201
|
Yano J, Noverr MC, Fidel PL. Cytokines in the host response to Candida vaginitis: Identifying a role for non-classical immune mediators, S100 alarmins. Cytokine 2011; 58:118-28. [PMID: 22182685 DOI: 10.1016/j.cyto.2011.11.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/23/2011] [Accepted: 11/25/2011] [Indexed: 01/06/2023]
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida albicans, affects a significant number of women during their reproductive years. More than two decades of research have been focused on the mechanisms associated with susceptibility or resistance to symptomatic infection. Adaptive immunity by Th1-type CD4(+) T cells and downstream cytokine responses are considered the predominant host defense mechanisms against mucosal Candida infections. However, numerous clinical and animal studies have indicated no or limited protective role of cells and cytokines of the Th1 or Th2 lineage against vaginal infection. The role for Th17 is only now begun to be investigated in-depth for VVC with results already showing significant controversy. On the other hand, a clinical live-challenge study and an established animal model have shown that a symptomatic condition is intimately associated with the vaginal infiltration of polymorphonuclear leukocytes (PMNs) but with no effect on vaginal fungal burden. Subsequent studies identified S100A8 and S100A9 alarmins as key chemotactic mediators of the acute PMN response. These chemotactic danger signals appear to be secreted by vaginal epithelial cells upon interaction and early adherence of Candida. Thus, instead of a putative immunodeficiency against Candida involving classical immune cells and cytokines of the adaptive response, the pathological inflammation in VVC is now considered a consequence of a non-productive innate response initiated by non-classical immune mediators.
Collapse
Affiliation(s)
- Junko Yano
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
202
|
Yuan J, Gao H, Sui J, Duan H, Chen WN, Ching CB. Cytotoxicity Evaluation of Oxidized Single-Walled Carbon Nanotubes and Graphene Oxide on Human Hepatoma HepG2 cells: An iTRAQ-Coupled 2D LC-MS/MS Proteome Analysis. Toxicol Sci 2011; 126:149-61. [DOI: 10.1093/toxsci/kfr332] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
203
|
An immunohistochemical study of S-100 protein in the intestinal tract of Chinese soft-shelled turtle, Pelodiscus sinensis. Res Vet Sci 2011; 91:e16-24. [DOI: 10.1016/j.rvsc.2011.02.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/28/2011] [Accepted: 02/18/2011] [Indexed: 01/17/2023]
|
204
|
Comparative protein profile of human hepatoma HepG2 cells treated with graphene and single-walled carbon nanotubes: An iTRAQ-coupled 2D LC–MS/MS proteome analysis. Toxicol Lett 2011; 207:213-21. [DOI: 10.1016/j.toxlet.2011.09.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 09/14/2011] [Accepted: 09/16/2011] [Indexed: 11/17/2022]
|
205
|
Heo SH, Choi YJ, Lee JH, Lee JM, Cho JY. S100A2 level changes are related to human periodontitis. Mol Cells 2011; 32:445-50. [PMID: 21922197 PMCID: PMC3887693 DOI: 10.1007/s10059-011-0132-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/12/2011] [Accepted: 08/25/2011] [Indexed: 11/29/2022] Open
Abstract
Periodontitis is an inflammatory disease, which, when severe, can result in tooth loss, that affects the quality of life. S100A2 was previously identified as a component of gingival crevicular fluid (GCF) via proteome analysis, but it has not been investigated whether S100A2 plays a role in periodontitis. In this study, we analyzed mRNA expression of S100A2 in gingival tissues from normal and classified periodontal disease patients and compared it to that of S100A8 and S100A9. Quantitative real time-PCR revealed that the mRNA expression levels of S100A2, S100A8, and S100A9 were significantly upregulated in gingival tissues with gingivitis, moderate periodontitis, and severe periodontitis compared to normal tissues. In addition, S100A2 proteins in GCF and the conditioned media of lipopolysaccharide (LPS)-treated Jurkat cells were confirmed by ELISA. S100A2 protein levels were significantly higher in GCF in gingivitis and moderate periodontitis groups than in normal groups. S100A2 mRNA expression and protein secretion were also increased by LPS stimulation. Based on the up-regulation of S100A2 in LPS-stimulated immune cells, gingival tissues and GCF from periodontal disease groups, we conclude that S100A2 is a functional component in the immune response during periodontitis and may serve as a potential biomarker for periodontitis.
Collapse
Affiliation(s)
- Sun-Hee Heo
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 700-422, Korea
| | - Young-Jin Choi
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 700-422, Korea
| | - Ji-Hyun Lee
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 700-422, Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, Kyungpook National University, Daegu 700-412, Korea
| | - Je-Yoel Cho
- Department of Biochemistry, School of Dentistry, Kyungpook National University, Daegu 700-422, Korea
| |
Collapse
|
206
|
Astrand R, Romner B, Lanke J, Undén J. Reference values for venous and capillary S100B in children. Clin Chim Acta 2011; 412:2190-3. [DOI: 10.1016/j.cca.2011.08.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 08/01/2011] [Accepted: 08/01/2011] [Indexed: 11/16/2022]
|
207
|
D'Angelo L, De Girolamo P, Cellerino A, Tozzini ET, Varricchio E, Castaldo L, Lucini C. Immunolocalization of S100-like protein in the brain of an emerging model organism: Nothobranchius furzeri. Microsc Res Tech 2011; 75:441-7. [PMID: 22021149 DOI: 10.1002/jemt.21075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 08/01/2011] [Indexed: 01/16/2023]
Abstract
The S100 protein in nervous tissue appears to play important roles in regulating neuronal differentiation, glial proliferation, plasticity, development, axonal growth, and in neurogenetic processes. In fish, the adult neurogenic activity is much higher than in mammals. In this study, the localization of S100 protein was investigated in the brain of annual teleost fish, Nothobranchius furzeri, which is an emerging model organism for aging research. By immunohistochemical techniques, S100 immunoreactivity (IR) was detected in glial cells, small neurons, and fibers throughout all regions of central nervous system (CNS) with different pattern of distribution. In the telencephalon, S100 IR was seen in the olfactory bulbs and in different areas of the telencephalic hemispheres. In the diencephalon, S100 positivity was observed in the habenular nuclei of the epithalamus, in the cortical thalamic nucleus, in the dorsal, ventral and caudal portions, the latter with the posterior recessus nucleus, and in the diffuse inferior lobe of the hypothalamus, along the diencephalic ventricle and in the dorsal optic tract. In the mesencephalon, S100 IR was observed in the longitudinal tori, in the optic tectum, and along the mesencephalic ventricle. In the rhombencephalon, S100 IR was shown in valvula and body of the cerebellum, and in some nuclei of the medulla oblongata. The results suggest that S100 may play a key role in the maintenance of the CNS and in neurogenesis processes in the adulthood.
Collapse
Affiliation(s)
- Livia D'Angelo
- Department of Biological Structures, Functions and Technology, University of Naples Federico II, 80137 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
208
|
Bayram H, Erer D, Iriz E, Zor MH, Gulbahar O, Ozdogan ME. Comparison of the effects of pulsatile cardiopulmonary bypass, non-pulsatile cardiopulmonary bypass and off-pump coronary artery bypass grafting on the inflammatory response and S-100beta protein. Perfusion 2011; 27:56-64. [DOI: 10.1177/0267659111424639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: We aimed to investigate the effects of off-pump coronary artery bypass grafting, pulsatile cardiopulmonary bypass, and non-pulsatile cardiopulmonary bypass techniques on the inflammatory response and the central nervous system in the current study. Methods: A total of 32 patients who were scheduled for elective coronary artery bypass graft surgery were included in the study. The patients were allocated into three different groups according to the perfusion techniques used during the cardiopulmonary bypass procedure as follows: off-pump coronary artery bypass grafting group (n=10); pulsatile cardiopulmonary bypass group (n=11); and non-pulsatile cardiopulmonary bypass group (n=11). Serum interleukin-6, interleukin-8, tumor necrosis factor-alpha and S-100beta levels were measured preoperatively, and at 0, 6, and 24 hours postoperatively. Results: The postoperative increase in the levels of interleukin-6 and interleukin-8 was significantly lower in the off-pump group compared to the other two groups (p<0.05), while there was no significant difference in tumor necrosis factor-alpha levels between the groups. Postoperative S-100β levels, an indicator of cerebral injury, was significantly lower in the off-pump CABG group compared to the other two groups (p<0.05). Conclusion: We found that off-pump coronary artery bypass grafting had less negative effects on inflammatory response and central nervous system compared to pulsatile cardiopulmonary bypass and non-pulsatile cardiopulmonary bypass techniques.
Collapse
Affiliation(s)
- H Bayram
- Department of Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - D Erer
- Department of Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - E Iriz
- Department of Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - MH Zor
- Department of Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| | - O Gulbahar
- Department of Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| | - ME Ozdogan
- Department of Cardiovascular Surgery, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
209
|
Cytotoxicity of single-walled carbon nanotubes on human hepatoma HepG2 cells: an iTRAQ-coupled 2D LC-MS/MS proteome analysis. Toxicol In Vitro 2011; 25:1820-7. [PMID: 22001959 DOI: 10.1016/j.tiv.2011.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/05/2011] [Accepted: 09/27/2011] [Indexed: 12/14/2022]
Abstract
Single-walled carbon nanotubes (SWCNTs) and its derivatives are promising candidates for applications in electronics, energy, materials and biomedical areas. However, with the growing potential biomedical applications and the rising societal concerns on nanosafety, mechanistic understanding of the interactions between nanomaterials and living systems has become imperative. In the present study, our group applied the iTRAQ-coupled 2D LC-MS/MS approach to analyze the protein profile change of mammalian cells in response to SWCNTs. Specifically, the human hepatoma HepG2 cells were chosen as the in vitro model to study the potential cytotoxicity of SWCNTs on the vital organ of liver. Overall 51 differentially expressed proteins that involved in metabolic pathway, redox regulation, signaling pathway, cytoskeleton formation and cell growth were identified. We found SWCNTs triggered the up-regulation of metabolic enzymes, heat shock proteins and proteins involved in redox regulation, which indicated SWCNTs could induce oxidative stress, perturb protein synthesis and interfere cellular metabolism. Our data also suggested that SWCNTs might induce the activation of apoptosis signal-regulating kinase 1, and finally lead to stress-induced apoptosis. The comparative protein profile obtained here provided molecular evidence on the cellular functions in response to SWCNTs, which should very useful to elucidate the cytotoxicity caused by those nanomaterials.
Collapse
|
210
|
Serum proteomic profiling reveals potential biomarkers for cutaneous malignant melanoma. Int J Biol Markers 2011; 26:82-7. [PMID: 21607923 DOI: 10.5301/jbm.2011.8344] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2011] [Indexed: 11/20/2022]
Abstract
Cutaneous malignant melanoma (CMM) is the most serious type of skin cancer because of its tendency to metastasize. The prognosis and therapeutic management of patients are primarily based on clinical criteria (number of cancerous lymph nodes and/or the presence of distant metastases) and histopathological criteria (tumor depth, presence of ulceration and mitotic index). Although these factors are informative in advanced stages of the disease, they are less important in the early stages. In recent years, a number of attempts have been made to identify new serological prognostic biomarkers, especially for early forms of CMM. The recent development of proteomic techniques may offer new perspectives in this field. This article details the considerations of each of the proteomic techniques used today and describes the results of the most recent clinical studies conducted to identify new potential prognostic serum biomarkers for CMM. However, independent and large validation studies are needed before such markers can be used in everyday clinical practice.
Collapse
|
211
|
Scarcello E, Morrone F, Piro P, Tarsitano S, Intrieri F, Vaccarella S, Guerra E, Serra R, de Franciscis S. Protein S-100B as Biochemical Marker of Brain Ischemic Damage After Treatment of Carotid Stenosis. Ann Vasc Surg 2011; 25:975-8. [DOI: 10.1016/j.avsg.2011.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 03/10/2011] [Indexed: 11/29/2022]
|
212
|
Palmer SR, Erickson LA, Ichetovkin I, Knauer DJ, Markovic SN. Circulating serologic and molecular biomarkers in malignant melanoma. Mayo Clin Proc 2011; 86:981-90. [PMID: 21964175 PMCID: PMC3184027 DOI: 10.4065/mcp.2011.0287] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The worldwide incidence of malignant melanoma has been increasing during the past decade and is a public health concern because this disease accounts for up to 90% of deaths from cutaneous malignancies. It remains a devastating disease with few therapeutic options once in an advanced stage. Current methods of detection, prognostication, and monitoring of melanoma focus on clinical, morphologic, and histopathologic characteristics of measurable tumor. Although this information provides some insight into disease behavior and outcome, melanoma is still an unpredictable disease. Significant effort has been put into finding an informative serologic biomarker. However, the marker remains elusive, and investigations continue. Using the PubMed database, we reviewed the published literature on serologic melanoma biomarkers and present a synopsis of the extensive investigations that have been performed thus far, provide some insight into why most have failed to become incorporated into routine clinical use, and present an overview of innovative methods currently being explored.
Collapse
|
213
|
The Influence of Experimental Alcohol Load and Alcohol Intoxication on S100B Concentrations. Shock 2011; 36:356-60. [DOI: 10.1097/shk.0b013e31822bd07d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
214
|
Bailey DM, Evans KA, McEneny J, Young IS, Hullin DA, James PE, Ogoh S, Ainslie PN, Lucchesi C, Rockenbauer A, Culcasi M, Pietri S. Exercise-induced oxidative-nitrosative stress is associated with impaired dynamic cerebral autoregulation and blood-brain barrier leakage. Exp Physiol 2011; 96:1196-207. [DOI: 10.1113/expphysiol.2011.060178] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
215
|
Stepanichev MY. Current approaches and future directions of gene therapy in Alzheimer’s disease. NEUROCHEM J+ 2011. [DOI: 10.1134/s181971241103010x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
216
|
Salmaso N, Cossette MP, Woodside B. Pregnancy and maternal behavior induce changes in glia, glutamate and its metabolism within the cingulate cortex. PLoS One 2011; 6:e23529. [PMID: 21909402 PMCID: PMC3167812 DOI: 10.1371/journal.pone.0023529] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/20/2011] [Indexed: 11/18/2022] Open
Abstract
An upregulation of the astrocytic proteins GFAP and bFGF within area 2 of the cingulate cortex (Cg2) occurs within 3 hours of parturition in rats. These changes are the result of an interaction between hormonal state and maternal experience and are associated with increased dendritic spine density in this area. Here, we examined whether this upregulation of astrocytic proteins generalized to other glial markers and, in particular those associated with glutamate metabolism. We chose glial markers commonly used to reflect different aspects of glial function: vimentin, like GFAP, is a marker of intermediate filaments; glutamine synthetase (GS), and S-100beta, are used as markers for mature astrocytes and GS has also been used as a specific marker for glutamatergic enzymatic activity. In addition, we examined levels of proteins associated with glutamine synthetase, glutamate, glutamine and two excitatory amino acid transporters found in astrocytes, glt-1 and glast. S100beta immunoreactivity did not vary with reproductive state in either Cg2 or MPOA suggesting no change in the number of mature astrocytes across these conditions. Vimentin-ir did not differ across groups in Cg2, but expression of this protein decreased from Day 1 postpartum onwards in the MPOA. By contrast, GS-ir was increased within 24 h postpartum in Cg2 but not MPOA and similarly to GFAP and bFGF this upregulation of GS resulted from an interaction between hormonal state and maternal experience. Within Cg2, upregulation of GS was not accompanied by changes in the astrocytic glutamatergic transporters, glt-1 and glast, however, an increase in both glutamate and glutamine proteins were observed within the Cg2 of postpartum animals. Together, these changes suggest postpartum upregulation of glutamatergic activity and metabolism within Cg2 that is stimulated by pregnancy hormones and maternal experience.
Collapse
Affiliation(s)
- Natalina Salmaso
- Yale School of Medicine, Yale University, New Haven, Connecticut, United States of America.
| | | | | |
Collapse
|
217
|
Kotlyar S, Larkin GL, Moore CL, D’Onofrio G. S100b Immunoassay: An Assessment of Diagnostic Utility in Minor Head Trauma. J Emerg Med 2011; 41:285-93. [DOI: 10.1016/j.jemermed.2010.05.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 04/08/2010] [Accepted: 05/19/2010] [Indexed: 11/28/2022]
|
218
|
Jiang W, Jia Q, Liu L, Zhao X, Tan A, Ma N, Zhang H. S100B promotes the proliferation, migration and invasion of specific brain metastatic lung adenocarcinoma cell line. Cell Biochem Funct 2011; 29:582-8. [PMID: 21861268 DOI: 10.1002/cbf.1791] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/01/2011] [Accepted: 07/05/2011] [Indexed: 01/08/2023]
Abstract
Brain metastasis frequently occurs in cancer patients and is associated with a poor prognosis. We previously reported that S100B was highly expressed in PC14/B, a specific brain metastatic lung adenocarcinoma cell line, which suggests that it is associated with brain metastasis of lung cancer. However, the role of S100B in brain metastasis remains to be elucidated. In this study, using PC14/B cell line, we found that siRNA mediated depletion of S100B in PC14/B cells led to notable differences in cell proliferation, apoptosis, cell cycle progression, colony formation ability, cell migratory and invasive activity compared with the mock-transfected cells. Therefore, our data suggest that S100B promotes the brain metastasis of lung adenocarcinoma by promoting cell proliferation, preventing apoptosis and increasing cell migration and invasion.
Collapse
Affiliation(s)
- Weifeng Jiang
- Department of Oncology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi Province, China
| | | | | | | | | | | | | |
Collapse
|
219
|
Association of CSF biomarkers and secondary insults following severe traumatic brain injury. Neurocrit Care 2011; 14:200-7. [PMID: 21210304 DOI: 10.1007/s12028-010-9496-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Management of severe traumatic brain injury (TBI) focuses on mitigating secondary insults. There are a number of biomarkers that are thought to play a part in secondary injury following severe TBI. Two of these, S100β and neuron-specific enolase (NSE), have been extensively studied in the setting of neurological injury. This pilot study was undertaken to investigate the relationship of S100β and NSE to clinical markers of severity and poor outcome: intracranial hypertension (ICH), and cerebral hypoperfusion (CH). METHODS Patients at the R Adams Cowley Shock Trauma Center were prospectively enrolled over an 18-month period. Inclusion criteria were: age > 18, admission within the first 6 h after injury, Glasgow Coma Scale (GCS) < 9 on admission, isolated TBI, and placement of an intraventricular catheter (IVC). Patients were managed according to an institutional protocol based on the Brain Trauma Foundation Guidelines. CSF was collected from the IVC on admission and twice daily for 7 days. S100β and NSE levels were analyzed by ELISA. CSF levels drawn before (PRE) and after (POST) 12-h time periods were compared to percentage time intracranial pressure (ICP) > 20 mmHg (% ICP(20)) and cerebral perfusion pressure (CPP) < 60 mmHg (% CPP(60)), and cumulative "Pressure times Time Dose" (PTD) for episodes of ICP > 20 mmHg (PTD ICP(20)) and CPP < 60 mmHg (PTD CPP(60)). Statistical analysis was performed using the Student's t test to compare means and non-parametric Wilcoxon statistic to compare ranked data. Linear regression methods were applied to compare levels of S100β and NSE with ICP and CPP(.) RESULTS Twenty-three patients were enrolled. The cohort of patients was severely injured and neurologically compromised on admission (admission GCS = 5.6 ± 3.1, Injury Severity Score (ISS) = 31.9 ± 10.6, head Abbreviated Injury Scale (AIS) = 4.4 ± 0.7, Marshall score = 2.6 ± 0.9). Elevated levels of S100β and NSE were found in all 223 CSF samples analyzed. ICH was found to be associated with PRE and POST S100β levels when measured as % ICP(20) (r = 0.20 and r = 0.23, P < 0.01) and PTD ICP(20) (r = 0.35 and r = 0.26, P < 0.001). POST increasing NSE levels were weakly correlated with increasing PTD ICP(20) (r = 0.17, P = 0.01). PRE S100β levels were associated with episodes of CH as measured by % CPP(60) (r = 0.20, P = 0.002) and both PRE and POST S100β levels were associated with PTD CPP(60) (r = 0.24 and r = 0.23, P < 0.001). PRE and POST NSE levels were also associated with episodes of CH as measured by % CPP(60) (r = 0.22 and r = 0.18, P < 0.01) and PTD CPP(60) (r = 0.20 and r = 0.21, P < 0.01). CONCLUSIONS In this preliminary analysis, S100β levels were associated with ICH and CH over a full week of ICP monitoring. We also found associations between CH and NSE levels in CSF of patients with severe TBI. Our results suggest that there is an association between levels of ICH and CH and these biomarkers when measured before episodes of clinically significant secondary insults. These markers of neuronal cell death demonstrate promise as both indicators of impending clinical deterioration and targets of future therapeutic interventions.
Collapse
|
220
|
Prosser BL, Hernández-Ochoa EO, Schneider MF. S100A1 and calmodulin regulation of ryanodine receptor in striated muscle. Cell Calcium 2011; 50:323-31. [PMID: 21784520 DOI: 10.1016/j.ceca.2011.06.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Accepted: 06/05/2011] [Indexed: 11/16/2022]
Abstract
The release of Ca2+ ions from the sarcoplasmic reticulum through ryanodine receptor calcium release channels represents the critical step linking electrical excitation to muscular contraction in the heart and skeletal muscle (excitation-contraction coupling). Two small Ca2+ binding proteins, S100A1 and calmodulin, have been demonstrated to bind and regulate ryanodine receptor in vitro. This review focuses on recent work that has revealed new information about the endogenous roles of S100A1 and calmodulin in regulating skeletal muscle excitation-contraction coupling. S100A1 and calmodulin bind to an overlapping domain on the ryanodine receptor type 1 to tune the Ca2+ release process, and thereby regulate skeletal muscle function. We also discuss past, current and future work surrounding the regulation of ryanodine receptors by calmodulin and S100A1 in both cardiac and skeletal muscle, and the implications for excitation-contraction coupling.
Collapse
Affiliation(s)
- Benjamin L Prosser
- Center for Biomedical Engineering and Technology (BioMET), Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | |
Collapse
|
221
|
Dulyaninova NG, Hite KM, Zencheck WD, Scudiero DA, Almo SC, Shoemaker RH, Bresnick AR. Cysteine 81 is critical for the interaction of S100A4 and myosin-IIA. Biochemistry 2011; 50:7218-27. [PMID: 21749055 DOI: 10.1021/bi200853y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Overexpression of S100A4, a member of the S100 family of Ca(2+)-binding proteins, is associated with a number of human pathologies, including fibrosis, inflammatory disorders, and metastatic disease. The identification of small molecules that disrupt S100A4/target interactions provides a mechanism for inhibiting S100A4-mediated cellular activities and their associated pathologies. Using an anisotropy assay that monitors the Ca(2+)-dependent binding of myosin-IIA to S100A4, NSC 95397 was identified as an inhibitor that disrupts the S100A4/myosin-IIA interaction and inhibits S100A4-mediated depolymerization of myosin-IIA filaments. Mass spectrometry demonstrated that NSC 95397 forms covalent adducts with Cys81 and Cys86, which are located in the canonical target binding cleft. Mutagenesis studies showed that covalent modification of just Cys81 is sufficient to inhibit S100A4 function with respect to myosin-IIA binding and depolymerization. Remarkably, substitution of Cys81 with serine or alanine significantly impaired the ability of S100A4 to promote myosin-IIA filament disassembly. As reversible covalent cysteine modifications have been observed for several S100 proteins, we propose that modification of Cys81 may provide an additional regulatory mechanism for mediating the binding of S100A4 to myosin-IIA.
Collapse
Affiliation(s)
- Natalya G Dulyaninova
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | | | | | |
Collapse
|
222
|
Epstein OI, Pavlov IF, Shtark MB. Improvement of Memory by Means of Ultra-Low Doses of Antibodies to S-100B Antigen. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 3:541-5. [PMID: 17173119 PMCID: PMC1697748 DOI: 10.1093/ecam/nel073] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 09/14/2006] [Indexed: 12/28/2022]
Abstract
Antigen S-100B of nervous tissue, according to the data of numerous studies, affects the mechanisms of nervous system plasticity and memory. The influence of ultralow doses of antibodies to S-100B (6C dilution, according to the homeopathic pharmacopoeia) has been studied on three learning behavioral models on Wistar rats, which were inhibitory avoidance, choosing of bowls with sucrose and feeding behavior cessation after auditory signal. For all three tasks, parameters of reproduction of the learned skills improved after per oral administration of potentiated antibodies to S-100B antigen immediately after learning. Possible mechanisms of the anti-S-100B antibodies influence on memory formation are discussed.
Collapse
|
223
|
House RP, Pozzuto M, Patel P, Dulyaninova NG, Li ZH, Zencheck WD, Vitolo MI, Weber DJ, Bresnick AR. Two functional S100A4 monomers are necessary for regulating nonmuscle myosin-IIA and HCT116 cell invasion. Biochemistry 2011; 50:6920-32. [PMID: 21721535 DOI: 10.1021/bi200498q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
S100A4, a member of the Ca(2+)-activated S100 protein family, regulates the motility and invasiveness of cancer cells. Moreover, high S100A4 expression levels correlate with poor patient survival in several cancers. Although biochemical, biophysical, and structural data indicate that S100A4 is a noncovalent dimer, it is unknown if two functional S100A4 monomers are required for the productive recognition of protein targets and the promotion of cell invasion. To address this question, we created covalently linked S100A4 dimers using a glycine rich flexible linker. The single-chain S100A4 (sc-S100A4) proteins exhibited wild-type affinities for calcium and nonmuscle myosin-IIA, retained the ability to regulate nonmuscle myosin-IIA assembly, and promoted tumor cell invasion when expressed in S100A4-deficient colon carcinoma cells. Mutation of the two calcium-binding EF-hands in one monomer, while leaving the other monomer intact, caused a 30-60-fold reduction in binding affinity for nonmuscle myosin-IIA concomitant with a weakened ability to regulate the monomer-polymer equilibrium of nonmuscle myosin-IIA. Moreover, sc-S100A4 proteins with one monomer deficient in calcium responsiveness did not support S100A4-mediated colon carcinoma cell invasion. Cross-linking and titration data indicate that the S100A4 dimer binds a single myosin-IIA target peptide. These data are consistent with a model in which a single peptide forms interactions in the vicinity of the canonical target binding cleft of each monomer in such a manner that both target binding sites are required for the efficient interaction with myosin-IIA.
Collapse
Affiliation(s)
- Reniqua P House
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
224
|
Reference ranges for serum S100B protein during the first three years of life. Clin Biochem 2011; 44:927-9. [DOI: 10.1016/j.clinbiochem.2011.05.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/22/2011] [Accepted: 05/02/2011] [Indexed: 11/21/2022]
|
225
|
HOXC11-SRC-1 regulation of S100beta in cutaneous melanoma: new targets for the kinase inhibitor dasatinib. Br J Cancer 2011; 105:118-23. [PMID: 21654685 PMCID: PMC3137411 DOI: 10.1038/bjc.2011.193] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background: Cutaneous melanoma is an aggressive disease. S100beta is an established biomarker of disease progression; however, the mechanism of its regulation in melanoma is undefined. Methods: Expression of HOXC11 and SRC-1 was examined by immunohistochemistry and immunofluorescence. Molecular and cellular techniques were used to investigate regulation of S100beta, including, western blot, qPCR, ChIP and migration assays. Results: Expression levels of the transcription factor HOXC11 and its coactivator SRC-1 were significantly elevated in malignant melanoma in comparison with benign nevi (P<0.001 and P=0.017, respectively, n=80), and expression of HOXC11 and SRC-1 in the malignant tissue associated with each other (P<0.001). HOXC11 recruitment to the promoter of S100beta was observed in the primary melanoma cell line SKMel28. S100beta expression was found to be dependant on both HOXC11 and SRC-1. Treatment with the Src/Abl inhibitor, dasatinib, reduced HOXC11–SRC-1 interaction and prevented recruitment of HOXC11 to the S100beta promoter. Dasatinib inhibited both mRNA and protein levels of S100beta and reduced migration of the metastatic cell line MeWo. Conclusion: We have defined a signalling mechanism regulating S100beta in melanoma, which can be modulated by dasatinib. Profiling patients for expression of key markers of this network has the potential to increase the efficacy of dasatinib treatment.
Collapse
|
226
|
Lee JY, Kim BJ, Sim G, Kim GT, Kang D, Jung JH, Hwa JS, Kwak YJ, Choi YJ, Park YS, Han J, Lee CS, Kang KR. Spinal cord injury markedly altered protein expression patterns in the affected rat urinary bladder during healing stages. J Korean Med Sci 2011; 26:814-23. [PMID: 21655070 PMCID: PMC3102878 DOI: 10.3346/jkms.2011.26.6.814] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/05/2011] [Indexed: 01/01/2023] Open
Abstract
The influence of spinal cord injury (SCI) on protein expression in the rat urinary bladder was assessed by proteomic analysis at different time intervals post-injury. After contusion SCI between T9 and T10, bladder tissues were processed by 2-DE and MALDI-TOF/MS at 6 hr to 28 days after SCI to identify proteins involved in the healing process of SCI-induced neurogenic bladder. Approximately 1,000 spots from the bladder of SCI and sham groups were visualized and identified. At one day after SCI, the expression levels of three protein were increased, and seven spots were down-regulated, including heat shock protein 27 (Hsp27) and heat shock protein 20 (Hsp20). Fifteen spots such as S100-A11 were differentially expressed seven days post-injury, and seven proteins including transgelin had altered expression patterns 28 days after injury. Of the proteins with altered expression levels, transgelin, S100-A11, Hsp27 and Hsp20 were continuously and variably expressed throughout the entire post-SCI recovery of the bladder. The identified proteins at each time point belong to eight functional categories. The altered expression patterns identified by 2-DE of transgelin and S100-A11 were verified by Western blot. Transgelin and protein S100-A11 may be candidates for protein biomarkers in the bladder healing process after SCI.
Collapse
Affiliation(s)
- Ji-Young Lee
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Bong Jo Kim
- MRCND and Department of Psychiatry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Gyujin Sim
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Gyu-Tae Kim
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Dawon Kang
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jae Hun Jung
- MRCND and Department of Urology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Jeong Seok Hwa
- MRCND and Department of Urology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Yeon Ju Kwak
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Yeon Jin Choi
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Young Sook Park
- Department of Physical Medicine and Rehabilitation, Changwon Samsung Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jaehee Han
- MRCND and Department of Physiology, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Cheol Soon Lee
- MRCND and Department of Psychiatry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| | - Kee Ryeon Kang
- MRCND and Department of Biochemistry, BK21 Program for Biomedical Sciences, School of Medicine and Institute of Health Sciences, Gyeongsang National University, Jinju, Korea
| |
Collapse
|
227
|
Mattusch C, Diederich KW, Schmidt A, Scheinert D, Thiele H, Schuler G, Desch S. Effect of Carotid Artery Stenting on the Release of S-100B and Neurone-Specific Enolase. Angiology 2011; 62:376-80. [DOI: 10.1177/0003319710387920] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Serum levels of S-100B and neurone-specific enolase (NSE) reflect cerebral injury in a variety of neurological conditions such as stroke, traumatic brain injury, and cardiac arrest. There are limited data on the release of S-100B and NSE following carotid artery stenting (CAS). In 22 patients undergoing CAS, serial blood samples for S-100B and NSE were collected before and 2, 4, and 6 to 8 hours after the procedure. A group of 20 patients with significant CAS undergoing purely diagnostic angiography served as controls. A significant increase in S-100B levels was observed 2 hours after the procedure in patients with CAS (P = .001) with a gradual decline over the next hours. In contrast, patients who underwent purely diagnostic angiography did not show significant changes in S-100B levels up to 8 hours after the procedure. Neither patients with CAS nor those undergoing diagnostic angiography displayed any significant changes in serial NSE levels.
Collapse
Affiliation(s)
- Christiane Mattusch
- University of Leipzig-Heart Center, Department of Internal Medicine/Cardiology, Leipzig, Germany
| | - Klaus-Werner Diederich
- University of Leipzig-Heart Center, Department of Internal Medicine/Cardiology, Leipzig, Germany
| | - Andrej Schmidt
- Park Hospital and Heart Center, Department of Angiology, Leipzig, Germany
| | - Dierk Scheinert
- Park Hospital and Heart Center, Department of Angiology, Leipzig, Germany
| | - Holger Thiele
- University of Leipzig-Heart Center, Department of Internal Medicine/ Cardiology, Leipzig, Germany
| | - Gerhard Schuler
- University of Leipzig-Heart Center, Department of Internal Medicine/ Cardiology, Leipzig, Germany
| | - Steffen Desch
- University of Leipzig-Heart Center, Department of Internal Medicine/ Cardiology, Leipzig, Germany,
| |
Collapse
|
228
|
Jonsson O, Morell A, Zemgulis V, Lundström E, Tovedal T, Einarsson GM, Thelin S, Ahlström H, Björnerud A, Lennmyr F. Minimal Safe Arterial Blood Flow During Selective Antegrade Cerebral Perfusion at 20° Centigrade. Ann Thorac Surg 2011; 91:1198-205. [DOI: 10.1016/j.athoracsur.2010.12.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 12/23/2010] [Accepted: 12/27/2010] [Indexed: 11/30/2022]
|
229
|
Cirillo C, Sarnelli G, Esposito G, Turco F, Steardo L, Cuomo R. S100B protein in the gut: The evidence for enteroglial-sustained intestinal inflammation. World J Gastroenterol 2011; 17:1261-6. [PMID: 21455324 PMCID: PMC3068260 DOI: 10.3748/wjg.v17.i10.1261] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/06/2023] Open
Abstract
Glial cells in the gut represent the morphological and functional equivalent of astrocytes and microglia in the central nervous system (CNS). In recent years, the role of enteric glial cells (EGCs) has extended from that of simple nutritive support for enteric neurons to that of being pivotal participants in the regulation of inflammatory events in the gut. Similar to the CNS astrocytes, the EGCs physiologically express the S100B protein that exerts either trophic or toxic effects depending on its concentration in the extracellular milieu. In the CNS, S100B overexpression is responsible for the initiation of a gliotic reaction by the release of pro-inflammatory mediators, which may have a deleterious effect on neighboring cells. S100B-mediated pro-inflammatory effects are not limited to the brain: S100B overexpression is associated with the onset and maintenance of inflammation in the human gut too. In this review we describe the major features of EGCs and S100B protein occurring in intestinal inflammation deriving from such.
Collapse
|
230
|
Apori AA, Herr AE. Homogeneous immunosubtraction integrated with sample preparation enabled by a microfluidic format. Anal Chem 2011; 83:2691-8. [PMID: 21375345 DOI: 10.1021/ac103219x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunosubtraction is a powerful and resource-intensive laboratory medicine assay that reports both protein mobility and binding specificity. To expedite and automate this electrophoretic assay, we report on advances to the electrophoretic immunosubtraction assay by introducing a homogeneous, not heterogeneous, format with integrated sample preparation. To accomplish homogeneous immunosubtraction, a step-decrease in separation matrix pore-size at the head of a polyacrylamide gel electrophoresis (PAGE) separation channel enables "subtraction" of target analyte when capture antibody is present (as the large immune-complex is excluded from PAGE), but no subtraction when capture antibody is absent. Inclusion of sample preparation functionality via small pore size polyacrylamide membranes is also key to automated operation (i.e., sample enrichment, fluorescence sample labeling, and mixing of sample with free capture antibody). Homogeneous sample preparation and assay operation allows on-the-fly, integrated subtraction of one to multiple protein targets and reuse of each device. Optimization of the assay is detailed which allowed for ~95% subtraction of target with 20% non-specific extraction of large species at the optimal antibody-antigen ratio, providing conditions needed for selective target identification. We demonstrate the assay on putative markers of injury and inflammation in cerebrospinal fluid (CSF), an emerging area of diagnostics research, by rapidly reporting protein mobility and binding specificity within the sample matrix. We simultaneously detect S100B and C-reactive protein, suspected biomarkers for traumatic brain injury (TBI), in ~2 min. Lastly, we demonstrate S100B detection (65 nM) in raw human CSF with an estimated lower limit of detection of 3.25 nM, within the clinically relevant concentration range for detecting TBI in CSF. Beyond the novel CSF assay introduced here, a fully automated immunosubtraction assay would impact a spectrum of routine but labor and time-intensive laboratory medicine assays.
Collapse
Affiliation(s)
- Akwasi A Apori
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, USA
| | | |
Collapse
|
231
|
Alkafafy M, Elnasharty M, Sayed-Ahmed A, Abdrabou M. Immunohistochemical studies of the epididymal duct in Egyptian water buffalo (Bubalus bubalis). Acta Histochem 2011; 113:96-102. [PMID: 19836061 DOI: 10.1016/j.acthis.2009.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 08/16/2009] [Accepted: 08/17/2009] [Indexed: 10/20/2022]
Abstract
Using immunohistochemistry (IHC), this study aimed to evaluate the regional distribution pattern of some biologically active proteins in the epididymis of Egyptian water buffalo and to determine the structural-functional relationships of the different epididymal structures. Wax-embedded sections from different regions of the epididymal duct from adult, clinically healthy, buffalo bulls were used. Primary antibodies against angiotensin converting enzyme (ACE), S-100, galactosyltransferase (GalTase), alpha smooth muscle actin (α-SMA), connexin 43 (Cx43) and vascular endothelial growth factor (VEGF) were used for immunohistochemical studies. The results showed that, in addition to the well-known principal and basal cells, the epididymal epithelium, similar to that of other species, possessed apical cells and intraepithelial leukocytes. IHC showed that, with the exception of VEGF which reacted negatively, all antibodies used displayed variable reactivity in the different epididymal structures. Apical cells expressed a strong reaction with ACE along the entire length of the duct. The principal cells in the caput epididymis exhibited a distinct reactivity with S-100 and GalTase. The peritubular muscular coat displayed a marked immunostaining for α-SMA and for Cx43. In conclusion these findings showed a regional-specific distribution pattern, distinct from that in bovine bulls. Some potential functional capacities, especially absorptive and secretory ones, are discussed in relation to the different epididymal regions.
Collapse
|
232
|
Characterization of the deleted in autism 1 protein family: implications for studying cognitive disorders. PLoS One 2011; 6:e14547. [PMID: 21283809 PMCID: PMC3023760 DOI: 10.1371/journal.pone.0014547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2010] [Accepted: 12/21/2010] [Indexed: 12/21/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of commonly occurring, highly-heritable developmental disabilities. Human genes c3orf58 or Deleted In Autism-1 (DIA1) and cXorf36 or Deleted in Autism-1 Related (DIA1R) are implicated in ASD and mental retardation. Both gene products encode signal peptides for targeting to the secretory pathway. As evolutionary medicine has emerged as a key tool for understanding increasing numbers of human diseases, we have used an evolutionary approach to study DIA1 and DIA1R. We found DIA1 conserved from cnidarians to humans, indicating DIA1 evolution coincided with the development of the first primitive synapses. Nematodes lack a DIA1 homologue, indicating Caenorhabditis elegans is not suitable for studying all aspects of ASD etiology, while zebrafish encode two DIA1 paralogues. By contrast to DIA1, DIA1R was found exclusively in vertebrates, with an origin coinciding with the whole-genome duplication events occurring early in the vertebrate lineage, and the evolution of the more complex vertebrate nervous system. Strikingly, DIA1R was present in schooling fish but absent in fish that have adopted a more solitary lifestyle. An additional DIA1-related gene we named DIA1-Like (DIA1L), lacks a signal peptide and is restricted to the genomes of the echinoderm Strongylocentrotus purpuratus and cephalochordate Branchiostoma floridae. Evidence for remarkable DIA1L gene expansion was found in B. floridae. Amino acid alignments of DIA1 family gene products revealed a potential Golgi-retention motif and a number of conserved motifs with unknown function. Furthermore, a glycine and three cysteine residues were absolutely conserved in all DIA1-family proteins, indicating a critical role in protein structure and/or function. We have therefore identified a new metazoan protein family, the DIA1-family, and understanding the biological roles of DIA1-family members will have implications for our understanding of autism and mental retardation.
Collapse
|
233
|
Liu J, Wang H, Zhang L, Xu Y, Deng W, Zhu H, Qin C. S100B Transgenic Mice Develop Features of Parkinson's Disease. Arch Med Res 2011; 42:1-7. [DOI: 10.1016/j.arcmed.2011.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/22/2010] [Indexed: 11/30/2022]
|
234
|
Filippidis AS, Papadopoulos DC, Kapsalaki EZ, Fountas KN. Role of the S100B serum biomarker in the treatment of children suffering from mild traumatic brain injury. Neurosurg Focus 2010; 29:E2. [PMID: 21039136 DOI: 10.3171/2010.8.focus10185] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The aim of this study was to provide a systematic update of the current literature regarding the clinical role of the S100B serum biomarker in the initial evaluation of children who have sustained a mild traumatic brain injury (TBI). METHODS Searches in MEDLINE were defined with the keywords "mild TBI children S100," "mild TBI pediatric S100," and "children S100 brain injury." From the pool of obtained studies, those that had the inclusion criteria of mild TBI only or mixed types of TBI but including detailed information about groups of children with mild TBI were used. RESULTS Few studies were identified and fewer included more than 100 cases. The prospective studies showed that the S100B biomarker levels could be influenced by patient age and the time frame between head injury and blood sampling. Moreover, extracranial sources of S100B or additional injuries could influence the measured levels of this biomarker. A normal value of S100B in children with mild TBI could rule out injury-associated abnormalities on CT scans in the majority of reported cases. CONCLUSIONS The vulnerability of S100B serum levels to the influences of patient age, blood sampling time, and extracranial S100B release limits the biomarker's role in the initial evaluation of children with mild TBI. The application of S100B in pediatric mild TBI cases has an elusive role, although it could help in selected cases to avoid unnecessary head CT scans.
Collapse
Affiliation(s)
- Aristotelis S Filippidis
- Department of Neurosurgery, University Hospital of Larissa, School of Medicine, University of Thessaly, Greece
| | | | | | | |
Collapse
|
235
|
Gorsler T, Murzik U, Ulbricht T, Hentschel J, Hemmerich P, Melle C. DNA damage-induced translocation of S100A11 into the nucleus regulates cell proliferation. BMC Cell Biol 2010; 11:100. [PMID: 21167017 PMCID: PMC3018407 DOI: 10.1186/1471-2121-11-100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 12/17/2010] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Proteins are able to react in response to distinct stress stimuli by alteration of their subcellular distribution. The stress-responsive protein S100A11 belongs to the family of multifunctional S100 proteins which have been implicated in several key biological processes. Previously, we have shown that S100A11 is directly involved in DNA repair processes at damaged chromatin in the nucleus. To gain further insight into the underlying mechanism subcellular trafficking of S100A11 in response to DNA damage was analyzed. RESULTS We show that DNA damage induces a nucleolin-mediated translocation of S100A11 from the cytoplasm into the nucleus. This translocation is impeded by inhibition of the phosphorylation activity of PKCα. Translocation of S100A11 into the nucleus correlates with an increased cellular p21 protein level. Depletion of nucleolin by siRNA severely impairs translocation of S100A11 into the nucleus resulting in a decreased p21 protein level. Additionally, cells lacking nucleolin showed a reduced colony forming capacity. CONCLUSIONS These observations suggest that regulation of the subcellular distribution of S100A11 plays an important role in the DNA damage response and p21-mediated cell cycle control.
Collapse
Affiliation(s)
- Theresa Gorsler
- Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, University Hospital Jena, 07740 Jena, Germany
- Current Address: Abt. Molekulare Onkologie, Universitätsmedizin Göttingen, Georg-August-Universität, 37077 Göttingen, Germany
| | - Ulrike Murzik
- Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, University Hospital Jena, 07740 Jena, Germany
- Current Address: Membrane Trafficking Group; Fritz Lipmann Institut (FLI) - Leibniz Institute for Age Research, 07743 Jena, Germany
| | - Tobias Ulbricht
- Department of Molecular Biology, Fritz Lipmann Institut (FLI) - Leibniz Institute for Age Research, 07743 Jena, Germany
| | - Julia Hentschel
- Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, University Hospital Jena, 07740 Jena, Germany
| | - Peter Hemmerich
- Department of Molecular Biology, Fritz Lipmann Institut (FLI) - Leibniz Institute for Age Research, 07743 Jena, Germany
| | - Christian Melle
- Core Unit Chip Application (CUCA), Institute of Human Genetics and Anthropology, University Hospital Jena, 07740 Jena, Germany
- Current Address: Biomolecular Photonics Group, University Hospital Jena, 07740 Jena, Germany
| |
Collapse
|
236
|
Shehab HA, Nassar YH. Neuromarkers as diagnostic adjuvant to cranial CT in closed traumatic brain injury patients admitted to ICU: A preliminary comparative study. EGYPTIAN JOURNAL OF ANAESTHESIA 2010. [DOI: 10.1016/j.egja.2010.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Hany A. Shehab
- Department of Anaesthesia
Faculty of Medicine
Cairo University
Cairo Egypt
| | - Yaser H. Nassar
- Departments of Medical Biochemistry
Faculty of Medicine
Cairo University
Cairo Egypt
| |
Collapse
|
237
|
Sub-acute effects of diazinon on biochemical indices and specific biomarkers in rats: Protective effects of crocin and safranal. Food Chem Toxicol 2010; 48:2803-8. [DOI: 10.1016/j.fct.2010.07.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2010] [Revised: 06/20/2010] [Accepted: 07/07/2010] [Indexed: 11/23/2022]
|
238
|
Baker AJ, Rhind SG, Morrison LJ, Black S, Crnko NT, Shek PN, Rizoli SB. Resuscitation with hypertonic saline-dextran reduces serum biomarker levels and correlates with outcome in severe traumatic brain injury patients. J Neurotrauma 2010; 26:1227-40. [PMID: 19637968 DOI: 10.1089/neu.2008.0868] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In the treatment of severe traumatic brain injury (TBI), the choice of fluid and osmotherapy is important. There are practical and theoretical advantages to the use of hypertonic saline. S100B, neuron-specific enolase (NSE), and myelin-basic protein (MBP) are commonly assessed biomarkers of brain injury with potential utility as diagnostic and prognostic indicators of outcome after TBI, but they have not previously been studied in the context of fluid resuscitation. This randomized controlled trial compared serum concentrations of S100B, NSE, and MBP in adult severe TBI patients resuscitated with 250 mL of 7.5% hypertonic saline plus 6% dextran70 (HSD; n = 31) versus 0.9% normal saline (NS; n = 33), and examined their relationship with neurological outcome at discharge. Blood samples drawn on admission (<or=3 h post-injury), and at 12, 24, and 48 h post-resuscitation were assayed by ELISA for the selected biomarkers. Serial comparisons of biomarker concentrations were made by ANOVA, and relationships between biomarkers and outcome were assessed by multiple regression. On admission, mean (+/-SEM) S100B and NSE concentrations were increased 60-fold (0.73 +/- 0.08 microg/L) and sevenfold (37.0 +/- 4.8 microg/L), respectively, in patients resuscitated with NS, compared to controls (0.01 +/- 0.01 and 6.2 +/- 0.6, respectively). Compared with NS resuscitation, S100B and NSE were twofold and threefold lower in HSD-treated patients and normalized within 12 h. MBP levels were not significantly different from controls in either treatment arm until 48 h post-resuscitation, when a delayed increase (0.58 +/- 0.29 microg/L) was observed in NS-treated patients. Biomarkers were elevated in the patient group showing an unfavorable outcome. HSD-resuscitated patients with favorable outcomes exhibited the lowest serum S100B and NSE concentrations, while maximal levels were found in NS-treated patients with unfavorable outcomes. The lowest biomarker levels were seen in survivors resuscitated with HSD, while maximal levels were in NS-resuscitated patients with fatal outcome. Pre-hospital resuscitation with HSD is associated with a reduction in serum S100B, NSE, and MBP concentrations, which are correlated with better outcome after severe TBI.
Collapse
Affiliation(s)
- Andrew J Baker
- Brain Injury Laboratory, Cara Phelan Centre for Trauma Research, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada.
| | | | | | | | | | | | | |
Collapse
|
239
|
Abstract
BACKGROUND Children with head trauma are frequently seen in many emergency units. The clinical evaluation of these patients is difficult for a number of reasons and improved diagnostic tools are needed. S-100B, a protein found in glial cells, has previously been shown to be a sensible marker for brain damage after head injury in adults, but few studies have focused on its use in children. METHODS In this study, 111 children with head trauma were included and venous blood and urine samples were taken at arrival (S1 and U1) and 6 hours later (S2 and U2). S-100B levels were analyzed. Clinical and radiologic evaluations were performed according to hospital routine. Two groups were identified- group 1: no computed tomography (CT) scan performed ora CT scan without any sign of trauma-related intracranial pathology (n = 105). Group 2: A CT scan with signs of trauma-related intracranial pathology (n = 6). RESULTS In group 1, the median (inter quartile range) serum S-100B value in S1-samples was 0.111 microg/L (0.086-0.153), and in group 2, it was 0.282 microg/L (0.195-1.44) (p < 0.01). Also, S2 values significantly differed between the two groups. Urine values were, however, not significantly differing between the groups. CONCLUSIONS Serum S-100B values within 6 hours after head trauma in children were significantly higher in patients with intracranial pathology compared with those without intracranial complications. Identification of these high-risk patients already in the emergency department is of major importance, and we suggest that S-100B could be a valuable diagnostic tool in addition to those used in clinical practice today.
Collapse
|
240
|
Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect Immun 2010; 78:5126-37. [PMID: 20823201 DOI: 10.1128/iai.00388-10] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vulvovaginal candidiasis (VVC), caused by Candida species, is a significant problem in women of childbearing age. Similar to clinical observations, a robust vaginal polymorphonuclear neutrophil (PMN) migration occurs in a subset of mice without affecting vaginal fungal burden. We hypothesize that the vaginal PMN infiltrate and accompanying inflammation are not protective but instead are responsible for the symptoms of infection. The purpose of this study was to identify the signal(s) associated with the PMN response in the established mouse model. Vaginal lavage fluid from inoculated mice were categorized base on PMN counts, evaluated for PMN chemotactic activity and analyzed by SDS-PAGE and mass spectrometry (MS) for unique protein identification. The lavage fluid from inoculated mice with high, but not low, PMN levels showed increased chemotactic activity. Likewise, SDS-PAGE of lavage fluid with high PMN levels showed distinct protein patterns. MS revealed that bands at 6 and 14 kDa matched the PMN chemotactic calcium-binding proteins (CBPs), S100A8 and S100A9, respectively. The presence of the CBPs in lavage fluid was confirmed by Western blots and enzyme-linked immunosorbent assay. Vaginal tissues and epithelial cells from inoculated mice with high PMN levels stained more intensely and exhibited increased mRNA transcripts for both proteins compared to those in mice with low PMN levels. Subsequent antibody neutralization showed significant abrogation of the chemotactic activity when the lavage fluid was treated with anti-S100A8, but not anti-S100A9, antibodies. These results reveal that the PMN chemotactic CBP S100A8 and S100A9 are produced by vaginal epithelial cells following interaction with Candida and that S100A8 is a strong candidate responsible for the robust PMN migration during experimental VVC.
Collapse
|
241
|
Weinberg AM, Castellani C. Role of Neuroprotein S-100B in the Diagnostic of Pediatric Mild Brain Injury. Eur J Trauma Emerg Surg 2010; 36:318-24. [PMID: 26816036 DOI: 10.1007/s00068-010-1120-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Accepted: 06/12/2010] [Indexed: 01/21/2023]
Abstract
Traumatic brain injury is one of the leading causes of death and disability in children and adolescents. Patients with moderate or severe lesions can be readily recognized clinically, require immediate radiologic diagnostics by computed tomography (CT) or magnetic resonance imaging (MRI), admission to intensive care units, and, in some cases, will go on to require neurosurgical intervention. Patients with mild traumatic brain injuries (MTBIs) are diagnostically challenging. Often, the event is unobserved and head injury can only be suspected. Clinical symptoms are unreliable and clinical findings from neurological examination have to be interpreted with care. As a small percentage of MTBI patients progress to have a life-threatening intracranial hemorrhage, the recognition of this group of patients and their judicious and timely management is, therefore, an important goal. Subjecting every MTBI patient to a cranial CT scanning results in high costs and unnecessary exposure to ionizing radiation. Admitting all MTBI patients for observation and performing CTs only in case of clinical deterioration is costly and a substantial drain on resources, not to mention the radiation exposure and a source of stress for the majority of patients. Current European guidelines for diagnostics and therapy in MTBI patients are only partially applicable to the pediatric population. This article reviews the clinical problem, treatment options and guidelines, as well as diagnostic tools, with special focus on neuroprotein S-100B in pediatric and adolescent patients with MTBIs.
Collapse
Affiliation(s)
| | - Christoph Castellani
- Department of Pediatric and Adolescent Surgery, Medical University Graz, Graz, Austria. .,Department of Surgery, District Hospital Vorau, Vorau, Austria. .,Department of Pediatric and Adolescent Surgery, Medical University Graz, Auenbruggerplatz 34, 8036, Graz, Austria.
| |
Collapse
|
242
|
Tagirova RR, Timoshenko AK, Gainutdinov KL, Shtark MB, Epshtein OI. Serotonin precursor 5-hydroxytryptophan disturbs the protective effect of low doses of antibodies to S100B protein during the formation of long-term sensitization. Bull Exp Biol Med 2010; 148:560-2. [PMID: 20396741 DOI: 10.1007/s10517-010-0765-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
We studied the effect of ultralow doses of antibodies to calcium-binding protein S-100B and 5-hydroxytryptophan, a metabolic precursor of serotonin, on the formation of long-term sensitization as a neurobiological model of anxiety and depression. Daily administration of antibodies to S-100B to edible snail before the formation of long-term sensitization prevents its development. 5-Hydroxytryptophan administered before the formation of long-term sensitization abolished the protective effect of antibodies to S-100B protein.
Collapse
Affiliation(s)
- R R Tagirova
- Kazan' Physicotechnical Institute, Russian Academy of Sciences, Novosibirsk
| | | | | | | | | |
Collapse
|
243
|
Paus E, Haugen MH, Olsen KH, Flatmark K, Maelandsmo GM, Nilsson O, Röijer E, Lundin M, Fermér C, Samsonova M, Lebedin Y, Stigbrand T. TD-11 workshop report: characterization of monoclonal antibodies to S100 proteins. Tumour Biol 2010; 32:1-12. [PMID: 20652782 DOI: 10.1007/s13277-010-0073-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 06/17/2010] [Indexed: 11/30/2022] Open
Abstract
Fourteen monoclonal antibodies with specificity against native or recombinant antigens within the S100 family were investigated with regard to immunoreactivity. The specificities of the antibodies were studied using ELISA tests, Western blotting epitope mapping using competitive assays, and QCM technology. The mimotopes of antibodies against S100A4 were determined by random peptide phage display libraries. Antibody specificity was also tested by IHC and pair combinations evaluated for construction of immunoradiometric assays for S100B. Out of the 14 antibodies included in this report eight demonstrated specificity to S100B, namely MAbs 4E3, 4D2, S23, S53, 6G1, S21, S36, and 8B10. This reactivity could be classified into four different epitope groups using competing studies. Several of these MAbs did display minor reactivity to other S100 proteins when they were presented in denatured form. Only one of the antibodies, MAb 3B10, displayed preferential reactivity to S100A1; however, it also showed partial cross-reactivity with S100A10 and S100A13. Three antibodies, MAbs 20.1, 22.3, and S195, were specific for recombinant S100A4 in solution. Western blot revealed that MAb 20.1 and 22.3 recognized linear epitopes of S100A4, while MAb S195 reacted with a conformational dependent epitope. Surprisingly, MAb 14B3 did not demonstrate any reactivity to the panel of antigens used in this study.
Collapse
Affiliation(s)
- Elisabeth Paus
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
244
|
Intracellular and Extracellular Effects of S100B in the Cardiovascular Response to Disease. Cardiovasc Psychiatry Neurol 2010; 2010:206073. [PMID: 20672023 PMCID: PMC2909713 DOI: 10.1155/2010/206073] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 05/06/2010] [Indexed: 01/11/2023] Open
Abstract
S100B, a calcium-binding protein of the EF-hand type, exerts both intracellular and extracellular functions. S100B is induced in the myocardium of human subjects and an experimental rat model following myocardial infarction. Forced expression of S100B in neonatal rat myocyte cultures and high level expression of S100B in transgenic mice hearts inhibit cardiac hypertrophy and the associated phenotype but augments myocyte apoptosis following myocardial infarction. By contrast, knocking out S100B, augments hypertrophy, decreases apoptosis and preserves cardiac function following myocardial infarction. Expression of S100B in aortic smooth muscle cells inhibits cell proliferation and the vascular response to adrenergic stimulation. S100B induces apoptosis by an extracellular mechanism via interaction with the receptor for advanced glycation end products and activating ERK1/2 and p53 signaling. The intracellular and extracellular roles of S100B are attractive therapeutic targets for the treatment of both cardiac and vascular diseases.
Collapse
|
245
|
Lin J, Yang Q, Wilder PT, Carrier F, Weber DJ. The calcium-binding protein S100B down-regulates p53 and apoptosis in malignant melanoma. J Biol Chem 2010; 285:27487-27498. [PMID: 20587415 DOI: 10.1074/jbc.m110.155382] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The S100B-p53 protein complex was discovered in C8146A malignant melanoma, but the consequences of this interaction required further study. When S100B expression was inhibited in C8146As by siRNA (siRNA(S100B)), wt p53 mRNA levels were unchanged, but p53 protein, phosphorylated p53, and p53 gene products (i.e. p21 and PIDD) were increased. siRNA(S100B) transfections also restored p53-dependent apoptosis in C8146As as judged by poly(ADP-ribose) polymerase cleavage, DNA ladder formation, caspase 3 and 8 activation, and aggregation of the Fas death receptor (+UV); whereas, siRNA(S100B) had no effect in SK-MEL-28 cells containing elevated S100B and inactive p53 (p53R145L mutant). siRNA(S100B)-mediated apoptosis was independent of the mitochondria, because no changes were observed in mitochondrial membrane potential, cytochrome c release, caspase 9 activation, or ratios of pro- and anti-apoptotic proteins (BAX, Bcl-2, and Bcl-X(L)). As expected, cells lacking S100B (LOX-IM VI) were not affected by siRNA(S100B), and introduction of S100B reduced their UV-induced apoptosis activity by 7-fold, further demonstrating that S100B inhibits apoptosis activities in p53-containing cells. In other wild-type p53 cells (i.e. C8146A, UACC-2571, and UACC-62), S100B was found to contribute to cell survival after UV treatment, and for C8146As, the decrease in survival after siRNA(S100B) transfection (+UV) could be reversed by the p53 inhibitor, pifithrin-alpha. In summary, reducing S100B expression with siRNA was sufficient to activate p53, its transcriptional activation activities, and p53-dependent apoptosis pathway(s) in melanoma involving the Fas death receptor and perhaps PIDD. Thus, a well known marker for malignant melanoma, S100B, likely contributes to cancer progression by down-regulating the tumor suppressor protein, p53.
Collapse
Affiliation(s)
- Jing Lin
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Maryland 21201
| | - Qingyuan Yang
- Department of Radiation Oncology, University of Maryland School of Medicine, Maryland 21201
| | - Paul T Wilder
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201
| | - France Carrier
- Department of Radiation Oncology, University of Maryland School of Medicine, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201.
| | - David J Weber
- Department of Biochemistry & Molecular Biology, University of Maryland School of Medicine, Maryland 21201; Marlene and Stewart Greenebaum Cancer Center, Baltimore, Maryland 21201.
| |
Collapse
|
246
|
Adipocytes as an Important Source of Serum S100B and Possible Roles of This Protein in Adipose Tissue. Cardiovasc Psychiatry Neurol 2010; 2010:790431. [PMID: 20672003 PMCID: PMC2905897 DOI: 10.1155/2010/790431] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 05/17/2010] [Indexed: 12/01/2022] Open
Abstract
Adipocytes contain high levels of S100B and in vitro assays indicate a modulated secretion of this protein by hormones that regulate lipolysis, such as glucagon, adrenaline, and insulin. A connection between lipolysis and S100B release has been proposed but definitive evidence is lacking. Although the biological significance of extracellular S100B from adipose tissue is still unclear, it is likely that this tissue might be an important source of serum S100B in situations related, or not, to brain damage. Current knowledge does not preclude the use of this protein in serum as a marker of brain injury or astroglial activation, but caution is recommended when discussing the significance of changes in serum levels where S100B may function as an adipokine, a neurotrophic cytokine, or an alarmin.
Collapse
|
247
|
Li ZH, Dulyaninova NG, House RP, Almo SC, Bresnick AR. S100A4 regulates macrophage chemotaxis. Mol Biol Cell 2010; 21:2598-610. [PMID: 20519440 PMCID: PMC2912347 DOI: 10.1091/mbc.e09-07-0609] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Using a targeted genetic deletion, we show that the S100A4 metastasis factor is required for macrophage recruitment to sites of inflammation in vivo. S100A4−/− primary macrophages display defects in chemotaxis due to myosin-IIA overassembly and altered CSF-1 receptor signaling. These studies establish S100A4 as a regulator of macrophage motility. S100A4, a member of the S100 family of Ca2+-binding proteins, is directly involved in tumor metastasis. In addition to its expression in tumor cells, S100A4 is expressed in normal cells and tissues, including fibroblasts and cells of the immune system. To examine the contribution of S100A4 to normal physiology, we established S100A4-deficient mice by gene targeting. Homozygous S100A4−/− mice are fertile, grow normally and exhibit no overt abnormalities; however, the loss of S100A4 results in impaired recruitment of macrophages to sites of inflammation in vivo. Consistent with these observations, primary bone marrow macrophages (BMMs) derived from S100A4−/− mice display defects in chemotactic motility in vitro. S100A4−/− BMMs form unstable protrusions, overassemble myosin-IIA, and exhibit altered colony-stimulating factor-1 receptor signaling. These studies establish S100A4 as a regulator of physiological macrophage motility and demonstrate that S100A4 mediates macrophage recruitment and chemotaxis in vivo.
Collapse
Affiliation(s)
- Zhong-Hua Li
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|
248
|
Kernt M, Liegl RG, Rueping J, Neubauer AS, Haritoglou C, Lackerbauer CA, Eibl KH, Ulbig MW, Kampik A. Sorafenib protects human optic nerve head astrocytes from light-induced overexpression of vascular endothelial growth factor, platelet-derived growth factor, and placenta growth factor. Growth Factors 2010; 28:211-20. [PMID: 20166888 DOI: 10.3109/08977191003604505] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Growth factors, such as vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and placenta growth factor (PlGF) are key players in the development of diabetic retinopathy, age-related macular degeneration, and other retinal neovascular diseases. Glial cells provide a significant source of retinal growth factor production under physiologic and pathologic conditions. Cumulative light exposure has been linked to increased retinal growth factor expression. Previous reports indicate that sorafenib, an oral multikinase inhibitor, might have a beneficial effect on retinal neovascularization. This study was designed to investigate the effects of sorafenib on light-induced overexpression of growth factors in human retinal glial cells. METHODS Primary human optic nerve head astrocytes (ONHAs) were exposed to white light and incubated with sorafenib. Viability, expression, and secretion of VEGF-A, PDGF-BB, and PlGF and their mRNA were determined by reverse transcription-polymerase chain reaction, immunohistochemistry, and enzyme-linked immunosorbent assay. RESULTS Light exposure decreased cell viability and increased VEGF-A, PDGF-BB, and PlGF expression and secretion. These light-induced effects were significantly reduced when cells were treated with sorafenib at a concentration of 1 microg/ml. CONCLUSION Sorafenib significantly reduced light-induced overexpression of VEGF-A, PDGF-BB, and PlGF in primary human ONHAs. Sorafenib has promising properties as a potential supportive treatment for retinal neovascularization.
Collapse
Affiliation(s)
- M Kernt
- Department of Ophthalmology, Ludwig-Maximilians University, 80336 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
249
|
Abstract
S100A1, a small EF-hand Ca(2+)-binding protein with intracellular and extracellular functions, is predominantly expressed in cardiac muscle where it plays a crucial role as a modulator of Ca(2+) homeostasis, energy metabolism and contractile performance. Essentially, its beneficial effects on heart function have been attributed to its direct interaction with, and effects on, sarcoplasmic reticulum calcium handling proteins sarco(endo) plasmic reticulum Ca(2+) ATPase and the ryanodine receptor. Downregulated levels of S100A1 in cardiomyocytes postmyocardial infarction have been linked to diminished cardiac reserve and contribute to the development of heart failure. Interestingly, S100A1 expression has recently been described in endothelial cells where it is downregulated in heart failure and has been shown to modulate intracellular Ca(2+) levels and nitric oxide production. Absence of the Ca(2+) sensor protein in endothelial cells is associated with endothelial dysfunction and hypertension. Thus, S100A1 is emerging as a potential therapeutic target for diverse cardiovascular conditions.
Collapse
|
250
|
Mood disorders are glial disorders: evidence from in vivo studies. Cardiovasc Psychiatry Neurol 2010; 2010:780645. [PMID: 20585358 PMCID: PMC2878670 DOI: 10.1155/2010/780645] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Accepted: 03/30/2010] [Indexed: 02/07/2023] Open
Abstract
It has recently been suggested that mood disorders can be characterized by glial pathology as indicated by histopathological postmortem findings. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders. This protein might act as a growth and differentiation factor. It is located in, and may actively be released by, astro- and oligodendrocytes. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than bipolar disorder. Successful antidepressive treatment reduces S100B in major depression whereas there is no evidence of treatment effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered. By indicating glial alterations without neuronal changes, serum S100B studies confirm specific glial pathology in mood disorders in vivo. S100B can be regarded as a potential diagnostic biomarker for mood disorders and as a biomarker for successful antidepressive treatment.
Collapse
|