201
|
Pecoraro-Bisogni F, Lignani G, Contestabile A, Castroflorio E, Pozzi D, Rocchi A, Prestigio C, Orlando M, Valente P, Massacesi M, Benfenati F, Baldelli P. REST-Dependent Presynaptic Homeostasis Induced by Chronic Neuronal Hyperactivity. Mol Neurobiol 2017; 55:4959-4972. [PMID: 28786015 DOI: 10.1007/s12035-017-0698-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 07/26/2017] [Indexed: 10/19/2022]
Abstract
Homeostatic plasticity is a regulatory feedback response in which either synaptic strength or intrinsic excitability can be adjusted up or down to offset sustained changes in neuronal activity. Although a growing number of evidences constantly provide new insights into these two apparently distinct homeostatic processes, a unified molecular model remains unknown. We recently demonstrated that REST is a transcriptional repressor critical for the downscaling of intrinsic excitability in cultured hippocampal neurons subjected to prolonged elevation of electrical activity. Here, we report that, in the same experimental system, REST also participates in synaptic homeostasis by reducing the strength of excitatory synapses by specifically acting at the presynaptic level. Indeed, chronic hyperactivity triggers a REST-dependent decrease of the size of synaptic vesicle pools through the transcriptional and translational repression of specific presynaptic REST target genes. Together with our previous report, the data identify REST as a fundamental molecular player for neuronal homeostasis able to downscale simultaneously both intrinsic excitability and presynaptic efficiency in response to elevated neuronal activity. This experimental evidence adds new insights to the complex activity-dependent transcriptional regulation of the homeostatic plasticity processes mediated by REST.
Collapse
Affiliation(s)
- F Pecoraro-Bisogni
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Gabriele Lignani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy. .,Institute of Neurology, University College of London, WC1N 3BG, London, UK.
| | - A Contestabile
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - E Castroflorio
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - D Pozzi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Pharmacology and Brain Pathology Lab, Humanitas Clinical and Research Center, Humanitas University, Via Manzoni 56, Rozzano, Milan, Italy
| | - A Rocchi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - C Prestigio
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - M Orlando
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Neurocure NWFZ, Charite Universitaetsmedizin Berlin, Chariteplatz 1, 10117, Berlin, Germany
| | - P Valente
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy
| | - M Massacesi
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.,Laboratory of Neurosciences and Neurogenetics, Department of Head and Neck Diseases, "G. Gaslini" Institute, Via Gerolamo Gaslini 5, 16147, Genoa, Italy
| | - F Benfenati
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, Section of Physiology, University of Genova, Viale Benedetto XV 3, 16132, Genoa, Italy. .,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy.
| |
Collapse
|
202
|
Vermunt MW, Creyghton MP. Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration. Curr Neurol Neurosci Rep 2017; 16:94. [PMID: 27628759 PMCID: PMC5023742 DOI: 10.1007/s11910-016-0689-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Driven by the development of numerous techniques, many of these elements are now identified in multiple tissues and cell types, and their characteristics as well as importance in development and disease are becoming increasingly clear. Here, we provide an overview of the insights that were gained from the analysis of noncoding gene regulatory elements in the brain and describe their potential contribution to cell type specialization, brain function and neurodegenerative disease.
Collapse
Affiliation(s)
- Marit W Vermunt
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Menno P Creyghton
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| |
Collapse
|
203
|
Kamarulzaman NS, Dewadas HD, Leow CY, Yaacob NS, Mokhtar NF. The role of REST and HDAC2 in epigenetic dysregulation of Nav1.5 and nNav1.5 expression in breast cancer. Cancer Cell Int 2017; 17:74. [PMID: 28785170 PMCID: PMC5540501 DOI: 10.1186/s12935-017-0442-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/14/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased expression of voltage-gated sodium channels (VGSCs) have been implicated with strong metastatic potential of human breast cancer in vitro and in vivo where the main culprits are cardiac isoform Nav1.5 and its 'neonatal' splice variant, nNav1.5. Several factors have been associated with Nav1.5 and nNav1.5 gain of expression in breast cancer mainly hormones, and growth factors. AIM This study aimed to investigate the role of epigenetics via transcription repressor, repressor element silencing transcription factor (REST) and histone deacetylases (HDACs) in enhancing Nav1.5 and nNav1.5 expression in human breast cancer by assessing the effect of HDAC inhibitor, trichostatin A (TSA). METHODS The less aggressive human breast cancer cell line, MCF-7 cells which lack Nav1.5 and nNav1.5 expression was treated with TSA at a concentration range 10-10,000 ng/ml for 24 h whilst the aggressive MDA-MB-231 cells was used as control. The effect of TSA on Nav1.5, nNav1.5, REST, HDAC1, HDAC2, HDAC3, MMP2 and N-cadherin gene expression level was analysed by real-time PCR. Cell growth (MTT assay) and metastatic behaviors (lateral motility and migration assays) were also measured. RESULTS mRNA expression level of Nav1.5 and nNav1.5 were initially very low in MCF-7 compared to MDA-MB-231 cells. Inversely, mRNA expression level of REST, HDAC1, HDAC2, and HDAC3 were all greater in MCF-7 compared to MDA-MB-231 cells. Treatment with TSA significantly increased the mRNA expression level of Nav1.5 and nNav1.5 in MCF-7 cells. On the contrary, TSA significantly reduced the mRNA expression level of REST and HDAC2 in this cell line. Remarkably, despite cell growth inhibition by TSA, motility and migration of MCF-7 cells were enhanced after TSA treatment, confirmed with the up-regulation of metastatic markers, MMP2 and N-cadherin. CONCLUSIONS This study identified epigenetics as another factor that regulate the expression level of Nav1.5 and nNav1.5 in breast cancer where REST and HDAC2 play important role as epigenetic regulators that when lacking enhances the expression of Nav1.5 and nNav1.5 thus promotes motility and migration of breast cancer. Elucidation of the regulatory mechanisms for gain of Nav1.5 and nNav1.5 expression may be helpful for seeking effective strategies for the management of metastatic diseases.
Collapse
Affiliation(s)
- Nur Sabrina Kamarulzaman
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Hemaniswarri Dewi Dewadas
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Chiuan Yee Leow
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| | - Noor Fatmawati Mokhtar
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan Malaysia
| |
Collapse
|
204
|
Li C, Wang Z, Tang X, Zeng L, Fan X, Li Z. Molecular mechanisms and potential prognostic effects of REST and REST4 in glioma (Review). Mol Med Rep 2017; 16:3707-3712. [PMID: 29067465 DOI: 10.3892/mmr.2017.7071] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/24/2017] [Indexed: 11/06/2022] Open
Abstract
Glioma refers to a tumor of the brain and central nervous system, which is characterized by high incidence, high mortality and high recurrence rate. Although the association between glioma and the repressor element silencing transcription factor (REST) has been reported by numerous studies, the complicated regulatory mechanisms underlying REST remain unknown. REST is a transcriptional repressor that undergoes alternative splicing to produce splicing variants when transcribed. Previous studies have demonstrated that alternative splicing may serve a role in the outcome of glioma. The present review discussed the mutual relationship among REST, REST4 and glioma. It was concluded that increased REST expression in glioma may be associated with poor prognosis; and REST4, an AS variant of REST, also functions to regulate glioma by suppressing REST. In addition, the present review discussed the regulation of REST and its target genes in glioma, and identified factors that induce REST alternative splicing, particularly in glioma. These findings suggest that REST may be considered a prognostic factor, which can be predictive of patient outcome.
Collapse
Affiliation(s)
- Cuilin Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Zhifei Wang
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Xinyue Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Liu Zeng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Xitang Fan
- Department of Neurosurgery, Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, P.R. China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| |
Collapse
|
205
|
Bayram Y, White JJ, Elcioglu N, Cho MT, Zadeh N, Gedikbasi A, Palanduz S, Ozturk S, Cefle K, Kasapcopur O, Coban Akdemir Z, Pehlivan D, Begtrup A, Carvalho CM, Paine IS, Mentes A, Bektas-Kayhan K, Karaca E, Jhangiani SN, Muzny DM, Gibbs RA, Lupski JR, Lupski JR. REST Final-Exon-Truncating Mutations Cause Hereditary Gingival Fibromatosis. Am J Hum Genet 2017; 101:149-156. [PMID: 28686854 DOI: 10.1016/j.ajhg.2017.06.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/13/2017] [Indexed: 02/04/2023] Open
Abstract
Hereditary gingival fibromatosis (HGF) is the most common genetic form of gingival fibromatosis that develops as a slowly progressive, benign, localized or generalized enlargement of keratinized gingiva. HGF is a genetically heterogeneous disorder and can be transmitted either as an autosomal-dominant or autosomal-recessive trait or appear sporadically. To date, four loci (2p22.1, 2p23.3-p22.3, 5q13-q22, and 11p15) have been mapped to autosomes and one gene (SOS1) has been associated with the HGF trait observed to segregate in a dominant inheritance pattern. Here we report 11 individuals with HGF from three unrelated families. Whole-exome sequencing (WES) revealed three different truncating mutations including two frameshifts and one nonsense variant in RE1-silencing transcription factor (REST) in the probands from all families and further genetic and genomic analyses confirmed the WES-identified findings. REST is a transcriptional repressor that is expressed throughout the body; it has different roles in different cellular contexts, such as oncogenic and tumor-suppressor functions and hematopoietic and cardiac differentiation. Here we show the consequences of germline final-exon-truncating mutations in REST for organismal development and the association with the HGF phenotype.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
206
|
Nawa Y, Kaneko H, Oda M, Tsubonoya M, Hiroi T, Gentile MT, Colucci-D'Amato L, Takahashi R, Matsui H. Functional characterization of the neuron-restrictive silencer element in the human tryptophan hydroxylase 2 gene expression. J Neurochem 2017; 142:827-840. [PMID: 28464229 DOI: 10.1111/jnc.14060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/24/2022]
Abstract
Tryptophan hydroxylase 2 (TPH2) is the key enzyme in the synthesis of neuronal serotonin. Although previous studies suggest that TPH2 neuron-restrictive silencer element (NRSE) functions as a negative regulator dependent on neuron-restrictive silencer factor (NRSF) activity, the underlying mechanisms are yet to be fully elucidated. Here, we show a detailed analysis of the NRSE-mediated repression of the human TPH2 (hTPH2) promoter activity in RN46A cells, a cell line derived from rat raphe neurons. Quantitative real-time RT-PCR analysis revealed the expression of serotonergic marker genes (Mash1, Nkx2.2, Gata2, Gata3, Lmx1b, Pet-1, 5-Htt, and Vmat2) and Nrsf gene in RN46A cells. Tph1 mRNA is the prevalent form expressed in RN46A cells; Tph2 mRNA is also expressed but at a lower level. Electrophoretic mobility shift assays and reporter assays showed that hTPH2 NRSE is necessary for the efficient DNA binding of NRSF and for the NRSF-dependent repression of the hTPH2 promoter activity. The hTPH2 promoter activity was increased by knockdown of NRSF, or over-expression of the engineered NRSF (a dominant-negative mutant or a DNA-binding domain and activation domain fusion protein). MS-275, a class I histone deacetylase (HDAC) inhibitor, was found to be more potent than MC-1568, a class II HDAC inhibitor, in enhancing the hTPH2 promoter activity. Furthermore, treatment with the ubiquitin-specific protease 7 deubiquitinase inhibitors, P-22077 or HBX 41108, increased the hTPH2 promoter activity. Collectively, our data demonstrate that the hTPH2 NRSE-mediated promoter repression via NRSF involves class I HDACs and is modulated by the ubiquitin-specific protease 7-mediated deubiquitination and stabilization of NRSF.
Collapse
Affiliation(s)
- Yukino Nawa
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Hanae Kaneko
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Masayuki Oda
- Department of Pharmacogenomics, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Masaaki Tsubonoya
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Tomoko Hiroi
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| | - Maria Teresa Gentile
- Laboratory of Molecular and Cellular Pathology, Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Luca Colucci-D'Amato
- Laboratory of Molecular and Cellular Pathology, Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Caserta, Italy
| | - Ryoya Takahashi
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Toho University, Funabashi, Japan
| | - Hiroaki Matsui
- Institute of Radioisotope Research, St. Marianna University Graduate School of Medicine, Kawasaki, Japan.,Department of Molecular and Behavioral Neuroscience, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
| |
Collapse
|
207
|
Ascensión AM, Arrospide-Elgarresta M, Izeta A, Araúzo-Bravo MJ. NaviSE: superenhancer navigator integrating epigenomics signal algebra. BMC Bioinformatics 2017; 18:296. [PMID: 28587674 PMCID: PMC5461685 DOI: 10.1186/s12859-017-1698-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/18/2017] [Indexed: 01/23/2023] Open
Abstract
Background Superenhancers are crucial structural genomic elements determining cell fate, and they are also involved in the determination of several diseases, such as cancer or neurodegeneration. Although there are pipelines which use independent pieces of software to predict the presence of superenhancers from genome-wide chromatin marks or DNA-interaction protein binding sites, there is not yet an integrated software tool that processes automatically algebra combinations of raw data sequencing into a comprehensive final annotated report of predicted superenhancers. Results We have developed NaviSE, a user-friendly streamlined tool which performs a fully-automated parallel processing of genome-wide epigenomics data from sequencing files into a final report, built with a comprehensive set of annotated files that are navigated through a graphic user interface dynamically generated by NaviSE. NaviSE also implements an ‘epigenomics signal algebra’ that allows the combination of multiple activation and repression epigenomics signals. NaviSE provides an interactive chromosomal landscaping of the locations of superenhancers, which can be navigated to obtain annotated information about superenhancer signal profile, associated genes, gene ontology enrichment analysis, motifs of transcription factor binding sites enriched in superenhancers, graphs of the metrics evaluating the superenhancers quality, protein-protein interaction networks and enriched metabolic pathways among other features. We have parallelised the most time-consuming tasks achieving a reduction up to 30% for a 15 CPUs machine. We have optimized the default parameters of NaviSE to facilitate its use. NaviSE allows different entry levels of data processing, from sra-fastq files to bed files; and unifies the processing of multiple replicates. NaviSE outperforms the more time-consuming processes required in a non-integrated pipeline. Alongside its high performance, NaviSE is able to provide biological insights, predicting cell type specific markers, such as SOX2 and ZIC3 in embryonic stem cells, CDK5R1 and REST in neurons and CD86 and TLR2 in monocytes. Conclusions NaviSE is a user-friendly streamlined solution for superenhancer analysis, annotation and navigation, requiring only basic computer and next generation sequencing knowledge. NaviSE binaries and documentation are available at: https://sourceforge.net/projects/navise-superenhancer/. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1698-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alex M Ascensión
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.,Tissue Engineering Laboratory, Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.,Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, 48940, Spain
| | - Mikel Arrospide-Elgarresta
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain
| | - Ander Izeta
- Tissue Engineering Laboratory, Bioengineering Area, Biodonostia Health Research Institute, San Sebastián, 20014, Spain.
| | - Marcos J Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, 20014, Spain. .,IKERBASQUE, Basque Foundation for Science, Bilbao, 48013, Spain.
| |
Collapse
|
208
|
Lim JS, Ibaseta A, Fischer MM, Cancilla B, O'Young G, Cristea S, Luca VC, Yang D, Jahchan NS, Hamard C, Antoine M, Wislez M, Kong C, Cain J, Liu YW, Kapoun AM, Garcia KC, Hoey T, Murriel CL, Sage J. Intratumoural heterogeneity generated by Notch signalling promotes small-cell lung cancer. Nature 2017; 545:360-364. [PMID: 28489825 PMCID: PMC5776014 DOI: 10.1038/nature22323] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/30/2017] [Indexed: 12/14/2022]
Abstract
The Notch signaling pathway mediates cell fate decisions1,2 and is tumor suppressive or oncogenic depending on the context2,3. During lung development, Notch pathway activation inhibits the differentiation of precursor cells to a neuroendocrine (NE) fate4–6. In small cell lung cancer (SCLC), an aggressive NE lung cancer7, loss-of-function NOTCH mutations and the inhibitory effects of ectopic Notch activation indicate that Notch signaling is tumor suppressive8,9. Here, we show that Notch signaling can be both tumor suppressive and pro-tumorigenic in SCLC. Endogenous activation of the Notch pathway results in a NE to non-NE fate switch in 10-50% of tumor cells in a mouse model of SCLC and in human tumors. This switch is mediated in part by Rest/Nrsf, a transcriptional repressor that inhibits NE gene expression. Non-NE Notch-active SCLC cells are slow growing, consistent with a tumor suppressive role for Notch, but these cells are also relatively chemoresistant and provide trophic support to NE tumor cells, consistent with a pro-tumorigenic role. Importantly, Notch blockade in combination with chemotherapy suppresses tumor growth and delays relapse. Thus, SCLC tumors generate their own microenvironment via activation of Notch signaling in a subset of tumor cells, and the presence of these cells may serve as a biomarker for the use of Notch pathway inhibitors in combination with chemotherapy in select SCLC patients.
Collapse
Affiliation(s)
- Jing Shan Lim
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Alvaro Ibaseta
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Marcus M Fischer
- OncoMed Pharmaceuticals, Inc., Redwood City, California 94063, USA
| | - Belinda Cancilla
- OncoMed Pharmaceuticals, Inc., Redwood City, California 94063, USA
| | - Gilbert O'Young
- OncoMed Pharmaceuticals, Inc., Redwood City, California 94063, USA
| | - Sandra Cristea
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Vincent C Luca
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Dian Yang
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Nadine S Jahchan
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Cécile Hamard
- Sorbonne Universités, UPMC Univ Paris 06, GRC n°04, Theranoscan, F-75252, Paris, France.,AP-HP, Hôpital Tenon, Service de Pneumologie, F-75970, Paris, France
| | - Martine Antoine
- Sorbonne Universités, UPMC Univ Paris 06, GRC n°04, Theranoscan, F-75252, Paris, France.,AP-HP, Hôpital Tenon, Service de Pneumologie, F-75970, Paris, France
| | - Marie Wislez
- Sorbonne Universités, UPMC Univ Paris 06, GRC n°04, Theranoscan, F-75252, Paris, France.,AP-HP, Hôpital Tenon, Service de Pneumologie, F-75970, Paris, France
| | - Christina Kong
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jennifer Cain
- OncoMed Pharmaceuticals, Inc., Redwood City, California 94063, USA
| | - Yu-Wang Liu
- OncoMed Pharmaceuticals, Inc., Redwood City, California 94063, USA
| | - Ann M Kapoun
- OncoMed Pharmaceuticals, Inc., Redwood City, California 94063, USA
| | - K Christopher Garcia
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Structural Biology, Stanford University School of Medicine, Stanford, California 94305, USA.,Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Timothy Hoey
- OncoMed Pharmaceuticals, Inc., Redwood City, California 94063, USA
| | | | - Julien Sage
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California 94305, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
209
|
Dobson THW, Hatcher RJ, Swaminathan J, Das CM, Shaik S, Tao RH, Milite C, Castellano S, Taylor PH, Sbardella G, Gopalakrishnan V. Regulation of USP37 Expression by REST-Associated G9a-Dependent Histone Methylation. Mol Cancer Res 2017; 15:1073-1084. [PMID: 28483947 DOI: 10.1158/1541-7786.mcr-16-0424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/16/2017] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
The deubiquitylase (DUB) USP37 is a component of the ubiquitin system and controls cell proliferation by regulating the stability of the cyclin-dependent kinase inhibitor 1B, (CDKN1B/p27Kip1). The expression of USP37 is downregulated in human medulloblastoma tumor specimens. In the current study, we show that USP37 prevents medulloblastoma growth in mouse orthotopic models, suggesting that it has tumor-suppressive properties in this neural cancer. Here, we also report on the mechanism underlying USP37 loss in medulloblastoma. Previously, we observed that the expression of USP37 is transcriptionally repressed by the RE1 silencing transcription factor (REST), which requires chromatin remodeling factors for its activity. Genetic and pharmacologic approaches were employed to identify a specific role for G9a, a histone methyltransferase (HMT), in promoting methylation of histone H3 lysine-9 (H3K9) mono- and dimethylation, and surprisingly trimethylation, at the USP37 promoter to repress its gene expression. G9a inhibition also blocked the tumorigenic potential of medulloblastoma cells in vivo Using isogenic low- and high-REST medulloblastoma cells, we further showed a REST-dependent elevation in G9a activity, which further increased mono- and trimethylation of histone H3K9, accompanied by downregulation of USP37 expression. Together, these findings reveal a role for REST-associated G9a and histone H3K9 methylation in the repression of USP37 expression in medulloblastoma.Implications: Reactivation of USP37 by G9a inhibition has the potential for therapeutic applications in REST-expressing medulloblastomas. Mol Cancer Res; 15(8); 1073-84. ©2017 AACR.
Collapse
Affiliation(s)
- Tara H W Dobson
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rashieda J Hatcher
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | | | - Chandra M Das
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Shavali Shaik
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Rong-Hua Tao
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Ciro Milite
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Sabrina Castellano
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Pete H Taylor
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Gianluca Sbardella
- Epigenetic Medicinal Chemistry Lab, Dipartimento di Farmacia, Università degli Studi di Salerno, Fisciano (SA), Italy
| | - Vidya Gopalakrishnan
- Department of Pediatrics, University of Texas, MD Anderson Cancer Center, Houston, Texas. .,Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Center for Cancer Epigenetics, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Brain Tumor Center, University of Texas, MD Anderson Cancer Center, Houston, Texas.,Program in Neuroscience, The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
210
|
Abstract
Alternative splicing (AS) greatly expands the coding capacities of genomes by allowing the generation of multiple mature mRNAs from a limited number of genes. Although the massive switch in AS profiles that often accompanies variations in gene expression patterns occurring during cell differentiation has been characterized for a variety of models, their causes and mechanisms remain largely unknown. Here, we integrate foundational and recent studies indicating the AS switches that govern the processes of cell fate determination. We include some distinct AS events in pluripotent cells and somatic reprogramming and discuss new progresses on alternative isoform expression in adipogenesis, myogenic differentiation and stimulation of immune cells. Finally, we cover novel insights on AS mechanisms during neuronal differentiation, paying special attention to the role of chromatin structure.
Collapse
Affiliation(s)
- Ana Fiszbein
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alberto R Kornblihtt
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
211
|
Neuron-restrictive silencer factor-mediated downregulation of μ-opioid receptor contributes to the reduced morphine analgesia in bone cancer pain. Pain 2017; 158:879-890. [PMID: 28415063 PMCID: PMC5402709 DOI: 10.1097/j.pain.0000000000000848] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Neuron-restrictive silencer factor–induced downregulation of μ-opioid receptor is involved in the reduction of morphine analgesia in sarcoma-induced bone cancer pain. Bone cancer pain has been reported to have unique mechanisms and is resistant to morphine treatment. Recent studies have indicated that neuron-restrictive silencer factor (NRSF) plays a crucial role in modulating the expression of the μ-opioid receptor (MOR) gene. The present study elucidates the regulatory mechanisms of MOR and its ability to affect bone cancer pain. Using a sarcoma-inoculated murine model, pain behaviors that represent continuous or breakthrough pain were evaluated. Expression of NRSF in the dorsal root ganglion (DRG) and spinal dorsal horn was quantified at the transcriptional and translational levels, respectively. Additionally, chromatin immunoprecipitation assays were used to detect NRSF binding to the promoter of MOR. Furthermore, NRSF was genetically knocked out by antisense oligodeoxynucleotide, and the expression of MOR and the effect of morphine were subsequently analyzed. Our results indicated that in a sarcoma murine model, NRSF expression is upregulated in dorsal root ganglion neurons, and the expression of NRSF mRNA is significantly negatively correlated with MOR mRNA expression. Additionally, chromatin immunoprecipitation analysis revealed that NRSF binding to the neuron-restrictive silencer element within the promoter area of the MOR gene is promoted with a hypoacetylation state of histone H3 and H4. Furthermore, genetically knocking down NRSF with antisense oligodeoxynucleotide rescued the expression of MOR and potentiated the systemic morphine analgesia. The present results suggest that in sarcoma-induced bone cancer pain, NRSF-induced downregulation of MOR is involved in the reduction of morphine analgesia. Epigenetically, up-regulation of MOR could substantially improve the effect of system delivery of morphine.
Collapse
|
212
|
Regulation of REST levels overcomes dysregulation of neural stem cell differentiation caused by disruption of polyubiquitin gene Ubb. Biochem Biophys Res Commun 2017; 486:171-177. [PMID: 28285139 DOI: 10.1016/j.bbrc.2017.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 03/07/2017] [Indexed: 11/23/2022]
Abstract
Reduced levels of cellular ubiquitin (Ub) caused by disruption of the polyubiquitin gene Ubb lead to dysregulated differentiation of neural stem/progenitor cells (NSCs) and apoptosis in cells cultured in vitro. However, the underlying mechanisms responsible for these phenotypes in Ub-deficient cells have not been studied extensively. In the present study, we found that levels of repressor element-1 silencing transcription factor (REST) are elevated in Ubb-/- cells. To determine whether dysregulation of NSC differentiation is caused by the increased REST levels, we investigated the effect of reduced REST levels in Ubb-/- cells. Rest knockdown was found to increase the expression of the neuronal marker βIII-tubulin (TUJ1) and restore the expression pattern of the early neuronal marker α-internexin (α-INX) in Ubb-/- cells. Furthermore, Rest knockdown reduced Ub deficiency-induced apoptosis in cells cultured in vitro. Therefore, our study validates that cellular Ub levels are crucial for precise control of the levels of regulatory proteins such as REST during neurogenesis. We propose that regulation of Rest levels is a promising approach to overcome dysregulation of NSC differentiation caused by disruption of the polyubiquitin gene Ubb.
Collapse
|
213
|
Novel Regulatory Mechanisms for the SoxC Transcriptional Network Required for Visual Pathway Development. J Neurosci 2017; 37:4967-4981. [PMID: 28411269 DOI: 10.1523/jneurosci.3430-13.2017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 01/01/2023] Open
Abstract
What pathways specify retinal ganglion cell (RGC) fate in the developing retina? Here we report on mechanisms by which a molecular pathway involving Sox4/Sox11 is required for RGC differentiation and for optic nerve formation in mice in vivo, and is sufficient to differentiate human induced pluripotent stem cells into electrophysiologically active RGCs. These data place Sox4 downstream of RE1 silencing transcription factor in regulating RGC fate, and further describe a newly identified, Sox4-regulated site for post-translational modification with small ubiquitin-related modifier (SUMOylation) in Sox11, which suppresses Sox11's nuclear localization and its ability to promote RGC differentiation, providing a mechanism for the SoxC familial compensation observed here and elsewhere in the nervous system. These data define novel regulatory mechanisms for this SoxC molecular network, and suggest pro-RGC molecular approaches for cell replacement-based therapies for glaucoma and other optic neuropathies.SIGNIFICANCE STATEMENT Glaucoma is the most common cause of blindness worldwide and, along with other optic neuropathies, is characterized by loss of retinal ganglion cells (RGCs). Unfortunately, vision and RGC loss are irreversible, and lead to bilateral blindness in ∼14% of all diagnosed patients. Differentiated and transplanted RGC-like cells derived from stem cells have the potential to replace neurons that have already been lost and thereby to restore visual function. These data uncover new mechanisms of retinal progenitor cell (RPC)-to-RGC and human stem cell-to-RGC fate specification, and take a significant step toward understanding neuronal and retinal development and ultimately cell-transplant therapy.
Collapse
|
214
|
Zhang D, Wu B, Wang P, Wang Y, Lu P, Nechiporuk T, Floss T, Greally JM, Zheng D, Zhou B. Non-CpG methylation by DNMT3B facilitates REST binding and gene silencing in developing mouse hearts. Nucleic Acids Res 2017; 45:3102-3115. [PMID: 27956497 PMCID: PMC5389556 DOI: 10.1093/nar/gkw1258] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/25/2016] [Accepted: 12/01/2016] [Indexed: 12/12/2022] Open
Abstract
The dynamic interaction of DNA methylation and transcription factor binding in regulating spatiotemporal gene expression is essential for embryogenesis, but the underlying mechanisms remain understudied. In this study, using mouse models and integration of in vitro and in vivo genetic and epigenetic analyses, we show that the binding of REST (repressor element 1 (RE1) silencing transcription factor; also known as NRSF) to its cognate RE1 sequences is temporally regulated by non-CpG methylation. This process is dependent on DNA methyltransferase 3B (DNMT3B) and leads to suppression of adult cardiac genes in developing hearts. We demonstrate that DNMT3B preferentially mediates non-CpG methylation of REST-targeted genes in the developing heart. Downregulation of DNMT3B results in decreased non-CpG methylation of RE1 sequences, reduced REST occupancy, and consequently release of the transcription suppression during later cardiac development. Together, these findings reveal a critical gene silencing mechanism in developing mammalian hearts that is regulated by the dynamic interaction of DNMT3B-mediated non-CpG methylation and REST binding.
Collapse
Affiliation(s)
- Donghong Zhang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bingruo Wu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ping Wang
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yidong Wang
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pengfei Lu
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Tamilla Nechiporuk
- Vollum Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Thomas Floss
- German Research Center for Environmental Health, Neuherberg, Germany
| | - John M. Greally
- Departments of Genetics, Medicine (Hematology), and Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Deyou Zheng
- Departments of Genetics, Neurology, and Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Bin Zhou
- Departments of Genetics, Pediatrics, and Medicine (Cardiology), Wilf Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
215
|
Sagner A, Briscoe J. Morphogen interpretation: concentration, time, competence, and signaling dynamics. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28319331 PMCID: PMC5516147 DOI: 10.1002/wdev.271] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/22/2017] [Accepted: 02/10/2017] [Indexed: 12/14/2022]
Abstract
Tissue patterning during animal development is orchestrated by a handful of inductive signals. Most of these developmental cues act as morphogens, meaning they are locally produced secreted molecules that act at a distance to govern tissue patterning. The iterative use of the same signaling molecules in different developmental contexts demands that signal interpretation occurs in a highly context‐dependent manner. Hence the interpretation of signal depends on the specific competence of the receiving cells. Moreover, it has become clear that the differential interpretation of morphogens depends not only on the level of signaling but also the signaling dynamics, particularly the duration of signaling. In this review, we outline molecular mechanisms proposed in recent studies that explain how the response to morphogens is determined by differential competence, pathway intrinsic feedback, and the interpretation of signaling dynamics by gene regulatory networks. WIREs Dev Biol 2017, 6:e271. doi: 10.1002/wdev.271 For further resources related to this article, please visit the WIREs website.
Collapse
|
216
|
Inui K, Zhao Z, Yuan J, Jayaprakash S, Le LTM, Drakulic S, Sander B, Golas MM. Stepwise assembly of functional C-terminal REST/NRSF transcriptional repressor complexes as a drug target. Protein Sci 2017; 26:997-1011. [PMID: 28218430 DOI: 10.1002/pro.3142] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/05/2017] [Accepted: 02/10/2017] [Indexed: 01/15/2023]
Abstract
In human cells, thousands of predominantly neuronal genes are regulated by the repressor element 1 (RE1)-silencing transcription factor/neuron-restrictive silencer factor (REST/NRSF). REST/NRSF represses transcription of these genes in stem cells and non-neuronal cells by tethering corepressor complexes. Aberrant REST/NRSF expression and intracellular localization are associated with cancer and neurodegeneration in humans. To date, detailed molecular analyses of REST/NRSF and its C-terminal repressor complex have been hampered largely by the lack of sufficient amounts of purified REST/NRSF and its complexes. Therefore, the aim of this study was to express and purify human REST/NRSF and its C-terminal interactors in a baculovirus multiprotein expression system as individual proteins and coexpressed complexes. All proteins were enriched in the nucleus, and REST/NRSF was isolated as a slower migrating form, characteristic of nuclear REST/NRSF in mammalian cells. Both REST/NRSF alone and its C-terminal repressor complex were functionally active in histone deacetylation and histone demethylation and bound to RE1/neuron-restrictive silencer element (NRSE) sites. Additionally, the mechanisms of inhibition of the small-molecule drugs 4SC-202 and SP2509 were analyzed. These drugs interfered with the viability of medulloblastoma cells, where REST/NRSF has been implicated in cancer pathogenesis. Thus, a resource for molecular REST/NRSF studies and drug development has been established.
Collapse
Affiliation(s)
- Ken Inui
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Zongpei Zhao
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Juan Yuan
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Le T M Le
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Srdja Drakulic
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bjoern Sander
- Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Monika M Golas
- Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark.,Institute of Human Genetics, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
217
|
Martin D, Grapin-Botton A. The Importance of REST for Development and Function of Beta Cells. Front Cell Dev Biol 2017; 5:12. [PMID: 28286748 PMCID: PMC5323410 DOI: 10.3389/fcell.2017.00012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/07/2017] [Indexed: 01/10/2023] Open
Abstract
Beta cells are defined by the genes they express, many of which are specific to this cell type, and ensure a specific set of functions. Beta cells are also defined by a set of genes they should not express (in order to function properly), and these genes have been called forbidden genes. Among these, the transcriptional repressor RE-1 Silencing Transcription factor (REST) is expressed in most cells of the body, excluding most populations of neurons, as well as pancreatic beta and alpha cells. In the cell types where it is expressed, REST represses the expression of hundreds of genes that are crucial for both neuronal and pancreatic endocrine function, through the recruitment of multiple transcriptional and epigenetic co-regulators. REST targets include genes encoding transcription factors, proteins involved in exocytosis, synaptic transmission or ion channeling, and non-coding RNAs. REST is expressed in the progenitors of both neurons and beta cells during development, but it is down-regulated as the cells differentiate. Although REST mutations and deregulation have yet to be connected to diabetes in humans, REST activation during both development and in adult beta cells leads to diabetes in mice.
Collapse
Affiliation(s)
- David Martin
- Service of Cardiology, Centre Hospitalier Universitaire Vaudois (CHUV) Lausanne, Switzerland
| | | |
Collapse
|
218
|
Cavadas MAS, Cheong A, Taylor CT. The regulation of transcriptional repression in hypoxia. Exp Cell Res 2017; 356:173-181. [PMID: 28219680 DOI: 10.1016/j.yexcr.2017.02.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/14/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022]
Abstract
A sufficient supply molecular oxygen is essential for the maintenance of physiologic metabolism and bioenergetic homeostasis for most metazoans. For this reason, mechanisms have evolved for eukaryotic cells to adapt to conditions where oxygen demand exceeds supply (hypoxia). These mechanisms rely on the modification of pre-existing proteins, translational arrest and transcriptional changes. The hypoxia inducible factor (HIF; a master regulator of gene induction in response to hypoxia) is responsible for the majority of induced gene expression in hypoxia. However, much less is known about the mechanism(s) responsible for gene repression, an essential part of the adaptive transcriptional response. Hypoxia-induced gene repression leads to a reduction in energy demanding processes and the redirection of limited energetic resources to essential housekeeping functions. Recent developments have underscored the importance of transcriptional repressors in cellular adaptation to hypoxia. To date, at least ten distinct transcriptional repressors have been reported to demonstrate sensitivity to hypoxia. Central among these is the Repressor Element-1 Silencing Transcription factor (REST), which regulates over 200 genes. In this review, written to honor the memory and outstanding scientific legacy of Lorenz Poellinger, we provide an overview of our existing knowledge with respect to transcriptional repressors and their target genes in hypoxia.
Collapse
Affiliation(s)
- Miguel A S Cavadas
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 2780-156 Oeiras, Portugal
| | - Alex Cheong
- Life and Health Sciences, Aston University, Birmingham B4 7ET, UK
| | - Cormac T Taylor
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland; Conway Institute of Biomolecular and Biomedical Research, School of Medicine and Medical Sciences and Systems Biology Ireland, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
219
|
Khangura RK, Bali A, Jaggi AS, Singh N. Histone acetylation and histone deacetylation in neuropathic pain: An unresolved puzzle? Eur J Pharmacol 2017; 795:36-42. [DOI: 10.1016/j.ejphar.2016.12.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 11/25/2016] [Accepted: 12/01/2016] [Indexed: 12/18/2022]
|
220
|
Connelly KE, Dykhuizen EC. Compositional and functional diversity of canonical PRC1 complexes in mammals. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:233-245. [PMID: 28007606 DOI: 10.1016/j.bbagrm.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/12/2016] [Accepted: 12/15/2016] [Indexed: 12/17/2022]
Abstract
The compositional complexity of Polycomb Repressive Complex 1 (PRC1) increased dramatically during vertebrate evolution. What is considered the "canonical" PRC1 complex consists of four subunits originally identified as regulators of body segmentation in Drosophila. In mammals, each of these four canonical subunits consists of two to six paralogs that associate in a combinatorial manner to produce over a hundred possible distinct PRC1 complexes with unknown function. Genetic studies have begun to define the phenotypic roles for different PRC1 paralogs; however, relating these phenotypes to unique biochemical and transcriptional function for the different paralogs has been challenging. In this review, we attempt to address how the compositional diversity of canonical PRC1 complexes relates to unique roles for individual PRC1 paralogs in transcriptional regulation. This review focuses primarily on PRC1 complex composition, genome targeting, and biochemical function.
Collapse
Affiliation(s)
- Katelyn E Connelly
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA
| | - Emily C Dykhuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, 201 S. University St., West Lafayette, IN 47907, USA; Purdue University Center for Cancer Research, 201 S. University St., West Lafayette, IN 47907, USA.
| |
Collapse
|
221
|
Zhang LQ, Li QZ, Su WX, Jin W. Predicting gene expression level by the transcription factor binding signals in human embryonic stem cells. Biosystems 2016; 150:92-98. [DOI: 10.1016/j.biosystems.2016.08.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/17/2016] [Accepted: 08/18/2016] [Indexed: 11/28/2022]
|
222
|
REST regulation of gene networks in adult neural stem cells. Nat Commun 2016; 7:13360. [PMID: 27819263 PMCID: PMC5103073 DOI: 10.1038/ncomms13360] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/27/2016] [Indexed: 02/06/2023] Open
Abstract
Adult hippocampal neural stem cells generate newborn neurons throughout life due to their ability to self-renew and exist as quiescent neural progenitors (QNPs) before differentiating into transit-amplifying progenitors (TAPs) and newborn neurons. The mechanisms that control adult neural stem cell self-renewal are still largely unknown. Conditional knockout of REST (repressor element 1-silencing transcription factor) results in precocious activation of QNPs and reduced neurogenesis over time. To gain insight into the molecular mechanisms by which REST regulates adult neural stem cells, we perform chromatin immunoprecipitation sequencing and RNA-sequencing to identify direct REST target genes. We find REST regulates both QNPs and TAPs, and importantly, ribosome biogenesis, cell cycle and neuronal genes in the process. Furthermore, overexpression of individual REST target ribosome biogenesis or cell cycle genes is sufficient to induce activation of QNPs. Our data define novel REST targets to maintain the quiescent neural stem cell state. The transcription factor REST plays a crucial role in maintaining the adult neural stem cell pool. To better understand how REST maintains quiescence in neural progenitors, the authors use ChIP-seq and RNA-seq and find that REST regulates represses ribosome biogenesis, cell cycle and neuronal genes.
Collapse
|
223
|
Doan RN, Bae BI, Cubelos B, Chang C, Hossain AA, Al-Saad S, Mukaddes NM, Oner O, Al-Saffar M, Balkhy S, Gascon GG, Nieto M, Walsh CA. Mutations in Human Accelerated Regions Disrupt Cognition and Social Behavior. Cell 2016; 167:341-354.e12. [PMID: 27667684 PMCID: PMC5063026 DOI: 10.1016/j.cell.2016.08.071] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/18/2016] [Accepted: 08/26/2016] [Indexed: 12/15/2022]
Abstract
Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.
Collapse
Affiliation(s)
- Ryan N Doan
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Byoung-Il Bae
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Beatriz Cubelos
- Department of Molecular Biology, Centro de Biología Molecular 'Severo Ochoa', Universidad Autonoma de Madrid, UAM-CSIC, Nicolas Cabrera 1, 28049 Madrid, Spain; Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Cindy Chang
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | - Amer A Hossain
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Nahit M Mukaddes
- Istanbul Institute of Child and Adolescent Psychiatry, 34365 Istanbul, Turkey
| | - Ozgur Oner
- Department of Child and Adolescent Psychiatry, Bahcesehir University School of Medicine, 34353 Istanbul, Turkey
| | - Muna Al-Saffar
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, PO Box 17666, Al-Ain, United Arab Emirates
| | - Soher Balkhy
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Jeddah 21499, Kingdom of Saudi Arabia
| | - Generoso G Gascon
- Department of Neurology (Pediatric Neurology), Massachusetts General Hospital, Boston, MA 02114, USA
| | - Marta Nieto
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Christopher A Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, and Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
224
|
Wang P, Zhao D, Rockowitz S, Zheng D. Divergence and rewiring of regulatory networks for neural development between human and other species. NEUROGENESIS 2016; 3:e1231495. [PMID: 27900343 DOI: 10.1080/23262133.2016.1231495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/11/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
Neural and brain development in human and other mammalian species are largely similar, but distinct features exist at the levels of macrostructure and underlying genetic control. Comparative studies of epigenetic regulation and transcription factor (TF) binding in humans, chimpanzees, rodents, and other species have found large differences in gene regulatory networks. A recent analysis of the cistromes of REST/NRSF, a critical transcriptional regulator for the nervous system, demonstrated that REST binding to syntenic genomic regions (i.e., conserved binding) represents only a small percentage of the total binding events in human and mouse embryonic stem cells. While conserved binding is significantly associated with functional features (e.g., co-factor recruitment) and enriched at genes important for neural development and function, >3000 genes, including many related to brain and neural functions, either contain extra REST-bound sites (e.g., NRXN1) or are targeted by REST only (e.g. PSEN2) in humans. Surprisingly, several genes known to have critical roles in learning and memory, or brain disorders (e.g., APP and HTT) exhibit characteristics of human specific REST regulation. These findings indicate that more systematic studies are needed to better understand the divergent wiring of regulatory networks in humans, mice, and other mammals and their functional implications.
Collapse
Affiliation(s)
- Ping Wang
- Department of Neurology, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Dejian Zhao
- Department of Genetics, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Shira Rockowitz
- Department of Neuroscience, Albert Einstein College of Medicine , Bronx, New York, NY, USA
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, NY, USA; Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, NY, USA
| |
Collapse
|
225
|
Disruption of Rest Leads to the Early Onset of Cataracts with the Aberrant Terminal Differentiation of Lens Fiber Cells. PLoS One 2016; 11:e0163042. [PMID: 27631609 PMCID: PMC5025245 DOI: 10.1371/journal.pone.0163042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
REST (RE1-silencing transcription factor, also called Nrsf) is involved in the maintenance of the undifferentiated state of neuronal stem/progenitor cells in vitro by preventing precocious expression of neuronal genes. REST expression was then decreased in developing neurons to down-regulate neuronal genes which allow their maturation. However, the function of REST during neurogenesis in vivo remains to be elucidated because of the early embryonic lethal phenotype of conventional Rest knockout mice. In order to investigate the role of REST in ocular tissues, we generated and examined the mice evoking genetic ablation to Rest specifically to neural tissues including ocular tissue. We used a Sox1-Cre allele to excise the floxed Rest gene in the early neural tissues including the lens and retinal primordia. The resulting Rest conditional knockout (CKO) and co cntrol mice were used in comparative morphological, histological, and gene expression analyses. Rest CKO mice had an abnormal lens morphology after birth. The proliferation of lens epithelial cells was likely to be slightly reduced, and vacuoles formed without a visible increase in apoptotic cells. Although the aberrant expression of late onset cataract marker proteins was not detected, the expression of Notch signaling-related genes including a previously identified REST-target gene was up-regulated around birth, and this was followed by the down-regulated expression of lens fiber regulators such as c-Maf and Prox1. Rest CKO induces a unique cataract phenotype just after birth. Augmented Notch signaling and the down-regulated expression of lens fiber regulator genes may be responsible for this phenotype. Our results highlight the significance of REST function in lens fiber formation, which is necessary for maintaining an intact lens structure.
Collapse
|
226
|
Sato R, Takanashi JI, Tsuyusaki Y, Kato M, Saitsu H, Matsumoto N, Takahashi T. Association Between Invisible Basal Ganglia and ZNF335 Mutations: A Case Report. Pediatrics 2016; 138:peds.2016-0897. [PMID: 27540107 DOI: 10.1542/peds.2016-0897] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/24/2016] [Indexed: 11/24/2022] Open
Abstract
ZNF335 was first reported in 2012 as a causative gene for microcephaly. Because only 1 consanguineous pedigree has ever been reported, the key clinical features associated with ZNF335 mutations remain unknown. In this article, we describe another family harboring ZNF335 mutations. The female proband was the first child of nonconsanguineous Japanese parents. At birth, microcephaly was absent; her head circumference was 32.0 cm (-0.6 SD). At 3 months, microcephaly was noted, (head circumference, 34.0 cm [-4.6 SD]). Brain MRI showed invisible basal ganglia, cerebral atrophy, brainstem hypoplasia, and cerebellar atrophy. At 33 months, (head circumference, 41.0 cm [-5.1 SD]), she had severe psychomotor retardation. After obtaining informed consent from her parents, we performed exome sequencing in the proband and identified 1 novel and 1 known mutation in ZNF335, namely, c.1399T>C (p.C467R) and c.1505A>G (p.Y502C), respectively. The mutations were individually transmitted by her parents, indicating that the proband was compound heterozygous for the mutations. Her brain imaging findings, including invisible basal ganglia, were similar to those observed in the previous case with ZNF335 mutations. We speculate that invisible basal ganglia may be the key feature of ZNF335 mutations. For infants presenting with both microcephaly and invisible basal ganglia, ZNF335 mutations should be considered as a differential diagnosis.
Collapse
Affiliation(s)
- Rieko Sato
- Department of Pediatrics, National Hospital Organization Tokyo Medical Center, Tokyo, Japan; Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Jun-Ichi Takanashi
- Department of Pediatrics, Yachiyo Medical Center, Tokyo Women's Medical University, Yachiyo, Japan
| | - Yu Tsuyusaki
- Department of Child Neurology, Kanagawa Children's Medical Center, Yokohama, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Yamagata University Faculty of Medicine, Yamagata, Japan; Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan; and
| | - Hirotomo Saitsu
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Takao Takahashi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan;
| |
Collapse
|
227
|
Lemaire K, Thorrez L, Schuit F. Disallowed and Allowed Gene Expression: Two Faces of Mature Islet Beta Cells. Annu Rev Nutr 2016; 36:45-71. [DOI: 10.1146/annurev-nutr-071715-050808] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Lieven Thorrez
- Gene Expression Unit, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven B3000, Belgium; , ,
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, Leuven B3000, Belgium; , ,
| |
Collapse
|
228
|
Antoniotti S, Ruffinatti FA, Torriano S, Luganini A, D'Alessandro R, Lovisolo D. REST levels affect the functional expression of voltage dependent calcium channels and the migratory activity in immortalized GnRH neurons. Neurosci Lett 2016; 629:19-25. [PMID: 27349310 DOI: 10.1016/j.neulet.2016.06.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/23/2016] [Indexed: 12/27/2022]
Abstract
The repressor element-1 silencing transcription factor (REST) has emerged as a key controller of neuronal differentiation and has been shown to play a critical role in the expression of the neuronal phenotype; however, much has still to be learned about its role at specific developmental stages and about the functional targets affected. Among these targets, calcium signaling mechanisms are critically dependent on the developmental stage and their full expression is a hallmark of the mature, functional neuron. We have analyzed the role played by REST in GN11 cells, an immortalized cell line derived from gonadotropin hormone releasing hormone (GnRH) neurons at an early developmental stage, electrically non-excitable and with a strong migratory activity. We show for the first time that functional voltage-dependent calcium channels are expressed in wild type GN11 cells; down-regulation of REST by a silencing approach shifts these cells towards a more differentiated phenotype, increasing the functional expression of P/Q-type channels and reducing their migratory potential.
Collapse
Affiliation(s)
- Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy; NIS Centre for Nanostructured Interfaces and Surfaces, University of Torino, Italy
| | | | - Simona Torriano
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Anna Luganini
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy
| | - Rosalba D'Alessandro
- National Institute for Digestive Diseases De Bellis, via Turi 27, 70013, Castellana Grotte, Bari, Italy
| | - Davide Lovisolo
- Department of Life Sciences and Systems Biology, University of Torino, via Accademia Albertina 13, 10123, Torino, Italy; NIS Centre for Nanostructured Interfaces and Surfaces, University of Torino, Italy; Neuroscience Institute of Torino, Italy.
| |
Collapse
|
229
|
Hsieh J, Zhao X. Genetics and Epigenetics in Adult Neurogenesis. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a018911. [PMID: 27143699 DOI: 10.1101/cshperspect.a018911] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cellular basis of adult neurogenesis is neural stem cells residing in restricted areas of the adult brain. These cells self-renew and are multipotent. The maintenance of "stemness" and commitment to differentiation are tightly controlled by intricate molecular networks. Epigenetic mechanisms, including chromatin remodeling, DNA methylation, and noncoding RNAs (ncRNAs), have profound regulatory roles in mammalian gene expression. Significant advances have been made regarding the dynamic roles of epigenetic modulation and function. It has become evident that epigenetic regulators are key players in neural-stem-cell self-renewal, fate specification, and final maturation of new neurons, therefore, adult neurogenesis. Altered epigenetic regulation can result in a number of neurological and neurodevelopmental disorders. Here, we review recent discoveries that advance our knowledge in epigenetic regulation of mammalian neural stem cells and neurogenesis. Insights from studies of epigenetic gene regulation in neurogenesis may lead to new therapies for the treatment of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jenny Hsieh
- Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, UT Southwestern Medical Center, Dallas, Texas 75390
| | - Xinyu Zhao
- Department of Neuroscience and Waisman Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
230
|
Winston CN, Goetzl EJ, Akers JC, Carter BS, Rockenstein EM, Galasko D, Masliah E, Rissman RA. Prediction of conversion from mild cognitive impairment to dementia with neuronally derived blood exosome protein profile. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2016; 3:63-72. [PMID: 27408937 PMCID: PMC4925777 DOI: 10.1016/j.dadm.2016.04.001] [Citation(s) in RCA: 258] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Introduction Levels of Alzheimer's disease (AD)-related proteins in plasma neuronal derived exosomes (NDEs) were quantified to identify biomarkers for prediction and staging of mild cognitive impairment (MCI) and AD. Methods Plasma exosomes were extracted, precipitated, and enriched for neuronal source by anti-L1CAM antibody absorption. NDEs were characterized by size (Nanosight) and shape (TEM) and extracted NDE protein biomarkers were quantified by ELISAs. Plasma NDE cargo was injected into normal mice, and results were characterized by immunohistochemistry to determine pathogenic potential. Results Plasma NDE levels of P-T181-tau, P-S396-tau, and Aβ1–42 were significantly higher, whereas those of neurogranin (NRGN) and the repressor element 1-silencing transcription factor (REST) were significantly lower in AD and MCI converting to AD (ADC) patients compared to cognitively normal controls (CNC) subjects and stable MCI patients. Mice injected with plasma NDEs from ADC patients displayed increased P-tau (PHF-1 antibody)–positive cells in the CA1 region of the hippocampus compared to plasma NDEs from CNC and stable MCI patients. Conclusions Abnormal plasma NDE levels of P-tau, Aβ1–42, NRGN, and REST accurately predict conversion of MCI to AD dementia. Plasma NDEs from demented patients seeded tau aggregation and induced AD-like neuropathology in normal mouse CNS.
Collapse
Affiliation(s)
- Charisse N Winston
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Edward J Goetzl
- Jewish Home of San Francisco, University of California, San Francisco, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Johnny C Akers
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA, USA
| | - Bob S Carter
- Department of Neurosurgery, University of California, San Diego, La Jolla, CA, USA
| | - Edward M Rockenstein
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Eliezer Masliah
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA; Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
231
|
Lee JK, Phillips JW, Smith BA, Park JW, Stoyanova T, McCaffrey EF, Baertsch R, Sokolov A, Meyerowitz JG, Mathis C, Cheng D, Stuart JM, Shokat KM, Gustafson WC, Huang J, Witte ON. N-Myc Drives Neuroendocrine Prostate Cancer Initiated from Human Prostate Epithelial Cells. Cancer Cell 2016; 29:536-547. [PMID: 27050099 PMCID: PMC4829466 DOI: 10.1016/j.ccell.2016.03.001] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/15/2015] [Accepted: 03/01/2016] [Indexed: 02/06/2023]
Abstract
MYCN amplification and overexpression are common in neuroendocrine prostate cancer (NEPC). However, the impact of aberrant N-Myc expression in prostate tumorigenesis and the cellular origin of NEPC have not been established. We define N-Myc and activated AKT1 as oncogenic components sufficient to transform human prostate epithelial cells to prostate adenocarcinoma and NEPC with phenotypic and molecular features of aggressive, late-stage human disease. We directly show that prostate adenocarcinoma and NEPC can arise from a common epithelial clone. Further, N-Myc is required for tumor maintenance, and destabilization of N-Myc through Aurora A kinase inhibition reduces tumor burden. Our findings establish N-Myc as a driver of NEPC and a target for therapeutic intervention.
Collapse
Affiliation(s)
- John K Lee
- Division of Hematology and Oncology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - John W Phillips
- Department of Microbiology, Immunology, and Medical Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Bryan A Smith
- Department of Microbiology, Immunology, and Medical Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jung Wook Park
- Department of Microbiology, Immunology, and Medical Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tanya Stoyanova
- Department of Microbiology, Immunology, and Medical Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Erin F McCaffrey
- Department of Microbiology, Immunology, and Medical Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Robert Baertsch
- Center for Biomolecular Science and Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Artem Sokolov
- Center for Biomolecular Science and Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Justin G Meyerowitz
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Departments of Neurology and Neurological Surgery, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Colleen Mathis
- Department of Microbiology, Immunology, and Medical Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Donghui Cheng
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Joshua M Stuart
- Center for Biomolecular Science and Engineering, Jack Baskin School of Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Kevan M Shokat
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - W Clay Gustafson
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics, UCSF Benioff Children's Hospital, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiaoti Huang
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Medical Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
232
|
SMARCA4/Brg1 coordinates genetic and epigenetic networks underlying Shh-type medulloblastoma development. Oncogene 2016; 35:5746-5758. [PMID: 27065321 DOI: 10.1038/onc.2016.108] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 12/15/2015] [Accepted: 01/08/2016] [Indexed: 02/07/2023]
Abstract
Recent large-scale genomic studies have classified medulloblastoma into four subtypes: Wnt, Shh, Group 3 and Group 4. Each is characterized by specific mutations and distinct epigenetic states. Previously, we showed that a chromatin regulator SMARCA4/Brg1 is required for Gli-mediated transcription activation in Sonic hedgehog (Shh) signaling. We report here that Brg1 controls a transcriptional program that specifically regulates Shh-type medulloblastoma growth. Using a mouse model of Shh-type medulloblastoma, we deleted Brg1 in precancerous progenitors and primary or transplanted tumors. Brg1 deletion significantly inhibited tumor formation and progression. Genome-wide expression analyses and binding experiments indicate that Brg1 specifically coordinates with key transcription factors including Gli1, Atoh1 and REST to regulate the expression of both oncogenes and tumor suppressors that are required for medulloblastoma identity and proliferation. Shh-type medulloblastoma displays distinct H3K27me3 properties. We demonstrate that Brg1 modulates activities of H3K27me3 modifiers to regulate the expression of medulloblastoma genes. Brg1-regulated pathways are conserved in human Shh-type medulloblastoma, and Brg1 is important for the growth of a human medulloblastoma cell line. Thus, Brg1 coordinates a genetic and epigenetic network that regulates the transcriptional program underlying the Shh-type medulloblastoma development.
Collapse
|
233
|
Histone H4 lysine 20 acetylation is associated with gene repression in human cells. Sci Rep 2016; 6:24318. [PMID: 27064113 PMCID: PMC4827026 DOI: 10.1038/srep24318] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/24/2016] [Indexed: 01/03/2023] Open
Abstract
Histone acetylation is generally associated with gene activation and chromatin decondensation. Recent mass spectrometry analysis has revealed that histone H4 lysine 20, a major methylation site, can also be acetylated. To understand the function of H4 lysine 20 acetylation (H4K20ac), we have developed a specific monoclonal antibody and performed ChIP-seq analysis using HeLa-S3 cells. H4K20ac was enriched around the transcription start sites (TSSs) of minimally expressed genes and in the gene body of expressed genes, in contrast to most histone acetylation being enriched around the TSSs of expressed genes. The distribution of H4K20ac showed little correlation with known histone modifications, including histone H3 methylations. A motif search in H4K20ac-enriched sequences, together with transcription factor binding profiles based on ENCODE ChIP-seq data, revealed that most transcription activators are excluded from H4K20ac-enriched genes and a transcription repressor NRSF/REST co-localized with H4K20ac. These results suggest that H4K20ac is a unique acetylation mark associated with gene repression.
Collapse
|
234
|
Li Q, Zhang CS, Zhang Y. Molecular aspects of prostate cancer with neuroendocrine differentiation. Chin J Cancer Res 2016; 28:122-9. [PMID: 27041934 DOI: 10.3978/j.issn.1000-9604.2016.01.02] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Neuroendocrine differentiation (NED), which is not uncommon in prostate cancer, is increases in prostate cancer after androgen-deprivation therapy (ADT) and generally appears in castration-resistant prostate cancer (CRPC). Neuroendocrine cells, which are found in normal prostate tissue, are a small subset of cells and have unique function in regulating the growth of prostate cells. Prostate cancer with NED includes different types of tumor, including focal NED, pure neuroendocrine tumor or mixed neuroendocrine-adenocarcinoma. Although more and more studies are carried out on NED in prostate cancer, the molecular components that are involved in NED are still poorly elucidated. We review neuroendocrine cells in normal prostate tissue, NED in prostate cancer, terminology of NED and biomarkers used for detecting NED in routine pathological practice. Some recently reported molecular components which drive NED in prostate cancer are listed in the review.
Collapse
Affiliation(s)
- Qi Li
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Connie S Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yifen Zhang
- 1 Department of Pathology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China ; 2 MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
235
|
Hai-Ying C, Nagano K, Ezzikouri S, Yamaguchi C, Kayesh MEH, Rebbani K, Kitab B, Nakano H, Kouji H, Kohara M, Tsukiyama-Kohara K. Establishment of an intermittent cold stress model using Tupaia belangeri and evaluation of compound C737 targeting neuron-restrictive silencer factor. Exp Anim 2016; 65:285-92. [PMID: 27041457 PMCID: PMC4976242 DOI: 10.1538/expanim.15-0123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Previous studies have shown that intermittent cold stress (ICS) induces depression-like behaviors in mammals. Tupaia belangeri (the tree shrew) is the only experimental animal other than the chimpanzee that has been shown to be susceptible to infection by hepatitis B and C viruses. Moreover, full genome sequence analysis has revealed strong homology between host proteins in Tupaia and in humans and other primates. Tupaia neuromodulator receptor proteins are also known to have a high degree of homology with their corresponding primate proteins. Based on these similarities, we hypothesized that induction of ICS in Tupaia would provide a useful animal model of stress responses. We exposed young adult Tupaia to ICS and observed decreases in body temperature and body weight in both female and male Tupaia, suggesting that Tupaia are an appropriate animal model for ICS studies. We further examined the efficacy of a new small-molecule compound, C737, against the effects of ICS. C737 mimics the helical structure of neuron-restrictive silencer factor (NRSF/REST), which regulates a wide range of target genes involved in neuronal function and pain modulation. Treatment with C737 significantly reduced stress-induced weight loss in female Tupaia; these effects were stronger than those elicited by the antidepressant agomelatine. These results suggest that Tupaia represents a useful non-rodent ICS model. Our data also provide new insights into the function of NRSF/REST in stress-induced depression and other disorders with epigenetic influences or those with high prevalence in women.
Collapse
Affiliation(s)
- Chi Hai-Ying
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima-city, Kagoshima 890-0065, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
236
|
Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun 2016; 7:11089. [PMID: 27029739 PMCID: PMC4821875 DOI: 10.1038/ncomms11089] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
Aging associates with impaired pancreatic islet function and increased type 2 diabetes (T2D) risk. Here we examine whether age-related epigenetic changes affect human islet function and if blood-based epigenetic biomarkers reflect these changes and associate with future T2D. We analyse DNA methylation genome-wide in islets from 87 non-diabetic donors, aged 26-74 years. Aging associates with increased DNA methylation of 241 sites. These sites cover loci previously associated with T2D, for example, KLF14. Blood-based epigenetic biomarkers reflect age-related methylation changes in 83 genes identified in human islets (for example, KLF14, FHL2, ZNF518B and FAM123C) and some associate with insulin secretion and T2D. DNA methylation correlates with islet expression of multiple genes, including FHL2, ZNF518B, GNPNAT1 and HLTF. Silencing these genes in β-cells alter insulin secretion. Together, we demonstrate that blood-based epigenetic biomarkers reflect age-related DNA methylation changes in human islets, and associate with insulin secretion in vivo and T2D.
Collapse
|
237
|
Huang H, Wu Q. CRISPR Double Cutting through the Labyrinthine Architecture of 3D Genomes. J Genet Genomics 2016; 43:273-88. [PMID: 27210040 DOI: 10.1016/j.jgg.2016.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/03/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
Abstract
The genomes are organized into ordered and hierarchical topological structures in interphase nuclei. Within discrete territories of each chromosome, topologically associated domains (TADs) play important roles in various nuclear processes such as gene regulation. Inside TADs separated by relatively constitutive boundaries, distal elements regulate their gene targets through specific chromatin-looping contacts such as long-distance enhancer-promoter interactions. High-throughput sequencing studies have revealed millions of potential regulatory DNA elements, which are much more abundant than the mere ∼20,000 genes they control. The recently emerged CRISPR-Cas9 genome editing technologies have enabled efficient and precise genetic and epigenetic manipulations of genomes. The multiplexed and high-throughput CRISPR capabilities facilitate the discovery and dissection of gene regulatory elements. Here, we describe the applications of CRISPR for genome, epigenome, and 3D genome editing, focusing on CRISPR DNA-fragment editing with Cas9 and a pair of sgRNAs to investigate topological folding of chromatin TADs and developmental gene regulation.
Collapse
Affiliation(s)
- Haiyan Huang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Qiang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Center for Comparative Biomedicine, Institute of Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
238
|
Shen T, Ji F, Yuan Z, Jiao J. CHD2 is Required for Embryonic Neurogenesis in the Developing Cerebral Cortex. Stem Cells 2016; 33:1794-806. [PMID: 25786798 DOI: 10.1002/stem.2001] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 02/02/2015] [Accepted: 02/06/2015] [Indexed: 11/08/2022]
Abstract
Chromodomain helicase DNA-binding protein 2 (CHD2) has been associated with a broad spectrum of neurodevelopmental disorders, such as autism spectrum disorders and intellectual disability. However, it is largely unknown whether and how CHD2 is involved in brain development. Here, we demonstrate that CHD2 is predominantly expressed in Pax6(+) radial glial cells (RGs) but rarely expressed in Tbr2(+) intermediate progenitors (IPs). Importantly, the suppression of CHD2 expression inhibits the self-renewal of RGs and increases the generation of IPs and the production of neurons. CHD2 mediates these functions by directly binding to the genomic region of repressor element 1-silencing transcription factor (REST), thereby regulating the expression of REST. Furthermore, the overexpression of REST rescues the defect in neurogenesis caused by CHD2 knockdown. Taken together, these findings demonstrate an essential role of CHD2 in the maintenance of the RGs self-renewal levels, the subsequent generation of IPs, and neuronal output during neurogenesis in cerebral cortical development, suggesting that inactivation of CHD2 during neurogenesis might contribute to abnormal neurodevelopment.
Collapse
Affiliation(s)
- Tianjin Shen
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Fen Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Zengqiang Yuan
- State Key Laboratory of Brain and Cognitive Sciences, Institute of Biophysics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Jianwei Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People's Republic of China
| |
Collapse
|
239
|
Sadakierska-Chudy A, Frankowska M, Miszkiel J, Wydra K, Jastrzębska J, Filip M. Prolonged Induction of miR-212/132 and REST Expression in Rat Striatum Following Cocaine Self-Administration. Mol Neurobiol 2016; 54:2241-2254. [PMID: 26944283 PMCID: PMC5355523 DOI: 10.1007/s12035-016-9817-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 01/21/2023]
Abstract
Chronic exposure to cocaine in vivo induces long-term synaptic plasticity associated with the brain’s circuitry that underlies development of repetitive and automatic behaviors called habits. In fact, prolonged drug consumption results in aberrant expression of protein-coding genes and small regulatory RNAs, including miRNAs that are involved in synaptic plasticity and neuroadaptations. However, the mechanisms mediating cocaine use disorder are still not fully understood. The present study is designed to examine the expression of miR-124, miR-132, miR-134, and miR-212, as well as the levels of the Ago2, Pum2, and REST mRNAs and proteins implicated in their regulation. We applied rat cocaine self-administration (SA) and extinction training procedures with a yoked triad to assess the changes in the levels of four miRNAs and three protein-coding genes and corresponding proteins in the dorsal striatum. We demonstrated that elevated expression of mature miR-212 and miR-132 is long-lasting and persists in the drug-free period (till 10-day abstinence). Moreover, mRNA and protein of REST, a regulator of neuronal transcription, was raised selectively in cocaine self-administering rats and Ago2 transcript decreased after cocaine treatment. Unexpectedly, the expression level of Ago2 and Pum2 proteins changed only in the active cocaine-receiving animals. These results point out the important aspects of long-lasting alterations in microRNAs, genes, and protein expressions involved in the control of synaptic plasticity associated with reward and motivation learning related to cocaine addiction.
Collapse
Affiliation(s)
- Anna Sadakierska-Chudy
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland.
| | - Małgorzata Frankowska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Joanna Miszkiel
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Karolina Wydra
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Joanna Jastrzębska
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Małgorzata Filip
- Laboratory of Drug Addiction Pharmacology, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
240
|
Aksoy I, Marcy G, Chen J, Divakar U, Kumar V, John-Sanchez D, Rahmani M, Buckley NJ, Stanton LW. A Role for RE-1-Silencing Transcription Factor in Embryonic Stem Cells Cardiac Lineage Specification. Stem Cells 2016; 34:860-72. [PMID: 26864965 DOI: 10.1002/stem.2304] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 11/09/2022]
Abstract
During development, lineage specification is controlled by several signaling pathways involving various transcription factors (TFs). Here, we studied the RE-1-silencing transcription factor (REST) and identified an important role of this TF in cardiac differentiation. Using mouse embryonic stem cells (ESC) to model development, we found that REST knockout cells lost the ability to differentiate into the cardiac lineage. Detailed analysis of specific lineage markers expression showed selective downregulation of endoderm markers in REST-null cells, thus contributing to a loss of cardiogenic signals. REST regulates cardiac differentiation of ESCs by negatively regulating the Wnt/β-catenin signaling pathway and positively regulating the cardiogenic TF Gata4. We propose here a new role for REST in cell fate specification besides its well-known repressive role of neuronal differentiation.
Collapse
Affiliation(s)
- Irene Aksoy
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore.,Stem Cell and Brain Research Institute, INSERM U1208, 69500 Bron, France.,University of Lyon, University of Lyon I, 69003 Lyon, France
| | - Guillaume Marcy
- Stem Cell and Brain Research Institute, INSERM U1208, 69500 Bron, France.,University of Lyon, University of Lyon I, 69003 Lyon, France
| | - Jiaxuan Chen
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Ushashree Divakar
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Vibhor Kumar
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Daniel John-Sanchez
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Mehran Rahmani
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore
| | - Noel J Buckley
- Department of Psychiatry, University of Oxford, Warneford Hospital, Headington, Oxford, UK
| | - Lawrence W Stanton
- Stem Cell and Regenerative Biology, Genome Institute of Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore.,Department of Biological Sciences, National University of Singapore, Singapore
| |
Collapse
|
241
|
Hoque A, Hossain MI, Ameen SS, Ang CS, Williamson N, Ng DCH, Chueh AC, Roulston C, Cheng HC. A beacon of hope in stroke therapy-Blockade of pathologically activated cellular events in excitotoxic neuronal death as potential neuroprotective strategies. Pharmacol Ther 2016; 160:159-79. [PMID: 26899498 DOI: 10.1016/j.pharmthera.2016.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Excitotoxicity, a pathological process caused by over-stimulation of ionotropic glutamate receptors, is a major cause of neuronal loss in acute and chronic neurological conditions such as ischaemic stroke, Alzheimer's and Huntington's diseases. Effective neuroprotective drugs to reduce excitotoxic neuronal loss in patients suffering from these neurological conditions are urgently needed. One avenue to achieve this goal is to clearly define the intracellular events mediating the neurotoxic signals originating from the over-stimulated glutamate receptors in neurons. In this review, we first focus on the key cellular events directing neuronal death but not involved in normal physiological processes in the neurotoxic signalling pathways. These events, referred to as pathologically activated events, are potential targets for the development of neuroprotectant therapeutics. Inhibitors blocking some of the known pathologically activated cellular events have been proven to be effective in reducing stroke-induced brain damage in animal models. Notable examples are inhibitors suppressing the ion channel activity of neurotoxic glutamate receptors and those disrupting interactions of specific cellular proteins occurring only in neurons undergoing excitotoxic cell death. Among them, Tat-NR2B9c and memantine are clinically effective in reducing brain damage caused by some acute and chronic neurological conditions. Our second focus is evaluation of the suitability of the other inhibitors for use as neuroprotective therapeutics. We also discuss the experimental approaches suitable for bridging our knowledge gap in our current understanding of the excitotoxic signalling mechanism in neurons and discovery of new pathologically activated cellular events as potential targets for neuroprotection.
Collapse
Affiliation(s)
- Ashfaqul Hoque
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - M Iqbal Hossain
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - S Sadia Ameen
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ching-Seng Ang
- Bio21 Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Dominic C H Ng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; School of Biomedical Science, University of Queensland, St. Lucia, QLD, Australia
| | - Anderly C Chueh
- ACRF Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Carli Roulston
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
242
|
REST Regulates Non-Cell-Autonomous Neuronal Differentiation and Maturation of Neural Progenitor Cells via Secretogranin II. J Neurosci 2016; 35:14872-84. [PMID: 26538656 DOI: 10.1523/jneurosci.4286-14.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
UNLABELLED RE-1 silencing transcription factor (REST), a master negative regulator of neuronal differentiation, controls neurogenesis by preventing the differentiation of neural stem cells. Here we focused on the role of REST in the early steps of differentiation and maturation of adult hippocampal progenitors (AHPs). REST knockdown promoted differentiation and affected the maturation of rat AHPs. Surprisingly, REST knockdown cells enhanced the differentiation of neighboring wild-type AHPs, suggesting that REST may play a non-cell-autonomous role. Gene expression analysis identified Secretogranin II (Scg2) as the major secreted REST target responsible for the non-cell-autonomous phenotype. Loss-of-function of Scg2 inhibited differentiation in vitro, and exogenous SCG2 partially rescued this phenotype. Knockdown of REST in neural progenitors in mice led to precocious maturation into neurons at the expense of mushroom spines in vivo. In summary, we found that, in addition to its cell-autonomous function, REST regulates differentiation and maturation of AHPs non-cell-autonomously via SCG2. SIGNIFICANCE STATEMENT Our results reveal that REST regulates differentiation and maturation of neural progenitor cells in vitro by orchestrating both cell-intrinsic and non-cell-autonomous factors and that Scg2 is a major secretory target of REST with a differentiation-enhancing activity in a paracrine manner. In vivo, REST depletion causes accelerated differentiation of newborn neurons at the expense of spine defects, suggesting a potential role for REST in the timing of the maturation of granule neurons.
Collapse
|
243
|
Sadiq I, Keren I, Citovsky V. Plant homologs of mammalian MBT-domain protein-regulated KDM1 histone lysine demethylases do not interact with plant Tudor/PWWP/MBT-domain proteins. Biochem Biophys Res Commun 2016; 470:913-6. [PMID: 26826387 DOI: 10.1016/j.bbrc.2016.01.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 01/23/2016] [Indexed: 11/17/2022]
Abstract
Histone lysine demethylases of the LSD1/KDM1 family play important roles in epigenetic regulation of eukaryotic chromatin, and they are conserved between plants and animals. Mammalian LSD1 is thought to be targeted to its substrates, i.e., methylated histones, by an MBT-domain protein SFMBT1 that represents a component of the LSD1-based repressor complex and binds methylated histones. Because MBT-domain proteins are conserved between different organisms, from animals to plants, we examined whether the KDM1-type histone lysine demethylases KDM1C and FLD of Arabidopsis interact with the Arabidopsis Tudor/PWWP/MBT-domain SFMBT1-like proteins SL1, SL2, SL3, and SL4. No such interaction was detected using the bimolecular fluorescence complementation assay in living plant cells. Thus, plants most likely direct their KDM1 chromatin-modifying enzymes to methylated histones of the target chromatin by a mechanism different from that employed by the mammalian cells.
Collapse
Affiliation(s)
- Irfan Sadiq
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, 11794-5215, USA; Department of Biosciences, COMSATS Institute of Information Technology Islamabad, Park Road, Islamabad, 44000, Pakistan.
| | - Ido Keren
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, 11794-5215, USA.
| | - Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY, 11794-5215, USA.
| |
Collapse
|
244
|
Mayfield JE, Burkholder NT, Zhang YJ. Dephosphorylating eukaryotic RNA polymerase II. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:372-87. [PMID: 26779935 DOI: 10.1016/j.bbapap.2016.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 12/20/2022]
Abstract
The phosphorylation state of the C-terminal domain of RNA polymerase II is required for the temporal and spatial recruitment of various factors that mediate transcription and RNA processing throughout the transcriptional cycle. Therefore, changes in CTD phosphorylation by site-specific kinases/phosphatases are critical for the accurate transmission of information during transcription. Unlike kinases, CTD phosphatases have been traditionally neglected as they are thought to act as passive negative regulators that remove all phosphate marks at the conclusion of transcription. This over-simplified view has been disputed in recent years and new data assert the active and regulatory role phosphatases play in transcription. We now know that CTD phosphatases ensure the proper transition between different stages of transcription, balance the distribution of phosphorylation for accurate termination and re-initiation, and prevent inappropriate expression of certain genes. In this review, we focus on the specific roles of CTD phosphatases in regulating transcription. In particular, we emphasize how specificity and timing of dephosphorylation are achieved for these phosphatases and consider the various regulatory factors that affect these dynamics.
Collapse
Affiliation(s)
- Joshua E Mayfield
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nathaniel T Burkholder
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Yan Jessie Zhang
- Department of Molecular Biosciences and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
245
|
Nechiporuk T, McGann J, Mullendorff K, Hsieh J, Wurst W, Floss T, Mandel G. The REST remodeling complex protects genomic integrity during embryonic neurogenesis. eLife 2016; 5:e09584. [PMID: 26745185 PMCID: PMC4728133 DOI: 10.7554/elife.09584] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Accepted: 10/20/2015] [Indexed: 01/01/2023] Open
Abstract
The timely transition from neural progenitor to post-mitotic neuron requires down-regulation and loss of the neuronal transcriptional repressor, REST. Here, we have used mice containing a gene trap in the Rest gene, eliminating transcription from all coding exons, to remove REST prematurely from neural progenitors. We find that catastrophic DNA damage occurs during S-phase of the cell cycle, with long-term consequences including abnormal chromosome separation, apoptosis, and smaller brains. Persistent effects are evident by latent appearance of proneural glioblastoma in adult mice deleted additionally for the tumor suppressor p53 protein (p53). A previous line of mice deleted for REST in progenitors by conventional gene targeting does not exhibit these phenotypes, likely due to a remaining C-terminal peptide that still binds chromatin and recruits co-repressors. Our results suggest that REST-mediated chromatin remodeling is required in neural progenitors for proper S-phase dynamics, as part of its well-established role in repressing neuronal genes until terminal differentiation. DOI:http://dx.doi.org/10.7554/eLife.09584.001 In the brain, cells called neurons connect to each other to form complex networks through which information is rapidly processed. These cells start to form in the developing brains of animal embryos when “neural” stem cells divide in a process called neurogenesis. For this process to proceed normally, particular genes in the stem cells have to be switched on or off at different times. This ensures that the protein products of the genes are only made when they are needed. Proteins called transcription factors can bind to DNA to activate or inactivate particular genes; for example, a transcription factor called REST inactivates thousands of genes that are needed by neurons. During neurogenesis, the production of REST normally declines, and some studies have shown that if the production of this protein is artificially increased, the formation of neurons is delayed. However, other studies suggest that REST may not play a major role in neurogenesis. Here, Nechiporuk et al. re-examine the role of REST in mice. The experiments used genetically modified mice in which the gene that encodes REST was prematurely switched off in neural stem cells. Compared with normal mice, these mutant mice had much smaller brains that contained fewer neurons because the stem cells stopped dividing earlier than normal. Unexpectedly, many genes that are normally switched off by REST, were not significantly changed, while genes that are not normally regulated by REST – such as the gene that encodes a protein called p53 – were active. It is known from previous work that p53 is expressed when cells are exposed to harmful conditions that can damage DNA. This helps to prevent cells from becoming cancerous. Nechiporuk et al. found that cells that lacked REST had higher levels of DNA damage than normal cells due to errors during the process of copying DNA before a cell divides. Furthermore, when both REST and p53 were absent, the neural stem cells became cancerous and formed tumors in the mice. Nechiporuk et al.’s findings suggest that REST protects the DNA of genes that are needed for neurons to form and work properly. The new challenge is to understand where in the genome the damage is occurring. DOI:http://dx.doi.org/10.7554/eLife.09584.002
Collapse
Affiliation(s)
- Tamilla Nechiporuk
- Vollum Institute, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| | - James McGann
- Vollum Institute, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| | - Karin Mullendorff
- Vollum Institute, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| | - Jenny Hsieh
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, United States.,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, United States
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany.,Technische Universität München, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Ludwig-Maximilians-Universität, Munich, Germany
| | - Thomas Floss
- Institute of Developmental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Gail Mandel
- Vollum Institute, Howard Hughes Medical Institute, Oregon Health and Science University, Portland, United States
| |
Collapse
|
246
|
Brain REST/NRSF Is Not Only a Silent Repressor but Also an Active Protector. Mol Neurobiol 2016; 54:541-550. [DOI: 10.1007/s12035-015-9658-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/17/2015] [Indexed: 01/04/2023]
|
247
|
Wohl SG, Reh TA. miR-124-9-9* potentiates Ascl1-induced reprogramming of cultured Müller glia. Glia 2016; 64:743-62. [PMID: 26732729 DOI: 10.1002/glia.22958] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/12/2015] [Accepted: 12/02/2015] [Indexed: 01/21/2023]
Abstract
The Müller glia of fish provide a source for neuronal regeneration after injury, but they do not do so in mammals. We previously showed that lentiviral gene transfer of the transcription factor Achaete-scute homolog 1 (Ascl1/Mash1) in murine Müller glia cultures resulted in partial reprogramming of the cells to retinal progenitors. The microRNAs (miRNAs) miR-124-9-9* facilitate neuronal reprogramming of fibroblasts, but their role in glia reprogramming has not been reported. The aim of this study was to test whether (1) lentiviral gene transfer of miR-124-9-9* can reprogram Müller glia into retinal neurons and (2) miR-124-9-9* can improve Ascl1-induced reprogramming. Primary Müller glia cultures were generated from postnatal day (P) 11/12 mice, transduced with lentiviral particles, i.e., miR-124-9-9*-RFP, nonsense-RFP, Ascl1-GFP, or GFP-control. Gene expression and immunofluorescence analyses were performed within 3 weeks after infection. 1. Overexpression of miR-124-9-9* induced the expression of the proneural factor Ascl1 and additional markers of neurons, including TUJ1 and MAP2. 2. When Ascl1 and miR-124-9-9* were combined, 50 to 60% of Müller glia underwent neuronal reprogramming, whereas Ascl1 alone results in a 30 to 35% reprogramming rate. 3. Analysis of the miR-124-9-9* treated glial cells showed a reduction in the level of Ctdsp1 and Ptbp1, indicating a critical role for the REST pathway in the repression of neuronal genes in Müller glia. Our data further suggest that miR-124-9-9* and the REST complex may play a role in regulating the reprogramming of Müller glia to progenitors that underlies retinal regeneration in zebrafish.
Collapse
Affiliation(s)
| | - Thomas Andrew Reh
- Department of Biological Structure, University of Washington, Seattle, Washington
| |
Collapse
|
248
|
Wang Y, Surzenko N, Friday WB, Zeisel SH. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring. FASEB J 2015; 30:1566-78. [PMID: 26700730 DOI: 10.1096/fj.15-282426] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/08/2015] [Indexed: 11/11/2022]
Abstract
Maternal diets low in choline, an essential nutrient, increase the risk of neural tube defects and lead to low performance on cognitive tests in children. However, the consequences of maternal dietary choline deficiency for the development and structural organization of the cerebral cortex remain unknown. In this study, we fed mouse dams either control (CT) or low-choline (LC) diets and investigated the effects of choline on cortical development in the offspring. As a result of a low choline supply between embryonic day (E)11 and E17 of gestation, the number of 2 types of cortical neural progenitor cells (NPCs)-radial glial cells and intermediate progenitor cells-was reduced in fetal brains (P< 0.01). Furthermore, the number of upper layer cortical neurons was decreased in the offspring of dams fed an LC diet at both E17 (P< 0.001) and 4 mo of age (P< 0.001). These effects of LC maternal diet were mediated by a decrease in epidermal growth factor receptor (EGFR) signaling in NPCs related to the disruption of EGFR posttranscriptional regulation. Our findings describe a novel mechanism whereby low maternal dietary intake of choline alters brain development.-Wang, Y., Surzenko, N., Friday, W. B., Zeisel, S. H. Maternal dietary intake of choline in mice regulates development of the cerebral cortex in the offspring.
Collapse
Affiliation(s)
- Yanyan Wang
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Natalia Surzenko
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Walter B Friday
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Steven H Zeisel
- *Nutrition Research Institute, University of North Carolina at Chapel Hill, Kannapolis, North Carolina, USA, Department of Medical Genetics, Third Military Medical University, Chongqing, China; and Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
249
|
Thakore-Shah K, Koleilat T, Jan M, John A, Pyle AD. REST/NRSF Knockdown Alters Survival, Lineage Differentiation and Signaling in Human Embryonic Stem Cells. PLoS One 2015; 10:e0145280. [PMID: 26690059 PMCID: PMC4699193 DOI: 10.1371/journal.pone.0145280] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 12/02/2015] [Indexed: 12/19/2022] Open
Abstract
REST (RE1 silencing transcription factor), also known as NRSF (neuron-restrictive silencer factor), is a well-known transcriptional repressor of neural genes in non-neural tissues and stem cells. Dysregulation of REST activity is thought to play a role in diverse diseases including epilepsy, cancer, Down’s syndrome and Huntington’s disease. The role of REST/NRSF in control of human embryonic stem cell (hESC) fate has never been examined. To evaluate the role of REST in hESCs we developed an inducible REST knockdown system and examined both growth and differentiation over short and long term culture. Interestingly, we have found that altering REST levels in multiple hESC lines does not result in loss of self-renewal but instead leads to increased survival. During differentiation, REST knockdown resulted in increased MAPK/ERK and WNT signaling and increased expression of mesendoderm differentiation markers. Therefore we have uncovered a new role for REST in regulation of growth and early differentiation decisions in human embryonic stem cells.
Collapse
Affiliation(s)
- Kaushali Thakore-Shah
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - Tasneem Koleilat
- California State University, Northridge, CA, 91325, United States of America
| | - Majib Jan
- California State University, Northridge, CA, 91325, United States of America
| | - Alan John
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
| | - April D. Pyle
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, 90095, United States of America
- * E-mail:
| |
Collapse
|
250
|
Willis DE, Wang M, Brown E, Fones L, Cave JW. Selective repression of gene expression in neuropathic pain by the neuron-restrictive silencing factor/repressor element-1 silencing transcription (NRSF/REST). Neurosci Lett 2015; 625:20-5. [PMID: 26679228 DOI: 10.1016/j.neulet.2015.12.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 11/18/2015] [Accepted: 12/01/2015] [Indexed: 02/07/2023]
Abstract
Neuropathic pain often develops following nerve injury as a result of maladaptive changes that occur in the injured nerve and along the nociceptive pathways of the peripheral and central nervous systems. Multiple cellular and molecular mechanisms likely account for these changes; however, the exact nature of these mechanisms remain largely unknown. A growing number of studies suggest that alteration in gene expression is an important step in the progression from acute to chronic pain states and epigenetic regulation has been proposed to drive this change in gene expression. In this review, we discuss recent evidence that the DNA-binding protein neuron-restrictive silencing factor/repressor element-1 silencing transcription factor (NRSF/REST) is an important component in the development and maintenance of neuropathic pain through its role as a transcriptional regulator for a select subset of genes that it normally represses during development.
Collapse
Affiliation(s)
- Dianna E Willis
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, NY, NY 10065, United States
| | - Meng Wang
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - Elizabeth Brown
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - Lilah Fones
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States
| | - John W Cave
- Burke Medical Research Institute, 785 Mamaroneck Ave., White Plains, NY 10605, United States; Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Ave, NY, NY 10065, United States.
| |
Collapse
|