201
|
Amorin B, Alegretti AP, Valim V, Pezzi A, Laureano AM, da Silva MAL, Wieck A, Silla L. Mesenchymal stem cell therapy and acute graft-versus-host disease: a review. Hum Cell 2014; 27:137-50. [PMID: 24903975 PMCID: PMC4186969 DOI: 10.1007/s13577-014-0095-x] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/07/2014] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are being widely studied as potential cell therapy agents due to their immunomodulatory properties, which have been established by in vitro studies and in several clinical trials. Within this context, mesenchymal stem cell therapy appears to hold substantial promise, particularly in the treatment of conditions involving autoimmune and inflammatory components. Nevertheless, many research findings are still contradictory, mostly due to difficulties in characterization of the effects of MSCs in vivo. The purpose of this review is to report the mechanisms underlying mesenchymal stem cell therapy for acute graft-versus-host disease, particularly with respect to immunomodulation, migration, and homing, as well as report clinical applications described in the literature.
Collapse
Affiliation(s)
- Bruna Amorin
- Cell Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Paula Alegretti
- Cell Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
| | - Vanessa Valim
- Cell Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
| | - Annelise Pezzi
- Cell Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Alvaro Macedo Laureano
- Cell Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Aparecida Lima da Silva
- Cell Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
| | - Andréa Wieck
- Cell Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
| | - Lucia Silla
- Cell Therapy Center, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Department of Hematology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul Brazil
- Hospital de Clinicas de Porto Alegre, Ramiro Barcellos, 2350, Bairro Santa Cecília, Porto Alegre, CEP 90035-903 Brazil
| |
Collapse
|
202
|
Centeno CJ. Clinical challenges and opportunities of mesenchymal stem cells in musculoskeletal medicine. PM R 2014; 6:70-7. [PMID: 24439149 DOI: 10.1016/j.pmrj.2013.08.612] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/09/2013] [Indexed: 12/26/2022]
Abstract
The use of stem cells in orthopedics has been researched for many years, with robust animal data that show efficacy in cartilage healing, tendon repair, and intervertebral disk treatment. Early clinical data are also just starting to be published, and these results are encouraging. Safety data in large case series, some that lasted for many years, have also been published. The field of tissue engineering with stem cells in musculoskeletal impairments has the potential to reduce morbidity and improve clinical outcomes. The regulatory environment for this area of medicine is still developing.
Collapse
Affiliation(s)
- Christopher J Centeno
- The Centeno-Schultz Clinic, 403 Summit Boulevard, Unit 201, Broomfield, CO 80021-8253(∗).
| |
Collapse
|
203
|
Yamawaki-Ogata A, Hashizume R, Fu XM, Usui A, Narita Y. Mesenchymal stem cells for treatment of aortic aneurysms. World J Stem Cells 2014; 6:278-287. [PMID: 25067996 PMCID: PMC4109132 DOI: 10.4252/wjsc.v6.i3.278] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/21/2014] [Accepted: 05/08/2014] [Indexed: 02/07/2023] Open
Abstract
An aortic aneurysm (AA) is a silent but life-threatening disease that involves rupture. It occurs mainly in aging and severe atherosclerotic damage of the aortic wall. Even though surgical intervention is effective to prevent rupture, surgery for the thoracic and thoraco-abdominal aorta is an invasive procedure with high mortality and morbidity. Therefore, an alternative strategy for treatment of AA is required. Recently, the molecular pathology of AA has been clarified. AA is caused by an imbalance between the synthesis and degradation of extracellular matrices in the aortic wall. Chronic inflammation enhances the degradation of matrices directly and indirectly, making control of the chronic inflammation crucial for aneurysmal development. Meanwhile, mesenchymal stem cells (MSCs) are known to be obtained from an adult population and to differentiate into various types of cells. In addition, MSCs have not only the potential anti-inflammatory and immunosuppressive properties but also can be recruited into damaged tissue. MSCs have been widely used as a source for cell therapy to treat various diseases involving graft-versus-host disease, stroke, myocardial infarction, and chronic inflammatory disease such as Crohn’s disease clinically. Therefore, administration of MSCs might be available to treat AA using anti-inflammatory and immnosuppressive properties. This review provides a summary of several studies on “Cell Therapy for Aortic Aneurysm” including our recent data, and we also discuss the possibility of this kind of treatment.
Collapse
|
204
|
Zhang D, Li H, Ma L, Zhang X, Xue F, Zhou Z, Chi Y, Liu X, Huang Y, Yang Y, Yang R. The defective bone marrow-derived mesenchymal stem cells in patients with chronic immune thrombocytopenia. Autoimmunity 2014; 47:519-29. [DOI: 10.3109/08916934.2014.938320] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Donglei Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| | - Huiyuan Li
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| | - Li Ma
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| | - Xian Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| | - Feng Xue
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| | - Zeping Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
- Department of Hematology, The Second Affiliated Hospital of Kunming Medical University
KunmingChina
| | - Ying Chi
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| | - Xiaofan Liu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| | - Yueting Huang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| | - Yanhui Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
- Key Laboratory of Hormones and Development (Ministry of Health), 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics
TianjinChina
| | - Renchi Yang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College TianjinChina
| |
Collapse
|
205
|
Almeida-Porada G, Soland M, Boura J, Porada CD. Regenerative medicine: prospects for the treatment of inflammatory bowel disease. Regen Med 2014; 8:631-44. [PMID: 23998755 DOI: 10.2217/rme.13.52] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This article reviews the current understanding of the processes driving the development and progression of inflammatory bowel disease (IBD), discusses how the dynamic crosstalk between resident microorganisms, host cells and the immune system is required in order to maintain immune homeostasis, and considers innovative strategies that allow the modification or modulation of the intestinal microorganismal community as a potential approach for treating IBD. This article next rationalizes the use of cell-based regenerative medicine as treatment for IBD, discusses the obstacles hindering its success, summarizes some of the results of recent clinical trials employing these therapies, and discusses ongoing work to enhance mesenchymal stem/stromal cells, making them better suited to the task of repairing the damage within the IBD gut.
Collapse
Affiliation(s)
- Graça Almeida-Porada
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157-1083, USA.
| | | | | | | |
Collapse
|
206
|
Young JS, Morshed RA, Kim JW, Balyasnikova IV, Ahmed AU, Lesniak MS. Advances in stem cells, induced pluripotent stem cells, and engineered cells: delivery vehicles for anti-glioma therapy. Expert Opin Drug Deliv 2014; 11:1733-46. [PMID: 25005767 DOI: 10.1517/17425247.2014.937420] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION A limitation of small molecule inhibitors, nanoparticles (NPs) and therapeutic adenoviruses is their incomplete distribution within the entirety of solid tumors such as malignant gliomas. Currently, cell-based carriers are making their way into the clinical setting as they offer the potential to selectively deliver many types of therapies to cancer cells. AREAS COVERED Here, we review the properties of stem cells, induced pluripotent stem cells and engineered cells that possess the tumor-tropic behavior necessary to serve as cell carriers. We also report on the different types of therapeutic agents that have been delivered to tumors by these cell carriers, including: i) therapeutic genes; ii) oncolytic viruses; iii) NPs; and iv) antibodies. The current challenges and future promises of cell-based drug delivery are also discussed. EXPERT OPINION While the emergence of stem cell-mediated therapy has resulted in promising preclinical results and a human clinical trial utilizing this approach is currently underway, there is still a need to optimize these delivery platforms. By improving the loading of therapeutic agents into stem cells and enhancing their migratory ability and persistence, significant improvements in targeted cancer therapy may be achieved.
Collapse
Affiliation(s)
- Jacob S Young
- The University of Chicago Pritzker School of Medicine , 5841 South Maryland Ave., M/C 3026, Chicago, IL 60637 , USA
| | | | | | | | | | | |
Collapse
|
207
|
Mukonoweshuro B, Brown CJ, Fisher J, Ingham E. Immunogenicity of undifferentiated and differentiated allogeneic mouse mesenchymal stem cells. J Tissue Eng 2014; 5:2041731414534255. [PMID: 24812582 PMCID: PMC4014080 DOI: 10.1177/2041731414534255] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 04/11/2014] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSC) are multipotential cells with utility in tissue engineering and regenerative medicine. However, the immunological properties and immunogenicity of allogeneic MSC remain poorly defined. Recent studies investigating their immunogenicity remain inconclusive and this has hampered their clinical application. This study investigated the (1) immunogenicity and (2) immunomodulatory properties of bone marrow-derived MSC using an allogeneic mouse model involving Balb/c (responder) and C3H (stimulator) mice. Dermal fibroblasts (DF) were used as controls for cells of mesenchymal origin. Adaptations of the lymphocyte transformation assay (LTA) and mixed lymphocyte reaction (MLR) were used to investigate the immunogenicity and immunomodulatory properties of allogeneic undifferentiated and chondrogenic-differentiated MSC and DF. Both MSC and DF displayed a similar phenotypic profile with the exception of lower expression of CD44 and CD105 in DF. Tri-lineage differentiation of MSC and DF into adipocytes, chondrocytes and osteocytes confirmed their multipotency. In LTA, both undifferentiated and chondrogenic-differentiated allogeneic MSC stimulated lymphocyte proliferation. Allogeneic DF were non-stimulatory but chondrogenic-differentiated DF triggered responder lymphocyte proliferation. In one-way MLR, both allogeneic MSC and DF significantly suppressed Balb/c lymphocyte proliferation. The current challenges in distinguishing between MSC and fibroblasts were apparent throughout the work. These findings support the notion that although MSC possess immunosuppressive properties, they may not be immunoprivileged. Thus, clinical application of allogeneic MSC should be taken with due consideration of their potential immunogenicity.
Collapse
Affiliation(s)
- Blessing Mukonoweshuro
- Institute of Medical and Biological Engineering (iMBE), Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Christopher Jf Brown
- Institute of Medical and Biological Engineering (iMBE), Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - John Fisher
- Institute of Medical and Biological Engineering (iMBE), Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Eileen Ingham
- Institute of Medical and Biological Engineering (iMBE), Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
208
|
Effects of continuous passage on immunomodulatory properties of human adipose-derived stem cells. Cell Tissue Bank 2014; 16:143-50. [PMID: 24777650 DOI: 10.1007/s10561-014-9451-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Human adipose-derived stem cells (hADSCs) have the ability to influence immune response, and hence are key cell sources for tissue repair and regeneration. In this study we explored the effect of continuous passage on the immunomodulatory properties of hADSCs to provide some advises for large-scale production of hADSCs for clinical applications. We found that after continuous passage, the specific surface markers expression levels as well as the adipogenic and osteogenic differentiation capacities of hADSCs had no obvious changes. However, the secretion levels of IL-10 and HGF reduced dramatically along with passage numbers. Furthermore, the INF-γ level was found higher in which medium peripheral blood mononuclear cells were co-cultured with hADSCs with higher passage numbers. Also, the in vivo experiments showed that the peritonitis model mice, which were injected with higher passage numbers of hADSCs, tended to have higher levels of inflammation. All these together indicated that continuous passage has only minor effect on the cell phenotypes but will impair the immunomodulatory properties of hADSCs. This suggests that hADSCs could be prepared by continuous passage, but only those cells of lower passage numbers would be ideal therapeutic tools.
Collapse
|
209
|
Battiwalla M, Barrett AJ. Bone marrow mesenchymal stromal cells to treat complications following allogeneic stem cell transplantation. TISSUE ENGINEERING PART B-REVIEWS 2014; 20:211-7. [PMID: 24410434 DOI: 10.1089/ten.teb.2013.0566] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) is a technologically complicated procedure that represents the only cure for many hematologic malignancies. However, HSCT is often complicated by life-threatening toxicities related to the chemo-radiation conditioning regimen, poor engraftment of donor HSCs, the hyperinflammatory syndrome of graft-versus-host disease (GVHD), infection risks from immunosuppression, and end-organ damage. Bone marrow stromal cells (MSCs), also known as "mesenchymal stromal cells," not only play a nurturing role in the hematopoietic microenvironment but also can differentiate into other cell types of mesenchymal origin. MSCs are poorly immunogenic, and they can modulate immunological responses through interactions with a wide range of innate and adaptive immune cells to reduce inflammation. They are easily expanded ex vivo and after infusion, home to sites of injury and inflammation to promote tissue repair. Despite promising early trial results in HSCT with significant responses that have translated into survival benefits, there have been significant barriers to successful commercialization as an off-the-shelf therapy. Current efforts with MSCs in the HSCT setting are geared toward determining the factors determining potency, understanding the precise mechanisms of action in human HSCT, knowing their kinetics and fate, optimizing dose and schedule, incorporating biomarkers as response surrogates, addressing concerns about safety, optimizing clinical trial design, and negotiating the uncharted regulatory landscape for licensable cellular therapy.
Collapse
Affiliation(s)
- Minoo Battiwalla
- Hematology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health , Bethesda, Maryland
| | | |
Collapse
|
210
|
Efficient manufacturing of therapeutic mesenchymal stromal cells with the use of the Quantum Cell Expansion System. Cytotherapy 2014; 16:1048-58. [PMID: 24726657 DOI: 10.1016/j.jcyt.2014.01.417] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/14/2014] [Accepted: 01/23/2014] [Indexed: 01/01/2023]
Abstract
BACKGROUND The use of bone marrow-derived mesenchymal stromal cells (MSCs) as a cellular therapy for various diseases, such as graft-versus-host disease, diabetes, ischemic cardiomyopathy and Crohn's disease, has produced promising results in early-phase clinical trials. However, for widespread application and use in later phase studies, manufacture of these cells must be cost-effective, safe and reproducible. Current methods of manufacturing in flasks or cell factories are labor-intensive, involve a large number of open procedures and require prolonged culture times. METHODS We evaluated the Quantum Cell Expansion System for the expansion of large numbers of MSCs from unprocessed bone marrow in a functionally closed system and compared the results with a flask-based method currently in clinical trials. RESULTS After only two passages, we were able to expand a mean of 6.6 × 10(8) MSCs from 25 mL of bone marrow reproducibly. The mean expansion time was 21 days, and cells obtained were able to differentiate into all three lineages: chondrocytes, osteoblasts and adipocytes. The Quantum was able to generate the target cell number of 2.0 × 10(8) cells in an average of 9 fewer days and in half the number of passages required during flask-based expansion. We estimated that the Quantum would involve 133 open procedures versus 54,400 in flasks when manufacturing for a clinical trial. Quantum-expanded MSCs infused into an ischemic stroke rat model were therapeutically active. CONCLUSIONS The Quantum is a novel method of generating high numbers of MSCs in less time and at lower passages when compared with flasks. In the Quantum, the risk of contamination is substantially reduced because of the substantial decrease in open procedures.
Collapse
|
211
|
Faghihi F, Baghaban Eslaminejad M. The effect of nano-scale topography on osteogenic differentiation of mesenchymal stem cells. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 158:5-16. [DOI: 10.5507/bp.2013.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Accepted: 02/14/2013] [Indexed: 01/08/2023] Open
|
212
|
Voswinkel J, Francois S, Simon JM, Benderitter M, Gorin NC, Mohty M, Fouillard L, Chapel A. Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: a comprehensive review. Clin Rev Allergy Immunol 2014; 45:180-92. [PMID: 23296948 DOI: 10.1007/s12016-012-8347-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSC), multipotent adult stem cells, feature the potential to regenerate tissue damage and, in parallel, inhibit inflammation and fibrosis. MSC can be safely transplanted in autologous and allogeneic ways as they are non-immunogenic, and consequently represent a therapeutic option for refractory connective tissue diseases, fibrosing diseases like scleroderma and fistulizing colitis like in Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, and 22 are on autoimmune diseases. In irradiation-induced colitis, MSC accelerate functional recovery of the intestine and dampen the systemic inflammatory response. In order to provide rescue therapy for accidentally over-irradiated prostate cancer patients who underwent radiotherapy, allogeneic bone marrow-derived MSC from family donors were intravenously infused to three patients with refractory and fistulizing colitis resembling fistulizing Crohn's disease. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhoea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets towards an increase of T regulatory cells and a decrease of activated effector T cells. The current data indicate that MSC represent a promising alternative strategy in the treatment of various immune-mediated diseases. Encouraging results have already been obtained from clinical trials in Crohn's disease and SLE as well as from case series in systemic sclerosis. MSC represent a safe therapeutic measure for patients who suffer from chronic and fistulizing colitis. These findings are instructional for the management of refractory inflammatory bowel diseases that are characterized by similar clinical and immunopathological features.
Collapse
Affiliation(s)
- Jan Voswinkel
- Department of Hematology, Saint Antoine Hospital APHP and UPMC University, UMRS 938, 184 rue Faubourg Saint Antoine, 75012, Paris, France,
| | | | | | | | | | | | | | | |
Collapse
|
213
|
Mesenchymal stem cells: immune evasive, not immune privileged. Nat Biotechnol 2014; 32:252-60. [PMID: 24561556 DOI: 10.1038/nbt.2816] [Citation(s) in RCA: 1114] [Impact Index Per Article: 101.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/19/2013] [Indexed: 02/07/2023]
Abstract
The diverse immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) may be exploited for treatment of a multitude of inflammatory conditions. MSCs have long been reported to be hypoimmunogenic or 'immune privileged'; this property is thought to enable MSC transplantation across major histocompatibility barriers and the creation of off-the-shelf therapies consisting of MSCs grown in culture. However, recent studies describing generation of antibodies against and immune rejection of allogeneic donor MSCs suggest that MSCs may not actually be immune privileged. Nevertheless, whether rejection of donor MSCs influences the efficacy of allogeneic MSC therapies is not known, and no definitive clinical advantage of autologous MSCs over allogeneic MSCs has been demonstrated to date. Although MSCs may exert therapeutic function through a brief 'hit and run' mechanism, protecting MSCs from immune detection and prolonging their persistence in vivo may improve clinical outcomes and prevent patient sensitization toward donor antigens.
Collapse
|
214
|
Habibagahi M, Razmkhah M, Niri NM, Hosseini A, Ghaderi A, Jaberipour M. Combined 4-1BB and CD28 costimulation could unleash lymphocytes from immunosuppression induced by adipose derived stem cell soluble products. Immunol Invest 2014; 42:307-23. [PMID: 23883199 DOI: 10.3109/08820139.2013.764315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Adipose derived stem cells (ASCs) have the potential to differentiate into multiple cell lineages with the capacity to suppress immune cells. However, the exact mechanism of this suppression is not fully understood. We hypothesized that supplying additional lymphocyte costimulation through CD28 and 4-1BB could overturn the inhibitory effect of ASCs. To that end, PHA-activated human PBMCs were cocultured with ASCs or with conditioned media (CM) prepared from cultured ASCs. Growth was analyzed in the presence or absence of anti-CD28 and anti-4-1BB antibodies. Results from CFSE dilution analysis with flow cytometry showed that significant and dose-dependent suppression of PHA-activated lymphocytes occurred in the presence of ASC-like cells or ASC's CM. However, additional costimulation of T cells through CD28 and 4-1BB was able to fully recover lymphocyte proliferative capacity in the presence of ASC's CM. Neither of the costimulatory antibodies could fully recover lymphocyte proliferation following coculture with ASCs. Reversal of ASC's immunosuppression through costimulation suggests that further investigation of ASC suppression mechanisms is warranted, since many clinical applications of ASCs are based on this feature. Moreover, such findings have the potential to boost the usefulness of ASCs in the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Mojtaba Habibagahi
- Shiraz University of Medical Sciences, Immunology, Shiraz, Islamic Republic of Iran
| | | | | | | | | | | |
Collapse
|
215
|
Jiang SY, Xie XT, Jiang H, Zhou JJ, Li FX, Cao P. Low expression of basic fibroblastic growth factor in mesenchymal stem cells and bone marrow of children with aplastic anemia. Pediatr Hematol Oncol 2014; 31:11-9. [PMID: 24308692 DOI: 10.3109/08880018.2013.792402] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Our previous experiments with gene chip suggested that basic fibroblastic growth factor (FGF2) levels were lower in mesenchymal stem cell (MSC) from aplastic anemia patients. The purpose of this study was to determine the expression of FGF2 in MSC and in bone marrow of children with aplastic anemia to better understand the role of low FGF2 expression in the pathogenesis of aplastic anemia. PROCEDURE MSCs from the bone marrow of aplastic anemia children and control group were cultured in vitro. Growth curves of primary and passage MSC were plotted. FGF2 gene expression in MSCs was detected using quantitative real-time polymerase chain reaction (RT-PCR). FGF2 protein expression in mononuclear cells and FGF2 protein level in extracellular fluid of bone marrow were also investigated. RESULT Decreased growth of MSCs from aplastic anemia children was observed after passage 8 in serial subcultivation, and FGF2 gene expression was downregulated. Within the patients' bone marrow, low FGF2 expression was validated both in mononuclear cells and in the extracellular fluid. CONCLUSION Low FGF2 gene expression in MSCs and low FGF2 protein level in bone marrow of aplastic anemia may involve to pathogenesis of aplastic anemia.
Collapse
Affiliation(s)
- Sha yi Jiang
- Department of Hematology, Children's Hospital of Shanghai, Shanghai Jiao Tong University , Shanghai , China
| | | | | | | | | | | |
Collapse
|
216
|
Rosset P, Deschaseaux F, Layrolle P. Cell therapy for bone repair. Orthop Traumatol Surg Res 2014; 100:S107-12. [PMID: 24411717 DOI: 10.1016/j.otsr.2013.11.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 11/08/2013] [Accepted: 11/15/2013] [Indexed: 02/07/2023]
Abstract
When natural bone repair mechanisms fail, autologous bone grafting is the current standard of care. The osteogenic cells and bone matrix in the graft provide the osteo-inductive and osteo-conductive properties required for successful bone repair. Bone marrow (BM) mesenchymal stem cells (MSCs) can differentiate into osteogenic cells. MSC-based cell therapy holds promise for promoting bone repair. The amount of MSCs available from iliac-crest aspirates is too small to be clinically useful, and either concentration or culture must therefore be used to expand the MSC population. MSCs can be administered alone via percutaneous injection or implanted during open surgery with a biomaterial, usually biphasic hydroxyapatite/β-calcium-triphosphate granules. Encouraging preliminary results have been obtained in patients with delayed healing of long bone fractures or avascular necrosis of the femoral head. Bone tissue engineering involves in vitro MSC culturing on biomaterials to obtain colonisation of the biomaterial and differentiation of the cells. The biomaterial-cell construct is then implanted into the zone to be treated. Few published data are available on bone tissue engineering. Much work remains to be done before determining whether this method is suitable for the routine filling of bone tissue defects. Increasing cell survival and promoting implant vascularisation are major challenges. Improved expertise with culturing techniques, together with the incorporation of regulatory requirements, will open the way to high-quality clinical trials investigating the usefulness of cell therapy as a method for achieving bone repair. Cell therapy avoids the drawbacks of autologous bone grafting, preserving the bone stock and diminishing treatment invasiveness.
Collapse
Affiliation(s)
- P Rosset
- Service de chirurgie orthopédique 2, hôpital Trousseau, Université François-Rabelais de Tours, CHU de Tours, 37044 Tours cedex 09, France; Inserm U957, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives (LPRO), Faculté de Médecine, Université de Nantes, Nantes, France.
| | - F Deschaseaux
- StromaLab, UMR CNRS 5273, U1031 Inserm, Établissement Français du Sang Pyrénées-Méditerranée, Université P.-Sabatier, Toulouse, France
| | - P Layrolle
- Inserm U957, Laboratoire de physiopathologie de la résorption osseuse et thérapie des tumeurs osseuses primitives (LPRO), Faculté de Médecine, Université de Nantes, Nantes, France
| |
Collapse
|
217
|
Voswinkel J, Francois S, Gorin NC, Chapel A. Gastro-intestinal autoimmunity: preclinical experiences and successful therapy of fistulizing bowel diseases and gut Graft versus host disease by mesenchymal stromal cells. Immunol Res 2014; 56:241-8. [PMID: 23564182 DOI: 10.1007/s12026-013-8397-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesenchymal stromal cells (MSC) are multipotent adult stem cells with the potential to regenerate tissue damage and inhibit inflammation and fibrosis in parallel. As they are non-immunogenic, MSC can be safely auto- and allotransplanted and consequently represent a therapeutic option for refractory connective tissue diseases and fistulizing colitis like Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, 22 are on autoimmune diseases and 27 are actually recruiting bowel disease' patients. More than 1,500 patients with bowel diseases like Crohn's disease were treated in clinical trials by local as well as systemic MSC therapy. Phase I and II trials on fistula documented the feasibility and safety of MSC therapy, and a significant superiority compared to fibrin glue in fistulizing bowel diseases was demonstrated. Autologous as well as allogeneic use of Bone marrow as well as of adipose tissue-derived MSC are feasible. In refractory Graft versus host disease, especially in refractory gut Graft versus host diseases, encouraging results were reported using MSC. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets toward an increase in T regulatory cells and a decrease in activated effector T cells. Mesenchymal stem cells represent a safe therapy for patients with refractory inflammatory bowel diseases.
Collapse
Affiliation(s)
- Jan Voswinkel
- Department of Haematology, Saint Antoine Hospital, APHP and UPMC University, UMRS 938, 184 rue Faubourg Saint Antoine, 75012, Paris, France.
| | | | | | | |
Collapse
|
218
|
Wyse RD, Dunbar GL, Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 2014; 15:1719-45. [PMID: 24463293 PMCID: PMC3958818 DOI: 10.3390/ijms15021719] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/01/2023] Open
Abstract
The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.
Collapse
Affiliation(s)
- Robert D Wyse
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
219
|
De Schauwer C, Goossens K, Piepers S, Hoogewijs MK, Govaere JLJ, Smits K, Meyer E, Van Soom A, Van de Walle GR. Characterization and profiling of immunomodulatory genes of equine mesenchymal stromal cells from non-invasive sources. Stem Cell Res Ther 2014; 5:6. [PMID: 24418262 PMCID: PMC4055120 DOI: 10.1186/scrt395] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 12/20/2013] [Indexed: 12/15/2022] Open
Abstract
Introduction Mesenchymal stromal cells (MSCs) have been extensively studied for their promising capabilities in regenerative medicine. Although bone marrow is the best-known source for isolating equine MSCs, non-invasive alternative sources such as umbilical cord blood (UCB), umbilical cord matrix (UCM), and peripheral blood (PB) have also been reported. Methods Equine MSCs from three non-invasive alternative sources were isolated from six individual mares (PB) and their foals (UCB and UCM) at parturition. To minimize inter-horse variability, the samples from the three sources were matched within the same mare and for UCB and UCM even within the same foal from that specific mare. The following parameters were analyzed: (i) success rate of isolation, (ii) proliferation capacity, (iii) tri-lineage differentiation ability, (iv) immunophenotypical protein, and (v) immunomodulatory mRNA profiles. Linear regression models were fit to determine the association between the source of MSCs (UCB, UCM, PB) and (i) the moment of first observation, (ii) the moment of first passage, (iii) cell proliferation data, (iv) the expression of markers related to cell immunogenicity, and (v) the mRNA profile of immunomodulatory factors, except for hepatocyte growth factor (HGF) as no normal distribution could be obtained for the latter variable. To evaluate the association between the source of MSCs and the mRNA expression of HGF, the non-parametric Kruskal-Wallis test was performed instead. Results While equine MSCs could be isolated from all the UCB and PB samples, isolation from UCM was successful in only two samples because of contamination issues. Proliferation data showed that equine MSCs from all three sources could be easily expanded, although UCB-derived MSCs appeared significantly faster in culture than PB- or UCM-derived MSCs. Equine MSCs from both UCB and PB could be differentiated toward the osteo-, chondro-, and adipogenic lineage, in contrast to UCM-derived MSCs in which only chondro- and adipogenic differentiation could be confirmed. Regardless of the source, equine MSCs expressed the immunomodulatory genes CD40, CD80, HGF, and transforming growth factor-beta (TGFβ). In contrast, no mRNA expression was found for CD86, indoleamine 2,3-dioxygenase (IDO), and tumor necrosis factor-alpha (TNFα). Conclusions Whereas UCM seems less feasible because of the high contamination risks and low isolation success rates, UCB seems a promising alternative MSC source, especially when considering allogeneic MSC use.
Collapse
|
220
|
Hodgkinson T, Yuan XF, Bayat A. Adult stem cells in tissue engineering. Expert Rev Med Devices 2014; 6:621-40. [DOI: 10.1586/erd.09.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
221
|
Newell LF, Deans RJ, Maziarz RT. Adult adherent stromal cells in the management of graft-versus-host disease. Expert Opin Biol Ther 2014; 14:231-46. [DOI: 10.1517/14712598.2014.866648] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
222
|
Haddad R, Saldanha-Araujo F. Mechanisms of T-cell immunosuppression by mesenchymal stromal cells: what do we know so far? BIOMED RESEARCH INTERNATIONAL 2014; 2014:216806. [PMID: 25025040 PMCID: PMC4082893 DOI: 10.1155/2014/216806] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/15/2014] [Accepted: 05/31/2014] [Indexed: 12/12/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent cells, which can give rise to several cell types including osteoblasts, adipocytes, and chondroblasts. These cells can be found in a variety of adult and fetal tissues, such as bone marrow, adipose tissue, cord blood, and placenta. In recent years, the biological properties of MSCs have attracted the attention of researchers worldwide due to their potential application for treating a series of clinical situations. Among these properties, special attention should be given to the immunoregulatory potential of those cells. MSCs are able to act on all cells of the immune system, which includes the capacity to inhibit the proliferation and function of T-cells. This feature renders them natural candidates to treat several diseases in which cellular immune response is exacerbated. In this review, we outline the main mechanisms by which MSCs immunosuppress T-cell response, focusing on cell-cell contact, secretion of soluble factors, and regulatory T-cell generation. The influence of surface markers in the immunosuppression process and features of MSCs isolated from different sources are also discussed. Finally, the influences of toll-like receptors and cytokines on the inflammatory microenvironment are highlighted regarding the activation of MSCs to exert their immunoregulatory function.
Collapse
Affiliation(s)
- Rodrigo Haddad
- 1Faculty of Ceilandia, University of Brasilia, 72220-900 Brasilia, DF, Brazil
| | - Felipe Saldanha-Araujo
- 2Faculty of Health Sciences, University of Brasilia, 70910-900 Brasilia, DF, Brazil
- *Felipe Saldanha-Araujo:
| |
Collapse
|
223
|
Abstract
Mesenchymal stem cells (MSCs) derived from bone marrow are feasible for the exertion of a powerful immunoregulatory effect and thus shall hold a curative potency in T lymphocyte-dependent pathologies. This current article is intended to describe the method to investigate that MSCs might take advantage of regulation in graft-versus-host disease (GvHD), a major etiology of attack rate and lethality post allogeneic hematopoietic stem cell transplantation (HSCT). MSCs were isolated from Lewis rat bone morrow and cultured for 4 weeks. The purification of enriched conventional MSCs and macrophages was achieved by autoMACS. Using the limiting dilution method, MSCs were cloned and then expanded until more than 6 months. The cultured MSCs showed a typical spindle-shaped morphology and immunophenotypes, lack of CD45 and CD11b/c expression. MSCs are also known for their ability to differentiate into adipocytes. MSCs, like macrophages, exhibit the immunomodulatory propensity to inhibit T lymphocyte proliferation. Following the adoptive transfer, MSCs regulate systemic Lewis to (Lewis × DA) F1 rat GvHD. Meanwhile, the cloned MSCs surprisingly enhanced T cell proliferation in vitro and yielded no clinical benefit in regard to the incidence or severity of GvHD. This is in contradistinction to the immunosuppressive activities of MSCs as conventionally described. Hence, this rat GvHD model treated with MSCs has shown intriguing differences in the regulatory effects of lymphocyte proliferation and GvHD repression between short-term cultured conventional MSCs and cloned MSCs.
Collapse
|
224
|
Cai YJ, Huang L, Leung TY, Burd A. A study of the immune properties of human umbilical cord lining epithelial cells. Cytotherapy 2013; 16:631-9. [PMID: 24364910 DOI: 10.1016/j.jcyt.2013.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 10/11/2013] [Accepted: 10/23/2013] [Indexed: 12/16/2022]
Abstract
BACKGROUND AIMS Our previous study has demonstrated the stem cell-like properties of human umbilical cord lining epithelial cells (CLECs) and their capability for epidermal reconstitution in organotypic skin culture; however, the immunogenicity of these cells has not been clearly defined. We assessed several aspects of the immune properties of CLECs in vitro. METHODS We examined CLECs for their immunoregulatory function in a mixed lymphocyte culture experiment. We characterized the expression patterns of the major histocompatibility complex (MHC), co-stimulatory molecules and the pro-/anti-inflammatory cytokines and growth factors in CLECs by means of reverse transcription-polymerase chain reaction, Western blotting, flow cytometry and FlowCytomix multiple analyte detection assays. RESULTS CLECs were found not to induce but to suppress the proliferation response of the peripheral blood mononuclear cells in a mixed lymphocyte culture assay. They did not express the MHC class II antigen HLA-DR but the non-classic MHC class I antigens HLA-G and HLA-E and lacked the expression of the co-stimulatory molecules CD40, CD80 and CD86. In addition, they produced less interleukin-1β and transforming growth factor-β1 but more interleukin-4 and hepatocyte growth factor than did adult keratinocytes, a pattern in favor of wound healing with less inflammation response. CONCLUSIONS Our data suggest that CLECs have an immunosuppressive function in addition to their low immunogenicity. This could be at least partially explained by their expression of HLA-G and HLA-E molecules associated with immune tolerance and absence of HLA-DR and co-stimulatory molecules. The demonstration that CLECs produce a favorable pattern of cytokines and growth factors for wound healing provides further support for their potential clinical application in allogeneic cell therapy.
Collapse
Affiliation(s)
- Yi-Jun Cai
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR
| | - Lin Huang
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR
| | - Tak-Yeung Leung
- Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR
| | - Andrew Burd
- Division of Plastic, Reconstructive and Aesthetic Surgery, Department of Surgery, The Chinese University of Hong Kong, Hong Kong, SAR.
| |
Collapse
|
225
|
Mesenchymal stem cell therapy for cardiac inflammation: immunomodulatory properties and the influence of toll-like receptors. Mediators Inflamm 2013; 2013:181020. [PMID: 24391353 PMCID: PMC3872440 DOI: 10.1155/2013/181020] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 11/14/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND After myocardial infarction (MI), the inflammatory response is indispensable for initiating reparatory processes. However, the intensity and duration of the inflammation cause additional damage to the already injured myocardium. Treatment with mesenchymal stem cells (MSC) upon MI positively affects cardiac function. This happens likely via a paracrine mechanism. As MSC are potent modulators of the immune system, this could influence this postinfarct immune response. Since MSC express toll-like receptors (TLR), danger signal (DAMP) produced after MI could influence their immunomodulatory properties. SCOPE OF REVIEW Not much is known about the direct immunomodulatory efficiency of MSC when injected in a strong inflammatory environment. This review focuses first on the interactions between MSC and the immune system. Subsequently, an overview is provided of the effects of DAMP-associated TLR activation on MSC and their immunomodulative properties after myocardial infarction. MAJOR CONCLUSIONS MSC can strongly influence most cell types of the immune system. TLR signaling can increase and decrease this immunomodulatory potential, depending on the available ligands. Although reports are inconsistent, TLR3 activation may boost immunomodulation by MSC, while TLR4 activation suppresses it. GENERAL SIGNIFICANCE Elucidating the effects of TLR activation on MSC could identify new preconditioning strategies which might improve their immunomodulative properties.
Collapse
|
226
|
Chatterjea A, LaPointe VLS, Alblas J, Chatterjea S, van Blitterswijk CA, de Boer J. Suppression of the immune system as a critical step for bone formation from allogeneic osteoprogenitors implanted in rats. J Cell Mol Med 2013; 18:134-42. [PMID: 24237965 PMCID: PMC3916125 DOI: 10.1111/jcmm.12172] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 09/24/2013] [Indexed: 01/02/2023] Open
Abstract
The surface marker profile of mesenchymal stromal cells (MSCs) suggests that they can escape detection by the immune system of an allogeneic host. This could be an optimal strategy for bone regeneration applications, where off-the-shelf cells could be implanted to heal bone defects. However, it is unknown how pre-differentiation of MSCs to an osteogenic lineage, a means of improving bone formation, affects their immunogenicity. Using immunohistological techniques in a rat ectopic implantation model, we demonstrate that allogeneic osteoprogenitors mount a T cell- and B cell-mediated immune response resulting in an absence of in vivo bone formation. Suppression of the host immune response with daily administration of an immunosuppressant, FK506, is effective in preventing the immune attack on the allogeneic osteoprogenitors. In the immunosuppressed environment, the allogeneic osteoprogenitors are capable of generating bone in amounts similar to those of syngeneic cells. However, using osteoprogenitors from one of the allogeneic donors led to newly deposited bone that was attacked by the host immune system, despite the continued administration of the immunosuppressant. This suggests that, although using an immunosuppressant can potentially suppress the immune attack on the allogeneic cells, optimizing the dose of the immunosuppressant may be crucial to ensure bone formation within the allogeneic environment. Overall, allografts comprising osteoprogenitors derived from allogeneic MSCs have the potential to be used in bone regeneration applications.
Collapse
Affiliation(s)
- Anindita Chatterjea
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| | | | | | | | | | | |
Collapse
|
227
|
Vaegler M, Amend B, Aicher W, Stenzl A, Sievert KD. [Stem cell therapy and tissue engineering in regenerative urology]. Urologe A 2013; 52:1671-8. [PMID: 24166059 DOI: 10.1007/s00120-013-3328-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND So far there is no clinically established, effective tissue engineering therapy for dysfunction or defects of the lower urinary tract. The concentration of experimental data, initial clinical studies and individual case reports underlines that stem cell treatment for bladder storage and voiding problems, erectile dysfunction and other urothelial defects of the lower urinary tract could close the gap between individualized therapy and potential biomedical applications. RESULTS As a result of fundamental research work over the last decade a characterization of various stem cell populations and evaluation of different urological therapy options could be performed. Thereby, aspects of optimal administration, migration, secretion of bioactive factors and stage of differentiation of stem cells with respect to an improved efficiency of treatment were investigated. Because successful tissue regeneration depends on angiogenesis and innervation, particular attention was paid to these important factors. CONCLUSIONS Various clinical indications for stem cell treatment and tissue reconstruction that may be required after radical prostatectomy, such as stress urinary incontinence, urethral reconstruction and erectile dysfunction have materialized and are currently being verified in preclinical studies and phase I trials.
Collapse
Affiliation(s)
- M Vaegler
- Klinik für Urologie, Universitätsklinik Tübingen, Eberhard-Karls-Universität Tübingen, Hoppe-Seyler-Straße 3, 72076, Tübingen, Deutschland
| | | | | | | | | |
Collapse
|
228
|
Cohen JA. Mesenchymal stem cell transplantation in multiple sclerosis. J Neurol Sci 2013; 333:43-9. [PMID: 23294498 PMCID: PMC3624046 DOI: 10.1016/j.jns.2012.12.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are pluripotent non-hematopoietic precursor cells that can be isolated from bone marrow and numerous other tissues, culture-expanded to purity, and induced to differentiate in vitro and in vivo into mesodermal derivatives. MSCs exhibit many phenotypic and functional similarities to pericytes. The immunomodulatory, tissue protective, and repair-promoting properties of MSCs demonstrated both in vitro and in animal models make them an attractive potential therapy for MS and other conditions characterized by inflammation and/or tissue injury. Other potential advantages of MSCs as a therapeutic include the relative ease of culture expansion, relative immunoprivilege allowing allogeneic transplantation, and their ability to traffic from blood to areas of tissue allowing intravascular administration. The overall published experience with MSC transplantation in MS is modest, but several small case series and preliminary studies yielded promising results. Several groups, including us, recently initiated formal studies of autologous, culture-expanded, bone marrow-derived MSC transplantation in MS. Although there are several potential safety concerns, to date, the procedure has been well tolerated. Future studies that more definitively assess efficacy also will need to address several technical issues.
Collapse
Affiliation(s)
- Jeffrey A Cohen
- Mellen Center, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH, USA.
| |
Collapse
|
229
|
Telukuntla KS, Suncion VY, Schulman IH, Hare JM. The advancing field of cell-based therapy: insights and lessons from clinical trials. J Am Heart Assoc 2013; 2:e000338. [PMID: 24113326 PMCID: PMC3835242 DOI: 10.1161/jaha.113.000338] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kartik S Telukuntla
- Interdisciplinary Stem Cell Institute, University of Miami Miller School of Medicine, Miami, FL
| | | | | | | |
Collapse
|
230
|
Immunomodulatory effects of adipose-derived stem cells: fact or fiction? BIOMED RESEARCH INTERNATIONAL 2013; 2013:383685. [PMID: 24106704 PMCID: PMC3782761 DOI: 10.1155/2013/383685] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023]
Abstract
Adipose-derived stromal cells (ASCs) are often referred to as adipose-derived stem cells due to their potential to undergo multilineage differentiation. Their promising role in tissue engineering and ability to modulate the immune system are the focus of extensive research. A number of clinical trials using ASCs are currently underway to better understand the role of such cell niche in enhancing or suppressing the immune response. If governable, such immunoregulatory role would find application in several conditions in which an immune response is present (i.e., autoimmune conditions) or feared (i.e., solid organ or reconstructive transplantation). Although allogeneic ASCs have been shown to prevent acute GvHD in both preclinical and clinical studies, their potential warrants further investigation. Well-designed and standardized clinical trials are necessary to prove the role of ASCs in the treatment of immune disorders or prevention of tissue rejection. In this paper we analyze the current literature on the role of ASCs in immunomodulation in vitro and in vivo and discuss their potential in regulating the immune system in the context of transplantation.
Collapse
|
231
|
Collins E, Gilkeson G. Hematopoetic and mesenchymal stem cell transplantation in the treatment of refractory systemic lupus erythematosus — Where are we now? Clin Immunol 2013; 148:328-34. [DOI: 10.1016/j.clim.2013.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 01/01/2023]
|
232
|
Wang X, Wang Y, Gou W, Lu Q, Peng J, Lu S. Role of mesenchymal stem cells in bone regeneration and fracture repair: a review. INTERNATIONAL ORTHOPAEDICS 2013; 37:2491-8. [PMID: 23948983 DOI: 10.1007/s00264-013-2059-2] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 07/26/2013] [Indexed: 12/15/2022]
Abstract
Mesenchymal stem cells (MSCs) are non-haematopoietic stromal stem cells that have many sources, such as bone marrow, periosteum, vessel walls, adipose, muscle, tendon, peripheral circulation, umbilical cord blood, skin and dental tissues. They are capable of self-replication and of differentiating into, and contributing to the regeneration of, mesenchymal tissues, such as bone, cartilage, ligament, tendon, muscle and adipose tissue. The homing of MSCs may play an important role in the repair of bone fractures. As a composite material, the formation and growth of bone tissue is a complex process, including molecular, cell and biochemical metabolic changes. The recruitment of factors with an adequate number of MSCs and the micro-environment around the fracture are effective for fracture repair. Several studies have investigated the functional expression of various chemokine receptors, trophic factors and adhesion molecules in human MSCs. Many external factors affect MSC homing. MSCs have been used as seed cells in building tissue-engineered bone grafts. Scaffolds seeded with MSCs are most often used in tissue engineering and include biotic and abiotic materials. This knowledge provides a platform for the development of novel therapies for bone regeneration with endogenous MSCs.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Peoples Liberation Army, Institute of Orthopedics, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing, 100853, People's Republic of China
| | | | | | | | | | | |
Collapse
|
233
|
Wegman F, Oner FC, Dhert WJA, Alblas J. Non-viral gene therapy for bone tissue engineering. Biotechnol Genet Eng Rev 2013; 29:206-20. [PMID: 24568281 DOI: 10.1080/02648725.2013.801227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The possibilities of using gene therapy for bone regeneration have been extensively investigated. Improvements in the design of new transfection agents, combining vectors and delivery/release systems to diminish cytotoxicity and increase transfection efficiencies have led to several successful in vitro, ex vivo and in vivo strategies. These include growth factor or short interfering ribonucleic acid (siRNA) delivery, or even enzyme replacement therapies, and have led to increased osteogenic differentiation and bone formation in vivo. These results provide optimism to consider use in humans with some of these gene-delivery strategies in the near future.
Collapse
Affiliation(s)
- Fiona Wegman
- a Department of Orthopaedics , UMC Utrecht , Utrecht , The Netherlands
| | | | | | | |
Collapse
|
234
|
Zgheib A, Pelletier-Bonnier É, Levros LC, Annabi B. Selective JAK/STAT3 signalling regulates transcription of colony stimulating factor-2 and -3 in Concanavalin-A-activated mesenchymal stromal cells. Cytokine 2013; 63:187-193. [PMID: 23688618 DOI: 10.1016/j.cyto.2013.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/28/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
Human bone marrow-derived mesenchymal stromal cells (MSCs) express Toll-like receptors (TLRs) and produce cytokines and chemokines, all of which contribute to these cells' immunomodulatory and proangiogenic properties. Among the secreted cytokines, colony-stimulating factors (CSFs) regulate angiogenesis through activation of endothelial cell proliferation and migration. Since MSC are recruited within hypoxic tumors where they signal paracrine-regulated angiogenesis, the aim of this study was to evaluate which CSF members are expressed and are inducible in activated MSC. Furthermore, we investigated the JAK/STAT signal transducing pathway that may impact on CSF transcription. MSC were activated with Concanavalin-A (ConA), a TLR-2/6 agonist as well as a membrane type-1 matrix metalloproteinase (MT1-MMP) inducer, and we found increased transcription of granulocyte macrophage-CSF (GM-CSF, CSF-2), granulocyte CSF (G-CSF, CSF-3), and MT1-MMP. Gene silencing of either STAT3 or MT1-MMP prevented ConA-induced phosphorylation of STAT3, and reversed ConA effects on CSF-2 and CSF-3. Treatment with the Janus Kinase (JAK)2 inhibitor AG490 antagonized the ConA induction of MT1-MMP and CSF-2, while the pan-JAK inhibitor Tofacitinib reversed ConA-induced CSF-2 and -3 gene expression. Silencing of JAK2 prevented the ConA-mediated increase of CSF-2, while silencing of JAK1, JAK3 and TYK2 prevented the increase in CSF-3. Given that combined TLR-activation and locally-produced CSF-2 and CSF-3 could regulate immunomodulation and neovascularization, pharmacological targeting of TLR-2/6-induced MT1-MMP/JAK/STAT3 signalling pathway may prevent MSC contribution to tumor development.
Collapse
Affiliation(s)
- Alain Zgheib
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, Québec, Canada
| | | | | | | |
Collapse
|
235
|
McIntosh KR, Frazier T, Rowan BG, Gimble JM. Evolution and future prospects of adipose-derived immunomodulatory cell therapeutics. Expert Rev Clin Immunol 2013; 9:175-84. [PMID: 23390948 DOI: 10.1586/eci.12.96] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past two decades, tissue engineering and regenerative medicine have evolved from what many considered a theoretical science to what is now a clinical reality. Tissue engineering combines biomaterial scaffolds, growth factors and stem or progenitor cells to repair damaged tissues. Adipose tissue, an abundant and easily accessed tissue, is a potential source of stromal/stem cells for regenerative therapeutic applications. Like bone marrow-derived mesenchymal stem cells, adipose-derived stromal/stem cells display both immunomodulatory and immunosuppressive properties. The adipose cells exert these actions, in part, through their secretion of paracrine growth factors. This review highlights recent developments in the isolation, characterization and preclinical application of adipose-derived cells and the challenges facing their translation into clinical practice.
Collapse
|
236
|
Immunological characteristics of human mesenchymal stem cells and multipotent adult progenitor cells. Immunol Cell Biol 2013; 91:32-9. [PMID: 23295415 PMCID: PMC3540326 DOI: 10.1038/icb.2012.64] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Somatic, also termed adult, stem cells are highly attractive biomedical cell candidates because of their extensive replication potential and functional multilineage differentiation capacity. They can be used for drug and toxicity screenings in preclinical studies, as in vitro model to study differentiation or for regenerative medicine to aid in the repair of tissues or replace tissues that are lost upon disease, injury or ageing. Multipotent adult progenitor cells (MAPCs) and mesenchymal stem cells (MSCs) are two types of adult stem cells derived from bone marrow that are currently being used clinically for tissue regeneration and for their immunomodulatory and trophic effects. This review will give an overview of the phenotypic and functional differences between human MAPCs and MSCs, with a strong emphasis on their immunological characteristics. Finally, we will discuss the clinical studies in which MSCs and MAPCs are already used.
Collapse
|
237
|
Lee JW, Krasnodembskaya A, McKenna DH, Song Y, Abbott J, Matthay MA. Therapeutic effects of human mesenchymal stem cells in ex vivo human lungs injured with live bacteria. Am J Respir Crit Care Med 2013; 187:751-60. [PMID: 23292883 DOI: 10.1164/rccm.201206-0990oc] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE Mesenchymal stem cells secrete paracrine factors that can regulate lung permeability and decrease inflammation, making it a potentially attractive therapy for acute lung injury. However, concerns exist whether mesenchymal stem cells' immunomodulatory properties may have detrimental effects if targeted toward infectious causes of lung injury. OBJECTIVES Therefore, we tested the effect of mesenchymal stem cells on lung fluid balance, acute inflammation, and bacterial clearance. METHODS We developed an Escherichia coli pneumonia model in our ex vivo perfused human lung to test the therapeutic effects of mesenchymal stem cells on bacterial-induced acute lung injury. MEASUREMENTS AND MAIN RESULTS Clinical-grade human mesenchymal stem cells restored alveolar fluid clearance to a normal level, decreased inflammation, and were associated with increased bacterial killing and reduced bacteremia, in part through increased alveolar macrophage phagocytosis and secretion of antimicrobial factors. Keratinocyte growth factor, a soluble factor secreted by mesenchymal stem cells, duplicated most of the antimicrobial effects. In subsequent in vitro studies, we discovered that human monocytes expressed the keratinocyte growth factor receptor, and that keratinocyte growth factor decreased apoptosis of human monocytes through AKT phosphorylation, an effect that increased bacterial clearance. Inhibition of keratinocyte growth factor by a neutralizing antibody reduced the antimicrobial effects of mesenchymal stem cells in the ex vivo perfused human lung and monocytes grown in vitro injured with E. coli bacteria. CONCLUSIONS In E. coli-injured human lungs, mesenchymal stem cells restored alveolar fluid clearance, reduced inflammation, and exerted antimicrobial activity, in part through keratinocyte growth factor secretion.
Collapse
Affiliation(s)
- Jae W Lee
- Department of Anesthesiology, University of California-San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
238
|
Pluchino S, Cossetti C. How stem cells speak with host immune cells in inflammatory brain diseases. Glia 2013; 61:1379-401. [PMID: 23633288 DOI: 10.1002/glia.22500] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/01/2013] [Indexed: 12/14/2022]
Abstract
Advances in stem cell biology have raised great expectations that diseases and injuries of the central nervous system (CNS) may be ameliorated by the development of non-hematopoietic stem cell medicines. Yet, the application of adult stem cells as CNS therapeutics is challenging and the interpretation of some of the outcomes ambiguous. In fact, the initial idea that stem cell transplants work only via structural cell replacement has been challenged by the observation of consistent cellular signaling between the graft and the host. Cellular signaling is the foundation of coordinated actions and flexible responses, and arises via networks of exchanging and interacting molecules that transmit patterns of information between cells. Sustained stem cell graft-to-host communication leads to remarkable trophic effects on endogenous brain cells and beneficial modulatory actions on innate and adaptive immune responses in vivo, ultimately promoting the healing of the injured CNS. Among a number of adult stem cell types, mesenchymal stem cells (MSCs) and neural stem/precursor cells (NPCs) are being extensively investigated for their ability to signal to the immune system upon transplantation in experimental CNS diseases. Here, we focus on the main cellular signaling pathways that grafted MSCs and NPCs use to establish a therapeutically relevant cross talk with host immune cells, while examining the role of inflammation in regulating some of the bidirectionality of these communications. We propose that the identification of the players involved in stem cell signaling might contribute to the development of innovative, high clinical impact therapeutics for inflammatory CNS diseases.
Collapse
Affiliation(s)
- Stefano Pluchino
- Department of Clinical Neurosciences, John van Geest Cambridge Centre for Brain Repair and Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, United Kingdom.
| | | |
Collapse
|
239
|
Liu LN, Wang G, Hendricks K, Lee K, Bohnlein E, Junker U, Mosca JD. Comparison of drug and cell-based delivery: engineered adult mesenchymal stem cells expressing soluble tumor necrosis factor receptor II prevent arthritis in mouse and rat animal models. Stem Cells Transl Med 2013; 2:362-75. [PMID: 23592838 DOI: 10.5966/sctm.2012-0135] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disease with unknown etiology where tumor necrosis factor-α (TNFα) plays a critical role. Etanercept, a recombinant fusion protein of human soluble tumor necrosis factor receptor II (hsTNFR) linked to the Fc portion of human IgG1, is used to treat RA based on the rationale that sTNFR binds TNFα and blocks TNFα-mediated inflammation. We compared hsTNFR protein delivery from genetically engineered human mesenchymal stem cells (hMSCs) with etanercept. Blocking TNFα-dependent intercellular adhesion molecule-1 expression on transduced hMSCs and inhibition of nitric oxide production from TNFα-treated bovine chondrocytes by conditioned culture media from transduced hMSCs demonstrated the functionality of the hsTNFR construction. Implanted hsTNFR-transduced mesenchymal stem cells (MSCs) reduced mouse serum circulating TNFα generated from either implanted TNFα-expressing cells or lipopolysaccharide induction more effectively than etanercept (TNFα, 100%; interleukin [IL]-1α, 90%; and IL-6, 60% within 6 hours), suggesting faster clearance of the soluble tumor necrosis factor receptor (sTNFR)-TNFα complex from the animals. In vivo efficacy of sTNFR-transduced MSCs was illustrated in two (immune-deficient and immune-competent) arthritic rodent models. In the antibody-induced arthritis BalbC/SCID mouse model, intramuscular injection of hsTNFR-transduced hMSCs reduced joint inflammation by 90% compared with untransduced hMSCs; in the collagen-induced arthritis Fischer rat model, both sTNFR-transduced rat MSCs and etanercept inhibited joint inflammation by 30%. In vitro chondrogenesis assays showed the ability of TNFα and IL1α, but not interferon γ, to inhibit hMSC differentiation to chondrocytes, illustrating an additional negative role for inflammatory cytokines in joint repair. The data support the utility of hMSCs as therapeutic gene delivery vehicles and their potential to be used in alleviating inflammation within the arthritic joint.
Collapse
Affiliation(s)
- Linda N Liu
- Osiris Therapeutics, Inc., Baltimore, MD, USA
| | | | | | | | | | | | | |
Collapse
|
240
|
Machado CDV, Telles PDDS, Nascimento ILO. Immunological characteristics of mesenchymal stem cells. Rev Bras Hematol Hemoter 2013; 35:62-7. [PMID: 23580887 PMCID: PMC3621638 DOI: 10.5581/1516-8484.20130017] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 11/18/2012] [Indexed: 02/07/2023] Open
Abstract
Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.
Collapse
|
241
|
Chou SH, Lin SZ, Day CH, Kuo WW, Shen CY, Hsieh DJY, Lin JY, Tsai FJ, Tsai CH, Huang CY. Mesenchymal Stem Cell Insights: Prospects in Hematological Transplantation. Cell Transplant 2013. [DOI: 10.3727/096368912x655172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Adult stem cells have been proven to possess tremendous potential in the treatment of hematological disorders, possibly in transplantation. Mesenchymal stem cells (MSCs) are a heterogeneous group of cells in culture, with hypoimmunogenic character to avoid alloreactive T-cell recognition as well as inhibition of T-cell proliferation. Numerous experimental findings have shown that MSCs also possess the ability to promote engraftment of donor cells and to accelerate the speed of hematological recovery. Despite that the exact mechanism remains unclear, the therapeutic ability of MSCs on hematologic transplantation have been tested in preclinical trials. Based on encouraging preliminary findings, MSCs might become a potentially efficacious tool in the therapeutic options available to treat and cure hematological malignancies and nonmalignant disorders. The molecular mechanisms behind the real efficacy of MSCs on promoting engraftment and accelerating hematological recovery are awaiting clarification. It is hypothesized that direct cell-to-cell contact, paracrine factors, extracellular matrix scaffold, BM homing capability, and endogenous metabolites of immunologic and nonimmunologic elements are involved in the interactions between MSCs and HSCs. This review focuses on recent experimental and clinical findings related to MSCs, highlighting their roles in promoting engraftment, hematopoietic recovery, and GvHD/graft rejection prevention after HSCT, discussing the potential clinical applications of MSC-based treatment strategies in the context of hematological transplantation.
Collapse
Affiliation(s)
- Shiu-Huey Chou
- Department of Life Science, Fu-Jen Catholic University, New Taipei City, Taiwan, ROC
| | - Shinn-Zong Lin
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, ROC
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical College, Taichung, Taiwan, ROC
| | - Chia-Yao Shen
- Department of Nursing, MeiHo University, Pingtung, Taiwan, ROC
| | | | - Jing-Ying Lin
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan, ROC
| | - Fuu-Jen Tsai
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan, ROC
| | - Chang-Hai Tsai
- Department of Healthcare Administration, Asia University, Taichung, Taiwan, ROC
| | - Chih-Yang Huang
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan, ROC
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan, ROC
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan, ROC
| |
Collapse
|
242
|
Zhang L, Xiang J, Li G. The uncertain role of unmodified mesenchymal stem cells in tumor progression: what master switch? Stem Cell Res Ther 2013; 4:22. [PMID: 23510751 PMCID: PMC3707017 DOI: 10.1186/scrt170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are emerging as promising gene vectors for cancer therapy because of their unique characteristics, including the ease of their expansion and genetic modification and their remarkable tumor-tropic properties. However, there remains a concern that MSCs may promote cancer progression. Surprisingly, there are conflicting reports within the literature describing both the promotion and inhibition of cancer progression by MSCs. The reasons for this discrepancy are still unknown. The surface markers, differentiation ability, and tumorigenic roles of MSCs, as well as their effect on immunoregulation, produce heterogeneity. In this review, we describe the heterogeneity of MSCs by the species from which they are derived, the methodology for their isolation and the context of their interactions with cancer cells. The conflicting roles of MSCs in tumor progression may be attributable to the bimodal effect of unmodified MSCs on immunoregulation. MSCs have been reported to suppress T-cell function and inhibit graft-versus-host disease (GVHD). On the other hand, MSCs elicit the graft-versus-tumor (GVT) effect in some cases. Selective allodepletion may be used to dissociate GVHD from the GVT effect. Understanding the conditions that balance GVHD and the GVT effect of MSCs may be crucial to advance cancer therapy research with respect to MSCs.
Collapse
Affiliation(s)
- Liyang Zhang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, PR China
| | - Juanjuan Xiang
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, PR China
| | - Guiyuan Li
- Cancer Research Institute, Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Key Laboratory of Carcinogenesis of Ministry of Health, Central South University, 110 Xiangya Road, Changsha, Hunan, 410078, PR China
| |
Collapse
|
243
|
Pontikoglou C, Kastrinaki MC, Klaus M, Kalpadakis C, Katonis P, Alpantaki K, Pangalis GA, Papadaki HA. Study of the quantitative, functional, cytogenetic, and immunoregulatory properties of bone marrow mesenchymal stem cells in patients with B-cell chronic lymphocytic leukemia. Stem Cells Dev 2013; 22:1329-41. [PMID: 23249221 DOI: 10.1089/scd.2012.0255] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The bone marrow (BM) microenvironment has clearly been implicated in the pathogenesis of B-cell chronic lymphocytic leukemia (B-CLL). However, the potential involvement of BM stromal progenitors, the mesenchymal stem cells (MSCs), in the pathophysiology of the disease has not been extensively investigated. We expanded in vitro BM-MSCs from B-CLL patients (n=11) and healthy individuals (n=16) and comparatively assessed their reserves, proliferative potential, differentiation capacity, and immunoregulatory effects on T- and B-cells. We also evaluated the anti-apoptotic effect of patient-derived MSCs on leukemic cells and studied their cytogenetic characteristics in comparison to BM hematopoietic cells. B-CLL-derived BM MSCs exhibit a similar phenotype, differentiation potential, and ability to suppress T-cell proliferative responses as compared with MSCs from normal controls. Furthermore, they do not carry the cytogenetic abnormalities of the leukemic clone, and they exert a similar anti-apoptotic effect on leukemic cells and healthy donor-derived B-cells, as their normal counterparts. On the other hand, MSCs from B-CLL patients significantly promote normal B-cell proliferation and IgG production, in contrast to healthy-donor-derived MSCs. Furthermore, they have impaired reserves, defective cellular growth due to increased apoptotic cell death and exhibit aberrant production of stromal cell-derived factor 1, B-cell activating factor, a proliferation inducing ligand, and transforming growth factor β1, cytokines that are crucial for the survival/nourishing of the leukemic cells. We conclude that ex vivo expanded B-CLL-derived MSCs harbor intrinsic qualitative and quantitative abnormalities that may be implicated in disease development and/or progression.
Collapse
|
244
|
Voswinkel J, Francois S, Simon JM, Benderitter M, Gorin NC, Mohty M, Fouillard L, Chapel A. Use of mesenchymal stem cells (MSC) in chronic inflammatory fistulizing and fibrotic diseases: a comprehensive review. Clin Rev Allergy Immunol 2013. [PMID: 23296948 DOI: 10.1007/s12016-012-8347-6.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mesenchymal stem cells (MSC), multipotent adult stem cells, feature the potential to regenerate tissue damage and, in parallel, inhibit inflammation and fibrosis. MSC can be safely transplanted in autologous and allogeneic ways as they are non-immunogenic, and consequently represent a therapeutic option for refractory connective tissue diseases, fibrosing diseases like scleroderma and fistulizing colitis like in Crohn's disease. Actually, there are more than 200 registered clinical trial sites for evaluating MSC therapy, and 22 are on autoimmune diseases. In irradiation-induced colitis, MSC accelerate functional recovery of the intestine and dampen the systemic inflammatory response. In order to provide rescue therapy for accidentally over-irradiated prostate cancer patients who underwent radiotherapy, allogeneic bone marrow-derived MSC from family donors were intravenously infused to three patients with refractory and fistulizing colitis resembling fistulizing Crohn's disease. Systemic MSC therapy of refractory irradiation-induced colitis was safe and effective on pain, diarrhoea, hemorrhage, inflammation and fistulization accompanied by modulation of the lymphocyte subsets towards an increase of T regulatory cells and a decrease of activated effector T cells. The current data indicate that MSC represent a promising alternative strategy in the treatment of various immune-mediated diseases. Encouraging results have already been obtained from clinical trials in Crohn's disease and SLE as well as from case series in systemic sclerosis. MSC represent a safe therapeutic measure for patients who suffer from chronic and fistulizing colitis. These findings are instructional for the management of refractory inflammatory bowel diseases that are characterized by similar clinical and immunopathological features.
Collapse
Affiliation(s)
- Jan Voswinkel
- Department of Hematology, Saint Antoine Hospital APHP and UPMC University, UMRS 938, 184 rue Faubourg Saint Antoine, 75012, Paris, France,
| | | | | | | | | | | | | | | |
Collapse
|
245
|
Hematti P, Kim J, Stein AP, Kaufman D. Potential role of mesenchymal stromal cells in pancreatic islet transplantation. Transplant Rev (Orlando) 2013; 27:21-9. [PMID: 23290684 DOI: 10.1016/j.trre.2012.11.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/09/2012] [Indexed: 12/11/2022]
Abstract
Pancreatic islet transplantation is an attractive option for treatment of type 1 diabetes mellitus but maintaining long term islet function remains challenging. Mesenchymal stromal cells (MSCs), derived from bone marrow or other sources, are being extensively investigated in the clinical setting for their immunomodulatory and tissue regenerative properties. Indeed, MSCs have been already tested in some feasibility studies in the context of islet transplantation. MSCs could be utilized to improve engraftment of pancreatic islets by suppressing inflammatory damage and immune mediated rejection. In addition to their immunomodulatory effects, MSCs are known to provide a supportive microenvironmental niche by secreting paracrine factors and depositing extracellular matrix. These properties could be used for in vivo co-transplantation to improve islet engraftment, or for in vitro co-culture to prime freshly isolated islets prior to implantation. Further, tissue specific pancreatic islet derived MSCs may open new opportunities for its use in islet transplantation as those cells might be more physiological to pancreatic islets.
Collapse
Affiliation(s)
- Peiman Hematti
- Department of Medicine, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, USA.
| | | | | | | |
Collapse
|
246
|
Porada CD, Almeida-Porada G. Treatment of Hemophilia A in Utero and Postnatally using Sheep as a Model for Cell and Gene Delivery. ACTA ACUST UNITED AC 2013; S1. [PMID: 23264887 DOI: 10.4172/2157-7412.s1-011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hemophilia A represents the most common inheritable deficiency of the coagulation proteins. Current state-of- the-art treatment consists of frequent prophylactic infusions of plasma-derived or recombinant FVIII protein to maintain hemostasis, and has greatly increased life expectancy and quality of life for many hemophilia A patients. This treatment approach is, however, far from ideal, due to the need for lifelong intravenous infusions, the high treatment cost, and the fact that it is unavailable to a large percentage of the world's hemophiliacs. There is thus a need for novel treatments that can promise long-term or permanent correction. In contrast to existing protein based therapeutics, gene therapy offers to provide a permanent cure following few, or even a single, treatment. In the present paper, we review ongoing work towards this end, focusing on studies we have performed in a large animal model. Some of the key topics covered in this review include the unique opportunities sheep offer as a model system, the re-establishment and clinical and molecular characterization of a line of sheep with severe hemophilia A, the advantages and feasibility of treating a disease like hemophilia A in utero, and the use of Mesenchymal Stem Cells (MSC) as cellular delivery vehicles for the FVIII gene. The review finishes with a brief discussion of our recent success correcting ovine hemophilia A with a postnatal transplant with gene-modified MSC, and the limitations of this approach that remain to be overcome.
Collapse
|
247
|
Abstract
OBJECTIVES Clinical studies have shown alcohol to be a risk factor for traumatic orthopaedic injuries and for nonunion. Data from animal studies suggest that alcohol exposure inhibits fracture healing. This report presents a novel rodent model of impaired fracture healing caused by repeated alcohol exposure. Using this model, we examined the regenerative effects of an intravenously administered population of isolated and expanded mesenchymal stem cells (MSCs) on fracture healing. METHODS Bone marrow-derived MSC were isolated from transgenic green fluorescent protein C57BL/6 mice, and culture expanded using a lineage depletion protocol. Adult wild-type C57BL/6 mice were subjected to a 2-week binge alcohol exposure paradigm (3 days during which they received daily intraperitoneal injections of a 20% alcohol/saline solution followed by a 4-day rest period and another binge cycle for 3 consecutive days). At completion of the second binge cycle, mice were subjected to a mid-shaft tibia fracture while intoxicated. Twenty-four hours after the fracture, animals were administered an intravenous transplant of green fluorescent protein-labeled MSC. Two weeks after the fracture, animals were euthanized and injured tibiae were collected and subjected to biomechanical, histologic, and microcomputed tomography analysis. RESULTS Pre-injury binge alcohol exposure resulted in a significant impairment in biomechanical strength and decrease in callus volume. MSC transplants restored both fracture callus volume (P < 0.05) and biomechanical strength (P < 0.05) in animals with alcohol-impaired healing. In vivo imaging demonstrated a time-dependent MSC migration to the fracture site. CONCLUSIONS These data suggest that a 2-week binge alcohol exposure significantly impairs fracture healing in a murine tibia fracture model. Intravenously administered MSC were capable of specifically homing to the fracture site and of normalizing biomechanical, histologic, and microcomputed tomography parameters of healing in animals exposed to alcohol. Understanding MSC recruitment patterns and functional contributions to fracture repair may lead to their use in patients with impaired fracture healing and nonunion.
Collapse
|
248
|
Kitazawa Y, Li XK, Xie L, Zhu P, Kimura H, Takahara S. Bone marrow-derived conventional, but not cloned, mesenchymal stem cells suppress lymphocyte proliferation and prevent graft-versus-host disease in rats. Cell Transplant 2012; 21:581-90. [PMID: 22793067 DOI: 10.3727/096368911x605510] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) could exert a potent immunosuppressive effect, and therefore may have a therapeutic potential in T-cell-dependent pathologies. In the present study, we aimed to determine whether MSCs could be used to control graft-versus-host disease (GvHD), a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (HSCT). MSCs were isolated from Lewis rat bone morrow and then cultured in 10% FBS DMEM at 37°C for 4 weeks. The enriched conventional MSCs and macrophages were purified by auto-MACS. Cloned MSCs were obtained by cloning using the limiting dilution method and expanded up to more than 6 months. The identity of MSCs was confirmed by their typical spindle-shaped morphology and immunophenotypic criteria, based on the absence of expression of CD45 and CD11b/c molecules. Both types of MSCs were also tested for their ability to differentiate into adipocytes. We showed that MSCs, like macrophages, exhibit immunomodulatory properties capable of inhibiting T-cell proliferation stimulated by alloantigens, anti-CD3e/CD28 mAbs, and ConA in a dose-dependent manner in vitro. After performing adoptive transfer, MSCs suppressed systemic Lewis to (Lewis × DA)F1 rat GvHD. In contrast to the immunosuppressive activities of conventional MSCs, the cloned MSCs enhanced T-cell proliferation in vitro and yielded no clinical benefit in regard to the incidence or severity of GvHD. Therefore, these rat models have shown intriguing differences in the suppression effects of lymphocyte proliferation and GvHD prevention between short-term cultured conventional MSCs and cloned MSCs.
Collapse
Affiliation(s)
- Yusuke Kitazawa
- Laboratory of Transplantation Immunology, National Research Institute for Child Health and Development, Setagaya-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
249
|
Akla N, Pratt J, Annabi B. Concanavalin-A triggers inflammatory response through JAK/STAT3 signalling and modulates MT1-MMP regulation of COX-2 in mesenchymal stromal cells. Exp Cell Res 2012; 318:2498-2506. [PMID: 22971618 DOI: 10.1016/j.yexcr.2012.08.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 08/02/2012] [Accepted: 08/20/2012] [Indexed: 12/22/2022]
Abstract
Pharmacological targeting of inflammation through STAT3 and NF-κB signaling pathways is, among other inflammatory biomarkers, associated with cyclooxygenase (COX)-2 inhibition and is believed to play a crucial role in prevention and therapy of cancer. Recently, inflammatory factors were found to impact on mesenchymal stromal cells (MSC) contribution to tumor angiogenesis. Given MSC chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase (MT1-MMP), an MMP also involved in transducing NF-κB intracellular signaling pathways, we tested whether STAT3 regulation by MT1-MMP may also contribute to the expression balance of COX-2 in MSC. We demonstrate that STAT3 phosphorylation was triggered in MSC treated with the MT1-MMP inducer lectin Concanavalin-A (ConA), and that this phosphorylation was abrogated by the JAK2 inhibitor AG490. MT1-MMP gene silencing significantly inhibited ConA-induced STAT3 phosphorylation and this was correlated with reduced proMMP-2 activation and COX-2 expression. On the other hand, STAT3 gene silencing potentiated ConA-induced COX-2 expression, providing evidence for a new MT1-MMP/JAK/STAT3 signaling axis that may, in part, explain how MT1-MMP contributes to proinflammatory intracellular signaling. Given that MSC are avidly recruited within inflammatory microenvironments and within experimental vascularizing tumors, these mechanistic observations support a possible dual control of cell adaptation to inflammation by MT1-MMP and that may enable MSC to be active participants within inflamed tissues.
Collapse
Affiliation(s)
- Naoufal Akla
- Laboratoire d'Oncologie Moléculaire, Centre de recherche BIOMED, Département de Chimie, Université du Québec à Montréal, Quebec, Canada H3C 3P8
| | | | | |
Collapse
|
250
|
Ma X, Che N, Gu Z, Huang J, Wang D, Liang J, Hou Y, Gilkeson G, Lu L, Sun L. Allogenic mesenchymal stem cell transplantation ameliorates nephritis in lupus mice via inhibition of B-cell activation. Cell Transplant 2012; 22:2279-90. [PMID: 23127285 DOI: 10.3727/096368912x658692] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recent evidence indicates that bone marrow-derived mesenchymal stem cells (BM-MSCs) possess immunosuppressive properties both in vitro and in vivo. We have previously demonstrated that transplantation of human MSCs can significantly improve the autoimmune conditions in MRL/lpr mice. The current study aimed to determine the mechanisms by which murine BM-MSC transplantation (MSCT) ameliorates nephritis in MRL/lpr mice. In this study, we found that MSCT can significantly prolong the survival of MRL/lpr mice. Eight weeks after transplantation, MSCT-treated mice showed significantly smaller spleens than control animals, with fewer marginal zones (MZs), T1, T2, activated B-cells, and plasma cells. Moreover, serum levels of B-cell activating factor (BAFF) and IL-10 in MSCT-treated mice decreased significantly compared to those in the control group, while levels of serum TGF-β were increased. Notably, decreased BAFF expression in both spleen and kidney was accompanied by decreased production of anti-dsDNA autoantibodies and proteinuria in MSCT-treated mice. Since BAFF is mainly expressed by T-cells and dendritic cells, we incubated BM-MSCs and DCs together and found that the production of BAFF by DCs was suppressed by MSCs. Thus, our findings suggest that MSCT may suppress the excessive activation of B-cells via inhibition of BAFF production in MRL/lpr mice.
Collapse
Affiliation(s)
- Xiaolei Ma
- Department of Immunology and Rheumatology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|