201
|
Mantovani M, Marazzi F, Fornaroli R, Bellucci M, Ficara E, Mezzanotte V. Outdoor pilot-scale raceway as a microalgae-bacteria sidestream treatment in a WWTP. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 710:135583. [PMID: 31785903 DOI: 10.1016/j.scitotenv.2019.135583] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/05/2019] [Accepted: 11/15/2019] [Indexed: 05/27/2023]
Abstract
This study aims at demonstrating the feasibility of using microalgae-bacteria consortia for the treatment of the sidestream flow of the supernatant from blackwater dewatering (centrate) in an urban wastewater treatment plant in Northern Italy. A 1200 L raceway reactor was used for the outdoor cultivation of a diverse community of Chlorella spp., Scenedesmus spp. and Chlamydomonas spp. in continuous operation mode with 10 days hydraulic retention time. During the trial, an average daily areal productivity of 5.5 ± 7.4 g TSS m-2 day-1 was achieved while average nutrient removal efficiencies were 86% ± 7% and 71% ± 10% for NH4-N and PO4-P, respectively. The microalgal nitrogen assimilation accounted for 10% of the nitrogen in the centrate while 34% was oxidized to nitrite and nitrate. The oxygen produced by microalgae fully covert the oxygen demand for nitrification. This suggests that the proposed process would reduce the aeration demand for nitrification in the water line of the plant, while producing algal biomass to be further valorized for energy or material recovery.
Collapse
Affiliation(s)
- Marco Mantovani
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy.
| | - Francesca Marazzi
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Riccardo Fornaroli
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| | - Micol Bellucci
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - Elena Ficara
- Politecnico di Milano, Department of Civil and Environmental Engineering (DICA), P.zza L. da Vinci 32, 20133 Milano, Italy
| | - Valeria Mezzanotte
- Università degli Studi di Milano - Bicocca, Department of Earth and Environmental Sciences (DISAT), P.zza della Scienza 1, 20126 Milano, Italy
| |
Collapse
|
202
|
Effects of Hydraulic Retention Time and Influent Nitrate-N Concentration on Nitrogen Removal and the Microbial Community of an Aerobic Denitrification Reactor Treating Recirculating Marine Aquaculture System Effluent. WATER 2020. [DOI: 10.3390/w12030650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The effects of hydraulic retention time (HRT) and influent nitrate-N concentration on nitrogen removal and the microbial community composition of an aerobic denitrification reactor treating recirculating marine aquaculture system effluent were evaluated. Results showed that over 98% of nitrogen was removed and ammonia-N and nitrite-N levels were below 1 mg/L when influent nitrate-N was below 150 mg/L and HRT over 5 h. The maximum nitrogen removal efficiency and nitrogen removal rate were observed at HRT of 6 or 7 h when influent nitrate-N was 150 mg/L. High-throughput DNA sequencing analysis revealed that the microbial phyla Proteobacteria and Bacteroidetes were predominant in the reactor, with an average relative total abundance above 70%. The relative abundance of denitrifying bacteria of genera Halomonas and Denitratisoma within the reactor decreased with increasing influent nitrate-N concentrations. Our results show the presence of an aerobically denitrifying microbial consortium with both expected and unexpected members, many of them relatively new to science. Our findings provide insights into the biological workings and inform the design and operation of denitrifying reactors for marine aquaculture systems.
Collapse
|
203
|
Ji B, Zhu L, Wang S, Qin H, Ma Y, Liu Y. A novel micro-ferrous dosing strategy for enhancing biological phosphorus removal from municipal wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135453. [PMID: 31810675 DOI: 10.1016/j.scitotenv.2019.135453] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/30/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
Ferrous salts have been widely used to enhance phosphorus removal in full-scale wastewater treatment plants, with an average dosage of 0.24-0.35 mM. However, such high dosage inevitably caused serious concerns on operation, potential biological toxicity and excessive sludge production. Thus, this study investigated the effect of micro-dosing of ferrous salt at the level of 0.02 mM on enhanced biological phosphorus removal (EBPR) in sequencing batch reactors. Results showed that micro-dosing of ferrous salt enhanced the overall performance, with average COD, TN and TP removal of more than 4.2%, 2.0% and 5.8%, respectively. In addition, the sequencing analysis further revealed that micro-ferrous dosing could significantly improve the diversity and richness of the microbial community (p < 0.05), whereas the regular dosing of ferrous salts (0.25 mM) negatively impacted on the EBPR performance. It was found that the abundances of phosphorus accumulating organisms (PAOs) in R2 (micro-dosing) were nearly 1.5-fold and 2-fold higher than those in R1 (control) and R3 (regular dosing). The contributions of biological and chemical pathways towards the observed phosphorus removal were also determined according to the phosphorus releasing rate. For micro-dosage and regular dosage of ferrous salts, phosphorus removal mainly relied on biological phosphorus removal and chemical phosphorus removal, respectively. It appears from this this study that the micro-ferrous dosing strategy is practically feasible and economically viable for enhanced phosphorus removal from municipal wastewater.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore.
| | - Lin Zhu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Siyu Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hui Qin
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
204
|
Xu Z, Li G, Huda N, Zhang B, Wang M, Luo W. Effects of moisture and carbon/nitrogen ratio on gaseous emissions and maturity during direct composting of cornstalks used for filtration of anaerobically digested manure centrate. BIORESOURCE TECHNOLOGY 2020; 298:122503. [PMID: 31837581 DOI: 10.1016/j.biortech.2019.122503] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/18/2019] [Accepted: 11/25/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the maturity and gaseous emission during direct composting of cornstalks used as organic media for filtration of anaerobically digested manure centrate. Effects of moisture and carbon/nitrogen (C/N) ratio on composting performance were evaluated. Results show that cornstalks could effectively retain suspended solids and organic matter in digested manure centrate to lower their C/N ratio and attain microbial inoculation. Filtered cornstalks became more compostable when their moisture decreased from 76% to 60% or C/N ratio increased from 12 to 24. Nevertheless, such adjustment aggravated the emission of greenhouse and odours gases during composting. Regardless of composting conditions, the phylum Firmicutes was the most dominant with reduced abundance during composting. Similar reduction also occurred to several abundant phyla, including Atribacteria, Synergistetes and Euryarchaeota. By contrast, the phylum Bacteroidetes, Chloroflexi, Proteobacteria and Actinobacteria enriched as composting progressed. In addition, compost maturity was insignificantly affected by matrix moisture and C/N ratio.
Collapse
Affiliation(s)
- Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Nazmul Huda
- Sustainable Energy Systems Engineering Group, School of Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Bangxi Zhang
- Institute of Soil and Fertiliser, Guizhou Academy of Agricultural Sciences, Guizhou Guiyang 550006, China
| | - Meng Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Sustainable Energy Systems Engineering Group, School of Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
205
|
Nitrogen Removal Performance and Metabolic Pathways Analysis of a Novel Aerobic Denitrifying Halotolerant Pseudomonas balearica strain RAD-17. Microorganisms 2020; 8:microorganisms8010072. [PMID: 31906569 PMCID: PMC7022906 DOI: 10.3390/microorganisms8010072] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 11/17/2022] Open
Abstract
An aerobic denitrification strain, Pseudomonas balearica RAD-17, was identified and showed efficient inorganic nitrogen removal ability. The average NO3−-N, NO2−-N, and total ammonium nitrogen (TAN) removal rate (>95% removal efficiency) in a batch test was 6.22 mg/(L∙h), 6.30 mg/(L∙h), and 1.56 mg/(L∙h), respectively. Meanwhile, optimal incubate conditions were obtained through single factor experiments. For nitrogen removal pathways, the transcriptional results proved that respiratory nitrate reductases encoded by napA, which was primarily performed in aerobic denitrification and cell assimilation, were conducted by gluS and gluD genes for ammonium metabolism. In addition, adding the strain RAD-17 into actual wastewater showed obvious higher denitrification performance than in the no inoculum group (84.22% vs. 22.54%), and the maximum cell abundance achieved 28.5 ± 4.5% in a ratio of total cell numbers. Overall, the efficient nitrogen removal performance plus strong environmental fitness makes the strain RAD-17 a potential alternative for RAS (recirculating aquaculture system) effluent treatment.
Collapse
|
206
|
Song J, Zhang W, Gao J, Hu X, Zhang C, He Q, Yang F, Wang H, Wang X, Zhan X. A pilot-scale study on the treatment of landfill leachate by a composite biological system under low dissolved oxygen conditions: Performance and microbial community. BIORESOURCE TECHNOLOGY 2020; 296:122344. [PMID: 31708387 DOI: 10.1016/j.biortech.2019.122344] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/19/2019] [Accepted: 10/24/2019] [Indexed: 05/27/2023]
Abstract
In this work, a pilot-scale low dissolved oxygen (DO) composite biological system (LDOCBS) composed of an anoxic rotating biological contactor (RBC) and four aeration tanks with gradient aeration was used to treat landfill leachate for 88 d. The maximum removals of 85.65%, 99.92% and 84.06% for chemical oxygen demand (COD), ammonia (NH4+-N) and total nitrogen (TN) were achieved, respectively. The three-dimensional exaction and emission matrix (3D-EEM) fluorescence spectroscopy revealed that the biodegradability of leachate was significantly improved by the LDOCBS. Mass balance calculations showed that the COD removal and denitrification process mainly occurred in RBC while 1# contributed primarily to nitrification. High-throughput sequencing analysis indicated that denitrifying bacteria with highly relative abundances of 46.45%-53.81% played key roles in organic degradation and nitrogen removal. This work could add some guiding insights into the cost-efficient treatment of landfill leachate by the composite biological system.
Collapse
Affiliation(s)
- Jianyang Song
- School of Civil Engineering, Wuhan University, Wuhan 430072, China; School of Civil Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Wei Zhang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Junfeng Gao
- Wuhan Environment Investment & Development Group Municipal Waste Management Co., Ltd, Wuhan 430014, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Chenlu Zhang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Qiulai He
- Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Department of Water Engineering and Science, College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Fei Yang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang 473004, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Xueyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xiang Zhan
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
207
|
Assessment of Heterotrophic Nitrification Capacity in Bacillus spp. and its Potential Application in the Removal of Nitrogen from Aquaculture Water. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.4.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
208
|
Hong P, Shu Y, Wu X, Wang C, Tian C, Wu H, Donde OO, Xiao B. Efficacy of zero nitrous oxide emitting aerobic denitrifying bacterium, Methylobacterium gregans DC-1 in nitrate removal with strong auto-aggregation property. BIORESOURCE TECHNOLOGY 2019; 293:122083. [PMID: 31487615 DOI: 10.1016/j.biortech.2019.122083] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 08/24/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
A novel aerobic denitrifying strain Methylobacterium gregans DC-1 was isolated and identified. Strain DC-1 removed 98.4% of nitrate-nitrogen (NO3--N) and 80.7% of total organic carbon with initial concentrations of 50 and 2400 mg/l, respectively. The N balance showed that most NO3--N was converted to N2 (62.18%) without nitrous oxide (N2O) emission. Response surface analysis showed that the optimal conditions for total N removal were carbon (C):N ratio of 18.7, temperature of 26.8 °C, pH of 6.5 and shaking speed of 180 rpm. In combination with the N balance and successful amplification of napA, nirK and nosZ genes, the metabolic pathway was as follows: NO3-NO2- → NO → N2O → N2. Strain DC-1 had strong auto-aggregation rate (maximum 38.7%), produced large amounts of extracellular polymeric substances (EPS; maximum of 781.4 mg/g cell dry weight) and had corresponding strong hydrophobicity (maximum 83.2%). Pearson correlation analysis showed that EPS content and hydrophobicity were significantly positively correlated with auto-aggregation.
Collapse
Affiliation(s)
- Pei Hong
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Shu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Xingqiang Wu
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunbo Wang
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuicui Tian
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Wu
- Key Laboratory for the Conservation and Utilization of Important Biological Resources of Anhui Province, Wuhu 241000, China; College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Oscar Omondi Donde
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bangding Xiao
- Key Laboratory of Algal Biology of the Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
209
|
Lee S, Sutter M, Burkhardt M, Wu B, Chong TH. Biocarriers facilitated gravity-driven membrane (GDM) reactor for wastewater reclamation: Effect of intermittent aeration cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133719. [PMID: 31756828 DOI: 10.1016/j.scitotenv.2019.133719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
This study investigated the performances of gravity-driven membrane (GDM) reactors integrated with granule activated carbon (GAC) biofilm process for wastewater treatment under different intermittent aeration cycles (intensity and frequency). The results showed the removal efficiencies of dissolved organic carbon, total nitrogen, ammonia were significantly improved under intermittent aeration conditions (~86-87%, ~29-37%, and ~83-99%, respectively) compared to non-aeration condition (~72% and ~18%, and ~17%, respectively). In addition, it was found that the intermittent aeration significantly reduced the cake layer resistance and therefore improved ~130-300% the permeate flux compared to control without aeration. Microbial community analysis indicated that prokaryotic and eukaryotic compositions in the cake layer biofilm were significantly influenced by aeration condition. Lastly, energy consumption analysis revealed that GAC + GDM with shorter aeration period and low aeration intensity could be promising as a decentralized wastewater treatment process in terms of water quality and operating energy.
Collapse
Affiliation(s)
- Seonki Lee
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Matthias Sutter
- HSR Hochschule für Technik Rapperswil, Institute of Environmental and Process Engineering (UMTEC), Oberseestrasse 10, 8640 Rapperswil, Switzerland
| | - Michael Burkhardt
- HSR Hochschule für Technik Rapperswil, Institute of Environmental and Process Engineering (UMTEC), Oberseestrasse 10, 8640 Rapperswil, Switzerland
| | - Bing Wu
- Faculty of Civil and Environmental Engineering, University of Iceland, Hjardarhagi 2-6, IS-107 Reykjavik, Iceland.
| | - Tzyy Haur Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Clean Tech One 06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
210
|
Insights into the bacterial species and communities of a full-scale anaerobic/anoxic/oxic wastewater treatment plant by using third-generation sequencing. J Biosci Bioeng 2019; 128:744-750. [DOI: 10.1016/j.jbiosc.2019.06.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/27/2019] [Accepted: 06/07/2019] [Indexed: 12/14/2022]
|
211
|
Han B, Addo FG, Mu X, Zhang L, Zhang S, Lv X, Li X, Wang P, Wang C. Epiphytic bacterial community shift drives the nutrient cycle during Potamogeton malaianus decomposition. CHEMOSPHERE 2019; 236:124253. [PMID: 31323556 DOI: 10.1016/j.chemosphere.2019.06.223] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 06/28/2019] [Accepted: 06/29/2019] [Indexed: 05/27/2023]
Abstract
Epiphytic bacteria on submerged macrophytes play important roles in the nutrient cycle in freshwater ecosystems. However, little is known about the composition and role of epiphytic bacteria during the decomposition of submerged macrophytes. In this study, the alterations in epiphytic bacterial composition, abundances of nitrogen cycle-related genes and nutrient release were investigated in a 56-day decomposition process of Potamogeton malaianus. The total reduced biomass was positively related to the contents of carbon, nitrogen and phosphorus released from plant residues. Nutrient released from plant litter showed a positively effect on the concentrations of carbon, nitrogen and phosphorus in the overlying water (p < 0.01). The carbon, phosphorus and nitrogen decreased with decomposition process in both plant debris and overlying water. Humic acid-like substances were the main component of dissolved organic matter in the conditioning stage, whereas fulvic acid-like substances dominated in the fragmentation stage. Results from network analysis and canonical correspondence analysis showed dominant bacterial clades changed with decomposition process. Bacteroidetes was the most abundant phylum in the leaching stage and Spirochaetes, Chlorobi, and Bacteroidetes dominated in the conditioning stage, while Chlorobi dominated in the fragmentation stage. The highest abundance of cnorB and nosZ were detected in the leaching and fragmentation stage, respectively. Bacterial denitrification contributed to nitrogen removal and might be promoted by high ORP and DOC concentration. Our results indicate that epiphytic bacterial community shift drived the metabolism of nutrients C, N, and S during the decomposition of P. malaianus.
Collapse
Affiliation(s)
- Bing Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xiaoying Mu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Lisha Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Xiaoyang Lv
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Xin Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Chao Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
212
|
C. Alzate Marin J, H. Caravelli A, E. Zaritzky N. Performance of Anoxic-Oxic Sequencing Batch Reactor for Nitrification and Aerobic Denitrification. Biotechnol Bioeng 2019. [DOI: 10.5772/intechopen.84775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
213
|
Sustainable Approach to Eradicate the Inhibitory Effect of Free-Cyanide on Simultaneous Nitrification and Aerobic Denitrification during Wastewater Treatment. SUSTAINABILITY 2019. [DOI: 10.3390/su11216180] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Simultaneous nitrification and aerobic denitrification (SNaD) is a preferred method for single stage total nitrogen (TN) removal, which was recently proposed to improve wastewater treatment plant design. However, SNaD processes are prone to inhibition by toxicant loading with free cyanide (FCN) possessing the highest inhibitory effect on such processes, rendering these processes ineffective. Despite the best efforts of regulators to limit toxicant disposal into municipal wastewater sewage systems (MWSSs), FCN still enters MWSSs through various pathways; hence, it has been suggested that FCN resistant or tolerant microorganisms be utilized for processes such as SNaD. To mitigate toxicant loading, organisms in SNaD have been observed to adopt a diauxic growth strategy to sequentially degrade FCN during primary growth and subsequently degrade TN during the secondary growth phase. However, FCN degrading microorganisms are not widely used for SNaD in MWSSs due to inadequate application of suitable microorganisms (Chromobacterium violaceum, Pseudomonas aeruginosa, Thiobacillus denitrificans, Rhodospirillum palustris, Klebsiella pneumoniae, and Alcaligenes faecalis) commonly used in single-stage SNaD. This review expatiates the biological remedial strategy to limit the inhibition of SNaD by FCN through the use of FCN degrading or resistant microorganisms. The use of FCN degrading or resistant microorganisms for SNaD is a cost-effective method compared to the use of other methods of FCN removal prior to TN removal, as they involve multi-stage systems (as currently observed in MWSSs). The use of FCN degrading microorganisms, particularly when used as a consortium, presents a promising and sustainable resolution to mitigate inhibitory effects of FCN in SNaD.
Collapse
|
214
|
Cui H, Yang Y, Ding Y, Li D, Zhen G, Lu X, Huang M, Huang X. A novel pilot-scale tubular bioreactor-enhanced floating treatment wetland for efficient in situ nitrogen removal from urban landscape water: Long-term performance and microbial mechanisms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1498-1508. [PMID: 31102431 DOI: 10.1002/wer.1147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/10/2019] [Accepted: 05/13/2019] [Indexed: 06/09/2023]
Abstract
In order to strengthen in situ nitrogen removal of urban landscape water, a novel pilot-scale tubular bioreactor-enhanced floating treatment wetland (TB-EFTW) was constructed, and the long-term performance and responsible microbial mechanisms were investigated in this study. The results showed that the system could remove 81.5% nitrogen from the landscape water after 240 days' operation. Moreover, the contribution rate of plant absorption to nitrogen was low (8.3%), which indicated that microbial biotransformation rather than plant absorption played a more key role in nitrogen removal in TB-EFTW system. The declining dissolved oxygen (DO) concentration along the axial direction of tubular bioreactor (TB) resulted in the sequential bacterial community of nitrifying, aerobic denitrifying, and anoxic denitrifying bacteria in the front, middle, and final part of TB. High-throughput sequencing results demonstrated that the internal environment of the system realized the coexistence of nitrifying, aerobic denitrifying and anoxic denitrifying process. The reason was mainly because that oxic-anoxic (O-A) areas were formed in sequence along the axial direction of tubular bioreactor. Overall, a unique advantage in nitrogen removal was achieved in TB-EFTW, which could provide important references for in situ treatment of urban landscape water. PRACTITIONER POINTS: TB-EFTW strengthened nitrogen removal for in situ urban landscape water treatment. Microbial conversion played a key role in nitrogen removal of the TB-EFTW system. The unique distribution of oxic-anoxic (O-A) areas was formed in sequence along the TB. Nitrification, aerobic, and anoxic denitrification were synergistically involved in the TB.
Collapse
Affiliation(s)
- He Cui
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yinchuan Yang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yu Ding
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Dan Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Minsheng Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Xiao Huang
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
215
|
Modeling Water and Nitrogen Balance of Different Cropping Systems in the North China Plain. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9110696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The North China Plain (NCP) is experiencing serious groundwater level decline and groundwater nitrate contamination due to excessive water pumping and application of nitrogen (N) fertilizer. In this study, grain yield, water and N use efficiencies under different cropping systems including two harvests in 1 year (winter wheat–summer maize) based on farmer (2H1Y)FP and optimized practices (2H1Y)OPT, three harvests in 2 years (winter wheat–summer maize–spring maize, 3H2Y), and one harvest in 1 year (spring maize, 1H1Y) were evaluated using the water-heat-carbon-nitrogen simulator (WHCNS) model. The 2H1YFP system was maintained with 100% irrigation and fertilizer, while crop water requirement and N demand for other cropping systems were optimized and managed by soil testing. In addition, a scenario analysis was also performed under the interaction of linearly increasing and decreasing N rates, and irrigation levels. Results showed that the model performed well with simulated soil water content, soil N concentration, leaf area index, dry matter, and grain yield. Statistically acceptable ranges of root mean square error, Nash–Sutcliffe model efficiency, index of agreement values close to 1, and strong correlation coefficients existed between simulated and observed values. We concluded that replacing the prevalent 2H1YFP with 1H1Y would be ecofriendly at the cost of some grain yield decline. This cropping system had the highest average water use (2.1 kg m−3) and N use efficiencies (4.8 kg kg–1) on reduced water (56.64%) and N (81.36%) inputs than 2H1YFP. Whereas 3H2Y showed insignificant results in terms of grain yield, and 2H1YFP was unsustainable. The 2H1YFP system consumed a total of 745 mm irrigation and 1100 kg N ha–1 in two years. When farming practices were optimized for two harvests in 1 year system (2H1Y)OPT, then grain yield improved and water (18.12%) plus N (61.82%) consumptions were minimized. There was an ample amount of N saved, but water conservation was still unsatisfactory. However, considering the results of scenario analyses, it is recommended that winter wheat would be cultivated at <200 mm irrigation by reducing one irrigation event.
Collapse
|
216
|
Rajta A, Bhatia R, Setia H, Pathania P. Role of heterotrophic aerobic denitrifying bacteria in nitrate removal from wastewater. J Appl Microbiol 2019; 128:1261-1278. [PMID: 31587489 DOI: 10.1111/jam.14476] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 11/27/2022]
Abstract
With the increase in industrial and agricultural activities, a large amount of nitrogenous compounds are released into the environment, leading to nitrate pollution. The perilous effects of nitrate present in the environment pose a major threat to human and animal health. Bioremediation provides a cost-effective and environmental friendly method to deal with this problem. The process of aerobic denitrification can reduce nitrate compounds to harmless dinitrogen gas. This review provides a brief view of the exhaustive role played by aerobic denitrifiers for tackling nitrate pollution under different ecological niches and their dependency on various environmental parameters. It also provides an understanding of the enzymes involved in aerobic denitrification. The role of aerobic denitrification to solve the issues faced by the conventional method (aerobic nitrification-anaerobic denitrification) in treating nitrogen-polluted wastewaters is elaborated.
Collapse
Affiliation(s)
- A Rajta
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - R Bhatia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - H Setia
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - P Pathania
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| |
Collapse
|
217
|
Kwon JH, Park HJ, Lee YY, Cho KS. Evaluation of denitrification performance and bacterial community of a sequencing batch reactor under intermittent aeration. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2019; 55:179-192. [PMID: 31656118 DOI: 10.1080/10934529.2019.1681220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/04/2019] [Accepted: 10/07/2019] [Indexed: 06/10/2023]
Abstract
Effects of operational parameters (initial nitrite concentration, initial nitrate concentration, carbon source, and COD/N ratio) on denitrification performance was evaluated using a sequencing batch reactor (SBR) under intermittent aeration. Complete denitrification was observed without N2O accumulation when the initial nitrite concentration was 100-500 mg-N·L-1. When the initial nitrate concentration was 75-300 mg-N·L-1, 95-96% of NO3--N was completely reduced to N2 gas. Acetate was the most effective sole carbon source for the complete denitrification of the SBR under intermittent aeration, and 99% of NO3--N was reduced to N2 gas. The optimum COD/N ratio was 8-12 for the complete denitrification, while NO2- accumulation was observed at low COD/N ratios of 1 and 2. In this study, N2O accumulation was not observed during the denitrification process regardless of operational condition. Paracoccus (15-68%), a representative aerobic denitrifying bacterium, was dominant in the SBR during the denitrification process, and the intermittent aeration condition could affect the abundance of Paracoccus in this study.
Collapse
Affiliation(s)
- Ji Hyeon Kwon
- Department of Environmental Science and Engineering, Ewha Woman's University, Seoul, Republic of Korea
| | - Hyung-Joo Park
- Department of Environmental Science and Engineering, Ewha Woman's University, Seoul, Republic of Korea
| | - Yun-Yeong Lee
- Department of Environmental Science and Engineering, Ewha Woman's University, Seoul, Republic of Korea
| | - Kyung-Suk Cho
- Department of Environmental Science and Engineering, Ewha Woman's University, Seoul, Republic of Korea
| |
Collapse
|
218
|
Fu G, Zhao L, Huangshen L, Wu J. Isolation and identification of a salt-tolerant aerobic denitrifying bacterial strain and its application to saline wastewater treatment in constructed wetlands. BIORESOURCE TECHNOLOGY 2019; 290:121725. [PMID: 31301568 DOI: 10.1016/j.biortech.2019.121725] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 06/10/2023]
Abstract
A salt-tolerant aerobic denitrifying bacterium, Zobellella denitrificans strain A63, was isolated, and its effects on the efficiency of denitrification of saline wastewater and the denitrifying microbial community structure in the matrix were studied in vertical-flow constructed wetlands (VFCWs). In a VFCW system with strain A63, the removal efficiencies of NH4+-N, NO3--N, and total nitrogen reached 79.2%, 95.7%, and 89.9%, respectively. Quantitative PCR analysis indicated that the amoA gene from ammonia-oxidizing archaea (AOA) was highly abundant, whereas amoA from ammonia-oxidizing bacteria and nxrA from nitrite-oxidizing bacteria were lowly abundant because of the influent salinity, irrespective of whether strain A63 was added. However, the addition of strain A63 significantly increased the abundance of nirK in the top layer of the VFCW. Therefore, AOA-driven partial nitrification and aerobic denitrification by strain A63 occurred in VFCWs. Our findings suggest that adding salt-tolerant denitrifying strains to constructed wetlands can enhance denitrification for saline wastewater treatment.
Collapse
Affiliation(s)
- Guiping Fu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Lin Zhao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Linkun Huangshen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jinfa Wu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
219
|
Crippen TL, Sheffield CL, Singh B, Byrd JA, Beier RC. How Management Practices Within a Poultry House During Successive Flock Rotations Change the Structure of the Soil Microbiome. Front Microbiol 2019; 10:2100. [PMID: 31572320 PMCID: PMC6753631 DOI: 10.3389/fmicb.2019.02100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/26/2019] [Indexed: 01/21/2023] Open
Abstract
The microbiome within a poultry production house influences the attainment of physiologically strong birds and thus food safety and public health. Yet little is known about the microbial communities within the house and the effects on the soil microbes onto which the houses are placed; nor the effects of management practices on their equilibrium. This study looked at the soil bacterial microbiome before a broiler house was constructed, then through 11 flock rotations (2.5 years) that included a partial clean-out and a total clean-out within the management regimen. Major shifts were observed, occurring at the taxonomic class level, related to the introduction of bedding and birds on top of the soil. The partial clean-out of litter did not change the soil bacterial community in any substantial way, only prompting a temporary increase in some genera; however, the total litter clean-out caused a major increase in a cohort of Actinobacteria. The underlying soil contained bacteria beneficial for poultry metabolism, such as Lactobacillus, Faecalibacterium, Bacteriodes, and Ruminococcus. Additionally, management practices affected the class structure of the soil bacterial community beneath the poultry house. The scheduling of these practices should be leveraged to exploit maintenance of beneficial bacteria that maximize microbiome contributions to bird production processes, while minimizing possible antibiotic-resistant bacteria and environmental effects.
Collapse
Affiliation(s)
- Tawni L. Crippen
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Cynthia L. Sheffield
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Baneshwar Singh
- Department of Forensic Science, Virginia Commonwealth University, Richmond, VA, United States
| | - J. Allen Byrd
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| | - Ross C. Beier
- Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, TX, United States
| |
Collapse
|
220
|
Ji B, Liang J, Ma Y, Zhu L, Liu Y. Bacterial community and eutrophic index analysis of the East Lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 252:682-688. [PMID: 31185357 DOI: 10.1016/j.envpol.2019.05.138] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/18/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
This study investigated bacterial diversities in surface water and sediment of the East Lake located in Wuhan, China. Bacterial community of lake water was mainly composed of Proteobacteria (31.1%), Actinobacteria (25.0%), Bacteroidetes (18.6%), Cyanobacteria (18.9%), Planctomycetes (2.4%) and Verrucomicrobia (1.4%), while more abundant and richer bacterial community was found in the sediments, e.g. 46.1% for Proteobacteria, 10.1% for Bacteroidetes, 8.7% for Chloroflexi, 8.4% for Acidobacteria, 5.0% for Cyanobacteria, 3.6% for Firmicutes, 3.1% for Planctomycetes, 2.8% for Actinobacteria and 2.3% for Nitrospirae. The decreased bacterial community richness and abundance was found in poor-quality water. Moreover, Bacterial Eutrophic Index (BEI) was firstly put forward to quantitatively describe the water quality of a freshwater ecosystem, which was defined as the ratio of abundance of Cyanobacteria and Actinobacteria in water. It was demonstrated BEI was well correlated to Carlson's Trophic State Index (TSI) (Spearman's ρ = 0.848, p < 0.01). The average TSI and BEI were determined to be 64 and 0.81, suggesting that East Lake could be classified as a medium eutrophic level.
Collapse
Affiliation(s)
- Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore.
| | - Jiechao Liang
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yingqun Ma
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Lin Zhu
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yu Liu
- Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
221
|
Vivier B, David F, Marchand C, Thanh-Nho N, Meziane T. Fatty acids, C and N dynamics and stable isotope ratios during experimental degradation of shrimp pond effluents in mangrove water. MARINE ENVIRONMENTAL RESEARCH 2019; 150:104751. [PMID: 31271964 DOI: 10.1016/j.marenvres.2019.104751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/20/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Intensive shrimp farming generates high loads of wastewaters that are released along tropical coastlines with potential impacts on the ecosystems. In this study, we used an experimental approach to analyze the behavior of shrimp pond effluents released in the Can Gio mangrove waterways (Southern Vietnam). We incubated shrimp pond effluents (EF), river water (RV), and a mixture of both (MI; 90% RV + 10% EF) in a dark room and measured fatty acid (FA) compositions, C and N concentrations and stable isotopes ratios (δ13C and δ15N) of suspended particulate matter during 16 days. Fatty acid concentrations rapidly decreased in EF with a 50% loss of FA during the first 24 h of the experiment and a 75% loss after 4 days of incubation. Proportions of the FA 18:1ω7 increased in MI during incubation, suggesting that this FA may be used as a tracer of anthropogenic substances release in marine environments.
Collapse
Affiliation(s)
- Baptiste Vivier
- BOREA Biologie des Organismes et Ecosystèmes Aquatiques, UMR 7208 MNHN CNRS SU UA UCN IRD 207, Muséum National d'Histoire Naturelle, 75005, Paris, France
| | - Frank David
- BOREA Biologie des Organismes et Ecosystèmes Aquatiques, UMR 7208 MNHN CNRS SU UA UCN IRD 207, Muséum National d'Histoire Naturelle, 75005, Paris, France.
| | - Cyril Marchand
- Université de la Nouvelle-Calédonie, ISEA, EA 7484, BPR4, 98851, Noumea, New Caledonia, France
| | - Nguyen Thanh-Nho
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Tarik Meziane
- BOREA Biologie des Organismes et Ecosystèmes Aquatiques, UMR 7208 MNHN CNRS SU UA UCN IRD 207, Muséum National d'Histoire Naturelle, 75005, Paris, France
| |
Collapse
|
222
|
Wang C, Li J, Wu Y, Song Y, Liu R, Cao Z, Cui Y. Shifts of the nirS and nirK denitrifiers in different land use types and seasons in the Sanjiang Plain, China. J Basic Microbiol 2019; 59:1040-1048. [PMID: 31469176 DOI: 10.1002/jobm.201900192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/10/2019] [Accepted: 08/10/2019] [Indexed: 11/12/2022]
Abstract
Denitrification is a key nitrogen removal process that involves many denitrifying bacteria. In this study, the denitrification performance was estimated for soil samples from different land use types including farmland soil, restored wetland soil, and wetland soil. The quantitative real-time polymerase chain reaction results showed that the average abundance of nirS and nirK genes was notably affected by seasonal changes, increasing from 2.34 × 10 6 and 2.81 × 10 6 to 1.97 × 10 6 and 4.55 × 10 6 gene copies/g of dry soil, respectively, from autumn to spring. This suggests that the abundance of nirS and nirK denitrifiers in spring is higher than those in autumn. Furthermore, the abundance of nirS and nirK genes was higher in the farmland soil than in restored wetland soil and wetland soil in both seasons. According to the analyses of MiSeq sequencing of nirS and nirK genes, Halobacteriaceae could be used as a special strain to distinguish wetland soil from farmland soil and restored wetland soil. Furthermore, redundancy analysis indicated that the soil environmental variables of total carbon, total nitrogen, moisture content, and organic matter were the main factors affecting the community structures of nirS and nirK denitrifiers existing in wetland soil. These findings could contribute to understanding the differences in nirS and nirK denitrifiers between different land use types during seasonal changes.
Collapse
Affiliation(s)
- Chunyong Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yuntao Wu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Yi Song
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zicheng Cao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.,Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
223
|
Macêdo WV, Sakamoto IK, Azevedo EB, Damianovic MHRZ. The effect of cations (Na +, Mg 2+, and Ca 2+) on the activity and structure of nitrifying and denitrifying bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 679:279-287. [PMID: 31082601 DOI: 10.1016/j.scitotenv.2019.04.397] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/26/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Wastewaters generated in regions with water scarcity usually have high alkalinity, hardness, and elevated osmotic pressure (OP). Those characteristics should be considered when using biological systems for wastewater treatment along with the salinity heterogeneity. The interaction of different salts in mixed electrolyte solutions may cause inhibition, antagonism, synergism, and stimulation effects on microbial communities. Little is known about those effects on microbial activity and community structure of nitrifying and denitrifying bacteria. In this work, factorial design was used to evaluate the effects of NaCl, MgCl2 and CaCl2 on nitrifying and denitrifying communities. Antagonistic relationships between all salts were observed and they had greater magnitude on the nitrifying community. Stimulus and synernism were more evident on the nitrifying and denitrifying experiments, respectively. For this reason, the highest nitrification and denitrification specific rates were 1.1 × 10-1 mgN-NH4+ gSSV-1 min-1 for condition 01 and 6.5 × 10-2 mgN-NO3- gSSV-1 min-1 for control condition, respectively. The toxicity of the salts followed the order of NaCl > MgCl2 > CaCl2 and the antagonism between MgCl2 and NaCl was the most significant. PCR/DGGE analyses showed that Mg2+ may be the element that expresses the least influence in the differentiation of microbial structure even though it significantly affects the activity of the autotrophic microorganisms. The same behavior was observed for Ca2+ on denitrifying microorganism. In addition, microbial diversity and richness was not negatively affected by different salinities. Genetic sequencing suggested that the genus Aeromonas, Alishewanella, Azospirillum, Pseudoalteromonas, and Thioalkalivibrio were outstanding on ammonium and nitrate removal under saline conditions. The specific toxicity of each salt and the interactions among them are the major effects on microbial activity in biological wastewater treatments rather than the osmotic pressure caused by the final salinity.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil.
| | - Isabel K Sakamoto
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| | - Eduardo Bessa Azevedo
- Environmental Technology Development Laboratory (LTDAmb), University of São Paulo (USP), 400 Trab. São Carlense Avenue, 13563-120 São Carlos, SP, Brazil
| | - Marcia Helena R Z Damianovic
- Biological Processes Laboratory (LPB), University of São Paulo (USP), 1100 João Dagnone Avenue, 13563-120 São Carlos, SP, Brazil
| |
Collapse
|
224
|
Ren Z, Qu X, Peng W, Yu Y, Zhang M. Functional properties of bacterial communities in water and sediment of the eutrophic river-lake system of Poyang Lake, China. PeerJ 2019; 7:e7318. [PMID: 31338262 PMCID: PMC6628883 DOI: 10.7717/peerj.7318] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 06/18/2019] [Indexed: 02/04/2023] Open
Abstract
In river-lake systems, sediment and water column are two distinct habitats harboring different bacterial communities which play a crucial role in biogeochemical processes. In this study, we employed Phylogenetic Investigation of Communities by Reconstruction of Unobserved States to assess the potential functions and functional redundancy of the bacterial communities in sediment and water in a eutrophic river-lake ecosystem, Poyang Lake in China. Bacterial communities in sediment and water had distinct potential functions of carbon, nitrogen, and sulfur metabolisms as well as phosphorus cycle, while the differences between rivers and the lake were inconspicuous. Bacterial communities in sediment had a higher relative abundance of genes associated with carbohydrate metabolism, carbon fixation pathways in prokaryotes, methane metabolism, anammox, nitrogen fixation, and dissimilatory sulfate reduction than that of water column. Bacterial communities in water column were higher in lipid metabolism, assimilatory nitrate reduction, dissimilatory nitrate reduction, phosphonate degradation, and assimilatory sulfate reduction than that of sediment bacterial communities. Furthermore, the variations in functional composition were closely associated to the variations in taxonomic composition in both habitats. In general, the bacterial communities in water column had a lower functional redundancy than in sediment. Moreover, comparing to the overall functions, bacterial communities had a lower functional redundancy of nitrogen metabolism and phosphorus cycle in water column and lower functional redundancy of nitrogen metabolism in sediment. Distance-based redundancy analysis and mantel test revealed close correlations between nutrient factors and functional compositions. The results suggested that bacterial communities in this eutrophic river-lake system of Poyang Lake were vulnerable to nutrient perturbations, especially the bacterial communities in water column. The results enriched our understanding of the bacterial communities and major biogeochemical processes in the eutrophic river-lake ecosystems.
Collapse
Affiliation(s)
- Ze Ren
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.,Flathead Lake Biological Station, University of Montana, Polson, MT, USA
| | - Xiaodong Qu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Wenqi Peng
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Yang Yu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Min Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China.,Department of Water Environment, China Institute of Water Resources and Hydropower Research, Beijing, China
| |
Collapse
|
225
|
Hu B, Wang T, Ye J, Zhao J, Yang L, Wu P, Duan J, Ye G. Effects of carbon sources and operation modes on the performances of aerobic denitrification process and its microbial community shifts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 239:299-305. [PMID: 30913480 DOI: 10.1016/j.jenvman.2019.03.063] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 03/10/2019] [Accepted: 03/13/2019] [Indexed: 05/14/2023]
Abstract
Carbon source, operation mode and microbial species have great effects on the synthesis of poly-β-hydroxybutyrate (PHB) which has been identified as the key issue for aerobic denitrification process. In this study, an aerobic denitrification SBR was operated under anoxic/oxic mode and completely oxic mode with the carbon source of CH3COONa and CH3CH2CH2COONa, respectively. Total nitrogen (TN) removal efficiencies, PHB content in activated sludge, production of nitric oxide (NO) and nitrous oxide (N2O) of the process were investigated in great detail. The main results obtained from the trial were: (1) the average TN removal was in the range of 86.11%-90.05%; (2) the maximum TN removal efficiency and the maximum PHB content of the process being achieved when the carbon source of CH3CH2CH2COONa was applied under anoxic/oxic mode; (3) in case of CH3COONa as the carbon source, the concentrations of NO and N2O in the bulk liquid were ∼0.4 mg/L and ∼0.02 mg/L, respectively, while in case of CH3CH2CH2COONa, N2O of ∼0.2 mg/L and NO of ∼2.5 mg/L were recorded and the latter was decreased to ∼1.0 mg/L at the end of the cycle; (4) no obvious dominant genus in case of using CH3COONa, while Plasticicumulans sp. being the major microbial community when using CH3CH2CH2COONa. Overall, the effect of carbon source on microbial community is obvious. Nevertheless, operation mode affects the PHB synthesis, while PHB plays an important role in aerobic denitrification process for achieving a relatively high TN nitrogen removal efficiency. CH3COONa is a better carbon source for aerobic denitrification compared with CH3CH2CH2COONa.
Collapse
Affiliation(s)
- Bo Hu
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China.
| | - Tong Wang
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Junhong Ye
- School of Environmental Science and Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Jianqiang Zhao
- Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; School of Environmental Science and Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Environmental Protection & Pollution and Remediation of Water and Soil of Shaanxi Province, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Liwei Yang
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Pei Wu
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Jianlei Duan
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| | - Guiqi Ye
- School of Civil Engineering, Chang' an University, Xi'an, 710054, China; Key Laboratory of Water Supply & Sewage Engineering, Ministry of Housing and Urban-rural Development, Xi'an, 710054, China; Chang'an University, The Middle Section of the South 2nd Ring Road, 710064, Xi'an, Shaanxi Province, China
| |
Collapse
|
226
|
Yan D, Xia P, Song X, Lin T, Cao H. Community structure and functional diversity of epiphytic bacteria and planktonic bacteria on submerged macrophytes in Caohai Lake, southwest of China. ANN MICROBIOL 2019. [DOI: 10.1007/s13213-019-01485-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
227
|
Lu Z, Gan L, Lin J, Chen Z. Aerobic denitrification by Paracoccus sp. YF1 in the presence of Cu(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:80-86. [PMID: 30572217 DOI: 10.1016/j.scitotenv.2018.12.225] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
This study of Cu(II)'s impact on aerobic denitrification of Paracoccus sp. YF1 revealed that the denitrification rate decreased markedly from 99.8%, 98.0%, 68.7% to 16.3% when the concentrations of Cu(II) rose from 0, 0.01 mM, 0.05 mM to 0.1 mM, respectively. This outcome was confirmed by the successful test of OD600, total protein and enzyme activities. As the concentration of Cu(II) increased from 0 to 0.1 mM, the total protein contents declined over a period of 48 h, and the activities of nitrate reductase (NR) and nitrite reductase (NIR) decreased remarkably during the first 24 h in a NO3- sufficient state. Meanwhile, the reduction of NO3- and NO2- was positively correlated with the expression level of NR and NIR. The removal rate of nitrate in the control treatment and different concentration of Cu(II) treatment fitted approximately to the zero-order model. Scanning electron microscopy (SEM) confirmed that the cell surfaces of Paracoccus sp. YF1 were disrupted when exposed to 0.1 mM Cu(II). The adsorption of Cu(II) onto the cells' surface was confirmed by Energy dispersive spectrometer (EDS), Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy analysis (XPS). The insights obtained here regarding the influence of Cu(II) on aerobic denitrification will be of great significance for the treatment of heavy metals and nitrite co-existing sewage.
Collapse
Affiliation(s)
- Zeyang Lu
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Li Gan
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Jiajiang Lin
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China
| | - Zuliang Chen
- Fujian Province Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Fujian Normal University, Fuzhou 350007, Fujian Province, China.
| |
Collapse
|
228
|
Huang ZS, Wei ZS, Xiao XL, Tang MR, Li BL, Zhang X. Simultaneous mercury oxidation and NO reduction in a membrane biofilm reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1465-1474. [PMID: 30678005 DOI: 10.1016/j.scitotenv.2018.12.105] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 11/13/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
This work demonstrates bacterial oxidation of mercury (Hg0) coupled to nitric oxide (NO) reduction in a denitrifying membrane biofilm reactor (MBfR). In 93 days' operation, Hg0 and NO removal efficiency attained 90.7% and 74.1%, respectively. Thauera, Pseudomonas, Paracoccus and Pannonibacter played dual roles as Hg0 oxidizers and denitrifiers simultaneously. Denitrifying bacteria and the potential mercury resistant bacteria dominated the bacterial community. Denitrification-related genes (norB, norC, norD, norE, norQ and norV) and enzymatic Hg0 oxidation-related genes (katG, katE) were responsible for bacterial oxidation of Hg0 and NO reduction, as shown by metagenomic sequencing. XPS, HPLC-ICP-MS and SEM-EDS indicated the formation of a stable mercuric species (Hg2+) reasulting from Hg0 oxidation in the biofilm. Bacterial oxidation of Hg0 was coupled to NO reduction in which Hg0 served as the initial electron donor while NO served as the terminal electron acceptor and thereby redox between Hg0 and NO was formed. MBfR was capable of both Hg0 bio-oxidation and denitrifying NO reduction. This research opens up new possibilities for application of MBfR to simultaneous flue gas demercuration and denitration.
Collapse
Affiliation(s)
- Z S Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - Z S Wei
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China.
| | - X L Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - M R Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - B L Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| | - X Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
| |
Collapse
|
229
|
Wang H, Wang T, Yang S, Liu X, Kou L, Huang T, Wen G. Nitrogen Removal in Oligotrophic Reservoir Water by a Mixed Aerobic Denitrifying Consortium: Influencing Factors and Immobilization Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E583. [PMID: 30781590 PMCID: PMC6406282 DOI: 10.3390/ijerph16040583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 11/16/2022]
Abstract
Nitrogen pollution in reservoirs has received increasing attention in recent years. Although a number of aerobic denitrifying strains have been isolated to remove nitrogen from eutrophic waters, the situation in oligotrophic water environments has not received significant attention. In this study, a mixed aerobic denitrifying consortium screened from reservoir samples was used to remove nitrogen in an oligotrophic denitrification medium and actual oligotrophic source water. The results showed that the consortium removed 75.32% of nitrate (NO₃--N) and 63.11% of the total nitrogen (TN) in oligotrophic reservoir water during a 24-h aerobic cultivation. More initial carbon source was helpful for simultaneous removal of carbon and nitrogen in the reservoir source water. NO₃--N and TN were still reduced by 60.93% and 46.56% at a lower temperature (10 °C), respectively, though the rates were reduced. Moreover, adding phosphorus promoted bacterial growth and increased TN removal efficiency by around 20%. The performance of the immobilized consortium in source water was also explored. After 6 days of immobilization, approximately 25% of TN in the source water could be removed by the carriers, and the effects could last for at least 9 cycles of reuse. These results provide a good reference for the use of aerobic denitrifiers in oligotrophic reservoirs.
Collapse
Affiliation(s)
- Hanyue Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tong Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Shangye Yang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xueqing Liu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Liqing Kou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, China.
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
230
|
Yang JR, Wang Y, Chen H, Lyu YK. Ammonium removal characteristics of an acid-resistant bacterium Acinetobacter sp. JR1 from pharmaceutical wastewater capable of heterotrophic nitrification-aerobic denitrification. BIORESOURCE TECHNOLOGY 2019; 274:56-64. [PMID: 30500764 DOI: 10.1016/j.biortech.2018.10.052] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 06/09/2023]
Abstract
A new acid-resistant bacterium Acinetobacter sp. JR1 was isolated, and its feasibility in nitrogen removal was investigated under acidic condition. Results show that JR1 indicated excellent ammonium and nitrate removal abilities with no accumulation of intermediates, and the maximum ammonium and nitrate removal efficiencies were 98.5% and 91.1%, respectively. Further experiments demonstrated that JR1 preferred to use ammonium with ammonium and nitrate as the mixed N-sources. For JR1, ammonium was assimilated directly as nutrients into cells and also converted into N2 through heterotrophic nitrification-aerobic denitrification. Under acidic condition, JR1 performed comparable nitrogen removal abilities to other strains under neutral or weak alkaline environment, and the efficient removal of ammonium occurred at pH 4.5-10, C/N 12-24, 20-40 °C, DO ≥4.72 mg/L, 0-1.5% of salinity, 10 mg/L Zn2+ or 20 mg/L Mn2+. All these make JR1 a promising candidate for treating acidic wastewater containing nitrogen.
Collapse
Affiliation(s)
- Jing-Rui Yang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Ying Wang
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Hu Chen
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Yong-Kang Lyu
- Key Laboratory of Coal Science and Technology, Ministry of Education and Shanxi Province, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China.
| |
Collapse
|
231
|
Truu M, Oopkaup K, Krustok I, Kõiv-Vainik M, Nõlvak H, Truu J. Bacterial community activity and dynamics in the biofilm of an experimental hybrid wetland system treating greywater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:4013-4026. [PMID: 30554320 DOI: 10.1007/s11356-018-3940-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The objectives of this study were to determine the biofilm microbial activity and bacterial community structure and successions in greywater treatment filters and to relate the treatment efficiency to the bacterial community parameters. This 10-month study was performed in a newly established experimental system for domestic greywater treatment that consisted of three parallel vertical flow filters (VFs) followed by a horizontal flow filter (HF). A rapid increase in the bacterial community abundance occurred during the first 85 days of filter operations, followed by a short-term decrease and the stabilization of the 16S rRNA gene copy numbers at average levels of 1.2 × 109 and 3.2 × 108 copies/g dw in VFs and HF, respectively, until the end of the experiment. The dominant bacterial phyla and genera differed between the VFs and HF. The temporal variation in the bacterial community structure was primarily related to the species replacement, and it was significantly affected by the influent organic carbon and nitrogen compounds in the VFs and the ammonia and organic carbon in the HF filters. Despite the differences in the community structure and assembly mechanisms, the temporal dynamics of the bacterial community showed high congruence between the filter types. The treatment efficiency was related to the biofilm bacterial community diversity and abundance and the abundance of certain bacterial genera in the VF filters. The results suggest that the dominant pathway of nitrogen removal by greywater treatment VFs occurs via coupled heterotrophic nitrification and denitrification, while the contribution of aerobic denitrification is temporally variable in these filters.
Collapse
Affiliation(s)
- Marika Truu
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Kristjan Oopkaup
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Ivo Krustok
- Department of Environmental Management, Ministry of the Environment, Narva St. 7a, 15172, Tallinn, Estonia
| | - Margit Kõiv-Vainik
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Hiie Nõlvak
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia
| | - Jaak Truu
- Faculty of Science and Technology, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia.
| |
Collapse
|
232
|
Characterization of Aerobic Denitrifying Bacterium Pseudomonas mendocina Strain GL6 and Its Potential Application in Wastewater Treatment Plant Effluent. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030364. [PMID: 30696062 PMCID: PMC6388282 DOI: 10.3390/ijerph16030364] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 11/24/2022]
Abstract
To remove nitrate in wastewater treatment plant effluent, an aerobic denitrifier was newly isolated from the surface flow constructed wetland and identified as Pseudomonas mendocina strain GL6. It exhibited efficient aerobic denitrification ability, with the nitrate removal rate of 6.61 mg (N)·L−1·h−1. Sequence amplification indicated that the denitrification genes napA, nirK, norB, and nosZ were present in strain GL6. Nitrogen balance analysis revealed that approximately 74.5% of the initial nitrogen was removed as gas products. In addition, the response surface methodology experiments showed that the maximum removal of total nitrogen occurred at pH 7.76, C/N ratio of 11.2, temperature of 27.8 °C, and with shaking at 133 rpm. Furthermore, under the optimized cultivation condition, strain GL6 was added into wastewater treatment plant effluent and the removal rates of nitrate nitrogen and total nitrogen reached 95.6% and 73.6%, respectively. Thus, P. mendocina strain GL6 has high denitrification potential for deep improvement of effluent quality.
Collapse
|
233
|
Chen H, Liu Y, Xu X, Sun M, Jiang M, Xue G, Li X, Liu Z. How does iron facilitate the aerated biofilter for tertiary simultaneous nutrient and refractory organics removal from real dyeing wastewater? WATER RESEARCH 2019; 148:344-358. [PMID: 30391863 DOI: 10.1016/j.watres.2018.10.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/30/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
Textile dyeing wastewater is characterized by low biodegradability and high nitrogen strength, which is difficult to meet the increasingly stringent discharge requirements. Therefore, the tertiary nutrient and refractory organics removal is considered and aerated biofilter is often adopted. However, the aerobic condition and carbon source shortage restrict tertiary biological nitrogen removal. In this study, iron scrap was introduced as the filter medium to enhance the pollutant removal capacity, and three aerobic biofilters were constructed. Biofilter Fe-CE was filled with iron scrap and ceramisite; biofilter Fe-AC was added with iron scrap and granular activated carbon, and biofilter CE only had ceramisite to pad as control system. After the biofilters were acclimatized by synthetic wastewater and actual dyeing wastewater, the optimal operation parameters based on nitrogen removal were determined as pH 7, gas-water ratio 5:1, hydraulic retention time 8 h and C/N ratio 8.5:1. The iron scraps improved total nitrogen (TN) removal significantly, with TN removal efficiency of 68.7% and 57.3% in biofilter Fe-AC and biofilter Fe-CE, comparing with biofilter CE of 29.9%. Additionally, phosphorus and COD had better removal performance as well when iron scrap existed. Further investigation interpreted the reason for iron's facilitating effect on tertiary nutrient and refractory organics removal. The introduction of iron scrap made the habitat conditions such as pH values, DO concentrations and biomass contents inside the biofilters change towards the direction beneficial for pollutant elimination especially for nitrogen removal. In iron containing biofilters, the majority of nitrogen, phosphorus and organic pollutants were removed in the iron scrap layers, and more pollutants types appeared, implying that iron triggered pollutants to go through more diverse degradation or transformation pathways. Moreover, the phylum Proteoabcteria dominated in samples of ceramisite-containing biofilters, with abundances more than 40%. The iron scrap existence increased the abundances of phyla Bacteroidetes and Firmicutes, and triggered higher abundance of denitrification bacteria.
Collapse
Affiliation(s)
- Hong Chen
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China; Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng, 224000, China
| | - Yunfan Liu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Xiaoqiang Xu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Min Sun
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Mingji Jiang
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Gang Xue
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China; Shanghai Institute of Pollution Control and Ecological Security, 200000, China.
| | - Xiang Li
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China; Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng, 224000, China
| | - Zhenhong Liu
- School of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| |
Collapse
|
234
|
Bai H, Liao S, Wang A, Huang J, Shu W, Ye J. High-efficiency inorganic nitrogen removal by newly isolated Pannonibacter phragmitetus B1. BIORESOURCE TECHNOLOGY 2019; 271:91-99. [PMID: 30265957 DOI: 10.1016/j.biortech.2018.09.090] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/08/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
An aerobic heterotrophic nitrogen removal bacterium strain, B1, was isolated from aquaculture water and identified as Pannonibacter phragmitetus (99% similarity) by 16S rRNA sequencing analysis. When ammonium, nitrite or nitrate was the sole nitrogen source, with an initial nitrogen concentration of 14 mg/L, the nitrogen removal efficiencies were 98.66%, 99.96% and 98.73%, respectively, and the corresponding maximum removal rates reached as high as 1.16, 0.77 and 0.81 mg/L/h, respectively. In the presence of NH4+-N, the removal efficiency of 56 mg/L NO2--N within 27 h increased by 83.50%, and the corresponding removal rate reached as high as 1.72 mg/L/h. Additionally, different carbon sources (dl-malic acid, sucrose, sodium citrate, and glucose) could be utilized in nitrogen removal. Sequence amplification indicates that the denitrification genes nirK, norB and narG are present in strain B1. All results demonstrate that strain B1 has high promise for future applications of removing inorganic nitrogen from wastewater.
Collapse
Affiliation(s)
- Hong Bai
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Shaoan Liao
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China.
| | - Anli Wang
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Jiahui Huang
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Wen Shu
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| | - Jianmin Ye
- College of Life Science, South China Normal University, Guangzhou 510631, China; Key Laboratory of Ecology and Environmental Science of Guangdong Higher Education, Guangzhou 510631, China; Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, Guangzhou 510631, China
| |
Collapse
|
235
|
Zhang B, Xu X, Zhu L. Activated sludge bacterial communities of typical wastewater treatment plants: distinct genera identification and metabolic potential differential analysis. AMB Express 2018; 8:184. [PMID: 30430271 PMCID: PMC6236004 DOI: 10.1186/s13568-018-0714-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 11/07/2018] [Indexed: 12/26/2022] Open
Abstract
To investigate the differences in activated sludge microbial communities of different wastewater treatment plants (WWTPs) and understand their metabolic potentials, we sampled sludge from every biological treatment unit of 5 full-scale waste water treatment systems in 3 typical Chinese municipal WWTPs. The microbial communities and overall metabolic patterns were not only affected by influent characteristics but also varied between different biological treatment units. Distinct genera in different wastewater treatment systems were identified. The important microorganisms in domestic sewage treatment systems were unclassified SHA-20, Caldilinea, Dechloromonas, and unclassified genera from Rhodospirilaceae and Caldilineaceae. The important microorganisms in dyeing wastewater treatment systems were Nitrospira, Sphingobacteriales, Thiobacillus, Sinobacteraceae and Comamonadaceae. Compared with the obvious differences in microbial community composition, the metabolic potential showed no significant differences.
Collapse
|
236
|
Characterization of microbes and denitrifiers attached to two species of floating plants in the wetlands of Lake Taihu. PLoS One 2018; 13:e0207443. [PMID: 30422988 PMCID: PMC6233912 DOI: 10.1371/journal.pone.0207443] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 10/31/2018] [Indexed: 11/22/2022] Open
Abstract
Biofilms are often observed at the solid-water interface. The leaves of many floating macrophytes have characteristics of both terrestrial plants and submerged macrophytes, because, in general, their upper and lower surfaces are exposed to air and water, respectively. However, little is known about the biofilms attached to floating plants. We investigated biofilms attached to the leaves, stems and roots of the floating plants Nymphoides peltata (in summer and winter) and Trapa natans (in summer) in the Gonghu Bay of Lake Taihu. Bacteria and algae were major components of the biofilm on the leaves of the two species of plants. In addition, 454 pyrosequencing analysis of bacterial 16S rRNA genes revealed that Proteobacteria was the dominant phylum, followed by Bacteroidetes, Firmicutes, Chloroflexi, Acidobacteria, and Verrucomicrobia. Cluster analysis showed that bacterial communities from the same plant source were clustered into the same group. A total of 677 genera were detected, and 47 genera were shared by all samples. Nitrifiers, including Nitrosomonas, Nitrosococcus and Nitrospira were detected in this study. Seven denitrifying genes (napA, napG, nirS, nirK, cnorB, qnorB and nosZ) were used to detect the abundance of denitrifiers. Genes nirK, nirS cnorB and nosZ were the four most abundant genes in all samples. Our results demonstrated that cultivation of floating plants in water column could enlarge the area for biofilm growth, and biofilms might play an important role in denitrification in eutrophic water.
Collapse
|
237
|
Bradford LM, Vestergaard G, Táncsics A, Zhu B, Schloter M, Lueders T. Transcriptome-Stable Isotope Probing Provides Targeted Functional and Taxonomic Insights Into Microaerobic Pollutant-Degrading Aquifer Microbiota. Front Microbiol 2018; 9:2696. [PMID: 30483229 PMCID: PMC6243674 DOI: 10.3389/fmicb.2018.02696] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/23/2018] [Indexed: 12/21/2022] Open
Abstract
While most studies using RNA-stable isotope probing (SIP) to date have focused on ribosomal RNA, the detection of 13C-labeled mRNA has rarely been demonstrated. This approach could alleviate some of the major caveats of current non-target environmental “omics.” Here, we demonstrate the feasibility of total RNA-SIP in an experiment where hydrocarbon-degrading microbes from a BTEX-contaminated aquifer were studied in microcosms with 13C-labeled toluene under microoxic conditions. From the total sequencing reads (∼30 mio. reads per density-resolved RNA fraction), an average of 1.2% of reads per sample were identified as non-rRNA, including mRNA. Members of the Rhodocyclaceae (including those related to Quatrionicoccus spp.) were most abundant and enriched in 13C-rRNA, while well-known aerobic degraders such as Pseudomonas spp. remained unlabeled. Transcripts related to cell motility, secondary metabolite formation and xenobiotics degradation were highly labeled with 13C. mRNA of phenol hydroxylase genes were highly labeled and abundant, while other transcripts of toluene-activation were not detected. Clear labeling of catechol 2,3-dioxygenase transcripts supported previous findings that some of these extradiol dioxygenases were adapted to low oxygen concentrations. We introduce a novel combination of total RNA-SIP with calculation of transcript-specific enrichment factors (EFs) in 13C-RNA, enabling a targeted approach to process-relevant gene expression in complex microbiomes.
Collapse
Affiliation(s)
- Lauren M Bradford
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gisle Vestergaard
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark.,Research Unit Comparative Microbiome Analysis, Helmholtz Zentrum München, Neuherberg, Germany
| | - András Táncsics
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllö, Hungary
| | - Baoli Zhu
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Schloter
- Regional University Center of Excellence in Environmental Industry, Szent István University, Gödöllö, Hungary
| | - Tillmann Lueders
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
238
|
Moisander PH, Shoemaker KM, Daley MC, McCliment E, Larkum J, Altabet MA. Copepod-Associated Gammaproteobacteria Respire Nitrate in the Open Ocean Surface Layers. Front Microbiol 2018; 9:2390. [PMID: 30369912 PMCID: PMC6194322 DOI: 10.3389/fmicb.2018.02390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/18/2018] [Indexed: 12/15/2022] Open
Abstract
Microbial dissimilatory nitrate reduction to nitrite, or nitrate respiration, was detected in association with copepods in the oxygenated water column of the North Atlantic subtropical waters. These unexpected rates correspond to up to 0.09 nmol N copepod-1 d-1 and demonstrate a previously unaccounted nitrogen transformation in the oceanic pelagic surface layers. Genes and transcripts for both the periplasmic and membrane associated dissimilatory nitrate reduction pathways (Nap and Nar, respectively) were detected. The napA genes and transcripts were closely related with sequences from several clades of Vibrio sp., while the closest relatives of the narG sequences were Pseudoalteromonas spp. and Alteromonas spp., many of them representing clades only distantly related to previously described cultivated bacteria. The discovered activity demonstrates a novel Gammaproteobacterial respiratory role in copepod association, presumably providing energy for these facultatively anaerobic bacteria, while supporting a reductive path of nitrogen in the oxygenated water column of the open ocean.
Collapse
Affiliation(s)
- Pia H. Moisander
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Katyanne M. Shoemaker
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Meaghan C. Daley
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Elizabeth McCliment
- Department of Biology, University of Massachusetts Dartmouth, North Dartmouth, MA, United States
| | - Jennifer Larkum
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, United States
| | - Mark A. Altabet
- School of Marine Science and Technology, University of Massachusetts Dartmouth, New Bedford, MA, United States
| |
Collapse
|
239
|
Qin H, Ji B, Zhang S, Kong Z. Study on the bacterial and archaeal community structure and diversity of activated sludge from three wastewater treatment plants. MARINE POLLUTION BULLETIN 2018; 135:801-807. [PMID: 30301100 DOI: 10.1016/j.marpolbul.2018.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, the bacterial and archaeal communities along with their functions of activated sludge from three wastewater treatment plants were investigated by Illumina MiSeq Platform. The treatment processes were modified A/A/O, DE oxidation ditch and pre-anaerobic carrousel oxidation ditch, respectively. The taxonomic analyses showed that Proteobacteria was the predominant bacterial phylum, and Nitrosospira was the dominant nitrification genus. Candidatus Accumulibacter was abundant in DE oxidation ditch process, and the main archaea communities were methanosaeta-like species which had the capability to anaerobic ammonia oxidation. The results illustrated that anaerobic ammonium oxidation played an important role in the nitrogen metabolism and there might be other unknown phosphate-accumulating organisms (PAOs) performing phosphorus removal in activated sludge. The predicted function analyses indicated that both bacteria and archaea were involved in nitrification, denitrification, ammonification and phosphorus removal processes, and their relative abundance varied metabolic modules differed from each other.
Collapse
Affiliation(s)
- Hui Qin
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Zehua Kong
- Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street, Sheffield S1 3JD, UK
| |
Collapse
|
240
|
Ji B, Qin H, Guo S, Chen W, Zhang X, Liang J. Bacterial communities of four adjacent fresh lakes at different trophic status. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:388-394. [PMID: 29649784 DOI: 10.1016/j.ecoenv.2018.03.086] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 03/26/2018] [Accepted: 03/28/2018] [Indexed: 05/20/2023]
Abstract
Knowing the microbial compositions in fresh lakes is significant to explore the mechanisms of eutrophication and algal blooms. This study reported on the bacterial communities of the four adjacent fresh lakes at different trophic status by Illumina MiSeq Platform, which were Tangxun Lake (J1), Qingling Lake (J2), Huangjia Lake (J3) and Niushan Lake (J4) in Wuhan, China. J1 had the highest salinity and phosphorus. J2 was abundant in TC (Total Carbon)/TOC (Total Organic Carbon.), calcium and magnesium. J3 had the highest content of nitrogen, iron and pollution of heavy metals. High-throughput sequencing analysis of the 16S rRNA gene revealed that the eutrophic lakes (J1, J2 and J3) were dominated by Cyanobacteria (46.1% for J1, 40.8% for J2, 33.4% for J3) and the oligotrophic lake (J4) was dominated by Actinobacteria (34.2%). An increase of Cyanobacteria could inhibit the growth of Proteobacteria, Actinobacteria and Bacteroidetes. Functional inferences from 16S rRNA sequences suggested that J4 had more abundant bacteria with regard to substrate metabolism than J1, J2, and J3. Burkholderia and Fluviicola might be a suggestion of good water quality. The results demonstrated that the bacterial community could well reflect the water quality of the four lakes.
Collapse
Affiliation(s)
- Bin Ji
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China; Hubei Key Laboratory of Regional Development and Environmental Response (Hubei University), Wuhan 430062, China.
| | - Hui Qin
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Shaodong Guo
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wei Chen
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Xuechun Zhang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jiechao Liang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
241
|
Zhu N, Wu Y, Tang J, Duan P, Yao L, Rene ER, Wong PK, An T, Dionysiou DD. A New Concept of Promoting Nitrate Reduction in Surface Waters: Simultaneous Supplement of Denitrifiers, Electron Donor Pool, and Electron Mediators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8617-8626. [PMID: 29966090 DOI: 10.1021/acs.est.8b01605] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The efficiency of biological nitrate reduction depends on the community composition of microorganisms, the electron donor pool, and the electron mediators participating in the biological reduction process. This study aims at creating an in situ system comprising of denitrifiers, electron donors, and electron mediators to reduce nitrate in surface waters. The ubiquitous periphytic biofilm in waters was employed to promote in situ nitrate reduction in the presence of titanium dioxide (TiO2) nanoparticles (NPs). The nitrate removal rate in the periphytic biofilm and TiO2 NPs system was significantly higher than the control (only periphytic biofilm or TiO2 NPs). TiO2 NPs optimized the community composition of periphytic biofilm for nitrate reduction by increasing the relative abundance of four dominant denitrifying bacteria. Periphytic biofilm showed a substantial increase in extracellular polymeric substance, especially the humic acid and protein content, due to the presence of TiO2 NPs. The synergistic action of humic acid, protein, denitrifying bacteria of the periphytic biofilm, and TiO2 NPs contributed to 80% of the nitrate reduction. The protein and humic acid, acting as electron mediators, facilitated the transfer of exogenous electrons from photoexcited TiO2 NPs to periphytic biofilm containing denitrifiers, which enhanced nitrate reduction in surface waters.
Collapse
Affiliation(s)
- Ningyuan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
- College of Resource and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences , Chinese Academy of Sciences , 71 East Beijing Road , Nanjing 210008 , China
- College of Resource and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Pengfei Duan
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project , Nanyang Normal University , Nanyang 473061 , Henan , China
| | - Lunguang Yao
- Collaborative Innovation Center of Water Security for Water Source, Region of Mid-line of South-to-North Diversion Project , Nanyang Normal University , Nanyang 473061 , Henan , China
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology , IHE Delft Institute for Water Education , Westvest 7 , 2611 AX Delft , The Netherlands
| | - Po Keung Wong
- School of Life Sciences , The Chinese University of Hong Kong , Shatin, NT, Hong Kong , SAR , China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou , 510006 , China
| | - Dionysios D Dionysiou
- Department of Chemical and Environmental Engineering (ChEE), 705 Engineering Research Center , University of Cincinnati , Cincinnati , Ohio 45221-0012 , United States
| |
Collapse
|
242
|
Zhang H, Zhao Z, Chen S, Kang P, Wang Y, Feng J, Jia J, Yan M, Wang Y, Xu L. Paracoccus versutus KS293 adaptation to aerobic and anaerobic denitrification: Insights from nitrogen removal, functional gene abundance, and proteomic profiling analysis. BIORESOURCE TECHNOLOGY 2018; 260:321-328. [PMID: 29631182 DOI: 10.1016/j.biortech.2018.03.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/23/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
A novel strain KS293 exhibiting excellent aerobic and anaerobic denitrification performance was isolated and identified as Paracoccus versutus KS293. Nitrate nitrogen and total organic carbon could be effectively removed by P. versutus KS293 without nitrite accumulation, whilst 82% and 85% of total nitrogen was converted into gaseous products under aerobic and anaerobic conditions (P > .05), respectively. Based on the ratio of anaerobic to aerobic, relative abundance values were increased 1.41, 1.45, and 2.31 folds for nirS, nosZ, and narG, respectively. A comparison of the two-dimensional gel electrophoresis and principal component analysis showed significant differences in proteomic profiles between aerobic and anaerobic conditions. In total, 78 proteins that displayed fluctuations in relative expression were observed. 10 proteins including nitrate reductase, maintenance of cell membrane (TolA), and RNA polymerase-binding transcription factor (DksA) were differentially expressed. These findings demonstrated that P. versutus KS293 was effective for nitrogen removal under aerobic or anaerobic conditions.
Collapse
Affiliation(s)
- Haihan Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China.
| | - Zhenfang Zhao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Shengnan Chen
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Pengliang Kang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Yue Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Ji Feng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Jingyu Jia
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Miaomiao Yan
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Yan Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| | - Lei Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China; Institute of Environmental Microbial Technology, Xi'an University of Architecture and Technology, Xi'an, Shaanxi 710055, PR China
| |
Collapse
|
243
|
Poddar N, Sen R, Martin GJ. Glycerol and nitrate utilisation by marine microalgae Nannochloropsis salina and Chlorella sp. and associated bacteria during mixotrophic and heterotrophic growth. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
244
|
Liu R, Zhao Y, Wang T, Shen C. Long-term operation with an insight into a newly established green bio-sorption reactor: Can it achieve "1 + 1 > 2"? BIORESOURCE TECHNOLOGY 2018; 255:96-103. [PMID: 29414179 DOI: 10.1016/j.biortech.2018.01.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/16/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
An eco-friendly system of green bio-sorption reactor (GBR), constructed by embedding alum sludge-based constructed wetland (AlCW) into a conventional activated sludge process to achieve "1 + 1 > 2", was evaluated under a long-term operation basis. Insight into the pollutants removal, particularly the role of the AlCW in the GBR, was explored and discussed. The results showed that the GBR could achieve 90% and 95% removal for TN and TP (Stage 4), respectively, under the hydraulic and nitrogen loading rate of 2.07 m3/(m3·d) and 166.2 gN/(m3·d), respectively. Intriguingly, despite the P adsorption, the AlCW enlarged the size of the activated sludge flocs which benefited the simultaneous nitrification and denitrification. Subversively, the embedding AlCW brings about dual-intensification in both capacity and efficiency. In addition, the GBR as an ecological engineering system can be employed closely to residential area in line with its green and pleasing appearance.
Collapse
Affiliation(s)
- Ranbin Liu
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, PR China; UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Yaqian Zhao
- Institute of Water Resources and Hydro-electric Engineering, Xi'an University of Technology, Xi'an 710048, PR China; UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland; Key Laboratory of Subsurface Hydrology and Ecology in Arid Areas (Ministry of Education), School of Environmental Science and Engineering, Chang'an University, Xi'an 710054, PR China.
| | - Tong Wang
- School of Civil Engineering, Chang'an University, Xi'an 710061, PR China
| | - Cheng Shen
- UCD Dooge Centre for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
245
|
Yan L, Zhang S, Lin D, Guo C, Yan L, Wang S, He Z. Nitrogen loading affects microbes, nitrifiers and denitrifiers attached to submerged macrophyte in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 622-623:121-126. [PMID: 29212050 DOI: 10.1016/j.scitotenv.2017.11.234] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/19/2017] [Accepted: 11/20/2017] [Indexed: 06/07/2023]
Abstract
Submerged macrophytes and biofilms are important components of wetlands. However, little is known about the changes of microbes in biofilms attached to submerged macrophytes upon nitrogen loading. This study investigated the changes of microbes, algae, nitrifiers and denitrifiers in biofilms attached to the leaves of artificial plants (AP), Potamogeton malaianus (PM), Vallisneria natans (VN) and Hydrilla verticillata (HV) under varied initial concentrations of total nitrogen (TN). Nitrogen addition increased biofilm biomass and changed dissolved oxygen concentrations and pH values in overlaying water. Epiphytic algal densities showed the same trend at the same N level:AP>PM>VN>HV. As revealed by cluster analysis at phylum level, algae compositions in biofilm from four plants showed some host-specific at 2 and 12mgL-1 TN, but was clustered in the same group at 22mgL-1 TN regardless of plant species. Submerged macrophytes had better performance in total N removal than AP. In general, N application significantly increased the abundance of amoA, nirK, nirS, napA and cnorB in biofilm. The abundance of the denitrification genes (nirK, nirS, napA, narG and cnorB) was positively correlated with nitrogen application, while amoA was correlated with concentration of dissolved oxygen. These results indicate that N loadings stimulated the growth of biofilms attached to submerged macrophyte and the removal of total N can be partially ascribed to the synergistic interactions of submerged macrophyte and biofilms in wetlands. These results highlight the ecological role of submerged macrophyte-biofilm system in nitrogen removal in wetlands.
Collapse
Affiliation(s)
- Liying Yan
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Da Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Chuan Guo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingling Yan
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Supeng Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, Fort Pierce, FL 34945, USA
| |
Collapse
|
246
|
Corleto KA, Singh J, Jayaprakasha GK, Patil BS. Storage Stability of Dietary Nitrate and Phenolic Compounds in Beetroot (Beta vulgaris) and Arugula (Eruca sativa) Juices. J Food Sci 2018; 83:1237-1248. [PMID: 29660828 DOI: 10.1111/1750-3841.14129] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/02/2018] [Accepted: 02/23/2018] [Indexed: 01/08/2023]
Abstract
Nitrate and polyphenols from the diet may enhance the production and bioavailability of nitric oxide, a radical signaling molecule critical for cardiovascular health. Understanding the stability of these bioactives in beetroot and arugula juices is important for their functions. In this study, the stability of nitrate and phenolics in beetroot and arugula juices was measured for 32 days at different temperatures (25, 4, -20, and -80 °C). The levels of nitrate were measured by reversed-phase HPLC and initial levels were found to be 4965.34 ± 72.69 μg/mL for beetroot and 6310.20 ± 24.79 μg/mL for arugula. Interestingly, nitrate degradation started within 24 hr at 25 °C and after 4 days at 4 °C. At -20 °C and -80 °C, nitrate levels remained stable for one month. Total phenolics and free radical scavenging activity varied significantly during storage conditions. Beetroot juice at 25 °C, significant decrease in total phenolics and antioxidant activity was observed, whereas at 4, -20 and -80 °C, the levels remained relatively stable. By contrast, arugula juice at 25 and 4 °C, an increase in total phenolics and antioxidant activity were observed after one month. Furthermore, UPLC-HR-QTOF-MS analysis demonstrated that flavonoid glucosides were converted to their aglycones and lower phenolics, resulting in higher total phenolics and antioxidant activity during storage. In conclusion, beetroot and arugula juices required frozen conditions for long-term storage to prevent degradation of nitrate and to maintain their nutritional value. PRACTICAL APPLICATION Beetroot and arugula juices have health-beneficial compounds such as nitrate and phenolics. Understanding the proper storage conditions can allow consumers to make informed choices that can help fresh juices to maintain their health promoting properties.
Collapse
Affiliation(s)
- Karen A Corleto
- Dept. of Horticultural Sciences, Vegetable and Fruit Improvement Center, Texas A&M Univ., College Station, TX-77845, U.S.A
| | - Jashbir Singh
- Dept. of Horticultural Sciences, Vegetable and Fruit Improvement Center, Texas A&M Univ., College Station, TX-77845, U.S.A
| | - G K Jayaprakasha
- Dept. of Horticultural Sciences, Vegetable and Fruit Improvement Center, Texas A&M Univ., College Station, TX-77845, U.S.A
| | - Bhimanagouda S Patil
- Dept. of Horticultural Sciences, Vegetable and Fruit Improvement Center, Texas A&M Univ., College Station, TX-77845, U.S.A
| |
Collapse
|
247
|
Stanborough T, Fegan N, Powell SM, Singh T, Tamplin M, Chandry PS. Genomic and metabolic characterization of spoilage-associated Pseudomonas species. Int J Food Microbiol 2018; 268:61-72. [DOI: 10.1016/j.ijfoodmicro.2018.01.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 11/30/2017] [Accepted: 01/04/2018] [Indexed: 10/18/2022]
|
248
|
Synthesis and Performance of Iron Oxide-Coated Ceramsite in a Biotrickling Filter for Nitric Oxide Removal under Thermophilic Conditions. MATERIALS 2018; 11:ma11030359. [PMID: 29495621 PMCID: PMC5872938 DOI: 10.3390/ma11030359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 11/16/2022]
Abstract
A novel medium consisting of iron oxide-coated porous ceramsite (modified ceramsite) was investigated for NO removal under thermophilic conditions in this study. We used a surface coating method with FeCl3·6H2O as the modifier. When ceramsite was calcined for 4 h at 500 °C, the surface pH value decreased to 3.46, which is much lower than the isoelectric point of ceramsite, ensuring its surface was electropositive. The surface of modified ceramsite changed from two- to three-dimensional and exhibited excellent adsorption behavior to assist microbial growth; the maximum dry weight of the biofilm was 1.28 mg/g. It only took 8 days for the biofilter constructed from the modified ceramsite to start up, whereas that packed with commercial ceramsite took 22 days. The NO removal efficiency of the biofilter did not decrease apparently at high NO inlet concentration of above 1600 mg/m3 and maintained an average value of above 90% during the whole operation period. Additionally, the morphological observation showed that the loss of the surface coating was not obvious, and the coating properties remained stable during long-term operation. The maximum NO inlet loading of the biotrickling filter was 80 g/(m3·h) with an average removal efficiency of 91.1% along with a quick start-up when using the modified ceramsite filler. Thus, modified ceramsite can be considered a very effective medium in biotrickling filters for NO removal.
Collapse
|
249
|
Gonzalez-Martinez A, Margareto A, Rodriguez-Sanchez A, Pesciaroli C, Diaz-Cruz S, Barcelo D, Vahala R. Linking the Effect of Antibiotics on Partial-Nitritation Biofilters: Performance, Microbial Communities and Microbial Activities. Front Microbiol 2018. [PMID: 29535704 PMCID: PMC5834488 DOI: 10.3389/fmicb.2018.00354] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The emergence and spread of antibiotics resistance in wastewater treatment systems have been pointed as a major environmental health problem. Nevertheless, research about adaptation and antibiotics resistance gain in wastewater treatment systems subjected to antibiotics has not been successfully developed considering bioreactor performance, microbial community dynamics and microbial activity dynamics at the same time. To observe this in autotrophic nitrogen removal systems, a partial-nitritation biofilter was subjected to a continuous loading of antibiotics mix of azithromycin, norfloxacin, trimethoprim, and sulfamethoxazole. The effect of the antibiotics mix over the performance, bacterial communities and bacterial activity in the system was evaluated. The addition of antibiotics caused a drop of ammonium oxidation efficiency (from 50 to 5%) and of biomass concentration in the bioreactor, which was coupled to the loss of ammonium oxidizing bacteria Nitrosomonas in the bacterial community from 40 to 3%. Biomass in the partial nitritation biofilter experienced a sharp decrease of about 80% due to antibiotics loading, but the biomass adapted and experienced a growth by stabilization under antibiotics feeding. During the experiment several bacterial genera appeared, such as Alcaligenes, Paracoccus, and Acidovorax, clearly dominating the bacterial community with >20% relative abundance. The system reached around 30% ammonium oxidation efficiency after adaptation to antibiotics, but no effluent nitrite was found, suggesting that dominant antibiotics-resistant phylotypes could be involved in nitrification–denitrification metabolisms. The activity of ammonium oxidation measured as amoA and hao gene expression dropped a 98.25% and 99.21%, respectively, comparing the system before and after the addition of antibiotics. On the other hand, denitrifying activity increased as observed by higher expression of nir and nos genes (83.14% and 252.54%, respectively). In addition, heterotrophic nitrification cyt c-551 was active only after the antibiotics addition. Resistance to the antibiotics was presumably given by ermF, carA and msrA for azithromycin, mutations of the gyrA and grlB for norfloxacin, and by sul123 genes for sulfamethoxazole. Joined physicochemical and microbiological characterization of the system were used to investigate the effect of the antibiotics over the bioprocess. Despite the antibiotics resistance, activity of Bacteria decreased while the activity of Archaea and Fungi increased.
Collapse
Affiliation(s)
| | - Alejandro Margareto
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain.,Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Girona, Spain
| | | | | | - Silvia Diaz-Cruz
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain.,Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona, Spain.,Catalan Institute for Water Research, Scientific and Technological Park of the University of Girona, Girona, Spain
| | - Riku Vahala
- Department of Built Environment, School of Engineering, Aalto University, Espoo, Finland
| |
Collapse
|
250
|
Chen H, Zhao X, Cheng Y, Jiang M, Li X, Xue G. Iron Robustly Stimulates Simultaneous Nitrification and Denitrification Under Aerobic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1404-1412. [PMID: 29298384 DOI: 10.1021/acs.est.7b04751] [Citation(s) in RCA: 144] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Simultaneous nitrification and denitrification (SND) is a promising single-reactor biological nitrogen-removal method. Activated sludge with and without iron scrap supplementation (Sludge-Fe and Sludge-C, respectively) was acclimated under aerobic condition. The total nitrogen (TN) content of Sludge-Fe substantially decreased from 25.0 ± 1.0 to 11.2 ± 0.4 mg/L, but Sludge-C did not show the TN-removal capacity. Further investigations excluded a chemical reduction of NO3--N by iron and a decrease of NH4+-N by microbial assimilation, and the contribution of SND was verified. Moreover, the amount of aerobic denitrifiers, such as bacteria belonging to the genera Thauera, Thermomonas, Rhodobacter, and Hyphomicrobium, was considerably enhanced, as observed through Miseq Illumina sequencing method. The activities of the key enzymes ammonia monooxygenase (AMO) and nitrite oxidoreductase (NXR), which are associated with nitrification, and periplasmic nitrate reductase (NAP) and nitrite reductase (NIR), which are related to denitrification, in Sludge-Fe were 1.23-, 1.53-, 3.60-, and 1.55-fold higher than those in Sludge-C, respectively. In Sludge-Fe, the quantity of the functional gene NapA encoding enzyme NAP, which is essential for aerobic denitrification, was significantly promoted. The findings indicate that SND is the primary mechanism underlying the removal of TN and that iron scrap can robustly stimulate SND under aerobic environment.
Collapse
Affiliation(s)
- Hong Chen
- School of Environmental Science and Engineering, Donghua University , 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
- Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng, 224000, China
| | - Xuhao Zhao
- School of Environmental Science and Engineering, Donghua University , 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Yuying Cheng
- School of Environmental Science and Engineering, Donghua University , 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Mingji Jiang
- School of Environmental Science and Engineering, Donghua University , 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| | - Xiang Li
- School of Environmental Science and Engineering, Donghua University , 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
- Jiangsu Tongyan Environm Prod Sci & Technol Co Lt, Yancheng, 224000, China
| | - Gang Xue
- School of Environmental Science and Engineering, Donghua University , 2999 North Renmin Road, Songjiang District, Shanghai, 201620, China
| |
Collapse
|