201
|
|
202
|
Abstract
Being highly pathogenic for human and nonhuman primates and the subject of former weapon programmes makes Ebola virus one of the most feared pathogens worldwide today. Due to a lack of licensed pre- and postexposure intervention, the current response depends on rapid diagnostics, proper isolation procedures and supportive care of case patients. Consequently, the development of more specific countermeasures is of high priority for the preparedness of many nations. Over the past years, enhanced research efforts directed to better understand virus replication and pathogenesis have identified potential new targets for intervention strategies. The authors discuss the most promising therapeutic approaches for Ebola haemorrhagic fever as judged by their efficacy in animal models. The current development in this field encourages discussions on how to move some of the experimental approaches towards clinical application.
Collapse
Affiliation(s)
- Ute Ströher
- National Microbiology Laboratory, Public Health Agency of Canada, 1015 Arlington Street, Winnipeg, Manitoba, R3E3R2, Canada.
| | | |
Collapse
|
203
|
Abstract
A taxonomically diverse set of single-stranded ribonucleic acid(ssRNA) viruses from four diverse viral families Arenaviridae,Bunyaviridae, Filoviridae, and Flaviviridae cause an acute systemic febrile syndrome called viral hemorrhagic fever (VHF). The syndrome produces combinations of prostration, malaise, increased vascular permeability, and coagulation maladies. In severe illness,VHF may include generalized bleeding but the bleeding does not typically constitute a life-threatening loss of blood volume. To a certain extent, it is a sign of damage to the vascular endothelium and is an indicator of disease severity in specific target organs. Although the viruses that cause hemorrhagic fever (HF) can productively replicate in endothelial cells, much of the disease pathology including impairment to the vascular system is thought to result primarily from the release of a variety of mediators from virus-infected cells, such as monocytes and macrophages that subsequently alter vascular function and trigger the coagulation disorders that epitomize these infections. While significant progress has been made over the last several years in dissecting out the molecular biology and pathogenesis of the HF viruses, there are currently no vaccines or drugs licensed available for most of the VHFs.
Collapse
Affiliation(s)
- Aileen M Marty
- Battelle Memorial Institute, Suite 601, 1550 Crystal Drive, Arlington, VA 22202-4172, USA.
| | | | | |
Collapse
|
204
|
Manicassamy B, Wang J, Rumschlag E, Tymen S, Volchkova V, Volchkov V, Rong L. Characterization of Marburg virus glycoprotein in viral entry. Virology 2006; 358:79-88. [PMID: 16989883 DOI: 10.1016/j.virol.2006.06.041] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 05/25/2006] [Accepted: 06/01/2006] [Indexed: 11/26/2022]
Abstract
One major determinant of host tropism for filoviruses is viral glycoprotein (GP), which is involved in receptor binding and viral entry. Compared to Ebola GP (EGP), Marburg GP (MGP) is less well characterized in viral entry. In this study, using a human immunodeficiency virus-based pseudotyped virus as a surrogate system, we have characterized the role of MGP in viral entry. We have shown that like EGP, the mucin-like region of MGP (289-501) is not essential for virus entry. We have developed a viral entry interference assay for filoviruses, and using this assay, we have demonstrated that transfection of EGP or MGP in target cells can interfere with EGP/HIV and MGP/HIV pseudotyped virus entry in a dose-dependent manner. These results are consistent with the notion that Ebola and Marburg viruses use the same or a related host molecule(s) for viral entry. Substitutions of the non-conserved residues in MGP1 did not impair MGP-mediated viral entry. Unlike that of EGP1, individual substitutions of many conserved residues of MGP1 exerted severe defects in MGP expression, incorporation to HIV virions, and thus its ability to mediate viral entry. These results indicate that MGP is more sensitive to substitutions of the conserved residues, suggesting that MGP may fold differently from EGP.
Collapse
Affiliation(s)
- Balaji Manicassamy
- Department of Microbiology and Immunology, College of Medicine Research Building, University of Illinois at Chicago, 8133 COMRB, 909 S. Wolcott Ave., Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
205
|
Hartman AL, Dover JE, Towner JS, Nichol ST. Reverse genetic generation of recombinant Zaire Ebola viruses containing disrupted IRF-3 inhibitory domains results in attenuated virus growth in vitro and higher levels of IRF-3 activation without inhibiting viral transcription or replication. J Virol 2006; 80:6430-40. [PMID: 16775331 PMCID: PMC1488969 DOI: 10.1128/jvi.00044-06] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The VP35 protein of Zaire Ebola virus is an essential component of the viral RNA polymerase complex and also functions to antagonize the cellular type I interferon (IFN) response by blocking activation of the transcription factor IRF-3. We previously mapped the IRF-3 inhibitory domain within the C terminus of VP35. In the present study, we show that mutations that disrupt the IRF-3 inhibitory function of VP35 do not disrupt viral transcription/replication, suggesting that the two functions of VP35 are separable. Second, using reverse genetics, we successfully recovered recombinant Ebola viruses containing mutations within the IRF-3 inhibitory domain. Importantly, we show that the recombinant viruses were attenuated for growth in cell culture and that they activated IRF-3 and IRF-3-inducible gene expression at levels higher than that for Ebola virus containing wild-type VP35. In the context of Ebola virus pathogenesis, VP35 may function to limit early IFN-beta production and other antiviral signals generated from cells at the primary site of infection, thereby slowing down the host's ability to curb virus replication and induce adaptive immunity.
Collapse
Affiliation(s)
- Amy L Hartman
- Special Pathogens Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road, MS G-14, Atlanta, GA 30329, USA
| | | | | | | |
Collapse
|
206
|
Parris GE. AIDS: caused by development of resistance to drugs in a non-target intracellular parasite. Med Hypotheses 2006; 68:151-7. [PMID: 16893612 PMCID: PMC7130596 DOI: 10.1016/j.mehy.2006.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Accepted: 06/06/2006] [Indexed: 11/27/2022]
Abstract
The origin of acquired immune disorder syndrome (AIDS) has been the subject of substantial controversy both in the scientific community and in the popular press. The debate involves the mode of transmission of a simian virus (SIV) to humans. Both major camps in the argument presume that humans are normally free of such viruses and assume that once the simian virus was transmitted, it immediately infected some T-cells and caused the release of toxic agents that killed off bystander (uninfected) T-cells resulting in AIDS. The evolution of the Simian virus (SIV) into a human virus (HIV) is regarded as an artifact. In contrast, a fundamentally different hypothesis has been proposed [Parris GE. Med Hypotheses 2004;62(3):354–7] in which it is presumed that in hyper-endemic areas of malaria (central Africa), all primates (humans and non-human primates) have shared a retrovirus that augments their T-cell response to the malaria parasite. The virus can be called “primate T-cell retrovirus” (PTRV). Over thousands of years the virus has crossed species lines many times (with little effect) and typically adapts to the host quickly. In this model, AIDS is seen to be the result of the development of resistance of the virus (PTRV) to continuous exposure to pro-apoptotic (schizonticidal) aminoquinoline drugs used to prevent malaria. The hypothesis was originally proposed based on biochemical activities of the aminoquinolines (e.g., pamaquine (plasmoquine(TM)), primaquine and chloroquine), but recent publications demonstrated that some of these drugs definitely adversely affect HIV and other viruses and logically would cause them to evolve resistance. Review of the timeline that has been created for the evolution of HIV in humans is also shown to be qualitatively and quantitatively consistent with this hypothesis (and not with either version of the conventional hypothesis). SARS and Ebola also fit this pattern.
Collapse
|
207
|
Desselberger U. International symposium: RNA viruses shuttling between animal and man. Future Virol 2006. [DOI: 10.2217/17460794.1.3.305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Ulrich Desselberger
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Molecular Immunology, Padriciano 99, 34012 Trieste, Italy
| |
Collapse
|
208
|
Alazard-Dany N, Volchkova V, Reynard O, Carbonnelle C, Dolnik O, Ottmann M, Khromykh A, Volchkov VE. Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J Gen Virol 2006; 87:1247-1257. [PMID: 16603527 DOI: 10.1099/vir.0.81361-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transient expression of Ebola virus (EBOV) glycoprotein GP causes downregulation of surface proteins, cell rounding and detachment, a phenomenon believed to play a central role in the pathogenicity of the virus. In this study, evidence that moderate expression of GP does not result in such morphological changes was provided. It was shown that GP continuously produced in 293T cells from the Kunjin virus replicon was correctly processed and transported to the plasma membrane without affecting the surface expression of β1 and α5 integrins and major histocompatibility complex I molecules. The level of GP expression in Kunjin replicon GP-expressing cells was similar to that observed in cells infected with EBOV early in infection and lower than that produced in cells transfected with plasmid DNA, phCMV-GP, expressing GP from a strong promoter. Importantly, transient transfection of Kunjin replicon GP-expressing cells with GP-coding plasmid DNA resulted in overexpression of GP, which lead to the downregulation of surface molecules and massive rounding and detachment of transfected cells. Here, it was also demonstrated that cell rounding and downregulation of the surface markers are the late events in EBOV infection, whereas synthesis and massive release of virus particles occur at early steps and do not cause significant cytotoxic effects. These findings indicate that the synthesis of EBOV GP in virus-infected cells is controlled well by several mechanisms that do not allow GP overexpression and hence the early appearance of its cytotoxic properties.
Collapse
Affiliation(s)
- Nathalie Alazard-Dany
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Valentina Volchkova
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Olivier Reynard
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Caroline Carbonnelle
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Olga Dolnik
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Michèle Ottmann
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| | - Alexander Khromykh
- School of Molecular and Microbial Sciences, University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Viktor E Volchkov
- Filovirus Laboratory, Claude Bernard University Lyon 1, INSERM U758, IFR 128 BioSciences Lyon-Gerland, 21 avenue Tony Garnier, 69365 Lyon Cedex 07, France
| |
Collapse
|
209
|
Bukreyev A, Yang L, Zaki SR, Shieh WJ, Rollin PE, Murphy BR, Collins PL, Sanchez A. A single intranasal inoculation with a paramyxovirus-vectored vaccine protects guinea pigs against a lethal-dose Ebola virus challenge. J Virol 2006; 80:2267-79. [PMID: 16474134 PMCID: PMC1395378 DOI: 10.1128/jvi.80.5.2267-2279.2006] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To determine whether intranasal inoculation with a paramyxovirus-vectored vaccine can induce protective immunity against Ebola virus (EV), recombinant human parainfluenza virus type 3 (HPIV3) was modified to express either the EV structural glycoprotein (GP) by itself (HPIV3/EboGP) or together with the EV nucleoprotein (NP) (HPIV3/EboGP-NP). Expression of EV GP by these recombinant viruses resulted in its efficient incorporation into virus particles and increased cytopathic effect in Vero cells. HPIV3/EboGP was 100-fold more efficiently neutralized by antibodies to EV than by antibodies to HPIV3. Guinea pigs infected with a single intranasal inoculation of 10(5.3) PFU of HPIV3/EboGP or HPIV3/EboGP-NP showed no apparent signs of disease yet developed a strong humoral response specific to the EV proteins. When these animals were challenged with an intraperitoneal injection of 10(3) PFU of EV, there were no outward signs of disease, no viremia or detectable EV antigen in the blood, and no evidence of infection in the spleen, liver, and lungs. In contrast, all of the control animals died or developed severe EV disease following challenge. The highly effective immunity achieved with a single vaccine dose suggests that intranasal immunization with live vectored vaccines based on recombinant respiratory viruses may be an advantageous approach to inducing protective responses against severe systemic infections, such as those caused by hemorrhagic fever agents.
Collapse
Affiliation(s)
- Alexander Bukreyev
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|