201
|
Shimojima T, Okada M, Nakayama T, Ueda H, Okawa K, Iwamatsu A, Handa H, Hirose S. Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor. Genes Dev 2003; 17:1605-16. [PMID: 12815073 PMCID: PMC196133 DOI: 10.1101/gad.1086803] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chromatin structure plays a critical role in the regulation of transcription. Drosophila GAGA factor directs chromatin remodeling to its binding sites. We show here that Drosophila FACT (facilitates chromatin transcription), a heterodimer of dSPT16 and dSSRP1, is associated with GAGA factor through its dSSRP1 subunit, binds to a nucleosome, and facilitates GAGA factor-directed chromatin remodeling. Moreover, genetic interactions between Trithorax-like encoding GAGA factor and spt16 implicate the GAGA factor-FACT complex in expression of Hox genes Ultrabithorax, Sex combs reduced, and Abdominal-B. Chromatin immunoprecipitation experiments indicated the presence of the GAGA factor-FACT complex in the regulatory regions of Ultrabithorax and Abdominal-B. These data illustrate a crucial role of FACT in the modulation of chromatin structure for the regulation of gene expression.
Collapse
Affiliation(s)
- Tsukasa Shimojima
- Department of Developmental Genetics, National Institute of Genetics, and Graduate University for Advanced Studies, Mishima, Shizuoka-ken 411-8540, Japan
| | | | | | | | | | | | | | | |
Collapse
|
202
|
Moreau JL, Lee M, Mahachi N, Vary J, Mellor J, Tsukiyama T, Goding CR. Regulated displacement of TBP from the PHO8 promoter in vivo requires Cbf1 and the Isw1 chromatin remodeling complex. Mol Cell 2003; 11:1609-20. [PMID: 12820973 DOI: 10.1016/s1097-2765(03)00184-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Regulated binding of TBP to a promoter is a key event in transcriptional regulation. We show here that on glucose depletion, the S. cerevisiae Isw1 chromatin remodeling complex is required for the displacement of TBP from the PHO8 promoter. Displacement of TBP also requires the sequence-specific bHLH-LZ factor Cbf1p that targets Isw1p to the PHO8 UAS. Cbf1p- and Isw1p-dependent displacement of TBP is also observed at the PHO84 promoter, but not at the ADH1 promoter, where loss of TBP is Cbf1p- and Isw1p independent. The results point to a promoter-specific Isw1p-dependent mechanism for targeted regulation of basal transcription by displacement of TBP from a promoter.
Collapse
Affiliation(s)
- Jean-Luc Moreau
- Eukaryotic Transcription Laboratory, Marie Curie Research Institute, The Chart, Oxted, Surrey RH8 OTL, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
203
|
Panigrahi AK, Tomar RS, Chaturvedi MM. A SWI/SNF-like factor from chicken liver that disrupts nucleosomes and transfers histone octamers in cis and trans. Arch Biochem Biophys 2003; 414:24-33. [PMID: 12745251 DOI: 10.1016/s0003-9861(03)00175-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
ATP-dependent chromatin remodeling factors have been implicated in nuclear processes involving DNA. Here we report partial purification and characterization of an ATP-dependent chromatin remodeling activity from chicken liver. Nuclear extract from chicken liver was fractionated chromatographically to enrich proteins immunoreacting to antibodies against components of human SWI/SNF, namely BRG1, BAF170, BAF155, and BAF57. Immunoreactivity to these antibodies elutes with a mass of about 2MDa on Sepharose CL-6B gel filtration, suggesting that they constitute a SWI/SNF-like complex (SLC). The SLC displays three chromatin-remodeling activities, viz. nucleosome disruption, octamer transfer, and nucleosome sliding (octamer transfer in cis). We further show that components of SLC, as revealed by immunoreactivity to the above antibodies, display a dynamic nucleocytoplasmic distribution and colocalize with RNA polymerase II in the liver nuclei. This report contributes to the understanding of phylogenetic generality of chromatin remodeling factors in eukaryotes.
Collapse
Affiliation(s)
- Anil K Panigrahi
- Biochemistry & Molecular Biology Laboratory, Center of Advanced Study in Zoology, Banaras Hindu University, Varanasi 221 005, India
| | | | | |
Collapse
|
204
|
Lu Q, Teare JM, Granok H, Swede MJ, Xu J, Elgin SCR. The capacity to form H-DNA cannot substitute for GAGA factor binding to a (CT)n*(GA)n regulatory site. Nucleic Acids Res 2003; 31:2483-94. [PMID: 12736297 PMCID: PMC156050 DOI: 10.1093/nar/gkg369] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Previous studies of the Drosophila melanogaster hsp26 gene promoter have demonstrated the importance of a homopurine*homopyrimidine segment [primarily (CT)n*(GA)n] for chromatin structure formation and gene activation. (CT)n regions are known to bind GAGA factor, a dominant enhancer of PEV thought to play a role in generating an accessible chromatin structure. The (CT)n region can also form an H-DNA structure in vitro under acidic pH and negative supercoiling; a detailed map of that structure is reported here. To test whether the (CT)n sequence can function through H-DNA in vivo, we have analyzed a series of hsp26-lacZ transgenes with altered sequences in this region. The results indicate that a 25 bp mirror repeat within the homopurine.homopyrimidine region, while adequate for H-DNA formation, is neither necessary nor sufficient for positive regulation of hsp26 when GAGA factor-binding sites have been eliminated. The ability to form H-DNA cannot substitute for GAGA factor binding to the (CT)n sequence.
Collapse
Affiliation(s)
- Quinn Lu
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | | | | | | | |
Collapse
|
205
|
Lee KC, Li J, Cole PA, Wong J, Kraus WL. Transcriptional activation by thyroid hormone receptor-beta involves chromatin remodeling, histone acetylation, and synergistic stimulation by p300 and steroid receptor coactivators. Mol Endocrinol 2003; 17:908-22. [PMID: 12586842 DOI: 10.1210/me.2002-0308] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transcriptional regulation by heterodimers of thyroid hormone receptor (TR) and the 9-cis retinoid X receptor (RXR) is a highly complex process involving a large number of accessory factors, as well as chromatin remodeling. We have used a biochemical approach, including an in vitro chromatin assembly and transcription system that accurately recapitulates ligand- and activation function (AF)-2-dependent transcriptional activation by TRbeta/RXRalpha heterodimers, as well as in vitro chromatin immunoprecipitation assays, to study the mechanisms of TRbeta-mediated transcription with chromatin templates. Using this approach, we show that chromatin is required for robust ligand-dependent activation by TRbeta. We also show that the binding of liganded TRbeta to chromatin induces promoter-proximal chromatin remodeling and histone acetylation, and that histone acetylation is correlated with increased TRbeta-dependent transcription. Additionally, we find that steroid receptor coactivators (SRCs) and p300 function synergistically to stimulate TRbeta-dependent transcription, with multiple functional domains of p300 contributing to its coactivator activity with TRbeta. A major conclusion from our experiments is that the primary role of the SRC proteins is to recruit p300/cAMP response element binding protein-binding protein to hormone-regulated promoters. Together, our results suggest a multiple step pathway for transcriptional regulation by liganded TRbeta, including chromatin remodeling, recruitment of coactivators, targeted histone acetylation, and recruitment of the RNA polymerase II transcriptional machinery. Our studies highlight the functional importance of chromatin in transcriptional control and further define the molecular mechanisms by which the SRC and p300 coactivators facilitate transcriptional activation by liganded TRbeta.
Collapse
Affiliation(s)
- Kathleen C Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
206
|
Abstract
Packaging of the eukaryotic genome into chromatin functions not only to constrain the genome within the boundaries of the cell nucleus but also to permit dynamic and broad-ranging changes related to many important biological phenomena. Therefore, chromatin assembly is a process that affects DNA replication, repair, and gene expression. Chromatin structure is linked to transcriptional regulation, and recent studies show how chromatin is altered so as to facilitate transcription. In addition, modification of chromatin structure is an important regulatory mechanism. Here I review the mechanism of chromatin assembly in vitro and the changes of chromatin structure related to transcriptional activation.
Collapse
Affiliation(s)
- T Ito
- Department of Biochemistry, Nagasaki University School of Medicine, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan.
| |
Collapse
|
207
|
Katsani KR, Mahmoudi T, Verrijzer CP. Selective gene regulation by SWI/SNF-related chromatin remodeling factors. Curr Top Microbiol Immunol 2003; 274:113-41. [PMID: 12596906 DOI: 10.1007/978-3-642-55747-7_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chromatin is a highly dynamic structure that plays a key role in the orchestration of gene expression patterns during cellular differentiation and development. The packaging of DNA into chromatin generates a barrier to the transcription machinery. The two main strategies by which cells alleviate chromatin-mediated repression are through the action of ATP-dependent chromatin remodeling complexes and enzymes that covalently modify the histones. Various signaling pathways impinge upon the targeting and activity of these enzymes, thereby controlling gene expression in response to physiological and developmental cues. Chromatin structure also underlies many so-called epigenetic phenomena, leading to the mitotically stable propagation of differential expression of genetic information. Here, we will focus on the role of SWI/SNF-related ATP-dependent chromatin remodeling complexes in developmental gene regulation. First, we compare different models for how remodelers can act in a gene-selective manner, and either cooperate or antagonize other chromatin-modulating systems in the cell. Next, we discuss their functioning during the control of developmental gene expression programs.
Collapse
Affiliation(s)
- K R Katsani
- Department of Molecular and Cell Biology, Center for Biomedical Genetics, Leiden University Medical Center, P.O. Box 9503, 2300 RA Leiden, The Netherlands
| | | | | |
Collapse
|
208
|
Angelov D, Molla A, Perche PY, Hans F, Côté J, Khochbin S, Bouvet P, Dimitrov S. The histone variant macroH2A interferes with transcription factor binding and SWI/SNF nucleosome remodeling. Mol Cell 2003; 11:1033-41. [PMID: 12718888 DOI: 10.1016/s1097-2765(03)00100-x] [Citation(s) in RCA: 204] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The unusual histone variant macroH2A (mH2A) has been associated with repression of transcription, but the molecular mechanisms by which it exerts this function are unknown. Here we have identified a mechanism by which the different domains of mH2A may be involved in the repression of transcription. Evidence is presented that the presence of mH2A in a positioned nucleosome interferes with the binding of the transcription factor NF-kappaB. The nonhistone region of mH2A was identified to be associated with this interference. Importantly, the presence of macroH2A was found to severely impede SWI/SNF nucleosome remodeling and movement to neighboring DNA segments. This property of mH2A was demonstrated to reside only in its H2A-like domain. A hypothesis explaining the role of histone variants in transcriptional regulation is proposed.
Collapse
Affiliation(s)
- Dimitar Angelov
- Ecole Normale Supérieure de Lyon, CNRS-UMR 5665, 46 Allée d'Italie, France
| | | | | | | | | | | | | | | |
Collapse
|
209
|
Barnes LM, Bentley CM, Dickson AJ. Stability of protein production from recombinant mammalian cells. Biotechnol Bioeng 2003; 81:631-9. [PMID: 12529877 DOI: 10.1002/bit.10517] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
One of the most important criteria for successful generation of a therapeutic protein from a recombinant cell is to obtain a cell line that maintains stability of production. If this is not achieved it can generate problems for process yields, effective use of time and money, and for regulatory approval of products. However, selection of a cell line that sustains stability of production over the required time period may be difficult to achieve during development of a therapeutic protein. There are several studies in the literature that have reported on the instability of protein production from recombinant cell lines. The causes of instability of production are varied and, in many cases, the exact molecular mechanisms are unknown. The production of proteins by cells is modulated by molecular events at levels ranging from transcription, posttranscriptional processing, translation, posttranslational processing, to secretion. There is potential for regulation of stability of protein production at many or all of these stages. In this study we review published information on stability of protein production for three industrially important cell lines: hybridoma, Chinese hamster ovary (CHO), and nonsecreting (NS0) myeloma cell lines. We highlight the most likely molecular loci at which instability may be engendered and indicate other areas of protein production that may affect stability from mammalian cells. We also outline approaches that could help to overcome the problems associated with unpredictable expression levels and maximized production, and indicate the consequences these might have for stability of production.
Collapse
Affiliation(s)
- Louise M Barnes
- 2.205 School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
210
|
Stein GS, Lian JB, Stein JL, Wijnen AJV, Montecino M, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D. Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. J Cell Biochem 2003; 88:340-55. [PMID: 12520536 DOI: 10.1002/jcb.10364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors suggest functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the spatial distribution of transcription factors within the three-dimensional context of nuclear architecture control the sorting of regulatory information as well as the assembly and activities of sites within the nucleus that support gene expression. Vitamin D control of gene expression serves as a paradigm for experimentally addressing mechanisms that govern the intranuclear targeting of regulatory factors to nuclear domains where transcription of developmental and tissue-specific genes occur. We will present an overview of molecular, cellular, genetic, and biochemical approaches that provide insight into the trafficking of regulatory factors that mediate vitamin D control of gene expression to transcriptionally active subnuclear sites. Examples will be presented that suggest modifications in the intranuclear targeting of transcription factors abrogate competency for vitamin D control of skeletal gene expression during development and fidelity of gene expression in tumor cells.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
211
|
Faucheux M, Roignant JY, Netter S, Charollais J, Antoniewski C, Théodore L. batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor. Mol Cell Biol 2003; 23:1181-95. [PMID: 12556479 PMCID: PMC141128 DOI: 10.1128/mcb.23.4.1181-1195.2003] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycomb and trithorax group genes maintain the appropriate repressed or activated state of homeotic gene expression throughout Drosophila melanogaster development. We have previously identified the batman gene as a Polycomb group candidate since its function is necessary for the repression of Sex combs reduced. However, our present genetic analysis indicates functions of batman in both activation and repression of homeotic genes. The 127-amino-acid Batman protein is almost reduced to a BTB/POZ domain, an evolutionary conserved protein-protein interaction domain found in a large protein family. We show that this domain is involved in the interaction between Batman and the DNA binding GAGA factor encoded by the Trithorax-like gene. The GAGA factor and Batman codistribute on polytene chromosomes, coimmunoprecipitate from nuclear embryonic and larval extracts, and interact in the yeast two-hybrid assay. Batman, together with the GAGA factor, binds to MHS-70, a 70-bp fragment of the bithoraxoid Polycomb response element. This binding, like that of the GAGA factor, requires the presence of d(GA)n sequences. Together, our results suggest that batman belongs to a subset of the Polycomb/trithorax group of genes that includes Trithorax-like, whose products are involved in both activation and repression of homeotic genes.
Collapse
Affiliation(s)
- M Faucheux
- Laboratoire d'Embryologie Moléculaire et Expérimentale, Chromatine et Développement, CNRS ESA 8080, Université Paris Sud, Orsay, France
| | | | | | | | | | | |
Collapse
|
212
|
Abstract
The BCL6 gene is often structurally altered and probably 'misregulated' in two different types of human B-cell non-Hodgkin lymphomas (BNHL) thought to arise from germinal centre B cells. BCL6 encodes a BTB/POZ and zinc finger protein whose biochemical properties support a role as a DNA-binding transcriptional repressor and disclose, in part, the underlying mechanisms. In contrast, the study of the 'oncogenic' structural alterations of BCL6 in BNHL and of its cellular functions gives rise to much more heterogeneous data with no obvious unifying picture so that how and even whether BCL6 contributes to lymphomagenesis remains unclear. This review will summarize the current knowledge about the 'oncogenic' alterations and cellular functions of BCL6 and, based on some results, will propose the following hypotheses: (1) In various systems, including in memory T cells and also in germinal centre B cells and possibly in certain postmitotic cells, BCL6 may act by stabilizing a particular stage of differentiation. (2) Both its ambivalent effects on cell survival and the heterogeneous consequences of its alterations in BNHL suggest that BCL6 can be oncogenic not only upon overexpression or persistent expression, as often proposed, but also, similar to some of its relatives, upon 'accidental' downregulation.
Collapse
|
213
|
Petruk S, Sedkov Y, Smith ST, Krajewski W, Nakamura T, Canaani E, Croce CM, Mazo A. Purification and Biochemical Properties of the Drosophila TAC1 Complex. Methods Enzymol 2003; 377:255-66. [PMID: 14979030 DOI: 10.1016/s0076-6879(03)77015-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Svetlana Petruk
- Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
214
|
Affiliation(s)
- Jay C Vary
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
215
|
Affiliation(s)
- Dmitry V Fyodorov
- Section of Molecular Biology, University of California, San Diego, La Jolla, California 92093-0347, USA
| | | |
Collapse
|
216
|
Badenhorst P, Voas M, Rebay I, Wu C. Biological functions of the ISWI chromatin remodeling complex NURF. Genes Dev 2002; 16:3186-98. [PMID: 12502740 PMCID: PMC187504 DOI: 10.1101/gad.1032202] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The nucleosome remodeling factor (NURF) is one of several ISWI-containing protein complexes that catalyze ATP-dependent nucleosome sliding and facilitate transcription of chromatin in vitro. To establish the physiological requirements of NURF, and to distinguish NURF genetically from other ISWI-containing complexes, we isolated mutations in the gene encoding the large NURF subunit, nurf301. We confirm that NURF is required for transcription activation in vivo. In animals lacking NURF301, heat-shock transcription factor binding to and transcription of the hsp70 and hsp26 genes are impaired. Additionally, we show that NURF is required for homeotic gene expression. Consistent with this, nurf301 mutants recapitulate the phenotypes of Enhancer of bithorax, a positive regulator of the Bithorax-Complex previously localized to the same genetic interval. Finally, mutants in NURF subunits exhibit neoplastic transformation of larval blood cells that causes melanotic tumors to form.
Collapse
Affiliation(s)
- Paul Badenhorst
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda Maryland 20892-4255, USA
| | | | | | | |
Collapse
|
217
|
Alén C, Kent NA, Jones HS, O'Sullivan J, Aranda A, Proudfoot NJ. A role for chromatin remodeling in transcriptional termination by RNA polymerase II. Mol Cell 2002; 10:1441-52. [PMID: 12504018 DOI: 10.1016/s1097-2765(02)00778-5] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Chromatin remodeling can facilitate the recruitment of RNA polymerase II (Pol II) to targeted promoters, as well as enhancing the level of transcription. Here, we describe a further key role for chromatin remodeling in transcriptional termination. Using a genetic screen in S. pombe, we identified the CHD-Mi2 class chromatin remodeling ATPase, Hrp1, as a termination factor. In S. cerevisiae, we show that transcriptional termination and chromatin structure at the 3' ends of three genes all depend on the activity of the Hrp1 homolog, Chd1p, either alone or redundantly with the ISWI ATPases, Isw1p, and Isw2p. We suggest that chromatin remodeling of termination regions is a necessary prelude to efficient Pol II termination.
Collapse
Affiliation(s)
- Claudia Alén
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE, Oxford, United Kingdom
| | | | | | | | | | | |
Collapse
|
218
|
SITOHY MAHMOUD, CHOBERT JEANMARC, GAUDIN JEANCHARLES, RENAC TIPHAINE, HAERTLÉ THOMAS. WHEN POSITIVELY CHARGED MILK PROTEINS CAN BIND TO DNA. J Food Biochem 2002. [DOI: 10.1111/j.1745-4514.2002.tb00770.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
219
|
Abstract
The existence and function of actin in the nucleus has been hotly debated for forty years. Recently, beta-actin was found to be a component of mammalian SWI/SNF-like BAF chromatin remodeling complexes and still more recently other SWI/SNF-related chromatin remodeling complexes in yeast, flies, and man. Although the function of actin in these chromatin remodeling complexes is only starting to be explored, the fact that actin is one of the most regulated proteins in the cell suggests that control of nuclear actin may be a critical regulatory point in the control of chromatin remodeling. Actin rapidly shuttles between the nucleus and the cytoplasm offering additional sites and modes of regulation. In addition, actin-related proteins (Arps) are also components of these chromatin remodeling complexes and have been implicated in transcriptional control in yeast. The observation that the BAF chromatin remodeling complex in which actin was originally identified, is also a human tumor suppressor complex necessary for the actions of the retinoblastoma protein indicates that the study of nuclear actin is likely to contribute to understanding cell growth control.
Collapse
Affiliation(s)
- Ivan A Olave
- Department of Developmental Biology and Department of Pathology, Howard Hughes Medical Institute at Stanford University, Stanford, California 94305, USA.
| | | | | |
Collapse
|
220
|
Kassabov SR, Henry NM, Zofall M, Tsukiyama T, Bartholomew B. High-resolution mapping of changes in histone-DNA contacts of nucleosomes remodeled by ISW2. Mol Cell Biol 2002; 22:7524-34. [PMID: 12370299 PMCID: PMC135677 DOI: 10.1128/mcb.22.21.7524-7534.2002] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The imitation switch (ISWI) complex from yeast containing the Isw2 and Itc1 proteins was shown to preferentially slide mononucleosomes with as little as 23 bp of linker DNA from the end to the center of DNA. The contacts of unique residues in the histone fold regions of H4, H2B, and H2A with DNA were determined with base pair resolution before and after chromatin remodeling by a site-specific photochemical cross-linking approach. The path of DNA and the conformation of the histone octamer in the nucleosome remodeled or slid by ISW2 were not altered, because after adjustment for the new translational position, the DNA contacts at specific sites in the histone octamer had not been changed. Maintenance of the canonical nucleosome structure after sliding was also demonstrated by DNA photoaffinity labeling of histone proteins at specific sites within the DNA template. In addition, nucleosomal DNA does not become more accessible during ISW2 remodeling, as assayed by restriction endonuclease cutting. ISW2 was also shown to have the novel capability of counteracting transcriptional activators by sliding nucleosomes through Gal4-VP16 bound initially to linker DNA and displacing the activator from DNA.
Collapse
Affiliation(s)
- Stefan R Kassabov
- Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale, Illinois 62901-4413, USA
| | | | | | | | | |
Collapse
|
221
|
Armstrong JA, Papoulas O, Daubresse G, Sperling AS, Lis JT, Scott MP, Tamkun JW. The Drosophila BRM complex facilitates global transcription by RNA polymerase II. EMBO J 2002; 21:5245-54. [PMID: 12356740 PMCID: PMC129039 DOI: 10.1093/emboj/cdf517] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drosophila brahma (brm) encodes the ATPase subunit of a 2 MDa complex that is related to yeast SWI/SNF and other chromatin-remodeling complexes. BRM was identified as a transcriptional activator of Hox genes required for the specification of body segment identities. To clarify the role of the BRM complex in the transcription of other genes, we examined its distribution on larval salivary gland polytene chromosomes. The BRM complex is associated with nearly all transcriptionally active chromatin in a pattern that is generally non-overlapping with that of Polycomb, a repressor of Hox gene transcription. Reduction of BRM function dramatically reduces the association of RNA polymerase II with salivary gland chromosomes. A few genes, such as induced heat shock loci, are not associated with the BRM complex; transcription of these genes is not compromised by loss of BRM function. The distribution of the BRM complex thus correlates with a dependence on BRM for gene activity. These data suggest that the chromatin remodeling activity of the BRM complex plays a general role in facilitating transcription by RNA polymerase II.
Collapse
Affiliation(s)
| | | | - Gary Daubresse
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064,
Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305 and Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA Corresponding author e-mail:
| | | | - John T. Lis
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064,
Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305 and Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA Corresponding author e-mail:
| | - Matthew P. Scott
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064,
Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305 and Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA Corresponding author e-mail:
| | - John W. Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064,
Departments of Developmental Biology and Genetics, Howard Hughes Medical Institute, Beckman Center, Stanford University School of Medicine, Stanford, CA 94305 and Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, NY 14853, USA Corresponding author e-mail:
| |
Collapse
|
222
|
Schwendemann A, Lehmann M. Pipsqueak and GAGA factor act in concert as partners at homeotic and many other loci. Proc Natl Acad Sci U S A 2002; 99:12883-8. [PMID: 12271134 PMCID: PMC130554 DOI: 10.1073/pnas.202341499] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Drosophila GAGA factor (GAF) controls transcription and other chromosome functions by altering chromatin structure. We found that a second GAGA-binding protein of Drosophila, Pipsqueak (Psq), can directly bind to GAF and is associated with GAF in vivo. Genetic interaction studies provide evidence that Psq and GAF act together in the transcriptional activation and silencing of homeotic genes. A complete colocalization of Psq and GAF on polytene interphase chromosomes and mitotic chromosomes suggests that the two proteins cooperate as general partners not only at homeotic loci, but also at hundreds of other chromosomal sites.
Collapse
Affiliation(s)
- Alexander Schwendemann
- Institut für Biologie, Genetik, Freie Universität Berlin, Arnimallee 7, D-14195 Berlin, Germany
| | | |
Collapse
|
223
|
Abstract
Nucleosome sliding is a frequent result of energy-dependent nucleosome remodelling in vitro. This review discusses the possible roles for nucleosome sliding in the assembly and maintenance of dynamic chromatin and for the regulation of diverse functions in eukaryotic nuclei.
Collapse
Affiliation(s)
- Peter B Becker
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität, D-80336 München, Germany.
| |
Collapse
|
224
|
Rusconi F, Guillonneau F, Praseuth D. Contributions of mass spectrometry in the study of nucleic acid-binding proteins and of nucleic acid-protein interactions. MASS SPECTROMETRY REVIEWS 2002; 21:305-348. [PMID: 12645088 DOI: 10.1002/mas.10036] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nucleic-acid-protein (NA-P) interactions play essential roles in a variety of biological processes-gene expression regulation, DNA repair, chromatin structure regulation, transcription regulation, RNA processing, and translation-to cite only a few. Such biological processes involve a broad spectrum of NA-P interactions as well as protein-protein (P-P) interactions. These interactions are dynamic, in terms of the chemical composition of the complexes involved and in terms of their mere existence, which may be restricted to a given cell-cycle phase. In this review, the contributions of mass spectrometry (MS) to the deciphering of these intricate networked interactions are described along with the numerous applications in which it has proven useful. Such applications include, for example, the identification of the partners involved in NA-P or P-P complexes, the identification of post-translational modifications that (may) regulate such complexes' activities, or even the precise molecular mapping of the interaction sites in the NA-P complex. From a biological standpoint, we felt that it was worth the reader's time to be as informative as possible about the functional significance of the analytical methods reviewed herein. From a technical standpoint, because mass spectrometry without proper sample preparation would serve no purpose, each application described in this review is detailed by duly emphasizing the sample preparation-whenever this step is considered innovative-that led to significant analytical achievements.
Collapse
Affiliation(s)
- Filippo Rusconi
- UMR CNRS 8646, U INSERM 565, USM MNHN 0503-43, rue Cuvier, F-75231, Paris Cedex 05, France
| | | | | |
Collapse
|
225
|
Leibovitch BA, Lu Q, Benjamin LR, Liu Y, Gilmour DS, Elgin SCR. GAGA factor and the TFIID complex collaborate in generating an open chromatin structure at the Drosophila melanogaster hsp26 promoter. Mol Cell Biol 2002; 22:6148-57. [PMID: 12167709 PMCID: PMC134011 DOI: 10.1128/mcb.22.17.6148-6157.2002] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The upstream regulatory region of the Drosophila melanogaster hsp26 gene includes two DNase I-hypersensitive sites (DH sites) that encompass the critical heat shock elements. This chromatin structure is required for heat shock-inducible expression and depends on two (CT)n*(GA)n elements bound by GAGA factor. To determine whether GAGA factor alone is sufficient to drive formation of the DH sites, we have created flies with an hsp26/lacZ transgene wherein the entire DNA segment known to interact with the TFIID complex has been replaced by a random sequence. The replacement results in a loss of heat shock-inducible hsp26 expression and drastically diminishes nuclease accessibility in the chromatin of the regulatory region. Chromatin immunoprecipitation experiments show that the decrease in TFIID binding does not reduce GAGA factor binding. In contrast, the loss of GAGA factor binding resulting from (CT)n mutations decreases TFIID binding. These data suggest that both GAGA factor and TFIID are necessary for formation of the appropriate chromatin structure at the hsp26 promoter and predict a regulatory mechanism in which GAGA factor binding precedes and contributes to the recruitment of TFIID.
Collapse
Affiliation(s)
- Boris A Leibovitch
- Department of Biology, Washington University, St. Louis, Missouri 63130, USA
| | | | | | | | | | | |
Collapse
|
226
|
Fyodorov DV, Kadonaga JT. Binding of Acf1 to DNA involves a WAC motif and is important for ACF-mediated chromatin assembly. Mol Cell Biol 2002; 22:6344-53. [PMID: 12192034 PMCID: PMC135643 DOI: 10.1128/mcb.22.18.6344-6353.2002] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2002] [Accepted: 06/11/2002] [Indexed: 11/20/2022] Open
Abstract
ACF is a chromatin-remodeling complex that catalyzes the ATP-dependent assembly of periodic nucleosome arrays. This reaction utilizes the energy of ATP hydrolysis by ISWI, the smaller of the two subunits of ACF. Acf1, the large subunit of ACF, is essential for the full activity of the complex. We performed a systematic mutational analysis of Acf1 to elucidate the functions of specific subregions of the protein. These studies revealed DNA- and ISWI-binding regions that are important for the chromatin assembly and ATPase activities of ACF. The DNA-binding region of Acf1 includes a WAC motif, which is necessary for the efficient binding of ACF complex to DNA. The interaction of Acf1 with ISWI requires a DDT domain, which has been found in a variety of transcription and chromatin-remodeling factors. Chromatin assembly by ACF is also impaired upon mutation of an acidic region in Acf1, which may interact with histones during the deposition process. Lastly, we observed modest chromatin assembly defects on mutation of other conserved sequence motifs. Thus, Acf1 facilitates chromatin assembly via an N-terminal DNA-binding region with a WAC motif, a central ISWI-binding segment with a DDT domain, and a C-terminal region with an acidic stretch, a WAKZ motif, PHD fingers, and bromodomain.
Collapse
Affiliation(s)
- Dmitry V Fyodorov
- Section of Molecular Biology, University of California, San Diego, La Jolla 92093-0347, USA
| | | |
Collapse
|
227
|
Abstract
Chromatin-remodeling complexes couple ATP hydrolysis to alterations in histone-DNA interactions and nucleosome mobility, allowing transcription factors access to chromatin. Here, we use triple-helix strand-displacement assays, DNA length-dependent ATPase assays, and DNA-minicircle ATPase assays to establish that RSC, as well as its isolated ATPase subunit Sth1, are DNA translocases. RSC/Sth1 ATPase activity is stimulated by single-stranded DNA, suggesting that Sth1 tracks along one strand of the DNA duplex. Each RSC complex appears to contain a single molecule of Sth1, and isolated Sth1 is capable of nucleosome remodeling. We propose that the remodeling enzyme remains in a fixed position on the octamer and translocates a segment of DNA (with accompanying DNA twist), which breaks histone-DNA contacts and propagates as a wave of DNA around the octamer. The demonstration of DNA translocation presented here provides a mechanistic basis for this DNA wave. To test the relative contribution of twist to remodeling, we use nucleosomes containing nicks in precise locations to uncouple twist and translocation. Nucleosomes bearing nicks are remodeled less efficiently than intact nucleosomes. These results suggest that RSC and Sth1 are DNA translocases that use both DNA translocation and twist to remodel nucleosomes efficiently.
Collapse
Affiliation(s)
- Anjanabha Saha
- Howard Hughes Medical Institute and the Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
228
|
Fu XH, Liu DP, Liang CC. Chromatin structure and transcriptional regulation of the beta-globin locus. Exp Cell Res 2002; 278:1-11. [PMID: 12126952 DOI: 10.1006/excr.2002.5555] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chromatin structure plays a critical role in eukaryotic gene transcriptional regulation. The beta-globin locus provides an ideal system within which to study the interplay between chromatin structure and transcriptional regulation. The process of beta-globin locus activation is remarkably intricate and involves at least two distinct events: chromatin opening and gene activation. Great progress has been made in recent years in understanding how locus control regions confer high-level expression to linked genes. Current interest focuses on some special events, including formation of locus control region hypersensitivity sites, ATP-dependent chromatin remodeling, localized H3 hyperacetylation, and intergenic transcription, which link chromatin and beta-globin locus regulation. These events, and their possible molecular bases, are summarized together with speculations concerning their connections.
Collapse
Affiliation(s)
- Xiang Hui Fu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, P.R. China
| | | | | |
Collapse
|
229
|
Sangwan I, O'Brian MR. Identification of a soybean protein that interacts with GAGA element dinucleotide repeat DNA. PLANT PHYSIOLOGY 2002; 129:1788-94. [PMID: 12177492 PMCID: PMC166767 DOI: 10.1104/pp.002618] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2001] [Revised: 03/17/2002] [Accepted: 05/08/2002] [Indexed: 05/17/2023]
Abstract
Dinucleotide repeat DNA with the pattern (GA)(n)/(TC)(n), so-called GAGA elements, control gene expression in animals, and are recognized by a specific regulatory protein. Here, a yeast one-hybrid screen was used to isolate soybean (Glycine max) cDNA encoding a GAGA-binding protein (GBP) that binds to (GA)(n)/(CT)(n) DNA. Soybean GBP was dissimilar from the GAGA factor of Drosophila melanogaster. Recombinant GBP protein did not bind to dinucleotide repeat sequences other than (GA)(n)/(CT)(n). GBP bound to the promoter of the heme and chlorophyll synthesis gene Gsa1, which contains a GAGA element. Removal of that GAGA element abrogated binding of GBP to the promoter. Furthermore, insertion of the GAGA element to a nonspecific DNA conferred GBP-binding activity on that DNA. Thus, the GAGA element of the Gsa1 promoter is both necessary and sufficient for GBP binding. Gbp mRNA was expressed in leaves and was induced in symbiotic root nodules elicited by the bacterium Bradyrhizobium japonicum. In addition, Gbp transcripts were much higher in leaves of dark-treated etiolated plantlets than in those exposed to light for 24 h. Homologs of GBP were found in other dicots and in the monocot rice (Oryza sativa), as well. We suggest that interaction between GAGA elements and GBP-like proteins is a regulatory feature in plants.
Collapse
Affiliation(s)
- Indu Sangwan
- Department of Biochemistry, State University of New York, Buffalo, New York 14214, USA.
| | | |
Collapse
|
230
|
Brumby AM, Zraly CB, Horsfield JA, Secombe J, Saint R, Dingwall AK, Richardson H. Drosophila cyclin E interacts with components of the Brahma complex. EMBO J 2002; 21:3377-89. [PMID: 12093739 PMCID: PMC126084 DOI: 10.1093/emboj/cdf334] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cyclin E-Cdk2 is essential for S phase entry. To identify genes interacting with cyclin E, we carried out a genetic screen using a hypomorphic mutation of Drosophila cyclin E (DmcycE(JP)), which gives rise to adults with a rough eye phenotype. Amongst the dominant suppressors of DmcycE(JP), we identified brahma (brm) and moira (mor), which encode conserved core components of the Drosophila Brm complex that is highly related to the SWI-SNF ATP-dependent chromatin remodeling complex. Mutations in genes encoding other Brm complex components, including snr1 (BAP45), osa and deficiencies that remove BAP60 and BAP111 can also suppress the DmcycE(JP) eye phenotype. We show that Brm complex mutants suppress the DmcycE(JP) phenotype by increasing S phases without affecting DmcycE protein levels and that DmcycE physically interacts with Brm and Snr1 in vivo. These data suggest that the Brm complex inhibits S phase entry by acting downstream of DmcycE protein accumulation. The Brm complex also physically interacts weakly with Drosophila retinoblastoma (Rbf1), but no genetic interactions were detected, suggesting that the Brm complex and Rbf1 act largely independently to mediate G(1) arrest.
Collapse
Affiliation(s)
- Anthony M. Brumby
- Peter MacCallum Cancer Institute, Locked bag 1, A’Beckett Street, Melbourne, Victoria 8006, Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA Present address: Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA Corresponding authors e-mail: or
| | - Claudia B. Zraly
- Peter MacCallum Cancer Institute, Locked bag 1, A’Beckett Street, Melbourne, Victoria 8006, Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA Present address: Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA Corresponding authors e-mail: or
| | - Julie A. Horsfield
- Peter MacCallum Cancer Institute, Locked bag 1, A’Beckett Street, Melbourne, Victoria 8006, Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA Present address: Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA Corresponding authors e-mail: or
| | - Julie Secombe
- Peter MacCallum Cancer Institute, Locked bag 1, A’Beckett Street, Melbourne, Victoria 8006, Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA Present address: Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA Corresponding authors e-mail: or
| | - Robert Saint
- Peter MacCallum Cancer Institute, Locked bag 1, A’Beckett Street, Melbourne, Victoria 8006, Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA Present address: Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA Corresponding authors e-mail: or
| | - Andrew K. Dingwall
- Peter MacCallum Cancer Institute, Locked bag 1, A’Beckett Street, Melbourne, Victoria 8006, Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA Present address: Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA Corresponding authors e-mail: or
| | - Helena Richardson
- Peter MacCallum Cancer Institute, Locked bag 1, A’Beckett Street, Melbourne, Victoria 8006, Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia 5005, Australia and Department of Biology, Syracuse University, Syracuse, NY 13244-1270, USA Present address: Department of Molecular Medicine, School of Medicine, University of Auckland, Auckland, New Zealand Present address: Fred Hutchinson Cancer Research Center, Seattle, WA, USA Corresponding authors e-mail: or
| |
Collapse
|
231
|
Hsia SCV, Shi YB. Chromatin disruption and histone acetylation in regulation of the human immunodeficiency virus type 1 long terminal repeat by thyroid hormone receptor. Mol Cell Biol 2002; 22:4043-52. [PMID: 12024018 PMCID: PMC133859 DOI: 10.1128/mcb.22.12.4043-4052.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) controls the expression of HIV-1 viral genes and thus viral propagation and pathology. Numerous host factors participate in the regulation of the LTR promoter, including thyroid hormone (T(3)) receptor (TR). In vitro, TR can bind to the promoter region containing the NF-kappa B and Sp1 binding sites. Using the frog oocyte as a model system for chromatin assembly mimicking that in somatic cells, we demonstrated that TR alone and TR/RXR (9-cis retinoic acid receptor) can bind to the LTR in vivo independently of T(3). Consistent with their ability to bind the LTR, both TR and TR/RXR can regulate LTR activity in vivo. In addition, our analysis of the plasmid minichromosome shows that T(3)-bound TR disrupts the normal nucleosomal array structure. Chromatin immunoprecipitation assays with anti-acetylated-histone antibodies revealed that unliganded TR and TR/RXR reduce the local histone acetylation levels at the HIV-1 LTR while T(3) treatment reverses this reduction. We further demonstrated that unliganded TR recruits corepressors and at least one histone deacetylase. These results suggest that chromatin remodeling, including histone acetylation and chromatin disruption, is important for T(3) regulation of the HIV-1 LTR in vivo.
Collapse
Affiliation(s)
- Shao-Chung Victor Hsia
- Unit on Molecular Morphogenesis, Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-5431, USA
| | | |
Collapse
|
232
|
Tsukiyama T. The in vivo functions of ATP-dependent chromatin-remodelling factors. Nat Rev Mol Cell Biol 2002; 3:422-9. [PMID: 12042764 DOI: 10.1038/nrm828] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ATP-dependent chromatin-remodelling factors regulate the accessibility of DNA to nuclear factors that are involved in cellular processes that depend on protein DNA interactions. They probably accomplish this by using the energy of ATP hydrolysis to change the positions of nucleosomes on the DNA, or to change the structure of DNA within the nucleosomes. Although their mechanisms of action have been extensively studied in vitro, many questions remain about their functions in vivo.
Collapse
Affiliation(s)
- Toshio Tsukiyama
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mail Stop A1-162, PO Box 19024, Seattle, Washington 98109-1024, USA.
| |
Collapse
|
233
|
Americo J, Whiteley M, Brown JL, Fujioka M, Jaynes JB, Kassis JA. A complex array of DNA-binding proteins required for pairing-sensitive silencing by a polycomb group response element from the Drosophila engrailed gene. Genetics 2002; 160:1561-71. [PMID: 11973310 PMCID: PMC1462036 DOI: 10.1093/genetics/160.4.1561] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Regulatory DNA from the Drosophila gene engrailed causes silencing of a linked reporter gene (mini-white) in transgenic Drosophila. This silencing is strengthened in flies homozygous for the transgene and has been called "pairing-sensitive silencing." The pairing-sensitive silencing activities of a large fragment (2.6 kb) and a small subfragment (181 bp) were explored. Since pairing-sensitive silencing is often associated with Polycomb group response elements (PREs), we tested the activities of each of these engrailed fragments in a construct designed to detect PRE activity in embryos. Both fragments were found to behave as PREs in a bxd-Ubx-lacZ reporter construct, while the larger fragment showed additional silencing capabilities. Using the mini-white reporter gene, a 139-bp minimal pairing-sensitive element (PSE) was defined. DNA mobility-shift assays using Drosophila nuclear extracts suggested that there are eight protein-binding sites within this 139-bp element. Mutational analysis showed that at least five of these sites are important for pairing-sensitive silencing. One of the required sites is for the Polycomb group protein Pleiohomeotic and another is GAGAG, a sequence bound by the proteins GAGA factor and Pipsqueak. The identity of the other proteins is unknown. These data suggest a surprising degree of complexity in the DNA-binding proteins required for PSE function.
Collapse
Affiliation(s)
- Jeffrey Americo
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
234
|
Abstract
The last two decades have witnessed a tremendous expansion in our knowledge of the mechanisms employed by eukaryotic cells to control gene activity. A critical insight to transcriptional control mechanisms was provided by the discovery of coactivators, a diverse array of cellular factors that connect sequence-specific DNA binding activators to the general transcriptional machinery, or that help activators and the transcriptional apparatus to navigate through the constraints of chromatin. A number of coactivators have been isolated as large multifunctional complexes, and biochemical, genetic, molecular, and cellular strategies have all contributed to uncovering many of their components, activities, and modes of action. Coactivator functions can be broadly divide into two classes: (a) adaptors that direct activator recruitment of the transcriptional apparatus, (b) chromatin-remodeling or -modifying enzymes. Strikingly, several distinct coactivator complexes nonetheless share many subunits and appear to be assembled in a modular fashion. Such structural and functional modularity could provide the cell with building blocks from which to construct a versatile array of coactivator complexes according to its needs. The extent of functional interplay between these different activities in gene-specific transcriptional regulation is only now becoming apparent, and will remain an active area of research for years to come.
Collapse
Affiliation(s)
- A M Näär
- Howard Hughes Medical Institute, Department of Molecular and Cell Biology, 401 Barker Hall, University of California, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
235
|
Abstract
The Drosophila nucleosome remodeling factor (NURF) is an imitation switch (ISWI)-containing chromatin remodeling complex that can catalyze nucleosome repositioning at promoter regions to regulate access by the transcription machinery. Mononucleosomes reconstituted in vitro by salt dialysis adopt an ensemble of translational positions on DNA templates. NURF induces bi-directional 'sliding' of these nucleosomes to a subset of preferred positions. Here we show that mononucleosome sliding catalyzed by NURF bears similarity to nucleosome movement induced by elevated temperature. Moreover, we demonstrate that the GAL4 DNA-binding domain can extend NURF-induced nucleosome movement on a GAL4-E4 promoter, expanding the stretch of histone-free DNA at GAL4 recognition sites. The direction of NURF-induced nucleosome movement can be significantly modulated by asymmetric placement of tandem GAL4 sites relative to the nucleosome core particle. As such, sequence-specific, transcription factor-directed nucleosome sliding is likely to have substantial influence on promoter activation.
Collapse
Affiliation(s)
| | - Ali Hamiche
- Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
Present address: LBME–IBCG–CNRS, 118 Route de Narbonne, 31062 Toulouse, France Corresponding author e-mail:
| | - Carl Wu
- Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 37, Room 6068, Bethesda, MD 20892-4255, USA
Present address: LBME–IBCG–CNRS, 118 Route de Narbonne, 31062 Toulouse, France Corresponding author e-mail:
| |
Collapse
|
236
|
Peña-Rangel MT, Rodriguez I, Riesgo-Escovar JR. A misexpression study examining dorsal thorax formation in Drosophila melanogaster. Genetics 2002; 160:1035-50. [PMID: 11901120 PMCID: PMC1462010 DOI: 10.1093/genetics/160.3.1035] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We studied thorax formation in Drosophila melanogaster using a misexpression screen with EP lines and thoracic Gal4 drivers that provide a genetically sensitized background. We identified 191 interacting lines showing alterations of thoracic bristles (number and/or location), thorax and scutellum malformations, lethality, or suppression of the thoracic phenotype used in the screen. We analyzed these lines and showed that known genes with different functional roles (selector, prepattern, proneural, cell cycle regulation, lineage restriction, signaling pathways, transcriptional control, and chromatin organization) are among the modifier lines. A few lines have previously been identified in thorax formation, but others, such as chromatin-remodeling complex genes, are novel. However, most of the interacting loci are uncharacterized, providing a wealth of new genetic data. We also describe one such novel line, poco pelo (ppo), where both misexpression and loss-of-function phenotypes are similar: loss of bristles and scutellum malformation.
Collapse
Affiliation(s)
- María Teresa Peña-Rangel
- Department of Developmental Neurobiology and Neurophysiology, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, 76230, México
| | | | | |
Collapse
|
237
|
Narlikar GJ, Fan HY, Kingston RE. Cooperation between complexes that regulate chromatin structure and transcription. Cell 2002; 108:475-87. [PMID: 11909519 DOI: 10.1016/s0092-8674(02)00654-2] [Citation(s) in RCA: 1082] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chromatin structure creates barriers for each step in eukaryotic transcription. Here we discuss how the activities of two major classes of chromatin-modifying complexes, ATP-dependent remodeling complexes and HAT or HDAC complexes, might be coordinated to create a DNA template that is accessible to the general transcription apparatus.
Collapse
Affiliation(s)
- Geeta J Narlikar
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | |
Collapse
|
238
|
Kato H, Tjernberg A, Zhang W, Krutchinsky AN, An W, Takeuchi T, Ohtsuki Y, Sugano S, de Bruijn DR, Chait BT, Roeder RG. SYT associates with human SNF/SWI complexes and the C-terminal region of its fusion partner SSX1 targets histones. J Biol Chem 2002; 277:5498-505. [PMID: 11734557 DOI: 10.1074/jbc.m108702200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
A global transcriptional co-activator, the SNF/SWI complex, has been characterized as a chromatin remodeling factor that enhances accessibility of the transcriptional machinery to DNA within a repressive chromatin structure. On the other hand, mutations in some human SNF/SWI complex components have been linked to tumor formation. We show here that SYT, a partner protein generating the synovial sarcoma fusion protein SYT-SSX, associates with native human SNF/SWI complexes. The SYT protein has a unique QPGY domain, which is also present in the largest subunits, p250 and the newly identified homolog p250R, of the corresponding SNF/SWI complexes. The C-terminal region (amino acids 310-387) of SSX1, comprising the SSX1 portion of the SYT-SSX1 fusion protein, binds strongly to core histones and oligonucleosomes in vitro and directs nuclear localization of a green fluorescence protein fusion protein. Experiments with serial C-terminal deletion mutants of SSX1 indicate that these properties map to a common region and also correlate with the previously demonstrated anchorage-independent colony formation activity of SYT-SSX in Rat 3Y1 cells. These data suggest that SYT-SSX interferes with the function of either the SNF/SWI complexes or another SYT-interacting co-activator, p300, by changing their targeted localization or by directly inhibiting their chromatin remodeling activities.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Laboratory of Biochemistry and Molecular Biology and Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York 10021, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
239
|
Clapier CR, Nightingale KP, Becker PB. A critical epitope for substrate recognition by the nucleosome remodeling ATPase ISWI. Nucleic Acids Res 2002; 30:649-55. [PMID: 11809876 PMCID: PMC100309 DOI: 10.1093/nar/30.3.649] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The ATPase ISWI is the catalytic core of several nucleosome remodeling complexes, which are able to alter histone-DNA interactions within nucleosomes such that the sliding of histone octamers on DNA is facilitated. Dynamic nucleosome repositioning may be involved in the assembly of chromatin with regularly spaced nucleosomes and accessible regulatory sequence elements. The mechanism that underlies nucleosome sliding is largely unresolved. We recently discovered that the N-terminal 'tail' of histone H4 is critical for nucleosome remodeling by ISWI. If deleted, nucleosomes are no longer recognized as substrates and do not stimulate the ATPase activity of ISWI. We show here that the H4 tail is part of a more complex recognition epitope which is destroyed by grafting the H4 N-terminus onto other histones. We mapped the H4 tail requirement to a hydrophilic patch consisting of the amino acids R17H18R19 localized at the base of the tail. These residues have been shown earlier to contact nucleosomal DNA, suggesting that ISWI recognizes an 'epitope' consisting of the DNA-bound H4 tail. Consistent with this hypothesis, the ISWI ATPase is stimulated by isolated H4 tail peptides ISWI only in the presence of DNA. Acetylation of the adjacent K12 and K16 residues impairs substrate recognition by ISWI.
Collapse
Affiliation(s)
- Cedric R Clapier
- Adolf-Butenandt-Institut, Molekularbiologie, Ludwig-Maximilians-Universität München, Schillerstrasse 44, 80336 München, Germany
| | | | | |
Collapse
|
240
|
Lazzaro MA, Picketts DJ. Cloning and characterization of the murine Imitation Switch (ISWI) genes: differential expression patterns suggest distinct developmental roles for Snf2h and Snf2l. J Neurochem 2001; 77:1145-56. [PMID: 11359880 DOI: 10.1046/j.1471-4159.2001.00324.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report the cloning of two cDNAs, Snf2h and Snf2l, encoding the murine members of the Imitation Switch (ISWI) family of chromatin remodeling proteins. To gain insight into their function we examined the spatial and temporal expression patterns of Snf2h and Snf2l during development. In the brain, Snf2h is prevalent in proliferating cell populations whereas, Snf2l is predominantly expressed in terminally differentiated neurons after birth and in adult animals, concomitant with the expression of a neural specific isoform. Moreover, a similar proliferation/differentiation relationship of expression for these two genes was observed in the ovaries and testes of adult mice. These results are consistent with a role of Snf2h complexes in replication-associated nucleosome assembly and suggest that Snf2l complexes have distinct functions associated with cell maturation or differentiation.
Collapse
Affiliation(s)
- M A Lazzaro
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | | |
Collapse
|
241
|
Hamiche A, Kang JG, Dennis C, Xiao H, Wu C. Histone tails modulate nucleosome mobility and regulate ATP-dependent nucleosome sliding by NURF. Proc Natl Acad Sci U S A 2001; 98:14316-21. [PMID: 11724935 PMCID: PMC64679 DOI: 10.1073/pnas.251421398] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleosome Remodeling Factor (NURF) is an ATP-dependent nucleosome remodeling complex that alters chromatin structure by catalyzing nucleosome sliding, thereby exposing DNA sequences previously associated with nucleosomes. We systematically studied how the unstructured N-terminal residues of core histones (the N-terminal histone tails) influence nucleosome sliding. We used bacterially expressed Drosophila histones to reconstitute hybrid nucleosomes lacking one or more histone N-terminal tails. Unexpectedly, we found that removal of the N-terminal tail of histone H2B promoted uncatalyzed nucleosome sliding during native gel electrophoresis. Uncatalyzed nucleosome mobility was enhanced by additional removal of other histone tails but was not affected by hyperacetylation of core histones by p300. In addition, we found that the N-terminal tail of the histone H4 is specifically required for ATP-dependent catalysis of nucleosome sliding by NURF. Alanine scanning mutagenesis demonstrated that H4 residues 16-KRHR-19 are critical for the induction of nucleosome mobility, revealing a histone tail motif that regulates NURF activity. An exchange of histone tails between H4 and H3 impaired NURF-induced sliding of the mutant nucleosome, indicating that the location of the KRHR motif in relation to global nucleosome structure is functionally important. Our results provide functions for the N-terminal histone tails in regulating the mobility of nucleosomes.
Collapse
Affiliation(s)
- A Hamiche
- Laboratory of Molecular Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA
| | | | | | | | | |
Collapse
|
242
|
Fazzio TG, Kooperberg C, Goldmark JP, Neal C, Basom R, Delrow J, Tsukiyama T. Widespread collaboration of Isw2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 2001; 21:6450-60. [PMID: 11533234 PMCID: PMC99792 DOI: 10.1128/mcb.21.19.6450-6460.2001] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The yeast Isw2 chromatin remodeling complex functions in parallel with the Sin3-Rpd3 histone deacetylase complex to repress early meiotic genes upon recruitment by Ume6p. For many of these genes, the effect of an isw2 mutation is partially masked by a functional Sin3-Rpd3 complex. To identify the full range of genes repressed or activated by these factors and uncover hidden targets of Isw2-dependent regulation, we performed full genome expression analyses using cDNA microarrays. We find that the Isw2 complex functions mainly in repression of transcription in a parallel pathway with the Sin3-Rpd3 complex. In addition to Ume6 target genes, we find that many Ume6-independent genes are derepressed in mutants lacking functional Isw2 and Sin3-Rpd3 complexes. Conversely, we find that ume6 mutants, but not isw2 sin3 or isw2 rpd3 double mutants, have reduced fidelity of mitotic chromosome segregation, suggesting that one or more functions of Ume6p are independent of Sin3-Rpd3 and Isw2 complexes. Chromatin structure analyses of two nonmeiotic genes reveals increased DNase I sensitivity within their regulatory regions in an isw2 mutant, as seen previously for one meiotic locus. These data suggest that the Isw2 complex functions at Ume6-dependent and -independent loci to create DNase I-inaccessible chromatin structure by regulating the positioning or placement of nucleosomes.
Collapse
Affiliation(s)
- T G Fazzio
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109-1024, USA
| | | | | | | | | | | | | |
Collapse
|
243
|
Aalfs JD, Narlikar GJ, Kingston RE. Functional differences between the human ATP-dependent nucleosome remodeling proteins BRG1 and SNF2H. J Biol Chem 2001; 276:34270-8. [PMID: 11435432 DOI: 10.1074/jbc.m104163200] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ATP-dependent nucleosome remodeling complexes can be grouped into several classes that may differ in their biochemical remodeling activities and biological roles. Although there are a number of biochemical studies of each class of remodeler, there are very little data directly comparing the biochemical activities of remodelers from different classes. We have purified two ATP-hydrolyzing proteins, SNF2H and BRG1, which are members of complexes from two different classes of remodelers. Consistent with previous reports, these two homogeneous proteins can perform remodeling functions. We show significant functional differences between SNF2H and BRG1 in vitro; although both SNF2H and BRG1 hydrolyze ATP and remodel linear arrays of nucleosomes, only BRG1 can remodel mononucleosomes. Also, only BRG1 can alter the topology of nucleosomal plasmids. We propose that these functional differences reflect significant mechanistic differences between the two remodeler classes that will impact their biological roles.
Collapse
Affiliation(s)
- J D Aalfs
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
244
|
Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Längst G, Grummt I. NoRC--a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 2001; 20:4892-900. [PMID: 11532953 PMCID: PMC125270 DOI: 10.1093/emboj/20.17.4892] [Citation(s) in RCA: 237] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcription by RNA polymerase I on nucleosomal templates requires binding of the transcription termination factor TTF-I to a cognate site 160 bp upstream of the transcription start site. Binding of TTF-I is accompanied by changes in the chromatin architecture which suggests that TTF-I recruits a remodeling activity to the rDNA promoter. We have cloned a cDNA that encodes TIP5 (TTF-I-interacting protein 5), a 205 kDa protein that shares a number of important protein domains with WSTF (Williams syndrome transcription factor) and hAcf1/WCRF180, the largest subunits of human chromatin remodeling complexes hCHRAC and WCRF. TIP5 co-localizes with the basal RNA polymerase I transcription factor UBF in the nucleolus and is associated with SNF2h. The cellular TIP5-SNF2h complex, termed NoRC (nucleolar remodeling complex), induces nucleosome sliding in an ATP- and histone H4 tail-dependent fashion. The results suggest that NoRC is a novel nucleolar chromatin remodeling machine that may serve a role in the regulation of the rDNA locus.
Collapse
Affiliation(s)
- Ralf Strohner
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg and
Adolf-Butenandt-Institut, Schillerstraße 44, D-80336 München, Germany Present address: Academy of Sciences of the Czech Republic, Institute of Molecular Genetics, Videnska 1083, 142 20 Praha 4, Czech Republic Corresponding author e-mail:
Ralf Strohner and Attila Nemeth contributed equally to this work
| | | | - Petr Jansa
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg and
Adolf-Butenandt-Institut, Schillerstraße 44, D-80336 München, Germany Present address: Academy of Sciences of the Czech Republic, Institute of Molecular Genetics, Videnska 1083, 142 20 Praha 4, Czech Republic Corresponding author e-mail:
Ralf Strohner and Attila Nemeth contributed equally to this work
| | | | | | - Gernot Längst
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg and
Adolf-Butenandt-Institut, Schillerstraße 44, D-80336 München, Germany Present address: Academy of Sciences of the Czech Republic, Institute of Molecular Genetics, Videnska 1083, 142 20 Praha 4, Czech Republic Corresponding author e-mail:
Ralf Strohner and Attila Nemeth contributed equally to this work
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, Deutsches Krebsforschungszentrum, D-69120 Heidelberg and
Adolf-Butenandt-Institut, Schillerstraße 44, D-80336 München, Germany Present address: Academy of Sciences of the Czech Republic, Institute of Molecular Genetics, Videnska 1083, 142 20 Praha 4, Czech Republic Corresponding author e-mail:
Ralf Strohner and Attila Nemeth contributed equally to this work
| |
Collapse
|
245
|
Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C. Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 2001; 8:531-43. [PMID: 11583616 DOI: 10.1016/s1097-2765(01)00345-8] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NURF is an ISWI complex of four proteins that uses the energy of ATP hydrolysis to catalyze nucleosome sliding. Three NURF components have been identified previously. We have cloned cDNA encoding the largest NURF subunit, revealing a 301 kDa polypeptide (NURF301) that shares structural motifs with ACF1. We have reconstituted full and partial NURF complexes from recombinant proteins and show that NURF301 and the ISWI ATPase are necessary and sufficient for accurate and efficient nucleosome sliding. An HMGA/HMGI(Y)-like domain of NURF301 that facilitates nucleosome sliding indicates the importance of DNA conformational changes in the sliding mechanism. NURF301 also shows interactions with sequence-specific transcription factors, providing a basis for targeted recruitment of the NURF complex to specific genes.
Collapse
Affiliation(s)
- H Xiao
- Laboratory of Molecular Cell Biology, National Cancer Institute, Building 37, Room 6068, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
246
|
Okuwaki M, Iwamatsu A, Tsujimoto M, Nagata K. Identification of nucleophosmin/B23, an acidic nucleolar protein, as a stimulatory factor for in vitro replication of adenovirus DNA complexed with viral basic core proteins. J Mol Biol 2001; 311:41-55. [PMID: 11469856 DOI: 10.1006/jmbi.2001.4812] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The processes governing chromatin remodeling and assembly, which occur prior to and/or after transcription and replication, are not completely understood. To understand the mechanisms of transcription and replication from chromatin templates, we have established in vitro replication and transcription systems using adenovirus (Ad) DNA complexed with viral basic core proteins, called Ad core, as a template. Using this system, we have previously identified, from HeLa cells, template activating factor-I as a stimulatory factor for the Ad core DNA replication. Here, using this system as a tool, we identified and purified a novel template activating factor activity that consists of two acidic polypeptides whose apparent molecular masses are 38 kDa and 37 kDa. These two polypeptides correspond to two splicing variants of nucleolar phosphoprotein, nucleophosmin/B23. Recombinant B23 proteins stimulate the Ad core DNA replication, and the acidic regions of B23 proteins are important for its activity. In addition, B23 proteins directly bind to core histones and transfer them to naked DNA. Furthermore, chromatin components such as histones and topoisomerase II are co-immunoprecipitated with B23 from cell extracts. These observations lead to a hypothesis that nucleophosmin/B23 is involved in structural changes of chromatin, thereby regulating transcription and replication within the ribosomal DNA region or maintaining the nucleolar structure.
Collapse
Affiliation(s)
- M Okuwaki
- Department of Infection Biology, Institute of Basic Medical Sciences, University of Tsukuba, 1-1-1 Tennohdai, Tsukuba, 305-8575, Japan
| | | | | | | |
Collapse
|
247
|
Nakagawa T, Bulger M, Muramatsu M, Ito T. Multistep chromatin assembly on supercoiled plasmid DNA by nucleosome assembly protein-1 and ATP-utilizing chromatin assembly and remodeling factor. J Biol Chem 2001; 276:27384-91. [PMID: 11333264 DOI: 10.1074/jbc.m101331200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We examine in vitro nucleosome assembly by nucleosome assembly protein-1 (NAP-1) and ATP-utilizing chromatin assembly and remodeling factor (ACF). In contrast to previous studies that used relaxed, circular plasmids as templates, we have found that negatively supercoiled templates reveal the distinct roles of NAP-1 and ACF in histone deposition and the formation of an ordered nucleosomal array. NAP-1 can efficiently deposit histones onto supercoiled plasmids. Furthermore, NAP-1 exhibits a greater affinity for histones H2A-H2B than does naked DNA, but in the presence of H3-H4, H2A-H2B are transferred from NAP-1 to the plasmid templates. These observations underscore the importance of a high affinity between H2A-H2B and NAP-1 for ordered transfer of core histones onto DNA. In addition, recombinant ACF composed of imitation switch and Acf1 can extend closely packed nucleosomes, which suggests that recombinant ACF can mobilize nucleosomes. In the assembly reaction with a supercoiled template, ACF need not be added simultaneously with NAP-1. Regularly spaced nucleosomes are generated even when recombinant ACF is added after core histones are transferred completely onto the DNA. Atomic force microscopy, however, suggests that NAP-1 alone fails to accomplish the formation of fine nucleosomal core particles, which are only formed in the presence of ACF. These results suggest a model for the ordered deposition of histones and the arrangement of nucleosomes during chromatin assembly in vivo.
Collapse
Affiliation(s)
- T Nakagawa
- Division of Gene Structure and Function, Saitama Medical School Research Center for Genomic Medicine, Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495, Japan
| | | | | | | |
Collapse
|
248
|
Eberharter A, Ferrari S, Längst G, Straub T, Imhof A, Varga-Weisz P, Wilm M, Becker PB. Acf1, the largest subunit of CHRAC, regulates ISWI-induced nucleosome remodelling. EMBO J 2001; 20:3781-8. [PMID: 11447119 PMCID: PMC125259 DOI: 10.1093/emboj/20.14.3781] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The chromatin accessibility complex (CHRAC) was originally defined biochemically as an ATP-dependent 'nucleosome remodelling' activity. Central to its activity is the ATPase ISWI, which catalyses the transfer of histone octamers between DNA segments in cis. In addition to ISWI, four other potential subunits were observed consistently in active CHRAC fractions. We have now identified the p175 subunit of CHRAC as Acf1, a protein known to associate with ISWI in the ACF complex. Interaction of Acf1 with ISWI enhances the efficiency of nucleosome sliding by an order of magnitude. Remarkably, it also modulates the nucleosome remodelling activity of ISWI qualitatively by altering the directionality of nucleosome movements and the histone 'tail' requirements of the reaction. The Acf1-ISWI heteromer tightly interacts with the two recently identified small histone fold proteins CHRAC-14 and CHRAC-16. Whether topoisomerase II is an integral subunit has been controversial. Refined analyses now suggest that topoisomerase II should not be considered a stable subunit of CHRAC. Accordingly, CHRAC can be molecularly defined as a complex consisting of ISWI, Acf1, CHRAC-14 and CHRAC-16.
Collapse
Affiliation(s)
| | - Simona Ferrari
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | | | | | | | - Patrick Varga-Weisz
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | - Matthias Wilm
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| | - Peter B. Becker
- Adolf-Butenandt-Institut, Molekularbiologie, Schillerstrasse 44, D-80336 München,
EMBL, Meyerhofstrasse 1, D-69117 Heidelberg, Germany, Pediatrics Clinic, University of Brescia, Italy and Marie Curie Research Institute, The Chart, Oxted RH8 0TL, UK Corresponding author e-mail:
A.Eberharter and S.Ferrari contributed equally to this work
| |
Collapse
|
249
|
Abstract
Chromatin-remodeling complexes have been a central area of focus for research dealing with accessing cellular DNA sequestered in chromatin. Although the linker histone H1 plays a major role in promoting and maintaining higher-order chromatin structure, it has been noticeably absent from assays utilizing chromatin-remodeling enzymes. This review focuses on two ATP-dependent chromatin-remodeling complexes, Drosophila ISWI and mammalian SWI/SNF, that have been assayed using chromatin templates containing histone H1.Key words: SWI/SNF, ISWI, chromatin remodeling, histone H1.
Collapse
|
250
|
Abstract
Mammalian cells contain several chromatin-remodeling complexes associated with the Brm and Brg1 helicase-like proteins. These complexes likely represent the functional homologs of the SWI/SNF and RSC complexes found in Saccharomyces cerevisiae. The mammalian chromatin-remodeling complexes are involved in both activation and repression of a variety of genes. Several lines of evidence also indicate that they play a specific role in the regulation of cell growth. Brm is down-regulated by ras signaling and its forced re-expression suppresses transformation by this oncogene. Besides, the Brg1 gene is silenced or mutated in several tumors cell lines and a Brg1-associated complex was recently found to co-purify with BRCA1, involved in breast and ovarian cancers. Finally, the gene encoding SNF5/Ini1, a subunit common to all mammalian SWI/SNF complexes, is inactivated in rhabdoid sarcomas, a very aggressive form of pediatric cancer. The current review will address observations made upon inactivation of Brm, Brg1 and SNF5/Ini1 by homologous recombination in the mouse, as well as the possible implication of these factors in the regulation of the Retinoblastoma pRb-mediated repression of the transcription factor E2F.
Collapse
Affiliation(s)
- C Muchardt
- Unité des Virus Oncogènes, URA1644 du CNRS, Département des Biotechnologies, Institut Pasteur, Paris, France
| | | |
Collapse
|