201
|
Shipley FB, Dani N, Xu H, Deister C, Cui J, Head JP, Sadegh C, Fame RM, Shannon ML, Flores VI, Kishkovich T, Jang E, Klein EM, Goldey GJ, He K, Zhang Y, Holtzman MJ, Kirchhausen T, Wyart C, Moore CI, Andermann ML, Lehtinen MK. Tracking Calcium Dynamics and Immune Surveillance at the Choroid Plexus Blood-Cerebrospinal Fluid Interface. Neuron 2020; 108:623-639.e10. [PMID: 32961128 PMCID: PMC7847245 DOI: 10.1016/j.neuron.2020.08.024] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/18/2020] [Accepted: 08/25/2020] [Indexed: 12/26/2022]
Abstract
The choroid plexus (ChP) epithelium is a source of secreted signaling factors in cerebrospinal fluid (CSF) and a key barrier between blood and brain. Here, we develop imaging tools to interrogate these functions in adult lateral ventricle ChP in whole-mount explants and in awake mice. By imaging epithelial cells in intact ChP explants, we observed calcium activity and secretory events that increased in frequency following delivery of serotonergic agonists. Using chronic two-photon imaging in awake mice, we observed spontaneous subcellular calcium events as well as strong agonist-evoked calcium activation and cytoplasmic secretion into CSF. Three-dimensional imaging of motility and mobility of multiple types of ChP immune cells at baseline and following immune challenge or focal injury revealed a range of surveillance and defensive behaviors. Together, these tools should help illuminate the diverse functions of this understudied body-brain interface.
Collapse
Affiliation(s)
- Frederick B Shipley
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Neil Dani
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Huixin Xu
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Christopher Deister
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Jin Cui
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joshua P Head
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Cameron Sadegh
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Morgan L Shannon
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Vanessa I Flores
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Thomas Kishkovich
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Emily Jang
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Eric M Klein
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Glenn J Goldey
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA
| | - Kangmin He
- Department of Cell Biology and Department of Pediatrics, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Tomas Kirchhausen
- Department of Cell Biology and Department of Pediatrics, Harvard Medical School, Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle Épinière (ICM), Sorbonne Université, Inserm U1127, CNRS UMR 7225, 75013 Paris, France
| | - Christopher I Moore
- Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA
| | - Mark L Andermann
- Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA; Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA; Graduate Program in Biophysics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
202
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
203
|
Dabrowska S, Andrzejewska A, Kozlowska H, Strzemecki D, Janowski M, Lukomska B. Neuroinflammation evoked by brain injury in a rat model of lacunar infarct. Exp Neurol 2020; 336:113531. [PMID: 33221395 DOI: 10.1016/j.expneurol.2020.113531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2020] [Accepted: 11/13/2020] [Indexed: 12/24/2022]
Abstract
Stroke is the leading cause of long-term, severe disability worldwide. Immediately after the stroke, endogenous inflammatory processes are upregulated, leading to the local neuroinflammation and the potentiation of brain tissue destruction. The innate immune response is triggered as early as 24 h post-brain ischemia, followed by adaptive immunity activation. Together these immune cells produce many inflammatory mediators, i.e., cytokines, growth factors, and chemokines. Our study examines the immune response components in the early stage of deep brain lacunar infarct in the rat brain, highly relevant to the clinical scenario. The lesion was induced by stereotactic injection of ouabain into the adult rat striatum. Ouabain is a Na/K ATPase pump inhibitor that causes excitotoxicity and brings metabolic and structural changes in the cells leading to focal brain injury. We have shown a surge of neurodegenerative changes in the peri-infarct area in the first days after brain injury. Immunohistochemical analysis revealed early microglial activation and the gradual infiltration of immune cells with a significant increase of CD4+ and CD8+ T lymphocytes in the ipsilateral hemisphere. In our studies, we identified the higher level of pro-inflammatory cytokines, i.e., interleukin-1α, interleukin-1β, tumor necrosis factor-α, and interferon-γ, but a lower level of anti-inflammatory cytokines, i.e., interleukin-10 and transforming growth factor-β2 in the injured brain than in normal rats. Concomitantly focal brain injury showed a significant increase in the level of chemokines, i.e., monocyte chemoattractant protein-1 and CC motif chemokine ligand 5 compared to control. Our findings provide new insights into an early inflammatory reaction in our model of the deep-brain lacunar infarct. The results of this study may highlight future stroke immunotherapies for targeting the acute immune response accompanied by the insult.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Anna Andrzejewska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Hanna Kozlowska
- Laboratory of Advanced Microscopy Techniques, Mossakowski Medical Research Centre PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Damian Strzemecki
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Miroslaw Janowski
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland; Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore. MD 21201, USA
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Centre, PAS, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| |
Collapse
|
204
|
Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi AR, Awan NR, Yar M. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release 2020; 330:1152-1167. [PMID: 33197487 DOI: 10.1016/j.jconrel.2020.11.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/11/2020] [Accepted: 11/11/2020] [Indexed: 12/17/2022]
Abstract
The central nervous system (CNS) encompasses the brain and spinal cord and is considered the processing center and the most vital part of human body. The central nervous system (CNS) barriers are crucial interfaces between the CNS and the periphery. Among all these biological barriers, the blood-brain barrier (BBB) strongly impede hurdle for drug transport to brain. It is a semi-permeable diffusion barrier against the noxious chemicals and harmful substances present in the blood stream and regulates the nutrients delivery to the brain for its proper functioning. Neurological diseases owing to the existence of the BBB and the blood-spinal cord barrier have been terrible and threatening challenges all over the world and can rarely be directly mediated. In fact, drug delivery to brain remained a challenge in the treatment of neurodegenerative (ND) disorders, for these different approaches have been proposed. Nano-fabricated smart drug delivery systems and implantable drug loaded biomaterials for brain repair are among some of these latest approaches. In current review, modern approaches developed to deal with the challenges associated with transporting drugs to the CNS are included. Recent studies on neural drug discovery and injectable hydrogels provide a potential new treatment option for neurological disorders. Moreover, induced pluripotent stem cells used to model ND diseases are discussed to evaluate drug efficacy. These protocols and recent developments will enable discovery of more effective drug delivery systems for brain.
Collapse
Affiliation(s)
- Amna Akhtar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan; Department of Chemical Engineering, COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Anisa Andleeb
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Tayyba Sher Waris
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan
| | - Masoomeh Bazzar
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Ali-Reza Moradi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran; School of Nano Science, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran 19395, Iran
| | - Nasir Raza Awan
- Department of Neurosciences, Sharif Medical and Dental College, Lahore, Pakistan; Spinacure, 63-A Block E1, Gulberg III, Lahore, Pakistan
| | - Muhammad Yar
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad Lahore Campus, Lahore 54000, Pakistan.
| |
Collapse
|
205
|
Gao Y, Zhu J, Lu H. Single domain antibody-based vectors in the delivery of biologics across the blood-brain barrier: a review. Drug Deliv Transl Res 2020; 11:1818-1828. [PMID: 33155179 DOI: 10.1007/s13346-020-00873-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2020] [Indexed: 10/23/2022]
Abstract
Biologics are a promising and effective method for the treatment of central nervous system (CNS) diseases. The blood-brain barrier (BBB) is a natural barrier for the delivery of biologics into the brain, which decreases the effective concentration of drugs in the CNS. A range of strategies has been explored to transport biologics across the BBB endothelium, typically via receptor-mediated transcytosis (RMT), which involving molecules for endogenous BBB receptors to be fused with biologics. This review emphasized a category of novel alternative RMT-targeting vectors: single domain antibodies (sdAb). SdAbs are a unique category of antibodies derived from naturally occurring heavy-chain-only antibodies. Herein, we describe their properties, mechanisms, modifications, and translational perspectives for their ability to transmigrate across the BBB in vitro and in vivo in detail.
Collapse
Affiliation(s)
- Yang Gao
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
206
|
Millward JM, Ramos Delgado P, Smorodchenko A, Boehmert L, Periquito J, Reimann HM, Prinz C, Els A, Scheel M, Bellmann-Strobl J, Waiczies H, Wuerfel J, Infante-Duarte C, Chien C, Kuchling J, Pohlmann A, Zipp F, Paul F, Niendorf T, Waiczies S. Transient enlargement of brain ventricles during relapsing-remitting multiple sclerosis and experimental autoimmune encephalomyelitis. JCI Insight 2020; 5:140040. [PMID: 33148886 PMCID: PMC7710287 DOI: 10.1172/jci.insight.140040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/24/2020] [Indexed: 12/18/2022] Open
Abstract
The brain ventricles are part of the fluid compartments bridging the CNS with the periphery. Using MRI, we previously observed a pronounced increase in ventricle volume (VV) in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS). Here, we examined VV changes in EAE and MS patients in longitudinal studies with frequent serial MRI scans. EAE mice underwent serial MRI for up to 2 months, with gadolinium contrast as a proxy of inflammation, confirmed by histopathology. We performed a time-series analysis of clinical and MRI data from a prior clinical trial in which RRMS patients underwent monthly MRI scans over 1 year. VV increased dramatically during preonset EAE, resolving upon clinical remission. VV changes coincided with blood-brain barrier disruption and inflammation. VV was normal at the termination of the experiment, when mice were still symptomatic. The majority of relapsing-remitting MS (RRMS) patients showed dynamic VV fluctuations. Patients with contracting VV had lower disease severity and a shorter duration. These changes demonstrate that VV does not necessarily expand irreversibly in MS but, over short time scales, can expand and contract. Frequent monitoring of VV in patients will be essential to disentangle the disease-related processes driving short-term VV oscillations from persistent expansion resulting from atrophy. Brain ventricle volumes expand and contract during experimental autoimmune encephalomyelitis and relapsing-remitting multiple sclerosis, suggesting that short-term inflammatory processes are interlaced with gradual brain atrophy.
Collapse
Affiliation(s)
- Jason M Millward
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Paula Ramos Delgado
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Alina Smorodchenko
- Medical School Hamburg, University of Applied Sciences and Medical University, Hamburg, Germany
| | - Laura Boehmert
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Joao Periquito
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Henning M Reimann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Christian Prinz
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Antje Els
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Michael Scheel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Judith Bellmann-Strobl
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Jens Wuerfel
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Carmen Infante-Duarte
- Institute for Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Chien
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Joseph Kuchling
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Pohlmann
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg, University of Mainz, Mainz, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Thoralf Niendorf
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Experimental and Clinical Research Center, a joint venture of the Max Delbrück Center for Molecular Medicine and the Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sonia Waiczies
- Experimental Ultrahigh Field Magnetic Resonance, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
207
|
Monaco S, Nicholas R, Reynolds R, Magliozzi R. Intrathecal Inflammation in Progressive Multiple Sclerosis. Int J Mol Sci 2020; 21:ijms21218217. [PMID: 33153042 PMCID: PMC7663229 DOI: 10.3390/ijms21218217] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 01/05/2023] Open
Abstract
Progressive forms of multiple sclerosis (MS) are associated with chronic demyelination, axonal loss, neurodegeneration, cortical and deep gray matter damage, and atrophy. These changes are strictly associated with compartmentalized sustained inflammation within the brain parenchyma, the leptomeninges, and the cerebrospinal fluid. In progressive MS, molecular mechanisms underlying active demyelination differ from processes that drive neurodegeneration at cortical and subcortical locations. The widespread pattern of neurodegeneration is consistent with mechanisms associated with the inflammatory molecular load of the cerebrospinal fluid. This is at variance with gray matter demyelination that typically occurs at focal subpial sites, in the proximity of ectopic meningeal lymphoid follicles. Accordingly, it is possible that variations in the extent and location of neurodegeneration may be accounted for by individual differences in CSF flow, and by the composition of soluble inflammatory factors and their clearance. In addition, “double hit” damage may occur at sites allowing a bidirectional exchange between interstitial fluid and CSF, such as the Virchow–Robin spaces and the periventricular ependymal barrier. An important aspect of CSF inflammation and deep gray matter damage in MS involves dysfunction of the blood–cerebrospinal fluid barrier and inflammation in the choroid plexus. Here, we provide a comprehensive review on the role of intrathecal inflammation compartmentalized to CNS and non-neural tissues in progressive MS.
Collapse
Affiliation(s)
- Salvatore Monaco
- Department of Neurosciences, Biomedicine and Movements Sciences, University of Verona, 37134 Verona, Italy
- Correspondence: (S.M.); (R.M.)
| | - Richard Nicholas
- Department of Brain Sciences, Imperial College, Faculty of Medicine, London W12 ONN, UK; (R.N.); (R.R.)
| | - Richard Reynolds
- Department of Brain Sciences, Imperial College, Faculty of Medicine, London W12 ONN, UK; (R.N.); (R.R.)
| | - Roberta Magliozzi
- Department of Neurosciences, Biomedicine and Movements Sciences, University of Verona, 37134 Verona, Italy
- Department of Brain Sciences, Imperial College, Faculty of Medicine, London W12 ONN, UK; (R.N.); (R.R.)
- Correspondence: (S.M.); (R.M.)
| |
Collapse
|
208
|
Izsak J, Vizlin-Hodzic D, Iljin M, Strandberg J, Jadasz J, Olsson Bontell T, Theiss S, Hanse E, Ågren H, Funa K, Illes S. TGF-β1 Suppresses Proliferation and Induces Differentiation in Human iPSC Neural in vitro Models. Front Cell Dev Biol 2020; 8:571332. [PMID: 33195202 PMCID: PMC7655796 DOI: 10.3389/fcell.2020.571332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
Persistent neural stem cell (NSC) proliferation is, among others, a hallmark of immaturity in human induced pluripotent stem cell (hiPSC)-based neural models. TGF-β1 is known to regulate NSCs in vivo during embryonic development in rodents. Here we examined the role of TGF-β1 as a potential candidate to promote in vitro differentiation of hiPSCs-derived NSCs and maturation of neuronal progenies. We present that TGF-β1 is specifically present in early phases of human fetal brain development. We applied confocal imaging and electrophysiological assessment in hiPSC-NSC and 3D neural in vitro models and demonstrate that TGF-β1 is a signaling protein, which specifically suppresses proliferation, enhances neuronal and glial differentiation, without effecting neuronal maturation. Moreover, we demonstrate that TGF-β1 is equally efficient in enhancing neuronal differentiation of human NSCs as an artificial synthetic small molecule. The presented approach provides a proof-of-concept to replace artificial small molecules with more physiological signaling factors, which paves the way to improve the physiological relevance of human neural developmental in vitro models.
Collapse
Affiliation(s)
- Julia Izsak
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Dzeneta Vizlin-Hodzic
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Margarita Iljin
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Joakim Strandberg
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Janusz Jadasz
- Department of Neurology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Olsson Bontell
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Pathology and Cytology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Stephan Theiss
- Result Medical GmbH, Düsseldorf, Germany.,Medical Faculty, Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine University, Düsseldorf, Germany
| | - Eric Hanse
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hans Ågren
- Section of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Keiko Funa
- Oncology Laboratory, Department of Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden.,Sahlgrenska Cancer Center, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Sebastian Illes
- Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
209
|
Ramkissoon LA, Pegram W, Haberberger J, Danziger N, Lesser G, Strowd R, Dahiya S, Cummings TJ, Bi WL, Abedalthagafi M, Sathyan P, McGregor K, Reddy P, Severson E, Williams E, Lin D, Edgerly C, Huang RSP, Hemmerich A, Creeden J, Brown C, Venstrom J, Hegde P, Ross JS, Alexander BM, Elvin J, Ramkissoon SH. Genomic Profiling of Circulating Tumor DNA From Cerebrospinal Fluid to Guide Clinical Decision Making for Patients With Primary and Metastatic Brain Tumors. Front Neurol 2020; 11:544680. [PMID: 33192972 PMCID: PMC7604477 DOI: 10.3389/fneur.2020.544680] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/09/2020] [Indexed: 12/04/2022] Open
Abstract
Despite advances in systemic therapies for solid tumors, the development of brain metastases remains a significant contributor to overall cancer mortality and requires improved methods for diagnosing and treating these lesions. Similarly, the prognosis for malignant primary brain tumors remains poor with little improvement in overall survival over the last several decades. In both primary and metastatic central nervous system (CNS) tumors, the challenge from a clinical perspective centers on detecting CNS dissemination early and understanding how CNS lesions differ from the primary tumor, in order to determine potential treatment strategies. Acquiring tissue from CNS tumors has historically been accomplished through invasive neurosurgical procedures, which restricts the number of patients to those who can safely undergo a surgical procedure, and for which such interventions will add meaningful value to the care of the patient. In this review we discuss the potential of analyzing cell free DNA shed from tumor cells that is contained within the cerebrospinal fluid (CSF) as a sensitive and minimally invasive method to detect and characterize primary and metastatic tumors in the CNS.
Collapse
Affiliation(s)
- Lori A Ramkissoon
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Worthy Pegram
- Foundation Medicine, Inc., Morrisville, NC, United States
| | | | | | - Glenn Lesser
- Section of Medical Oncology and Hematology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Roy Strowd
- Section of Medical Oncology and Hematology, Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, United States
| | - Sonika Dahiya
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MI, United States
| | - Thomas J Cummings
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, United States
| | - Malak Abedalthagafi
- Genomics Research Department, Saudi Human Genome Project, King Fahad Medical City and King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | | | | | - Eric Severson
- Foundation Medicine, Inc., Morrisville, NC, United States
| | - Erik Williams
- Foundation Medicine, Inc., Morrisville, NC, United States
| | - Douglas Lin
- Foundation Medicine, Inc., Cambridge, MA, United States
| | - Claire Edgerly
- Foundation Medicine, Inc., Morrisville, NC, United States
| | | | | | - James Creeden
- Foundation Medicine, Inc., Cambridge, MA, United States
| | | | | | - Priti Hegde
- Foundation Medicine, Inc., Cambridge, MA, United States
| | | | | | - Julia Elvin
- Foundation Medicine, Inc., Cambridge, MA, United States
| | - Shakti H Ramkissoon
- Foundation Medicine, Inc., Morrisville, NC, United States.,Department of Pathology and Wake Forest Baptist Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
210
|
Photoperiod Affects Leptin Action on the Choroid Plexus in Ewes Challenged with Lipopolysaccharide-Study on the mRNA Level. Int J Mol Sci 2020; 21:ijms21207647. [PMID: 33076568 PMCID: PMC7589540 DOI: 10.3390/ijms21207647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The ovine choroid plexus (ChP) expresses the long isoform of the leptin receptor, which makes this structure a potential target for leptin action. In sheep, leptin concentration in plasma is higher during long days (LD) than short days (SD). This study evaluates the influence a of photoperiod on leptin impact on the gene expression of Toll-like receptor 4 (TLR4), proinflammatory cytokines (IL1B, IL6), their receptors (IL1R1, IL1R2, ILRN, IL6R, IL6ST) and inflammasome components necessary for pro-IL-1β activation (NLRP3, PYCARD, CASP1), chemokine (CCL2), leptin receptor isoforms (LEPRa, LEPRb) and a suppressor of cytokine signalling (SOCS3) in the ChP of ewes treated or not with lipopolysaccharide (LPS). Studies were conducted on adult female sheep divided into four groups (n = 6 in each): control, leptin (20 μg/kg), LPS (400 ng/kg), and LPS and leptin injected under SD and LD photoperiods. The leptin alone did not affect the gene expression but in co-treatment with LPS increased (p < 0.05) IL1B but only during SD, and SOCS3, IL1R2, IL1RN, IL6ST and CCL2 only during LD, and decreased (p < 0.05) the IL1R1 expression only during SD photoperiod. This indicates that the immunomodulatory action of leptin on the ChP is manifested only under the LPS challenge and is photoperiodically dependent.
Collapse
|
211
|
Bryniarski MA, Ren T, Rizvi AR, Snyder AM, Morris ME. Targeting the Choroid Plexuses for Protein Drug Delivery. Pharmaceutics 2020; 12:pharmaceutics12100963. [PMID: 33066423 PMCID: PMC7602164 DOI: 10.3390/pharmaceutics12100963] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/15/2022] Open
Abstract
Delivery of therapeutic agents to the central nervous system is challenged by the barriers in place to regulate brain homeostasis. This is especially true for protein therapeutics. Targeting the barrier formed by the choroid plexuses at the interfaces of the systemic circulation and ventricular system may be a surrogate brain delivery strategy to circumvent the blood-brain barrier. Heterogenous cell populations located at the choroid plexuses provide diverse functions in regulating the exchange of material within the ventricular space. Receptor-mediated transcytosis may be a promising mechanism to deliver protein therapeutics across the tight junctions formed by choroid plexus epithelial cells. However, cerebrospinal fluid flow and other barriers formed by ependymal cells and perivascular spaces should also be considered for evaluation of protein therapeutic disposition. Various preclinical methods have been applied to delineate protein transport across the choroid plexuses, including imaging strategies, ventriculocisternal perfusions, and primary choroid plexus epithelial cell models. When used in combination with simultaneous measures of cerebrospinal fluid dynamics, they can yield important insight into pharmacokinetic properties within the brain. This review aims to provide an overview of the choroid plexuses and ventricular system to address their function as a barrier to pharmaceutical interventions and relevance for central nervous system drug delivery of protein therapeutics. Protein therapeutics targeting the ventricular system may provide new approaches in treating central nervous system diseases.
Collapse
|
212
|
Burgaletto C, Munafò A, Di Benedetto G, De Francisci C, Caraci F, Di Mauro R, Bucolo C, Bernardini R, Cantarella G. The immune system on the TRAIL of Alzheimer's disease. J Neuroinflammation 2020; 17:298. [PMID: 33050925 PMCID: PMC7556967 DOI: 10.1186/s12974-020-01968-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia, characterized by progressive degeneration and loss of neurons in specific regions of the central nervous system. Chronic activation of the immune cells resident in the brain, peripheral immune cell trafficking across the blood-brain barrier, and release of inflammatory and neurotoxic factors, appear critical contributors of the neuroinflammatory response that drives the progression of neurodegenerative processes in AD. As the neuro-immune network is impaired in course of AD, this review is aimed to point out the essential supportive role of innate and adaptive immune response either in normal brain as well as in brain recovery from injury. Since a fine-tuning of the immune response appears crucial to ensure proper nervous system functioning, we focused on the role of the TNF superfamily member, TNF-related apoptosis-inducing ligand (TRAIL), which modulates both the innate and adaptive immune response in the pathogenesis of several immunological disorders and, in particular, in AD-related neuroinflammation. We here summarized mounting evidence of potential involvement of TRAIL signaling in AD pathogenesis, with the aim to provide clearer insights about potential novel therapeutic approaches in AD.
Collapse
Affiliation(s)
- Chiara Burgaletto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Antonio Munafò
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Giulia Di Benedetto
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Cettina De Francisci
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Filippo Caraci
- Department of Drug Sciences, University of Catania, Catania, Italy.,Oasi Research Institute-IRCCS, Troina, Italy
| | - Rosaria Di Mauro
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy.,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| | - Renato Bernardini
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy. .,Clinical Toxicology Unit, University Hospital, University of Catania, Catania, Italy.
| | - Giuseppina Cantarella
- Department of Biomedical and Biotechnological Sciences (BIOMETEC), Section of Pharmacology, University of Catania, Via Santa Sofia 97, Catania, Italy
| |
Collapse
|
213
|
Bicker J, Alves G, Fonseca C, Falcão A, Fortuna A. Repairing blood-CNS barriers: Future therapeutic approaches for neuropsychiatric disorders. Pharmacol Res 2020; 162:105226. [PMID: 33007420 DOI: 10.1016/j.phrs.2020.105226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022]
Abstract
Central nervous system (CNS) drug development faces significant difficulties that translate into high rates of failure and lack of innovation. The pathophysiology of neurological and psychiatric disorders often results in the breakdown of blood-CNS barriers, disturbing the CNS microenvironment and worsening disease progression. Therefore, restoring the integrity of blood-CNS barriers may have a beneficial influence in several CNS disorders and improve treatment outcomes. In this review, pathways that may be modulated to protect blood-CNS barriers from neuroinflammatory and oxidative insults are featured. First, the participation of the brain endothelium and glial cells in disruption processes is discussed. Then, the relevance of regulatory systems is analysed, specifically the hypothalamic-pituitary axis, the renin-angiotensin system, sleep and circadian rhythms, and glutamate neurotransmission. Lastly, compounds of endogenous and exogenous origin that are known to mediate the repair of blood-CNS barriers are presented. We believe that enhancing the protection of blood-CNS barriers is a promising therapeutic strategy to pursue in the future.
Collapse
Affiliation(s)
- Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| | - Gilberto Alves
- CICS-UBI, Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Carla Fonseca
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal; University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| |
Collapse
|
214
|
Chiba Y, Murakami R, Matsumoto K, Wakamatsu K, Nonaka W, Uemura N, Yanase K, Kamada M, Ueno M. Glucose, Fructose, and Urate Transporters in the Choroid Plexus Epithelium. Int J Mol Sci 2020; 21:E7230. [PMID: 33008107 PMCID: PMC7582461 DOI: 10.3390/ijms21197230] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
The choroid plexus plays a central role in the regulation of the microenvironment of the central nervous system by secreting the majority of the cerebrospinal fluid and controlling its composition, despite that it only represents approximately 1% of the total brain weight. In addition to a variety of transporter and channel proteins for solutes and water, the choroid plexus epithelial cells are equipped with glucose, fructose, and urate transporters that are used as energy sources or antioxidative neuroprotective substrates. This review focuses on the recent advances in the understanding of the transporters of the SLC2A and SLC5A families (GLUT1, SGLT2, GLUT5, GLUT8, and GLUT9), as well as on the urate-transporting URAT1 and BCRP/ABCG2, which are expressed in choroid plexus epithelial cells. The glucose, fructose, and urate transporters repertoire in the choroid plexus epithelium share similar features with the renal proximal tubular epithelium, although some of these transporters exhibit inversely polarized submembrane localization. Since choroid plexus epithelial cells have high energy demands for proper functioning, a decline in the expression and function of these transporters can contribute to the process of age-associated brain impairment and pathophysiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yoichi Chiba
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Ryuta Murakami
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Koichi Matsumoto
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Keiji Wakamatsu
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| | - Wakako Nonaka
- Department of Supportive and Promotive Medicine of the Municipal Hospital, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | - Naoya Uemura
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Ken Yanase
- Department of Anesthesiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (N.U.); (K.Y.)
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan;
| | - Masaki Ueno
- Department of Pathology and Host Defense, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kita-gun, Kagawa 761-0793, Japan; (Y.C.); (R.M.); (K.M.); (K.W.)
| |
Collapse
|
215
|
Cerebrospinal fluid circulating tumour DNA as a liquid biopsy for central nervous system malignancies. Curr Opin Neurol 2020; 33:736-741. [DOI: 10.1097/wco.0000000000000869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
216
|
Continuous theta burst stimulation dilates meningeal lymphatic vessels by up-regulating VEGF-C in meninges. Neurosci Lett 2020; 735:135197. [PMID: 32590044 DOI: 10.1016/j.neulet.2020.135197] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Lymphatic vessels (LVs) of meninges and lymphatic drainage in the brain have been investigated previously. Here, we examined the role of continuous theta burst stimulation (CTBS) in the modulation of meningeal LVs. METHODS To explore the effects of CTBS on meningeal LVs, the diameters of LVs were measured between a real CTBS group and sham CTBS group of wild-type male mice. Vascular endothelial growth factor-C (VEGF-C) expression was subsequently calculated in both groups to account for lymphatic changes after CTBS. Sunitinib was administered by 3-day oral gavage to inhibit the VEGF receptor (VEGFR), and the effects of CTBS were further examined in the following groups: vehicle with real CTBS, vehicle with sham CTBS, sunitinib treatment with real CTBS, and sunitinib treatment with sham CTBS. RESULTS The lymphatic vessels were augmented, and the level of VEGF-C in meninges increased after CTBS. CTBS dilated meningeal lymphatic vessels were impaired after the VEGF-C/VEGFR3 pathway was blocked. CONCLUSIONS CTBS can dilate meningeal lymphatic vessels by up-regulating VEGF-C in meninges.
Collapse
|
217
|
Eide PK, Valnes LM, Pripp AH, Mardal KA, Ringstad G. Delayed clearance of cerebrospinal fluid tracer from choroid plexus in idiopathic normal pressure hydrocephalus. J Cereb Blood Flow Metab 2020; 40:1849-1858. [PMID: 31495299 PMCID: PMC7446558 DOI: 10.1177/0271678x19874790] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Impaired clearance of amyloid-β from choroid plexus is one proposed mechanism behind amyloid deposition in Alzheimer's disease. The present study examined whether clearance from choroid plexus of a cerebrospinal fluid tracer, serving as a surrogate marker of a metabolic waste product, is altered in idiopathic normal pressure hydrocephalus (iNPH), one sub-type of dementia. In a prospective observational study of close to healthy individuals (reference cohort; REF) and individuals with iNPH, we performed standardized T1-weighted magnetic resonance imaging scans before and through 24 h after intrathecal administration of a cerebrospinal fluid tracer (the magnetic resonance imaging contrast agent gadobutrol). Changes in normalized T1 signal within the choroid plexus and cerebrospinal fluid of lateral ventricles were quantified using FreeSurfer. The normalized T1 signal increased to maximum within choroid plexus and cerebrospinal fluid of lateral ventricles 6-9 h after intrathecal gadobutrol in both the REF and iNPH cohorts (enrichment phase). Peak difference in normalized T1 signals between REF and iNPH individuals occurred after 24 h (clearance phase). The results gave evidence for gadobutrol resorption from cerebrospinal fluid by choroid plexus, but with delay in iNPH patients. Whether choroid plexus has a role in iNPH pathogenesis in terms of delayed clearance of amyloid-β remains to be shown.
Collapse
Affiliation(s)
- Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital - Rikshospitalet, Oslo, Norway.,Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Are Hugo Pripp
- Oslo Centre of Biostatistics and Epidemiology, Research Support Services, Oslo University Hospital, Oslo, Norway
| | - Kent-Andre Mardal
- Department of Mathematics, University of Oslo, Oslo, Norway.,Center for Biomedical Computing, Simula Research Laboratory, Lysaker, Norway
| | - Geir Ringstad
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.,Division of Radiology and Nuclear Medicine, Department of Radiology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| |
Collapse
|
218
|
Alvarez-Leefmans FJ. CrossTalk proposal: Apical NKCC1 of choroid plexus epithelial cells works in the net inward flux mode under basal conditions, maintaining intracellular Cl - and cell volume. J Physiol 2020; 598:4733-4736. [PMID: 32870510 DOI: 10.1113/jp279867] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Francisco J Alvarez-Leefmans
- Department of Pharmacology and Toxicology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
219
|
Wiatr M, Figueiredo R, Stump-Guthier C, Winter P, Ishikawa H, Adams O, Schwerk C, Schroten H, Rudolph H, Tenenbaum T. Polar Infection of Echovirus-30 Causes Differential Barrier Affection and Gene Regulation at the Blood-Cerebrospinal Fluid Barrier. Int J Mol Sci 2020; 21:E6268. [PMID: 32872518 PMCID: PMC7503638 DOI: 10.3390/ijms21176268] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 12/13/2022] Open
Abstract
Echovirus-30 (E-30) is responsible for the extensive global outbreaks of meningitis in children. To gain access to the central nervous system, E-30 first has to cross the epithelial blood-cerebrospinal fluid barrier. Several meningitis causing bacteria preferentially infect human choroid plexus papilloma (HIBCPP) cells in a polar fashion from the basolateral cell side. Here, we investigated the polar infection of HIBCPP cells with E-30. Both apical and basolateral infections caused a significant decrease in the transepithelial electrical resistance of HIBCPP cells. However, to reach the same impact on the barrier properties, the multiplicity of infection of the apical side had to be higher than that of the basolateral infection. Furthermore, the number of infected cells at respective time-points after basolateral infection was significantly higher compared to apical infection. Cytotoxic effects of E-30 on HIBCPP cells during basolateral infection were observed following prolonged infection and appeared more drastically compared to the apical infection. Gene expression profiles determined by massive analysis of cDNA ends revealed distinct regulation of specific genes depending on the side of HIBCPP cells' infection. Altogether, our data highlights the polar effects of E-30 infection in a human in vitro model of the blood-cerebrospinal fluid barrier leading to central nervous system inflammation.
Collapse
Affiliation(s)
- Marie Wiatr
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Ricardo Figueiredo
- GenXpro GmbH, 60438 Frankfurt am Main, Germany; (R.F.); (P.W.)
- Johann Wolfgang Goethe University Frankfurt, 60438 Frankfurt Am Main, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Peter Winter
- GenXpro GmbH, 60438 Frankfurt am Main, Germany; (R.F.); (P.W.)
| | - Hiroshi Ishikawa
- Department of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tennodai, Tsukuba, Ibaraki 305-0005, Japan;
| | - Ortwin Adams
- Institute for Virology, Heinrich Heine University, 40225 Düsseldorf, Germany;
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children’s Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; or (C.S.-G.); (C.S.); (H.S.); or
| |
Collapse
|
220
|
Fernández-Sevilla LM, Valencia J, Flores-Villalobos MA, Gonzalez-Murillo Á, Sacedón R, Jiménez E, Ramírez M, Varas A, Vicente Á. The choroid plexus stroma constitutes a sanctuary for paediatric B-cell precursor acute lymphoblastic leukaemia in the central nervous system. J Pathol 2020; 252:189-200. [PMID: 32686161 PMCID: PMC7540040 DOI: 10.1002/path.5510] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 06/14/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022]
Abstract
Despite current central nervous system-directed therapies for childhood B-cell precursor acute lymphoblastic leukaemia, relapse at this anatomical site still remains a challenging issue. Few reports have addressed the study of the specific cellular microenvironments which can promote the survival, quiescence, and therefore chemoresistance of B-cell precursor acute lymphoblastic leukaemia cells in the central nervous system. Herein, we showed by immunofluorescence and electron microscopy that in xenotransplanted mice, leukaemic cells infiltrate the connective tissue stroma of the choroid plexus, the brain structure responsible for the production of cerebrospinal fluid. The ultrastructural study also showed that leukaemia cells are able to migrate through blood vessels located in the choroid plexus stroma. In short-term co-cultures, leukaemic cells established strong interactions with human choroid plexus fibroblasts, mediated by an increased expression of ITGA4 (VLA-4)/ITGAL (LFA-1) and their ligands VCAM1/ICAM1. Upon contact with leukaemia cells, human choroid plexus fibroblasts acquired a cancer-associated fibroblast phenotype, with an increased expression of α-SMA and vimentin as well as pro-inflammatory factors. Human choroid plexus fibroblasts also have the capacity to reduce the proliferative index of leukaemic blasts and promote their survival and chemoresistance to methotrexate and cytarabine. The inhibition of VLA-4/VCAM-1 interactions using anti-VLA-4 antibodies, and the blockade of Notch signalling pathway by using a γ-secretase inhibitor partially restored chemotherapy sensitivity of leukaemia cells. We propose that the choroid plexus stroma constitutes a sanctuary for B-cell precursor acute lymphoblastic leukaemia cells in the central nervous system. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
| | - Jaris Valencia
- Department of Cell Biology, School of Medicine, Complutense University, Madrid, Spain
| | | | - África Gonzalez-Murillo
- Department of Paediatric Haematology and Oncology, Advanced Therapies Unit, Niño Jesús University Children's Hospital, Madrid, Spain
| | - Rosa Sacedón
- Department of Cell Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Eva Jiménez
- Department of Cell Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Manuel Ramírez
- Department of Paediatric Haematology and Oncology, Advanced Therapies Unit, Niño Jesús University Children's Hospital, Madrid, Spain
| | - Alberto Varas
- Department of Cell Biology, School of Medicine, Complutense University, Madrid, Spain
| | - Ángeles Vicente
- Department of Cell Biology, School of Medicine, Complutense University, Madrid, Spain
| |
Collapse
|
221
|
Francisco DMF, Marchetti L, Rodríguez-Lorenzo S, Frías-Anaya E, Figueiredo RM, Winter P, Romero IA, de Vries HE, Engelhardt B, Bruggmann R. Advancing brain barriers RNA sequencing: guidelines from experimental design to publication. Fluids Barriers CNS 2020; 17:51. [PMID: 32811511 PMCID: PMC7433166 DOI: 10.1186/s12987-020-00207-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND RNA sequencing (RNA-Seq) in its varied forms has become an indispensable tool for analyzing differential gene expression and thus characterization of specific tissues. Aiming to understand the brain barriers genetic signature, RNA seq has also been introduced in brain barriers research. This has led to availability of both, bulk and single-cell RNA-Seq datasets over the last few years. If appropriately performed, the RNA-Seq studies provide powerful datasets that allow for significant deepening of knowledge on the molecular mechanisms that establish the brain barriers. However, RNA-Seq studies comprise complex workflows that require to consider many options and variables before, during and after the proper sequencing process. MAIN BODY In the current manuscript, we build on the interdisciplinary experience of the European PhD Training Network BtRAIN ( https://www.btrain-2020.eu/ ) where bioinformaticians and brain barriers researchers collaborated to analyze and establish RNA-Seq datasets on vertebrate brain barriers. The obstacles BtRAIN has identified in this process have been integrated into the present manuscript. It provides guidelines along the entire workflow of brain barriers RNA-Seq studies starting from the overall experimental design to interpretation of results. Focusing on the vertebrate endothelial blood-brain barrier (BBB) and epithelial blood-cerebrospinal-fluid barrier (BCSFB) of the choroid plexus, we provide a step-by-step description of the workflow, highlighting the decisions to be made at each step of the workflow and explaining the strengths and weaknesses of individual choices made. Finally, we propose recommendations for accurate data interpretation and on the information to be included into a publication to ensure appropriate accessibility of the data and reproducibility of the observations by the scientific community. CONCLUSION Next generation transcriptomic profiling of the brain barriers provides a novel resource for understanding the development, function and pathology of these barrier cells, which is essential for understanding CNS homeostasis and disease. Continuous advancement and sophistication of RNA-Seq will require interdisciplinary approaches between brain barrier researchers and bioinformaticians as successfully performed in BtRAIN. The present guidelines are built on the BtRAIN interdisciplinary experience and aim to facilitate collaboration of brain barriers researchers with bioinformaticians to advance RNA-Seq study design in the brain barriers community.
Collapse
Affiliation(s)
- David M F Francisco
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Luca Marchetti
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Sabela Rodríguez-Lorenzo
- MS Center Amsterdam, Amsterdam Neuroscience, Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Eduardo Frías-Anaya
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Ricardo M Figueiredo
- GenXPro GmbH, Frankfurt/Main, Germany
- Johann Wolfgang Goethe University, Frankfurt/Main, Germany
| | | | - Ignacio Andres Romero
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Helga E de Vries
- MS Center Amsterdam, Amsterdam Neuroscience, Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland.
| |
Collapse
|
222
|
Fame RM, Lehtinen MK. Emergence and Developmental Roles of the Cerebrospinal Fluid System. Dev Cell 2020; 52:261-275. [PMID: 32049038 DOI: 10.1016/j.devcel.2020.01.027] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/14/2020] [Accepted: 01/24/2020] [Indexed: 12/21/2022]
Abstract
We summarize recent work illuminating how cerebrospinal fluid (CSF) regulates brain function. More than a protective fluid cushion and sink for waste, the CSF is an integral CNS component with dynamic and diverse roles emerging in parallel with the developing CNS. This review examines the current understanding about early CSF and its maturation and roles during CNS development and discusses open questions in the field. We focus on developmental changes in the ventricular system and CSF sources (including neural progenitors and choroid plexus). We also discuss concepts related to the development of fluid dynamics including flow, perivascular transport, drainage, and barriers.
Collapse
Affiliation(s)
- Ryann M Fame
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
223
|
Kratzer I, Ek J, Stolp H. The molecular anatomy and functions of the choroid plexus in healthy and diseased brain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183430. [PMID: 32750317 DOI: 10.1016/j.bbamem.2020.183430] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023]
Abstract
The choroid plexus (CP) is located in the ventricular system of the brain (one in each ventricle), and the CP epithelial cells form an important barrier between the blood and the cerebrospinal fluid (CSF). Their main function comprises CSF secretion, maintenance of brain homeostasis, signalling, and forming a neuroprotective barrier against harmful external and internal compounds. The CPs mature early and demonstrate expressional changes of barrier-specific genes and proteins related to location and developmental stage of the CP. Important proteins for the barrier function include tight junction proteins, numerous transporters and enzymes. Natural senescence leads to structural changes in the CP cells and reduced or loss of function, while further loss of CP function and changes in immune status may be relevant in neurodegenerative diseases such as Alzheimer's disease and Multiple Sclerosis. Neuroprotective genes expressed at CPs may be unexplored targets for new therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ingrid Kratzer
- FLUID Team, Lyon Neurosciences Research Center, INSERM U1028 CNRS UMR 5292, University Claude Bernard Lyon 1, 69008 Lyon, France; Friedensgasse 3, 8010 Graz, Austria.
| | - Joakim Ek
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Medicinaregatan 11, Box 432, 40530 Göteborg, Sweden.
| | - Helen Stolp
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London NW0 1TU, UK.
| |
Collapse
|
224
|
Kim H, Lim YM, Kim G, Lee EJ, Lee JH, Kim HW, Kim KK. Choroid plexus changes on magnetic resonance imaging in multiple sclerosis and neuromyelitis optica spectrum disorder. J Neurol Sci 2020; 415:116904. [DOI: 10.1016/j.jns.2020.116904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 01/16/2023]
|
225
|
Erb U, Hikel J, Meyer S, Ishikawa H, Worst TS, Nitschke K, Nuhn P, Porubsky S, Weiss C, Schroten H, Adam R, Karremann M. The Impact of Small Extracellular Vesicles on Lymphoblast Trafficking across the Blood-Cerebrospinal Fluid Barrier In Vitro. Int J Mol Sci 2020; 21:ijms21155491. [PMID: 32752027 PMCID: PMC7432056 DOI: 10.3390/ijms21155491] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023] Open
Abstract
Central nervous System (CNS) disease in pediatric acute lymphoblastic leukemia (ALL) is a major concern, but still, cellular mechanisms of CNS infiltration are elusive. The choroid plexus (CP) is a potential entry site, and, to some extent, invasion resembles CNS homing of lymphocytes during healthy state. Given exosomes may precondition target tissue, the present work aims to investigate if leukemia-derived exosomes contribute to a permissive phenotype of the blood-cerebrospinal fluid barrier (BCSFB). Leukemia-derived exosomes were isolated by ultracentrifugation from the cell lines SD-1, Nalm-6, and P12-Ichikawa (P12). Adhesion and uptake to CP epithelial cells and the significance on subsequent ALL transmigration across the barrier was studied in a human BCSFB in vitro model based on the HiBCPP cell line. The various cell lines markedly differed regarding exosome uptake to HiBCPP and biological significance. SD-1-derived exosomes associated to target cells unspecifically without detectable cellular effects. Whereas Nalm-6 and P12-derived exosomes incorporated by dynamin-dependent endocytosis, uptake in the latter could be diminished by integrin blocking. In addition, only P12-derived exosomes led to facilitated transmigration of the parental leukemia cells. In conclusion, we provide evidence that, to a varying extent, leukemia-derived exosomes may facilitate CNS invasion of ALL across the BCSFB without destruction of the barrier integrity.
Collapse
Affiliation(s)
- Ulrike Erb
- Department of Pediatrics, University Medical Center Mannheim, 68167 Mannheim, Germany; (U.E.); (J.H.); (S.M.); (H.S.); (R.A.)
| | - Julia Hikel
- Department of Pediatrics, University Medical Center Mannheim, 68167 Mannheim, Germany; (U.E.); (J.H.); (S.M.); (H.S.); (R.A.)
| | - Svenja Meyer
- Department of Pediatrics, University Medical Center Mannheim, 68167 Mannheim, Germany; (U.E.); (J.H.); (S.M.); (H.S.); (R.A.)
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8575, Japan;
| | - Thomas S. Worst
- Department of Urology and Urosurgery, University Medical Center Mannheim, 68167 Mannheim, Germany; (T.S.W.); (K.N.); (P.N.)
| | - Katja Nitschke
- Department of Urology and Urosurgery, University Medical Center Mannheim, 68167 Mannheim, Germany; (T.S.W.); (K.N.); (P.N.)
| | - Philipp Nuhn
- Department of Urology and Urosurgery, University Medical Center Mannheim, 68167 Mannheim, Germany; (T.S.W.); (K.N.); (P.N.)
| | - Stefan Porubsky
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, 55101 Mainz, Germany;
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, University Medical Center Mannheim, 68167 Mannheim, Germany;
| | - Horst Schroten
- Department of Pediatrics, University Medical Center Mannheim, 68167 Mannheim, Germany; (U.E.); (J.H.); (S.M.); (H.S.); (R.A.)
| | - Rüdiger Adam
- Department of Pediatrics, University Medical Center Mannheim, 68167 Mannheim, Germany; (U.E.); (J.H.); (S.M.); (H.S.); (R.A.)
| | - Michael Karremann
- Department of Pediatrics, University Medical Center Mannheim, 68167 Mannheim, Germany; (U.E.); (J.H.); (S.M.); (H.S.); (R.A.)
- Correspondence: ; Tel.: +49-621-383-2393
| |
Collapse
|
226
|
Jacob F, Pather SR, Huang WK, Wong SZH, Zhou H, Zhang F, Cubitt B, Chen CZ, Xu M, Pradhan M, Zhang DY, Zheng W, Bang AG, Song H, de A Torre JC, Ming GL. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.28.225151. [PMID: 32766575 PMCID: PMC7402032 DOI: 10.1101/2020.07.28.225151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Neurological complications are common in patients with COVID-19. While SARS-CoV-2, the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function are not well understood, and experimental models using human brain cells are urgently needed. Here we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found modest numbers of infected neurons and astrocytes, but greater infection of choroid plexus epithelial cells. We optimized a protocol to generate choroid plexus organoids from hiPSCs, which revealed productive SARS-CoV-2 infection that leads to increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our results provide evidence for SARS-CoV-2 neurotropism and support use of hiPSC-derived brain organoids as a platform to investigate the cellular susceptibility, disease mechanisms, and treatment strategies for SARS-CoV-2 infection.
Collapse
|
227
|
Pellegrini L, Bonfio C, Chadwick J, Begum F, Skehel M, Lancaster MA. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 2020; 369:eaaz5626. [PMID: 32527923 PMCID: PMC7116154 DOI: 10.1126/science.aaz5626] [Citation(s) in RCA: 273] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 05/22/2020] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is a vital liquid, providing nutrients and signaling molecules and clearing out toxic by-products from the brain. The CSF is produced by the choroid plexus (ChP), a protective epithelial barrier that also prevents free entry of toxic molecules or drugs from the blood. Here, we establish human ChP organoids with a selective barrier and CSF-like fluid secretion in self-contained compartments. We show that this in vitro barrier exhibits the same selectivity to small molecules as the ChP in vivo and that ChP-CSF organoids can predict central nervous system (CNS) permeability of new compounds. The transcriptomic and proteomic signatures of ChP-CSF organoids reveal a high degree of similarity to the ChP in vivo. Finally, the intersection of single-cell transcriptomics and proteomic analysis uncovers key human CSF components produced by previously unidentified specialized epithelial subtypes.
Collapse
Affiliation(s)
- Laura Pellegrini
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Claudia Bonfio
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Jessica Chadwick
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Farida Begum
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Mark Skehel
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
228
|
Affiliation(s)
| | - Fiona Doetsch
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
229
|
Kaiser K, Bryja V. Choroid Plexus: The Orchestrator of Long-Range Signalling Within the CNS. Int J Mol Sci 2020; 21:E4760. [PMID: 32635478 PMCID: PMC7369786 DOI: 10.3390/ijms21134760] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 06/26/2020] [Accepted: 07/02/2020] [Indexed: 01/24/2023] Open
Abstract
Cerebrospinal fluid (CSF) is the liquid that fills the brain ventricles. CSF represents not only a mechanical brain protection but also a rich source of signalling factors modulating diverse processes during brain development and adulthood. The choroid plexus (CP) is a major source of CSF and as such it has recently emerged as an important mediator of extracellular signalling within the brain. Growing interest in the CP revealed its capacity to release a broad variety of bioactive molecules that, via CSF, regulate processes across the whole central nervous system (CNS). Moreover, CP has been also recognized as a sensor, responding to altered composition of CSF associated with changes in the patterns of CNS activity. In this review, we summarize the recent advances in our understanding of the CP as a signalling centre that mediates long-range communication in the CNS. By providing a detailed account of the CP secretory repertoire, we describe how the CP contributes to the regulation of the extracellular environment-in the context of both the embryonal as well as the adult CNS. We highlight the role of the CP as an important regulator of CNS function that acts via CSF-mediated signalling. Further studies of CP-CSF signalling hold the potential to provide key insights into the biology of the CNS, with implications for better understanding and treatment of neuropathological conditions.
Collapse
Affiliation(s)
- Karol Kaiser
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Vitezslav Bryja
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| |
Collapse
|
230
|
Saul J, Hutchins E, Reiman R, Saul M, Ostrow LW, Harris BT, Van Keuren-Jensen K, Bowser R, Bakkar N. Global alterations to the choroid plexus blood-CSF barrier in amyotrophic lateral sclerosis. Acta Neuropathol Commun 2020; 8:92. [PMID: 32586411 PMCID: PMC7318439 DOI: 10.1186/s40478-020-00968-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/15/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) is a highly vascularized structure located in the ventricles that forms the blood-CSF barrier (BCSFB) and separates the blood from the cerebrospinal fluid (CSF). In addition to its role as a physical barrier, the CP functions in CSF secretion, transport of nutrients into the central nervous system (CNS) and a gated point of entry of circulating immune cells into the CNS. Aging and neurodegeneration have been reported to affect CP morphology and function and increase protein leakage from blood to the CSF. Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease associated with both upper and lower motor neuron loss, as well as altered proteomic and metabolomic signatures in the CSF. The role of the BCSFB and the CP in ALS is unknown. Here we describe a transcriptomic and ultrastructural analysis of BCSFB and CP alterations in human postmortem tissues from ALS and non-neurologic disease controls. ALS-CP exhibited widespread disruptions in tight junctional components of the CP epithelial layer and vascular integrity. In addition, we detected loss of pericytes around ALS blood vessels, accompanied by activation of platelet aggregation markers vWF and Fibrinogen, reminiscent of vascular injury. To investigate the immune component of ALS-CP, we conducted a comprehensive analysis of cytokines and chemokine panels in CP lysates and found a significant down-regulation of M-CSF and V-CAM1 in ALS, as well as up-regulation of VEGF-A protein. This phenotype was accompanied by an infiltration of MERTK positive macrophages into the parenchyma of the ALS-CP when compared to controls. Taken together, we demonstrate widespread structural and functional disruptions of the BCSFB in human ALS increasing our understanding of the disease pathology and identifying potential new targets for ALS therapeutic development.
Collapse
|
231
|
Changes in the choroid plexuses and brain barriers associated with high blood pressure and ageing. NEUROLOGÍA (ENGLISH EDITION) 2020; 37:371-382. [DOI: 10.1016/j.nrleng.2020.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/11/2018] [Indexed: 01/04/2023] Open
|
232
|
Scharff BFSS, Modvig S, Marquart HV, Christensen C. Integrin-Mediated Adhesion and Chemoresistance of Acute Lymphoblastic Leukemia Cells Residing in the Bone Marrow or the Central Nervous System. Front Oncol 2020; 10:775. [PMID: 32528884 PMCID: PMC7256886 DOI: 10.3389/fonc.2020.00775] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/21/2020] [Indexed: 12/18/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is the most common cancer in childhood. Despite a significantly improved prognosis over the last decade with a 5-years survival rate of ~90%, treatment-related morbidity remains substantial and relapse occurs in 10–15% of patients (1). The most common site of relapse is the bone marrow, but early colonization and subsequent reoccurrence of the disease in the central nervous system (CNS) also occurs. Integrins are a family of cell surface molecules with a longstanding history in cancer cell adherence, migration and metastasis. In chronic lymphoblastic leukemia (CLL), the VLA-4 integrin has been acknowledged as a prognostic marker and mounting evidence indicates that this and other integrins may also play a role in acute leukemia, including ALL. Importantly, integrins engage in anti-apoptotic signaling when binding extracellular molecules that are enriched in the bone marrow and CNS microenvironments. Here, we review the current evidence for a role of integrins in the adherence of ALL cells within the bone marrow and their colonization of the CNS, with particular emphasis on mechanisms adding to cancer cell survival and chemoresistance.
Collapse
Affiliation(s)
| | - Signe Modvig
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Hanne Vibeke Marquart
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Christensen
- Department of Clinical Immunology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
233
|
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood-cerebrospinal fluid barrier in disease. Fluids Barriers CNS 2020; 17:35. [PMID: 32375819 PMCID: PMC7201396 DOI: 10.1186/s12987-020-00196-2] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/22/2020] [Indexed: 01/08/2023] Open
Abstract
The choroid plexus (CP) forming the blood-cerebrospinal fluid (B-CSF) barrier is among the least studied structures of the central nervous system (CNS) despite its clinical importance. The CP is an epithelio-endothelial convolute comprising a highly vascularized stroma with fenestrated capillaries and a continuous lining of epithelial cells joined by apical tight junctions (TJs) that are crucial in forming the B-CSF barrier. Integrity of the CP is critical for maintaining brain homeostasis and B-CSF barrier permeability. Recent experimental and clinical research has uncovered the significance of the CP in the pathophysiology of various diseases affecting the CNS. The CP is involved in penetration of various pathogens into the CNS, as well as the development of neurodegenerative (e.g., Alzheimer´s disease) and autoimmune diseases (e.g., multiple sclerosis). Moreover, the CP was shown to be important for restoring brain homeostasis following stroke and trauma. In addition, new diagnostic methods and treatment of CP papilloma and carcinoma have recently been developed. This review describes and summarizes the current state of knowledge with regard to the roles of the CP and B-CSF barrier in the pathophysiology of various types of CNS diseases and sets up the foundation for further avenues of research.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne´s University Hospital Brno, Pekařská 53, CZ-656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Lucie Kubíčková
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Petr Dubový
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, CZ-625 00, Brno, Czech Republic.
| |
Collapse
|
234
|
Petersen N, Torz L, Jensen KHR, Hjortø GM, Spiess K, Rosenkilde MM. Three-Dimensional Explant Platform for Studies on Choroid Plexus Epithelium. Front Cell Neurosci 2020; 14:108. [PMID: 32431599 PMCID: PMC7214744 DOI: 10.3389/fncel.2020.00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
The choroid plexus (CP) plays a major role in controlling the entry of substances and immune cells into the brain as it forms the blood-cerebrospinal fluid barrier (BCSFB) in the brain ventricles. Dysregulated immune cell trafficking through the epithelial cell (EC) layer of CP is central for the pathogenesis of infectious diseases in the brain and many neurodegenerative disorders. In vitro studies elucidating the function of the CP have so far been limited to the monolayer culture of CP ECs. To mimic immune cell migration across the CP barrier, a three-dimensional model would be advantageous. Here, we present an in vitro platform for studies of the immune cell trafficking based on CP explants/organoids. The explants were generated from fragments of mouse CPs in Matrigel, where the cells formed luminal spaces and could be maintained in culture for at least 8 weeks. We demonstrate expression of the major CP markers in the explants, including transthyretin and aquaporin 1 as well as ZO1 and ICAM-1, indicating a capacity for secretion of cerebrospinal fluid (CSF) and presence of tight junctions. CP explants displayed CP-like cell polarization and formed an intact EC barrier. We also show that the expression of transthyretin, transferrin, occludin and other genes associated with various functions of CP was maintained in the explants at similar levels as in native CP. By using dendritic cells and neutrophils, we show that the migration activity of immune cells and their interactions with CP epithelium can be monitored by microscopy. Thereby, the three-dimensional CP explant model can be used to study the cellular and molecular mechanisms mediating immune cell migration through CP epithelium and other functions of choroid EC. We propose this platform can potentially be used in the search for therapeutic targets and intervention strategies to improve control of (drug) substances and (immune) cell entry into the central nervous system.
Collapse
Affiliation(s)
- Natalia Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lola Torz
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kristian H Reveles Jensen
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gertrud Malene Hjortø
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katja Spiess
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
235
|
Ansari KI, Bhan A, Liu X, Chen MY, Jandial R. Astrocytic IGFBP2 and CHI3L1 in cerebrospinal fluid drive cortical metastasis of HER2+breast cancer. Clin Exp Metastasis 2020; 37:401-412. [PMID: 32279122 DOI: 10.1007/s10585-020-10032-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 04/02/2020] [Indexed: 12/17/2022]
Abstract
The brain is often reported as the first site of recurrence among breast cancer patients overexpressing human epidermal growth factor receptor 2 (HER2). Although most HER2+tumors metastasize to the subcortical region of the brain, a subset develops in the cortical region. We hypothesize that factors in cerebrospinal fluid (CSF) play a critical role in the adaptation, proliferation, and establishment of cortical metastases. We established novel cell lines using patient biopsies to model breast cancer cortical and subcortical metastases. We assessed the localization and growth of these cells in vivo and proliferation and apoptosis in vitro under various conditions. Proteomic analysis of human CSF identified astrocyte-derived factors that support the proliferation of cortical metastases, and we used neutralizing antibodies to test the effects of inhibiting these factors both in vivo and in vitro. The cortical breast cancer brain metastatic cells exhibited greater proliferation than subcortical breast cancer brain metastatic cells in CSF containing several growth factors that nourish both the CNS and tumor cells. Specifically, the astrocytic paracrine factors IGFBP2 and CHI3LI promoted the proliferation of cortical metastatic cells and the formation of metastatic lesions. Disruption of these factors suppressed astrocyte-tumor cell interactions in vitro and the growth of cortical tumors in vivo. Our findings suggest that inhibition of IGFBP2 and CHI3LI signaling, in addition to existing treatment modalities, may be an effective therapeutic strategy targeting breast cancer cortical metastasis.
Collapse
Affiliation(s)
- Khairul I Ansari
- Division of Neurosurgery, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
- Celcuity, 16305 36th Ave N, Suite 100, Minneapolis, MN, 55446, USA.
| | - Arunoday Bhan
- Division of Neurosurgery, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Xueli Liu
- Division of Biostatistics, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Mike Y Chen
- Division of Neurosurgery, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA
| | - Rahul Jandial
- Division of Neurosurgery, Beckman Research Institute, City of Hope, 1500 E. Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
236
|
Duarte AC, Rosado T, Costa AR, Santos J, Gallardo E, Quintela T, Ishikawa H, Schwerk C, Schroten H, Gonçalves I, Santos CRA. The bitter taste receptor TAS2R14 regulates resveratrol transport across the human blood-cerebrospinal fluid barrier. Biochem Pharmacol 2020; 177:113953. [PMID: 32272108 DOI: 10.1016/j.bcp.2020.113953] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 02/06/2023]
Abstract
The regulation of transport mechanisms at brain barriers must be thoroughly understood, so that novel strategies for improving drug delivery to the brain can be designed. The blood-cerebrospinal fluid barrier (BCSFB) established by the choroid plexus (CP) epithelial cells has been poorly studied in this regard despite its relevance for the protection of the central nervous system (CNS). This study assessed the role of bitter taste receptors (TAS2Rs), TAS2R14 and TAS2R39, in the transport of resveratrol across CP epithelial cells using an in vitro model of the human BCSFB. Both receptors are expressed in human CP cells and known to bind resveratrol. First, Ca2+ imaging assays demonstrated that resveratrol specifically activates the TAS2R14 receptor, but not TAS2R39, in these human CP epithelial cells. Then, we proceeded with permeation studies that showed resveratrol can cross the human BCSFB, from the blood to the CSF side and that TAS2R14 knockdown decreased the transport of resveratrol across these cells. Conversely, inhibition of efflux transporters ABCC1, ABCC4 or ABCG2 also restrained the transport of resveratrol across these cells. Interestingly, resveratrol upregulated the expression of ABCG2 located at the apical membrane of the cells via TAS2R14, whereas ABCC1 and ABCC4 at the basolateral membrane of the cells were not affected. Altogether, our study demonstrates that the BCSFB is a gateway for resveratrol entrance into the CNS and that the receptor TAS2R14 regulates its transport by regulating the action of efflux transporters at CP epithelial cells.
Collapse
Affiliation(s)
- Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Tiago Rosado
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - José Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Eugénia Gallardo
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal; Laboratório de Fármaco-Toxicologia, UBIMedical, Universidade da Beira Interior, Estrada Municipal 506, 6200-284 Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.
| |
Collapse
|
237
|
Duarte AC, Santos J, Costa AR, Ferreira CL, Tomás J, Quintela T, Ishikawa H, Schwerk C, Schroten H, Ferrer I, Carro E, Gonçalves I, Santos CRA. Bitter taste receptors profiling in the human blood-cerebrospinal fluid-barrier. Biochem Pharmacol 2020; 177:113954. [PMID: 32251676 DOI: 10.1016/j.bcp.2020.113954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/31/2020] [Indexed: 01/01/2023]
Abstract
The choroid plexus (CP) epithelial cells establish an important blood-brain interface, the blood-cerebrospinal fluid barrier (BCSFB), which constitutes a complementary gateway to the blood-brain-barrier for the entrance of several molecules into the central nervous system (CNS). However, the mechanisms that operate at the BCSFB to regulate the molecular traffic are still poorly understood. The taste signalling machinery, present in many extra-oral tissues, is involved in the chemical sensing of the composition of body fluids. We have identified this pathway in rat CP and hypothesised that it could also be present in the human BCSFB. In this study, we characterised the bitter taste receptors (TAS2Rs) expression profiling in human CP by combining data retrieved from available databases of the human CP transcriptome with its expression analysis in a human CP cell line and immunohistochemistry of human CP sections from men and women. TAS2R4, 5, 14 and 39 expression was confirmed in human CP tissue by immunohistochemistry and in HIBCPP cells by RT-PCR, immunofluorescence and Western blot. Moreover, the presence of downstream effector proteins GNAT3, PLCβ2 and TRPM5 was also detected in HIBCPP cells. Then, we demonstrated that HIBCPP cells respond to chloramphenicol via TAS2R39 and to quercetin via TAS2R14. Our findings support an active role of TAS2Rs at the human BCSFB, as surveyors of the bloodstream and CSF compositions. These findings open new avenues for studies on the uptake of relevant compounds for targeted therapies of the CNS.
Collapse
Affiliation(s)
- Ana C Duarte
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - José Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ana R Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Catarina L Ferreira
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, Department of Pediatrics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Isidro Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona, Neuropathology, Bellvitge University Hospital-IDIBELL, CIBERNED, Hospitalet de Llobregat, Spain
| | - Eva Carro
- Instituto de Investigacion Hospital 12 de Octubre (i+12), Network Center for Biomedical Research in Neurodegenerative Diseases. CIBERNED, Madrid, Spain
| | - Isabel Gonçalves
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Cecília R A Santos
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
238
|
Rodríguez-Lorenzo S, Ferreira Francisco DM, Vos R, van Het Hof B, Rijnsburger M, Schroten H, Ishikawa H, Beaino W, Bruggmann R, Kooij G, de Vries HE. Altered secretory and neuroprotective function of the choroid plexus in progressive multiple sclerosis. Acta Neuropathol Commun 2020; 8:35. [PMID: 32192527 PMCID: PMC7083003 DOI: 10.1186/s40478-020-00903-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
The choroid plexus (CP) is a key regulator of the central nervous system (CNS) homeostasis through its secretory, immunological and barrier properties. Accumulating evidence suggests that the CP plays a pivotal role in the pathogenesis of multiple sclerosis (MS), but the underlying mechanisms remain largely elusive. To get a comprehensive view on the role of the CP in MS, we studied transcriptomic alterations of the human CP in progressive MS and non-neurological disease controls using RNA sequencing. We identified 17 genes with significantly higher expression in progressive MS patients relative to that in controls. Among them is the newly described long non-coding RNA HIF1A-AS3. Next to that, we uncovered disease-affected pathways related to hypoxia, secretion and neuroprotection, while only subtle immunological and no barrier alterations were observed. In an ex vivo CP explant model, a subset of the upregulated genes responded in a similar way to hypoxic conditions. Our results suggest a deregulation of the Hypoxia-Inducible Factor (HIF)-1 pathway in progressive MS CP. Importantly, cerebrospinal fluid levels of the hypoxia-responsive secreted peptide PAI-1 were higher in MS patients with high disability relative to those with low disability. These findings provide for the first time a complete overview of the CP transcriptome in health and disease, and suggest that the CP environment becomes hypoxic in progressive MS patients, highlighting the altered secretory and neuroprotective properties of the CP under neuropathological conditions. Together, these findings provide novel insights to target the CP and promote the secretion of neuroprotective factors into the CNS of progressive MS patients.
Collapse
Affiliation(s)
- Sabela Rodríguez-Lorenzo
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | | | - Ricardo Vos
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Bert van Het Hof
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Merel Rijnsburger
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Manheim, Medical Faculty Manheim, Heidelberg University, Manheim, Germany
| | - Hiroshi Ishikawa
- Laboratory of Clinical Regenerative Medicine, Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Wissam Beaino
- Department of Radiology & Nuclear Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| | - Rémy Bruggmann
- Interfaculty Bioinformatics Unit and Swiss Institute of Bioinformatics, University of Bern, Bern, Switzerland
| | - Gijs Kooij
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands
| | - Helga E de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, de Boelelaan 1117, 1007 MB, Amsterdam, Netherlands.
- Medical Biochemistry, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, Amsterdam, 1105 AZ, the Netherlands.
| |
Collapse
|
239
|
Karimy JK, Reeves BC, Damisah E, Duy PQ, Antwi P, David W, Wang K, Schiff SJ, Limbrick DD, Alper SL, Warf BC, Nedergaard M, Simard JM, Kahle KT. Inflammation in acquired hydrocephalus: pathogenic mechanisms and therapeutic targets. Nat Rev Neurol 2020; 16:285-296. [PMID: 32152460 DOI: 10.1038/s41582-020-0321-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2020] [Indexed: 12/11/2022]
Abstract
Hydrocephalus is the most common neurosurgical disorder worldwide and is characterized by enlargement of the cerebrospinal fluid (CSF)-filled brain ventricles resulting from failed CSF homeostasis. Since the 1840s, physicians have observed inflammation in the brain and the CSF spaces in both posthaemorrhagic hydrocephalus (PHH) and postinfectious hydrocephalus (PIH). Reparative inflammation is an important protective response that eliminates foreign organisms, damaged cells and physical irritants; however, inappropriately triggered or sustained inflammation can respectively initiate or propagate disease. Recent data have begun to uncover the molecular mechanisms by which inflammation - driven by Toll-like receptor 4-regulated cytokines, immune cells and signalling pathways - contributes to the pathogenesis of hydrocephalus. We propose that therapeutic approaches that target inflammatory mediators in both PHH and PIH could address the multiple drivers of disease, including choroid plexus CSF hypersecretion, ependymal denudation, and damage and scarring of intraventricular and parenchymal (glia-lymphatic) CSF pathways. Here, we review the evidence for a prominent role of inflammation in the pathogenic mechanism of PHH and PIH and highlight promising targets for therapeutic intervention. Focusing research efforts on inflammation could shift our view of hydrocephalus from that of a lifelong neurosurgical disorder to that of a preventable neuroinflammatory condition.
Collapse
Affiliation(s)
- Jason K Karimy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Eyiyemisi Damisah
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Prince Antwi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Wyatt David
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Kevin Wang
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Steven J Schiff
- Departments of Neurosurgery, Engineering Science & Mechanics, and Physics; Center for Neural Engineering, The Pennsylvania State University, University Park, PA, USA
| | - David D Limbrick
- Departments of Neurosurgery and Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Seth L Alper
- Division of Nephrology and Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Benjamin C Warf
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, USA.,Center for Translational Neuromedicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kristopher T Kahle
- Departments of Neurosurgery, Pediatrics, and Cellular & Molecular Physiology and Yale-Rockefeller NIH Centers for Mendelian Genomics, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
240
|
Dixon GA, Pérez CA. Multiple Sclerosis and the Choroid Plexus: Emerging Concepts of Disease Immunopathophysiology. Pediatr Neurol 2020; 103:65-75. [PMID: 31780202 DOI: 10.1016/j.pediatrneurol.2019.08.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/11/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND The coexistence of multiple sclerosis and intracranial neoplasms is very rare, and whether this occurrence can be explained by a causal relationship or by coincidence remains a matter of debate. Possible roles of the choroid plexus as a site of tumor cell invasion and lymphocyte infiltration into the central nervous system have been hypothesized in recent studies. METHODS We describe a 13-year-old boy with concurrent multiple sclerosis and choroid plexus papilloma, then review the published literature with a focus on the pathophysiologic mechanisms of neuroinflammation in multiple sclerosis and the potential role of the choroid plexus in this process. RESULTS A growing body of evidence suggests that both physical and functional dysregulation of the choroid plexus may be a common mechanism underlying the pathophysiology of central nervous system inflammation. CONCLUSIONS In multiple sclerosis, the choroid plexus could act as a gateway for lymphocyte entry from the peripheral blood into the central nervous system at its earlier stages. However, future studies are needed to identify whether structural alterations of the choroid plexus play a role in the pathophysiology of multiple sclerosis and to provide suitable models to determine their consequences.
Collapse
Affiliation(s)
- Grant A Dixon
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Carlos A Pérez
- Division of Multiple Sclerosis and Neuroimmunology, Department of Neurology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
241
|
Mottahedin A, Blondel S, Ek J, Leverin AL, Svedin P, Hagberg H, Mallard C, Ghersi-Egea JF, Strazielle N. N-acetylcysteine inhibits bacterial lipopeptide-mediated neutrophil transmigration through the choroid plexus in the developing brain. Acta Neuropathol Commun 2020; 8:4. [PMID: 31973769 PMCID: PMC6979079 DOI: 10.1186/s40478-019-0877-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/23/2019] [Indexed: 12/17/2022] Open
Abstract
The etiology of neurological impairments associated with prematurity and other perinatal complications often involves an infectious or pro-inflammatory component. The use of antioxidant molecules have proved useful to protect the neonatal brain from injury. The choroid plexuses-CSF system shapes the central nervous system response to inflammation at the adult stage, but little is known on the neuroimmune interactions that take place at the choroidal blood-CSF barrier during development. We previously described that peripheral administration to neonatal mice of the TLR2 ligand PAM3CSK4 (P3C), a prototypic Gram-positive bacterial lipopeptide, induces the migration of innate immune cells to the CSF. Here we showed in neonatal rats exposed to P3C that the migration of neutrophils into the CSF, which occurred through the choroid plexuses, is abolished following administration of the antioxidant drug N-acetylcysteine. Combining light sheet microscopy imaging of choroid plexus, a differentiated model of the blood-CSF barrier, and multiplex cytokine assays, we showed that the choroidal epithelium responds to the bacterial insult by a specific pattern of cytokine secretion, leading to a selective accumulation of neutrophils in the choroid plexus and to their trafficking into CSF. N-acetylcysteine acted by blocking neutrophil migration across both the endothelium of choroidal stromal vessels and the epithelium forming the blood-CSF barrier, without interfering with neutrophil blood count, neutrophil tropism for choroid plexus, and choroidal chemokine-driven chemotaxis. N-acetylcysteine reduced the injury induced by hypoxia-ischemia in P3C-sensitized neonatal rats. Overall, the data show that a double endothelial and epithelial check point controls the transchoroidal migration of neutrophils into the developing brain. They also point to the efficacy of N-acetylcysteine in reducing the deleterious effects of inflammation-associated perinatal injuries by a previously undescribed mechanism, i.e. the inhibition of innate immune cell migration across the choroid plexuses, without interfering with the systemic inflammatory response to infection.
Collapse
|
242
|
Thomas R, Wang W, Su DM. Contributions of Age-Related Thymic Involution to Immunosenescence and Inflammaging. IMMUNITY & AGEING 2020; 17:2. [PMID: 31988649 PMCID: PMC6971920 DOI: 10.1186/s12979-020-0173-8] [Citation(s) in RCA: 257] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/02/2020] [Indexed: 01/10/2023]
Abstract
Immune system aging is characterized by the paradox of immunosenescence (insufficiency) and inflammaging (over-reaction), which incorporate two sides of the same coin, resulting in immune disorder. Immunosenescence refers to disruption in the structural architecture of immune organs and dysfunction in immune responses, resulting from both aged innate and adaptive immunity. Inflammaging, described as a chronic, sterile, systemic inflammatory condition associated with advanced age, is mainly attributed to somatic cellular senescence-associated secretory phenotype (SASP) and age-related autoimmune predisposition. However, the inability to reduce senescent somatic cells (SSCs), because of immunosenescence, exacerbates inflammaging. Age-related adaptive immune system deviations, particularly altered T cell function, are derived from age-related thymic atrophy or involution, a hallmark of thymic aging. Recently, there have been major developments in understanding how age-related thymic involution contributes to inflammaging and immunosenescence at the cellular and molecular levels, including genetic and epigenetic regulation, as well as developments of many potential rejuvenation strategies. Herein, we discuss the research progress uncovering how age-related thymic involution contributes to immunosenescence and inflammaging, as well as their intersection. We also describe how T cell adaptive immunity mediates inflammaging and plays a crucial role in the progression of age-related neurological and cardiovascular diseases, as well as cancer. We then briefly outline the underlying cellular and molecular mechanisms of age-related thymic involution, and finally summarize potential rejuvenation strategies to restore aged thymic function.
Collapse
Affiliation(s)
- Rachel Thomas
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Weikan Wang
- Cell Biology, Immunology, and Microbiology Graduate Program, Graduate School of Biomedical Sciences, Fort Worth, Texas 76107 USA
| | - Dong-Ming Su
- 2Department of Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107 USA
| |
Collapse
|
243
|
Gomez-Zepeda D, Taghi M, Scherrmann JM, Decleves X, Menet MC. ABC Transporters at the Blood-Brain Interfaces, Their Study Models, and Drug Delivery Implications in Gliomas. Pharmaceutics 2019; 12:pharmaceutics12010020. [PMID: 31878061 PMCID: PMC7022905 DOI: 10.3390/pharmaceutics12010020] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/22/2022] Open
Abstract
Drug delivery into the brain is regulated by the blood-brain interfaces. The blood-brain barrier (BBB), the blood-cerebrospinal fluid barrier (BCSFB), and the blood-arachnoid barrier (BAB) regulate the exchange of substances between the blood and brain parenchyma. These selective barriers present a high impermeability to most substances, with the selective transport of nutrients and transporters preventing the entry and accumulation of possibly toxic molecules, comprising many therapeutic drugs. Transporters of the ATP-binding cassette (ABC) superfamily have an important role in drug delivery, because they extrude a broad molecular diversity of xenobiotics, including several anticancer drugs, preventing their entry into the brain. Gliomas are the most common primary tumors diagnosed in adults, which are often characterized by a poor prognosis, notably in the case of high-grade gliomas. Therapeutic treatments frequently fail due to the difficulty of delivering drugs through the brain barriers, adding to diverse mechanisms developed by the cancer, including the overexpression or expression de novo of ABC transporters in tumoral cells and/or in the endothelial cells forming the blood-brain tumor barrier (BBTB). Many models have been developed to study the phenotype, molecular characteristics, and function of the blood-brain interfaces as well as to evaluate drug permeability into the brain. These include in vitro, in vivo, and in silico models, which together can help us to better understand their implication in drug resistance and to develop new therapeutics or delivery strategies to improve the treatment of pathologies of the central nervous system (CNS). In this review, we present the principal characteristics of the blood-brain interfaces; then, we focus on the ABC transporters present on them and their implication in drug delivery; next, we present some of the most important models used for the study of drug transport; finally, we summarize the implication of ABC transporters in glioma and the BBTB in drug resistance and the strategies to improve the delivery of CNS anticancer drugs.
Collapse
Affiliation(s)
- David Gomez-Zepeda
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| | - Méryam Taghi
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Jean-Michel Scherrmann
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
| | - Xavier Decleves
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Biologie du médicament et toxicologie, Hôpital Cochin, AP HP, 75006 Paris, France
| | - Marie-Claude Menet
- Inserm, UMR-S 1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France; (M.T.); (J.-M.S.); (X.D.)
- Sorbonne Paris Cité, Université Paris Descartes, 75006 Paris, France
- Sorbonne Paris Cité, Université Paris Diderot, 75013 Paris, France
- UF Hormonologie adulte, Hôpital Cochin, AP HP, 75006 Paris, France
- Correspondence: (D.G.-Z.); (M.-C.M.)
| |
Collapse
|
244
|
Charabati M, Rabanel JM, Ramassamy C, Prat A. Overcoming the Brain Barriers: From Immune Cells to Nanoparticles. Trends Pharmacol Sci 2019; 41:42-54. [PMID: 31839374 DOI: 10.1016/j.tips.2019.11.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/04/2023]
Abstract
Nanoparticulate carriers, often referred to as nanoparticles (NPs), represent an important pharmacological advance for drug protection and tissue-specific drug delivery. Accessing the central nervous system (CNS), however, is a complex process regulated by mainly three brain barriers. While some leukocyte (i.e., immune cell) subsets are equipped with the adequate molecular machinery to infiltrate the CNS in physiological and/or pathological contexts, the successful delivery of NPs into the CNS remains hindered by the tightness of the brain barriers. Here, we present an overview of the three major brain barriers and the mechanisms allowing leukocytes to migrate across each of them. We subsequently review different immune-inspired and -mediated strategies to deliver NPs into the CNS. Finally, we discuss the prospect of exploiting leukocyte trafficking mechanisms for further progress.
Collapse
Affiliation(s)
- Marc Charabati
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada
| | - Jean-Michel Rabanel
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531, Boulevard des Prairies, Laval, QC, Canada
| | - Charles Ramassamy
- INRS, Centre Armand-Frappier Santé Biotechnologie, 531, Boulevard des Prairies, Laval, QC, Canada.
| | - Alexandre Prat
- Department of Neuroscience, Faculty of Medicine, Université de Montréal, and Neuroimmunology Unit, Centre de Recherche du CHUM (CRCHUM), Montréal, QC, Canada.
| |
Collapse
|
245
|
Talhada D, Costa-Brito AR, Duarte AC, Costa AR, Quintela T, Tomás J, Gonçalves I, Santos CRA. The choroid plexus: Simple structure, complex functions. J Neurosci Res 2019; 98:751-753. [PMID: 31825126 DOI: 10.1002/jnr.24571] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Daniela Talhada
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal.,Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, Sweden
| | - Ana Raquel Costa-Brito
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Catarina Duarte
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Ana Raquel Costa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Telma Quintela
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Joana Tomás
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | - Isabel Gonçalves
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Covilhã, Portugal
| | | |
Collapse
|
246
|
Wiatr M, Stump-Guthier C, Latorre D, Uhlig S, Weiss C, Ilonen J, Engelhardt B, Ishikawa H, Schwerk C, Schroten H, Tenenbaum T, Rudolph H. Distinct migratory pattern of naive and effector T cells through the blood-CSF barrier following Echovirus 30 infection. J Neuroinflammation 2019; 16:232. [PMID: 31752904 PMCID: PMC6868812 DOI: 10.1186/s12974-019-1626-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023] Open
Abstract
Background Echovirus 30 (E-30) is one of the most frequently isolated pathogens in aseptic meningitis worldwide. To gain access to the central nervous system (CNS), E-30 and immune cells have to cross one of the two main barriers of the CNS, the epithelial blood–cerebrospinal fluid barrier (BCSFB) or the endothelial blood–brain barrier (BBB). In an in vitro model of the BCSFB, it has been shown that E-30 can infect human immortalized brain choroid plexus papilloma (HIBCPP) cells. Methods In this study we investigated the migration of different T cell subpopulations, naive and effector T cells, through HIBCPP cells during E-30 infection. Effects of E-30 infection and the migration process were evaluated via immunofluorescence and flow cytometry analysis, as well as transepithelial resistance and dextran flux measurement. Results Th1 effector cells and enterovirus-specific effector T cells migrated through HIBCPP cells more efficiently than naive CD4+ T cells following E-30 infection of HIBCPP cells. Among the different naive T cell populations, CD8+ T cells crossed the E-30-infected HIBCPP cell layer in a significantly higher number than CD4+ T cells. A large amount of effector T cells also remained attached to the basolateral side of the HIBCPP cells compared with naive T cells. Analysis of HIBCPP barrier function showed significant alteration after E-30 infection and trans- as well as paracellular migration of T cells independent of the respective subpopulation. Morphologic analysis of migrating T cells revealed that a polarized phenotype was induced by the chemokine CXCL12, but reversed to a round phenotype after E-30 infection. Further characterization of migrating Th1 effector cells revealed a downregulation of surface adhesion proteins such as LFA-1 PSGL-1, CD44, and CD49d. Conclusion Taken together these results suggest that naive CD8+ and Th1 effector cells are highly efficient to migrate through the BCSFB in an inflammatory environment. The T cell phenotype is modified during the migration process through HIBCPP cells.
Collapse
Affiliation(s)
- Marie Wiatr
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Carolin Stump-Guthier
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Daniela Latorre
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, 8093, Zurich, Switzerland
| | - Stefanie Uhlig
- Flowcore Mannheim, Ludolf-Krehl-Strasse 13 - 17, 68167, Mannheim, Germany
| | - Christel Weiss
- Institute of Medical Statistics and Biomathematics, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, and Clinical Microbiology, Turku University Hospital, University of Turku, Turku, Finland
| | | | - Hiroshi Ishikawa
- Department of NDU Life Sciences, School of Life Dentistry, Nippon Dental University, Tokyo, Japan
| | - Christian Schwerk
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Tobias Tenenbaum
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Henriette Rudolph
- Pediatric Infectious Diseases, University Children's Hospital Mannheim, Medical Faculty Mannheim, Heidelberg University, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
247
|
Erb U, Schwerk C, Schroten H, Karremann M. Review of functional in vitro models of the blood-cerebrospinal fluid barrier in leukaemia research. J Neurosci Methods 2019; 329:108478. [PMID: 31669338 DOI: 10.1016/j.jneumeth.2019.108478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 11/15/2022]
Abstract
Acute lymphoblastic leukaemia represents the most common paediatric malignancy. Although survival rates approach up to 90% in children, investigation of leukaemic infiltration into the central nervous system (CNS) is essential due to the presence of ongoing fatal complications. Recent in vitro studies mostly employed models of the blood-brain barrier (BBB), as endothelial cells of the microvasculature represent the largest surface between the blood stream and the brain parenchyma. However, crossing the blood-cerebrospinal fluid barrier (BCSFB) within the choroid plexus (CP) has been shown to be a general capability of leukaemic blasts. Hence, in vitro models of the BCSFB to study leukaemic transmigration may be of major importance to understand the development of CNS leukaemia. This review will summarise available in vitro models of the BCSFB employed to study the cellular interactions with leukaemic blasts during cancer cell transmigration into the brain compartment across primary or immortal/immortalised BCSFB cells. It will also provide an outlook on prospective improvements in BCSFB in vitro models by developing barrier-on-a-chip models and brain organoids.
Collapse
Affiliation(s)
- Ulrike Erb
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Christian Schwerk
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Horst Schroten
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Karremann
- Department of Pediatrics, Pediatric Oncology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
248
|
Abstract
Cerebral small vessel disease (SVD) is characterized by changes in the pial and parenchymal microcirculations. SVD produces reductions in cerebral blood flow and impaired blood-brain barrier function, which are leading contributors to age-related reductions in brain health. End-organ effects are diverse, resulting in both cognitive and noncognitive deficits. Underlying phenotypes and mechanisms are multifactorial, with no specific treatments at this time. Despite consequences that are already considerable, the impact of SVD is predicted to increase substantially with the growing aging population. In the face of this health challenge, the basic biology, pathogenesis, and determinants of SVD are poorly defined. This review summarizes recent progress and concepts in this area, highlighting key findings and some major unanswered questions. We focus on phenotypes and mechanisms that underlie microvascular aging, the greatest risk factor for cerebrovascular disease and its subsequent effects.
Collapse
Affiliation(s)
- T Michael De Silva
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Melbourne Campus, Bundoora, Victoria 3086, Australia;
| | - Frank M Faraci
- Departments of Internal Medicine, Neuroscience, and Pharmacology, Francois M. Abboud Cardiovascular Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa 52242, USA;
| |
Collapse
|
249
|
Bueno D, Parvas M, Nabiuni M, Miyan J. Embryonic cerebrospinal fluid formation and regulation. Semin Cell Dev Biol 2019; 102:3-12. [PMID: 31615690 DOI: 10.1016/j.semcdb.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 09/12/2019] [Indexed: 01/01/2023]
Abstract
The vertebrate brain is organized, from its embryonic origin and throughout adult life, around a dynamic and complex fluid, the cerebrospinal fluid (CSF). There is growing interest in the composition, dynamics and function of the CSF in brain development research. It has been demonstrated in higher vertebrates that CSF has key functions in delivering diffusible signals and nutrients to the developing brain, contributing to the proliferation, differentiation and survival of neural progenitor cells, and to the patterning of the brain. It has also been shown that the composition and the homeostasis of CSF are tightly regulated following the closure of the anterior neuropore, just before the initiation of primary neurogenesis in the neural tissue surrounding brain cavities, before the formation of functional choroid plexus. In this review we draw together existing literature about the composition and formation of embryonic cerebrospinal fluid in birds and mammals, from the closure of the anterior neuropore to the formation of functional fetal choroid plexus, including mechanisms regulating its composition and homeostasis. The significance of CSF regulation within embryonic brain is also discussed from an evolutionary perspective.
Collapse
Affiliation(s)
- David Bueno
- Section of Biomedical, Evolutionary and Developmental Genetics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643. Barcelona 08028, Catalonia Spain.
| | - Maryam Parvas
- Section of Biomedical, Evolutionary and Developmental Genetics, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Av. Diagonal 643. Barcelona 08028, Catalonia Spain
| | - Mohammad Nabiuni
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, The University of Manchester, Stopford Building, Oxford Road. Manchester M13 9PT, UK
| | - Jaleel Miyan
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine & Health, The University of Manchester, Stopford Building, Oxford Road. Manchester M13 9PT, UK
| |
Collapse
|
250
|
Gu C, Hao X, Li J, Hua Y, Keep RF, Xi G. Effects of minocycline on epiplexus macrophage activation, choroid plexus injury and hydrocephalus development in spontaneous hypertensive rats. J Cereb Blood Flow Metab 2019; 39:1936-1948. [PMID: 30862302 PMCID: PMC6775580 DOI: 10.1177/0271678x19836117] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/17/2019] [Accepted: 02/14/2019] [Indexed: 01/11/2023]
Abstract
Hydrocephalus has been reported to occur in spontaneous hypertensive rats (SHRs). The purposes of this study were (1) to use T2 magnetic resonance imaging to examine time of onset, (2) to elucidate potential underlying mechanisms and (3) to determine whether minocycline could prevent hydrocephalus development. Ventriculomegaly was evaluated by T2 imaging in SHRs and Wistar-Kyoto rats from weeks 4 to 7 after birth. Brain histology and transmission electron microscopy were used to assess the periventricular and choroid plexus damage. SHRs were also treated with either vehicle or minocycline. We found that hydrocephalus was observed in SHRs but not in Wistar-Kyoto rats. It occurred at seven weeks of age but was not present at four and five weeks. The hydrocephalus was associated with epiplexus cell (macrophage) activation, choroid plexus cell death and damage to the ventricle wall. Treatment with minocycline from week 5 attenuated hydrocephalus development and pathological changes in choroid plexus and ventricular wall at week 7. The current study found that spontaneous hydrocephalus arises at ∼7 weeks in male SHRs. The early development of hydrocephalus (persistent ventricular dilatation) may result from epiplexus cell activation, choroid plexus cell death and periventricular damage, which can be ameliorated by treatment with minocycline.
Collapse
Affiliation(s)
- Chi Gu
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, the 2 Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaodi Hao
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Neurology, the 2 Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianru Li
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
- Department of Neurosurgery, the 2 Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ya Hua
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Richard F Keep
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| | - Guohua Xi
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|