignant brain edema was shorter (p=0.039) than in the group with CEAR <0.2. Clinical functional outcomes, based on the modified Rankin scale, were also significantly worse in patients with CEAR ≥0.2 (p=0.003) Conclusion The extent of contrast enhancement as noted on NECT scans obtained immediately after IAT could be predictive of malignant brain edema and a poor clinical outcome.
Collapse
Affiliation(s)
- Seung Yoon Song
- Department of Neurosurgery, Cheongju St. Mary's Hospitial, Cheongju, Korea
| | - Seong Yeol Ahn
- Department of Neurosurgery, Cheongju St. Mary's Hospitial, Cheongju, Korea
| | - Jong Ju Rhee
- Department of Neurosurgery, Cheongju St. Mary's Hospitial, Cheongju, Korea
| | - Jong Won Lee
- Department of Neurosurgery, Cheongju St. Mary's Hospitial, Cheongju, Korea
| | - Jin Woo Hur
- Department of Neurosurgery, Cheongju St. Mary's Hospitial, Cheongju, Korea
| | - Hyun Koo Lee
- Department of Neurosurgery, Cheongju St. Mary's Hospitial, Cheongju, Korea
| |
Collapse
|
235
|
Yang ZB, Luo XJ, Ren KD, Peng JJ, Tan B, Liu B, Lou Z, Xiong XM, Zhang XJ, Ren X, Peng J. Beneficial effect of magnesium lithospermate B on cerebral ischemia-reperfusion injury in rats involves the regulation of miR-107/glutamate transporter 1 pathway. Eur J Pharmacol 2015; 766:91-8. [PMID: 26420356 DOI: 10.1016/j.ejphar.2015.09.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/19/2022]
Abstract
Recent studies uncovered that glutamate accumulation following cerebral ischemia-reperfusion (I/R) was related to the dysfunction of miR-107/glutamate transporter-1(GLT-1) pathway and magnesium lithospermate B (MLB) possesses the pharmacological activity of anti-excitotoxicity. This study aims to explore whether MLB is able to protect rat brain from excitatory neurotoxicity during I/R by modulating miR-107/GLT-1 pathway. Rats were subjected to 2h of cerebral ischemia following by 24h of reperfusion to establish an I/R injury model, which showed an increase in neurological deficit score, infarct volume and cellular apoptosis concomitant with glutamate accumulation, miR-107 elevation and GLT-1 down-regulation. Administration of MLB reduced I/R-induced cerebral injury accompanied by a reverse in glutamate accumulation, miR-107 and GLT-1 expression. Next, we examined the association of MLB with miR-107/GLT-1 pathway in a nerve cell hypoxia/reoxygenation (H/R) injury model. H/R treatment increased the nerve cells apoptosis concomitant with glutamate accumulation and miR-107 elevation, and suppressed GLT-1 expression, mimicking our in vivo findings. All these effects were reversed in the presence of MLB, confirming a strong correlation between MLB and miR-107/GLT-1 pathway. Based on these observations, we conclude that MLB is able to protect the rat brain from excitatory neurotoxicity during I/R through the regulation of miR-107/GLT-1 pathway.
Collapse
Affiliation(s)
- Zhong-Bao Yang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Kai-Di Ren
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jing-Jie Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Department of Laboratory Medicine, Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Bin Tan
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Department of Pharmacology, Xiangnan University, Chenzhou 423000, China
| | - Bin Liu
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Zheng Lou
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiao-Ming Xiong
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xiao-Jie Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Xian Ren
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China
| | - Jun Peng
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China; Hunan Provincial Key Laboratory of Cardiovascular Research, School of Pharmaceutical Sciences, Central South University, Changsha 410078, China.
| |
Collapse
|
236
|
Kim JM, Park KY, Lee WJ, Byun JS, Kim JK, Park MS, Ahn SW, Shin HW. The cortical contrast accumulation from brain computed tomography after endovascular treatment predicts symptomatic hemorrhage. Eur J Neurol 2015; 22:1453-8. [PMID: 26130213 DOI: 10.1111/ene.12764] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/07/2015] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE The prognostic value of contrast accumulation from non-contrast brain computed tomography taken immediately after endovascular reperfusion treatment in acute ischaemic stroke patients to predict symptomatic hemorrhage was studied. METHODS Between July 2007 and August 2014, acute anterior circulation ischaemic stroke patients who were treated by intra-arterial thrombolysis or thrombectomy were included. Contrast accumulation was defined as a high attenuation area from non-contrast brain computed tomography immediately taken after endovascular reperfusion treatment, and patients were categorized into three groups according to the presence and location of contrast: (i) negative, (ii) cortical involvement and (iii) non-cortical involvement. The rates of symptomatic hemorrhage after 24 h and functional outcome at discharge were compared between patients with and without cortical involvement. RESULTS Of 64 patients who were treated by endovascular intervention, contrast accumulation was detected in 56, including 33 patients with cortical involvement and 23 patients without cortical involvement. The cortical involvement pattern was more frequently associated with symptomatic hemorrhage (13 vs. 1 patient, P = 0.003) and with grave outcome at discharge with modified Rankin Scale 5 or 6 (14 vs. 4, P = 0.048) than the non-cortical involvement group. Multivariate logistic regression analysis including initial collateral status and occlusion site disclosed that cortical involvement pattern independently predicted symptomatic hemorrhage after endovascular treatment (odds ratio 19.0, confidence interval 1.6-227.6, P = 0.020). CONCLUSION Our study provides evidence that the cortical involvement of contrast accumulation is associated with symptomatic hemorrhage after endovascular reperfusion treatment.
Collapse
Affiliation(s)
- J M Kim
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - K Y Park
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - W J Lee
- Department of Neuroradiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - J S Byun
- Department of Neuroradiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - J K Kim
- Department of Neuroradiology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - M S Park
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - S W Ahn
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| | - H W Shin
- Department of Neurology, Chung-Ang University Hospital, Chung-Ang University College of Medicine, Seoul, Korea
| |
Collapse
|
237
|
Evidence for an enduring ischaemic penumbra following central retinal artery occlusion, with implications for fibrinolytic therapy. Prog Retin Eye Res 2015; 49:82-119. [PMID: 26113210 DOI: 10.1016/j.preteyeres.2015.06.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022]
Abstract
The rationale behind hyperacute fibrinolytic therapy for cerebral and retinal arterial occlusion is to rescue ischaemic cells from irreversible damage through timely restitution of tissue perfusion. In cerebral stroke, an anoxic tissue compartment (the "infarct core") is surrounded by a hypoxic compartment (the "ischaemic penumbra"). The latter comprises electrically-silent neurons that undergo delayed apoptotic cell death within 1-6 h unless salvaged by arterial recanalisation. Establishment of an equivalent hypoxic compartment within the inner retina following central retinal artery occlusion (CRAO) isn't widely acknowledged. During experimental CRAO, electroretinography reveals 3 oxygenation-based tissue compartments (anoxic, hypoxic and normoxic) that contribute 32%, 27% and 41% respectively to the pre-occlusion b-wave amplitude. Thus, once the anoxia survival time (≈2 h) expires, the contribution from the infarcted posterior retina is irreversibly extinguished, but electrical activity continues in the normoxic periphery. Inbetween these compartments, an annular hypoxic zone (the "penumbra obscura") endures in a structurally-intact but functionally-impaired state until retinal reperfusion allows rapid recovery from electrical silence. Clinically, residual circulation of sufficient volume flow rate generates the heterogeneous fundus picture of "partial" CRAO. Persistent retinal venous hypoxaemia signifies maximal extraction of oxygen by an enduring "polar penumbra" that permeates or largely replaces the infarct core. On retinal reperfusion some days later, the retinal venous oxygen saturation reverts to normal and vision improves. Thus, penumbral inner retina, marginally oxygenated by the choroid or by residual circulation, isn't at risk of delayed apoptotic infarction (unlike hypoxic cerebral cortex). Emergency fibrinolytic intervention is inappropriate, therefore, once the duration of CRAO exceeds 2 h.
Collapse
|
238
|
Role of Hydrogen Sulfide in Ischemia-Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:186908. [PMID: 26064416 PMCID: PMC4443900 DOI: 10.1155/2015/186908] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 12/13/2022]
Abstract
Ischemia-reperfusion (I/R) injury is one of the major causes of high morbidity, disability, and mortality in the world. I/R injury remains a complicated and unresolved situation in clinical practice, especially in the field of solid organ transplantation. Hydrogen sulfide (H2S) is the third gaseous signaling molecule and plays a broad range of physiological and pathophysiological roles in mammals. H2S could protect against I/R injury in many organs and tissues, such as heart, liver, kidney, brain, intestine, stomach, hind-limb, lung, and retina. The goal of this review is to highlight recent findings regarding the role of H2S in I/R injury. In this review, we present the production and metabolism of H2S and further discuss the effect and mechanism of H2S in I/R injury.
Collapse
|
239
|
Mdzinarishvili A, Sutariya V, Talasila PK, Geldenhuys WJ, Sadana P. Engineering triiodothyronine (T3) nanoparticle for use in ischemic brain stroke. Drug Deliv Transl Res 2015; 3:309-17. [PMID: 23864999 PMCID: PMC3693440 DOI: 10.1007/s13346-012-0117-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A potential means of pharmacological management of ischemic stroke is rapid intervention using potent neuroprotective agents. Thyroid hormone (T3) has been shown to protect against ischemic damage in middle cerebral artery occlusion (MCAO) model of ischemic brain stroke. While thyroid hormone is permeable across the blood–brain barrier, we hypothesized that efficacy of thyroid hormone in ischemic brain stroke can be enhanced by encapsulation in nanoparticulate delivery vehicles. We tested our hypothesis by generating poly-(lactide-co-glycolide)-polyethyleneglycol (PLGA-b-PEG) nanoparticles that are either coated with glutathione or are not coated. We have previously reported that glutathione coating of PLGA-PEG nanoparticles is an efficient means of brain targeted drug delivery. Encapsulation of T3 in PLGA-PEG delivery vehicle resulted in particles that were in the nano range and exhibited a zeta potential of −6.51 mV (uncoated) or −1.70 mV (coated). We observed that both glutathione-coated and uncoated nanoparticles are taken up in cells wherein they stimulated the expression of thyroid hormone response element driven reporter robustly. In MCAO model of ischemic stroke, significant benefit of administering T3 in nanoparticulate form was observed over injection of a T3 solution. A 34 % decrease in tissue infarction and a 59 % decrease in brain edema were seen upon administration of T3 solution in MCAO stroke model. Corresponding measurements for uncoated T3 nanoparticles were 51 % and 68 %, whereas for the glutathione coated were 58 % and 75 %. Our study demonstrates that using nanoparticle formulations can significantly improve the efficacy of neuroprotective drugs in ischemic brain stroke.
Collapse
Affiliation(s)
- Alexander Mdzinarishvili
- Department of Pharmaceutical Sciences, College of Pharmacy, Northeast Ohio Medical University, 4209 State Route 44, Rootstown, OH 44272 USA
| | | | | | | | | |
Collapse
|
240
|
Skagen K, Skjelland M, Russell D, Jacobsen EA. Large-Vessel Occlusion Stroke: Effect of Recanalization on Outcome Depends on the National Institutes of Health Stroke Scale Score. J Stroke Cerebrovasc Dis 2015; 24:1532-9. [PMID: 25922156 DOI: 10.1016/j.jstrokecerebrovasdis.2015.03.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 03/09/2015] [Accepted: 03/14/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Arterial recanalization is currently considered the main standard of successful early management of acute ischemic stroke. Intravenous (IV) thrombolysis with tissue plasminogen activator (tPa) is the only Food and Drug Administration-approved medical treatment. Large-vessel occlusion, estimated to account for up to 40% of all acute ischemic strokes, is often refractory to IV thrombolysis and is associated with a poor patient outcome. Mechanical recanalization procedures are therefore increasingly used in the treatment of large-vessel occlusion refractory to, or presenting outside the accepted time window for, IV thrombolysis. The aim of this study was to investigate the effect of early vessel recanalization on clinical outcome in patients with large-vessel occlusion stroke. METHODS This is a single-center cohort study, analyzing prospectively collected data on 152 patients with large-vessel occlusion and acute ischemic stroke. Seventy-one patients received endovascular treatment (of whom 57.7% also received IV tPA), and 81 (55.6% of whom also received IV tPa) were not treated with endovascular therapy. Clinical outcome was compared for 2 cohorts: patients who recanalized (n = 46) and patients with persisting large-vessel occlusion (n = 106). RESULTS Early recanalization was an independent predictor of a good clinical outcome in only those patients who presented with a severe ischemic stroke (National Institutes of Health Stroke Scale [NIHSS] score >15; P = .017). This was not the case for less severe strokes (NIHSS score ≤ 15) where recanalization did not lead to more patients with functional independence at 90-day follow-up (P = .21). CONCLUSIONS In this study of acute large-vessel occlusion stroke, we found that clinical outcome following early recanalization was dependent on the patient's pretreatment NIHSS score. A non-negligible proportion of patients with milder strokes did well despite persistent large-vessel occlusion. These results may suggest that in patients who are able to maintain adequate collateral flow despite proximal arterial occlusion, effective adaptive mechanisms are present, which for some patients are long-lasting. This may influence the process of appropriate patient selection for endovascular therapy.
Collapse
Affiliation(s)
- Karolina Skagen
- Department of Neurology, Oslo University Hospital, Oslo, Norway.
| | - Mona Skjelland
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - David Russell
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Eva A Jacobsen
- Department of Neuroradiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
241
|
Teng D, Pannell JS, Rennert RC, Li J, Li YS, Wong VW, Chien S, Khalessi AA. Endothelial Trauma From Mechanical Thrombectomy in Acute Stroke. Stroke 2015; 46:1099-106. [PMID: 25712942 DOI: 10.1161/strokeaha.114.007494] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Dayu Teng
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Jeffrey Scott Pannell
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Robert C. Rennert
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Jieying Li
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Yi-Shuan Li
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Victor W. Wong
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Shu Chien
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| | - Alexander A. Khalessi
- From the Division of Neurosurgery (J.S.P., R.C.R., V.W.W., A.A.K.), Department of Bioengineering and Institute of Engineering in Medicine (D.T., J.L., Y.-S., S.C.), University of California, San Diego
| |
Collapse
|
242
|
Lim ETS, Wong ASL, Ahmad NSB, Tan KBK, Ong MEH, Tan JWC. Review of the Clinical Evidence and Controversies in Therapeutic Hypothermia for Survivors of Sudden Cardiac Death. PROCEEDINGS OF SINGAPORE HEALTHCARE 2015. [DOI: 10.1177/201010581502400107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sudden cardiac arrest constitutes a major public health burden in both developed and developing countries. In those successfully resuscitated from cardiac arrest, subsequent mortality is still high (∼75%) and is due to a combination of ischaemia and reperfusion injury. The purpose of this review is to describe the experimental and clinical evidence supporting therapeutic hypothermia in survivors of sudden cardiac arrest. We also discuss controversies and unresolved issues in therapeutic hypothermia, including the optimum target temperature for therapeutic hypothermia, and the role of pre-hospital induction of hypothermia. We conclude with a perspective on therapeutic hypothermia as it applies to the Singapore context.
Collapse
Affiliation(s)
| | - Aaron Sung Lung Wong
- Department of Cardiology, National Heart Centre Singapore, Singapore
- Duke-NUS Graduate Medical School, Singapore
| | | | | | - Marcus Eng Hock Ong
- Duke-NUS Graduate Medical School, Singapore
- Department of Emergency Medicine, Singapore General Hospital, Singapore
| | | |
Collapse
|
243
|
Attenuation of acute stroke injury in rat brain by minocycline promotes blood-brain barrier remodeling and alternative microglia/macrophage activation during recovery. J Neuroinflammation 2015; 12:26. [PMID: 25889169 PMCID: PMC4340283 DOI: 10.1186/s12974-015-0245-4] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 01/11/2015] [Indexed: 12/20/2022] Open
Abstract
Background Minocycline reduces reperfusion injury by inhibiting matrix metalloproteinases (MMPs) and microglia activity after cerebral ischemia. Prior studies of minocycline investigated short-term neuroprotective effects during subacute stage of stroke; however, the late effects of minocycline against early reperfusion injury on neurovascular remodeling are less well studied. We have shown that spontaneous angiogenesis vessels in ischemic brain regions have high blood–brain barrier (BBB) permeability due to lack of major tight junction proteins (TJPs) in endothelial cells at three weeks. In the present study, we longitudinally investigated neurological outcome, neurovascular remodeling and microglia/macrophage alternative activation after spontaneous and minocycline-induced stroke recovery. Methods Adult spontaneously hypertensive rats had a 90 minute transient middle cerebral artery occlusion. At the onset of reperfusion they received a single dose of minocycline (3 mg/kg intravenously) or a vehicle. They were studied at multiple time points up to four weeks with magnetic resonance imaging (MRI), immunohistochemistry and biochemistry. Results Minocycline significantly reduced the infarct size and prevented tissue loss in the ischemic hemispheres compared to vehicle-treated rats from two to four weeks as measured with MRI. Cerebral blood flow measured with arterial spin labeling (ASL) showed that minocycline improved perfusion. Dynamic contrast-enhanced MRI indicated that minocycline reduced BBB permeability accompanied with higher levels of TJPs measured with Western blot. Increased MMP-2 and −3 were detected at four weeks. Active microglia/macrophage, surrounding and within the peri-infarct areas, expressed YM1, a marker of M2 microglia/macrophage activation, at four weeks. These microglia/macrophage expressed both pro-inflammatory factors tumor necrosis factors-α (TNF-α) and interleukin-1β (IL-1β) and anti-inflammatory factors transforming growth factor-β (TGF-β) and interleukin-10 (IL-10). Treatment with minocycline significantly reduced levels of TNF-α and IL-1β, and increased levels of TGF-β, IL-10 and YM1. Conclusions Early minocycline treatment against reperfusion injury significantly promotes neurovascular remodeling during stroke recovery by reducing brain tissue loss, enhancing TJP expression in ischemic brains and facilitating neuroprotective phenotype alternative activation of microglia/macrophages. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0245-4) contains supplementary material, which is available to authorized users.
Collapse
|
244
|
Hu H, Lu H, He Z, Han X, Chen J, Tu R. Gene interference regulates aquaporin-4 expression in swollen tissue of rats with cerebral ischemic edema: Correlation with variation in apparent diffusion coefficient. Neural Regen Res 2015; 7:1659-66. [PMID: 25657707 PMCID: PMC4308770 DOI: 10.3969/j.issn.1673-5374.2012.21.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 05/13/2012] [Indexed: 02/05/2023] Open
Abstract
To investigate the effects of mRNA interference on aquaporin-4 expression in swollen tissue of rats with ischemic cerebral edema, and diagnose the significance of diffusion-weighted MRI, we injected 5 μL shRNA- aquaporin-4 (control group) or siRNA- aquaporin-4 solution (1:800) (RNA interference group) into the rat right basal ganglia immediately before occlusion of the middle cerebral artery. At 0.25 hours after occlusion of the middle cerebral artery, diffusion-weighted MRI displayed a high signal; within 2 hours, the relative apparent diffusion coefficient decreased markedly, aquaporin-4 expression increased rapidly, and intracellular edema was obviously aggravated; at 4 and 6 hours, the relative apparent diffusion coefficient slowly returned to control levels, aquaporin-4 expression slightly increased, and angioedema was observed. In the RNA interference group, during 0.25–6 hours after injection of siRNA- aquaporin-4 solution, the relative apparent diffusion coefficient slightly fluctuated and aquaporin-4 expression was upregulated; during 0.5–4 hours, the relative apparent diffusion coefficient was significantly higher, while aquaporin-4 expression was significantly lower when compared with the control group, and intracellular edema was markedly reduced; at 0.25 and 6 hours, the relative apparent diffusion coefficient and aquaporin-4 expression were similar when compared with the control group; obvious angioedema remained at 6 hours. Pearson's correlation test results showed that aquaporin-4 expression was negatively correlated with the apparent diffusion coefficient (r = −0.806, P < 0.01). These findings suggest that upregulated aquaporin-4 expression is likely to be the main molecular mechanism of intracellular edema and may be the molecular basis for decreased relative apparent diffusion coefficient. Aquaporin-4 gene interference can effectively inhibit the upregulation of aquaporin-4 expression during the stage of intracellular edema with time-effectiveness. Moreover, diffusion-weighted MRI can accurately detect intracellular edema.
Collapse
Affiliation(s)
- Hui Hu
- Department of Radiology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University (Haikou Municipal People's Hospital), Haikou 570208, Hainan Province, China
| | - Hong Lu
- Department of Radiology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University (Haikou Municipal People's Hospital), Haikou 570208, Hainan Province, China
| | - Zhanping He
- Department of Radiology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University (Haikou Municipal People's Hospital), Haikou 570208, Hainan Province, China
| | - Xiangjun Han
- Department of Radiology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University (Haikou Municipal People's Hospital), Haikou 570208, Hainan Province, China
| | - Jing Chen
- Department of Radiology, Affiliated Haikou Hospital of Xiangya School of Medicine, Central South University (Haikou Municipal People's Hospital), Haikou 570208, Hainan Province, China
| | - Rong Tu
- Department of Radiology, Medical College of Hainan Province, Haikou 570102, Hainan Province, China
| |
Collapse
|
245
|
Bai J, Lyden PD. Revisiting Cerebral Postischemic Reperfusion Injury: New Insights in Understanding Reperfusion Failure, Hemorrhage, and Edema. Int J Stroke 2015; 10:143-52. [DOI: 10.1111/ijs.12434] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 11/14/2014] [Indexed: 01/11/2023]
Abstract
Cerebral postischemic reperfusion injury is defined as deterioration of ischemic brain tissue that parallels and antagonizes the benefits of restoring cerebral circulation after therapeutic thrombolysis for acute ischemic stroke. To understand the paradox of injury caused by treatment, we first emphasize the phenomenon in which recanalization of an occluded artery does not lead to tissue reperfusion. Additionally, no-reflow after recanalization may be due to injury of the neurovascular unit, distal microthrombosis, or both, and certainly worsens outcome. We examine the mechanism of molecular and sub-cellular damage in the neurovascular unit, notably oxidative stress, mitochondrial dysfunction, and apoptosis. At the level of the neurovascular unit, which mediates crosstalk between the damaged brain and systemic responses in blood, we summarize emerging evidence demonstrating that individual cell components play unique and cumulative roles that lead to damage of the blood–brain barrier and neurons. Furthermore, we review the latest developments in establishing a link between the immune system and microvascular dysfunction during ischemic reperfusion. Progress in assessing reperfusion injury has also been made, and we review imaging studies using various magnetic resonance imaging modalities. Lastly, we explore potential treatment approaches, including ischemic preconditioning, postconditioning, pharmacologic agents, and hypothermia.
Collapse
Affiliation(s)
- Jilin Bai
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Patrick D. Lyden
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
246
|
Berthet C, Xin L, Buscemi L, Benakis C, Gruetter R, Hirt L, Lei H. Non-invasive diagnostic biomarkers for estimating the onset time of permanent cerebral ischemia. J Cereb Blood Flow Metab 2014; 34:1848-55. [PMID: 25182663 PMCID: PMC4269763 DOI: 10.1038/jcbfm.2014.155] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/23/2014] [Accepted: 08/05/2014] [Indexed: 11/10/2022]
Abstract
The treatments for ischemic stroke can only be administered in a narrow time-window. However, the ischemia onset time is unknown in ~30% of stroke patients (wake-up strokes). The objective of this study was to determine whether MR spectra of ischemic brains might allow the precise estimation of cerebral ischemia onset time. We modeled ischemic stroke in male ICR-CD1 mice using a permanent middle cerebral artery filament occlusion model with laser Doppler control of the regional cerebral blood flow. Mice were then subjected to repeated MRS measurements of ipsilateral striatum at 14.1 T. A striking initial increase in γ-aminobutyric acid (GABA) and no increase in glutamine were observed. A steady decline was observed for taurine (Tau), N-acetyl-aspartate (NAA) and similarly for the sum of NAA+Tau+glutamate that mimicked an exponential function. The estimation of the time of onset of permanent ischemia within 6 hours in a blinded experiment with mice showed an accuracy of 33±10 minutes. A plot of GABA, Tau, and neuronal marker concentrations against the ratio of acetate/NAA allowed precise separation of mice whose ischemia onset lay within arbitrarily chosen time-windows. We conclude that (1)H-MRS has the potential to detect the clinically relevant time of onset of ischemic stroke.
Collapse
Affiliation(s)
- Carole Berthet
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lijing Xin
- 1] Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland [2] Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lara Buscemi
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Corinne Benakis
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Rolf Gruetter
- 1] Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland [2] Department of Radiology, University of Geneva, Geneva, Switzerland [3] Department of Radiology, University of Lausanne, Lausanne, Switzerland [4] AIT, Center for Biomedical Imaging (CIBM), Institute of the Physics of Biological Systems, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lorenz Hirt
- Department of Clinical Neurosciences, Neurology Service, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Hongxia Lei
- 1] Unit for Research in Schizophrenia, Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland [2] Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
247
|
DRAM1 protects neuroblastoma cells from oxygen-glucose deprivation/reperfusion-induced injury via autophagy. Int J Mol Sci 2014; 15:19253-64. [PMID: 25342320 PMCID: PMC4227272 DOI: 10.3390/ijms151019253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/18/2014] [Accepted: 10/09/2014] [Indexed: 01/01/2023] Open
Abstract
DNA damage-regulated autophagy modulator protein 1 (DRAM1), a multi-pass membrane lysosomal protein, is reportedly a tumor protein p53 (TP53) target gene involved in autophagy. During cerebral ischemia/reperfusion (I/R) injury, DRAM1 protein expression is increased, and autophagy is activated. However, the functional significance of DRAM1 and the relationship between DRAM1 and autophagy in brain I/R remains uncertain. The aim of this study is to investigate whether DRAM1 mediates autophagy activation in cerebral I/R injury and to explore its possible effects and mechanisms. We adopt the oxygen-glucose deprivation and reperfusion (OGD/R) Neuro-2a cell model to mimic cerebral I/R conditions in vitro, and RNA interference is used to knock down DRAM1 expression in this model. Cell viability assay is performed using the LIVE/DEAD viability/cytotoxicity kit. Cell phenotypic changes are analyzed through Western blot assays. Autophagy flux is monitored through the tandem red fluorescent protein-Green fluorescent protein-microtubule associated protein 1 light chain 3 (RFP-GFP-LC3) construct. The expression levels of DRAM1 and microtubule associated protein 1 light chain 3II/I (LC3II/I) are strongly up-regulated in Neuro-2a cells after OGD/R treatment and peaked at the 12 h reperfusion time point. The autophagy-specific inhibitor 3-Methyladenine (3-MA) inhibits the expression of DRAM1 and LC3II/I and exacerbates OGD/R-induced cell injury. Furthermore, DRAM1 knockdown aggravates OGD/R-induced cell injury and significantly blocks autophagy through decreasing autophagosome-lysosome fusion. In conclusion, our data demonstrate that DRAM1 knockdown in Neuro-2a cells inhibits autophagy by blocking autophagosome-lysosome fusion and exacerbated OGD/R-induced cell injury. Thus, DRAM1 might constitute a new therapeutic target for I/R diseases.
Collapse
|
248
|
Jin G, He XR, Chen LP. The protective effect of ginko bilboa leaves injection on the brain dopamine in the rat model of cerebral ischemia/reperfusion injury. Afr Health Sci 2014; 14:725-8. [PMID: 25352894 DOI: 10.4314/ahs.v14i3.31] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Ginkgo Bilboa injection has had been clinically applied to restore the damaged cells and tissues due to the ischemia through improving the cerebral blood supply and decreasing the oxygen consumption. OBJECTIVE/AIM To evaluate the Ginkgo Bilboa injection's therapeutic role towards ischemia/ reperfusion (I/R) injury through determination of monoamine neurotransmitter dopamine (DA) in corpus striatum. METHODS After the incomplete global cerebral ischemia and reperfusion models were prepared, rats were randomly assigned into four groups: sham-operated group, ischemia-reperfusion group, nimodipine injection group, and Ginkgo Biloba injection group. The cerebrospinal fluid in the rat brain striatum at different time points was collected with microdialysis, and the level of monoamine neurotransmitters dopamineDA was determined by high performance liquid chromatography (HPLC) with electrochemical detector (ECD). RESULTS The dopamineDA content in cerebral ischemia model group was significantly higher than that in the sham-operated group (P < 0.05) at the 30 min. However, the DA level in nimodipine injection group and Ginkgo Biloba injection group were lower than the model group (P < 0.05). The dopamineDA level in Ginkgo Biloba injection group gradually decreased, and was significantly different from the model group (P < 0.05). CONCLUSION Ginkgo Biloba injection can could significantly inhibit brain I/R injury, as demonstrated by prevention of excessive release of dopamineDA in striatum.
Collapse
Affiliation(s)
- Gu Jin
- Traditional Chinese Medicine Pharmacy of PLA General Hospital, Beijing 100853, China
| | - Xin-Rong He
- Traditional Chinese Medicine Pharmacy of PLA General Hospital, Beijing 100853, China
| | - Li-Ping Chen
- Department of traditional chinese medicine of PLA General Hospital, Beijing 100853, China
| |
Collapse
|
249
|
Orci LA, Lacotte S, Oldani G, Morel P, Mentha G, Toso C. The role of hepatic ischemia-reperfusion injury and liver parenchymal quality on cancer recurrence. Dig Dis Sci 2014; 59:2058-68. [PMID: 24795038 DOI: 10.1007/s10620-014-3182-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 04/20/2014] [Indexed: 12/29/2022]
Abstract
Hepatic ischemia/reperfusion (I/R) injury is a common clinical challenge. Despite accumulating evidence regarding its mechanisms and potential therapeutic approaches, hepatic I/R is still a leading cause of organ dysfunction, morbidity, and resource utilization, especially in those patients with underlying parenchymal abnormalities. In the oncological setting, there are growing concerns regarding the deleterious impact of I/R injury on the risk of post-surgical tumor recurrence. This review aims at giving the last updates regarding the role of hepatic I/R and liver parenchymal quality injury in the setting of oncological liver surgery, using a "bench-to-bedside" approach. Relevant medical literature was identified by searching PubMed and hand scanning of the reference lists of articles considered for inclusion. Numerous preclinical models have depicted the impact of I/R injury and hepatic parenchymal quality (steatosis, age) on increased cancer growth in the injured liver. Putative pathophysiological mechanisms linking I/R injury and liver cancer recurrence include an increased implantation of circulating cancer cells in the ischemic liver and the upregulation of proliferation and angiogenic factors following the ischemic insult. Although limited, there is growing clinical evidence that I/R injury and liver quality are associated with the risk of post-surgical cancer recurrence. In conclusion, on top of its harmful early impact on organ function, I/R injury is linked to increased tumor growth. Therapeutic strategies tackling I/R injury could not only improve post-surgical organ function, but also allow a reduction in the risk of cancer recurrence.
Collapse
Affiliation(s)
- Lorenzo A Orci
- Division of Abdominal and Transplantation Surgery, Department of Surgery, Geneva University Hospitals and Faculty of Medicine, University of Geneva, 4 rue Gabrielle-Perret-Gentil, 1211, Geneva, Switzerland,
| | | | | | | | | | | |
Collapse
|
250
|
Eiamphungporn W, Yainoy S, Prachayasittikul V. Angiopep-2-Mediated Delivery of Human Manganese Superoxide Dismutase in Brain Endothelial Cells and its Protective Effect Against Oxidative Stress. Int J Pept Res Ther 2014. [DOI: 10.1007/s10989-014-9433-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|