201
|
Bao J, Lv Y, Liu C, Li S, Yin Z, Yu Y, Zhu L. Performance evaluation of rhamnolipids addition for the biodegradation and bioutilization of petroleum pollutants during the composting of organic wastes with waste heavy oil. iScience 2022; 25:104403. [PMID: 35663019 PMCID: PMC9157225 DOI: 10.1016/j.isci.2022.104403] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/08/2022] [Accepted: 05/09/2022] [Indexed: 01/14/2023] Open
Abstract
Environmental pollution caused by petroleum hydrocarbons is being paid more and more attention worldwide. Surfactants are able to improve the solubility of petroleum hydrocarbons, but their effects on petroleum hydrocarbon degradation in composting systems are still unclear. In this study, the effects on microbial community succession were investigated by adding petroleum hydrocarbons and rhamnolipids during composting of organic wastes. The results showed that the compost and the addition of rhamnolipids could effectively reduce the petroleum hydrocarbon content with an efficiency of 73.52%, compared to 53.81% for the treatment without addition. Network analyses and Structural Equation Model suggested that there were multiple potential petroleum degraders microbes that might be regulated by nitrogen. The findings in this study can also provide an implication for the treatment of petroleum hydrocarbon pollutants from oil-polluted soil, and the technology can be potentially applied on an industrial scale in practice. Effects of rhamnolipids on the removal of petroleum hydrocarbons were investigated The relationship between PDM, APDM, and environmental factors was revealed There was a significant correlation between nitrogen and PDM and APDM Rhamnolipids are bio-resources for effectively removing petroleum hydrocarbons
Collapse
Affiliation(s)
- Jianfeng Bao
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Yuanfei Lv
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Chenchen Liu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Shuangxi Li
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Zhihong Yin
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| | - Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Liandong Zhu
- School of Resources & Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, P.R. China
| |
Collapse
|
202
|
|
203
|
Daâssi D, Qabil Almaghribi F. Petroleum-contaminated soil: environmental occurrence and remediation strategies. 3 Biotech 2022; 12:139. [PMID: 35646506 DOI: 10.1007/s13205-022-03198-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Soil is an environmental matrix that carries life for all living things. With the rise of human activities and the acceleration of population, the soil has been exposed in part to pollution by the discharge of various xenobiotics and persistent pollutants into it. The disposal of toxic substances such as polycyclic aromatic hydrocarbons (PAHs) alters soil properties, affects microbial biodiversity, and damages objects. Considering the mutagenicity, carcinogenicity, and toxicity of petroleum hydrocarbons, the restoration and clean-up of PAH-polluted sites represents an important technological and environmental challenge for sustainable growth and development. Though several treatment methods to remediate PAH-polluted soils exist, interesting bacteria, fungi, and their enzymes receive considerable attention. The aim of the present review is to discuss PAHs' impact on soil properties. Also, this review illustrates physicochemical and biological remediation strategies for treating PAH-contaminated soil. The degradation pathways and contributing factors of microbial PAH-degradation are elucidated. This review also assesses the use of conventional microbial remediation compared to the application of genetically engineered microorganisms (GEM) that can provide a cost-effective and eco-friendly PAH-bioremediation strategy.
Collapse
Affiliation(s)
- Dalel Daâssi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatimah Qabil Almaghribi
- Department of Biology, College of Sciences and Arts, Khulais, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
204
|
Kahraman BF, Altin A, Ozdogan N. Remediation of Pb-diesel fuel co-contaminated soil using nano/bio process: subsequent use of nanoscale zero-valent iron and bioremediation approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:41110-41124. [PMID: 35091952 DOI: 10.1007/s11356-022-18857-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
The effectiveness of the nano/bio process was investigated as a remediation option for co-contaminated soils. Nano/bio process is a hybrid treatment method that may be defined as the use of nanoscale zero-valent iron (nZVI) and bioremediation approaches subsequently/concurrently. Different bioremediation approaches (bioattenuation, biostimulation, and/or bioaugmentation) were performed together with nZVI application to remediate Pb- and diesel fuel-spiked soils. Nutrient (N and P) and activated sludge amendment were made to realize biostimulation and bioaugmentation, respectively. The nZVI application decreased the total percentage of the most mobile and bioavailable soil Pb fractions (exchangeable and carbonate-bound) from 68.3 to 31.7%. The biodegradation levels of nZVI-applied co-contaminated soils were significantly higher than the soils without nZVI indicating the positive effect of the reduced mobility, bioavailability, and toxicity of Pb content. The use of nano/biostimulation or nano/bioaugmentation treatments resulted in higher than 60% total n-alkane degradation, whereas 89.5% degradation was obtained by using nano/biostimulation + bioaugmentation. Hydrocarbon-degrader strains belonging to phyla Actinobacteria, Proteobacteria, or Firmicutes were identified from samples subjected to nano/bio process and the strains from biostimulation and bioaugmentation treatments were different. These results indicate that the stress on the microbial population caused by the co-contamination might be subsided and the biodegradation of alkanes might be improved by using the nano/bio process.
Collapse
Affiliation(s)
- Bekir Fatih Kahraman
- Department of Environmental Engineering, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey.
| | - Ahmet Altin
- Department of Environmental Engineering, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey
| | - Nizamettin Ozdogan
- Department of Environmental Engineering, Zonguldak Bulent Ecevit University, Zonguldak, 67100, Turkey
| |
Collapse
|
205
|
da Silva Correa H, Blum CT, Galvão F, Maranho LT. Effects of oil contamination on plant growth and development: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43501-43515. [PMID: 35386087 DOI: 10.1007/s11356-022-19939-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Oil spills generate several environmental impacts and have become more common with the increase in petroleum extraction, refining, transportation, and trade. In soil, oil contamination increases water and nutrient availability and compaction, directly affecting plant growth and development. Different aspects of phytotoxicity can be observed and will vary according to the characteristics of soil and plants. Oil-contaminated soil also results in negative effects on biomass and changes in leaves and roots. Investigating the effects of oil contamination on plant growth and development can aid in the conservation of plant species and in the development of techniques such as bioremediation and biomonitoring. Thus, this review aims to discuss the main effects of oil contamination on plants, such as environmental stress and morphological, physiological, and anatomical changes, and the strategies developed by plants to survive contamination, as well as to identify plants with phytoremediation potential that can assist in removing oil from the environment.
Collapse
Affiliation(s)
- Hauane da Silva Correa
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Christopher Thomas Blum
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Franklin Galvão
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil
| | - Leila Teresinha Maranho
- Department of Forest Science, Federal University of Paraná, Av. Prof. Lothário Meissner, 632, Curitiba, PR, CEP, 80210-170, Brazil.
| |
Collapse
|
206
|
Annam Renita A, Sathish S, Aravind Kumar J, Nagarajan L, Sakthi Kumaran SJ, Sangeeth S. Surface treated Phoenix sylvestris for bioadsorption of oil from aqueous solution: Isotherms and kinetic studies. ENVIRONMENTAL RESEARCH 2022; 209:112836. [PMID: 35104483 DOI: 10.1016/j.envres.2022.112836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Biosorption is a versatile technique of removing the oil spill - one of the major toxicants that causes water pollution, which threatens the ecological balance of the aquatic ecosystem. The proposed research aims in developing a viable adsorbent from discarded agricultural waste, Phoenix sylvestris, which was surface altered, assessed and utilised as a biosorbent for the effective removal of diesel from aqueous solution in batch adsorption trials. Waste palm leaves, Phoenix sylvestris (RPS)was physically (PMPS) and chemically modified (CMPS) to adsorb diesel in the emulsion. The synthesised materials were characterised by FTIR, SEM, and EDS, confirming a well-defined microporous structure consisting of ionisable groups. The studies indicated optimised conditions of 10 g, 4.5 g and 2 g of RPS, PMPS and CMPS respectively at 303K for an optimised adsorption time of 60 min. Freundlich isotherm agreed well with experimental data, and the kinetic mechanism claimed better results with RPS, PMPS and CMPS for Pseudo first-order model. The adsorbents could be reused five times without much loss of efficiency. From the performed studies, it can be inferred that good adsorption capacities at optimised conditions followed the order of CMPS > PMPS > RPS. Thermodynamic analysis proved the feasibility of such biosorption with exothermic nature predicting spontaneous attraction of oil components to the surface of PMPS and CMPS. Moreover, the density of the CMPS layer rendered proven results for such biosorption displaying a hyperbolic dependency assuring its efficacy. Hence, it can be concluded that the prepared adsorbent from Phoenix sylvestris, an agricultural waste, possess good adsorptive properties.
Collapse
Affiliation(s)
- A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India.
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - J Aravind Kumar
- Department of Biomass and Energy Conversion, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamil Nadu, India
| | - L Nagarajan
- Department of Chemical Engineering, Sriram Engineering College, Chennai, 602024, Tamil Nadu, India
| | - S J Sakthi Kumaran
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| | - S Sangeeth
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamil Nadu, India
| |
Collapse
|
207
|
Optimization of biomass production by autochthonous Pseudomonas sp . MT1A3 as strategy to apply bioremediation in situ in a chronically hydrocarbon-contaminated soil. 3 Biotech 2022; 12:118. [PMID: 35547010 PMCID: PMC9033923 DOI: 10.1007/s13205-022-03183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/03/2022] [Indexed: 11/27/2022] Open
Abstract
These days, petroleum hydrocarbon pollution has become a global problem, because of this, bioremediation is presented as a strategy for cleaning up sites contaminated with organic pollutants, and it has an increasing role in relation to the potential it presents as a non-invasive and cost-effective technology. The aim of this study is to optimize the biomass production of Pseudomonas sp. MT1A3 strain as a soil bioremediation approach for petroleum hydrocarbon polluted environments. Factorial experimental designs were employed to study the effect of several factors of composition medium and incubation conditions on biomass production. Agro-industrial wastes such as peanut oil as carbon source, NaNO3 as nitrogen source and incubation temperature were found to be significant independent variables. These factors were further optimized using Box-Behnken design. Combination of peanut oil 18.69 g/L, NaNO3 2.39 g/L and 26.06 °C incubation temperature was optimum for maximum biomass production of MT1A3 and the model validated in a bioreactor allowed to obtain 9.67 g/L. Based on these results, this autochthonous strain was applied in bioaugmentation as a bioremediation strategy through microcosm designs, reaching 93.52% of total hydrocarbon removal at 60 days. This constitutes a promising alternative for hydrocarbon-contaminated soil. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03183-6.
Collapse
|
208
|
Optimization of conditions for a surfactant-producing strain and application to petroleum hydrocarbon-contaminated soil bioremediation. Colloids Surf B Biointerfaces 2022; 213:112428. [PMID: 35231686 DOI: 10.1016/j.colsurfb.2022.112428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 01/04/2023]
Abstract
Petroleum hydrocarbon-contaminated sites have been mainly remediated through the surfactant-enhanced soil leaching method. However, the commonly used chemical surfactants have poor biocompatibility and are prone to form residues in fields. Therefore, the purpose of this research is to establish an effective system of biosurfactant remediation in the field and provide instructions for common bioremediation challenges. First, wild-type Bacillus amyloliquefaciens A3, which produced lipopeptide biosurfactant, was used to improve the production of biosurfactant by atmosphere and room temperature plasma (ARTP) mutagenesis. Second, the mutant 1-24 was selected from a total of 174 mutants due to the outstanding yield. Subsequently, 1-24 was applied in the soil column leaching experiments and removed 45.44% of petroleum hydrocarbons by changing the relevant enzyme activities. Biosurfactant addition and 1-24 inoculation effectively activated a portion of the petroleum hydrocarbons in the soil columns, and 1-24 presented potential as a desired candidate for bioremediation. This is the first report of using ARTP mutagenesis to improve the production of biosurfactants. Simultaneously, we first propose a theoretical system in which the yield of biosurfactant was increased using ARTP mutagenesis for strains and applied the mutants in situ soil bioremediation. This research indicated that the theoretical system was useful in soil columns to simulate field remediation conditions, providing practical references for the bioremediation of contaminated soil.
Collapse
|
209
|
The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel. NPJ Biofilms Microbiomes 2022; 8:32. [PMID: 35484166 PMCID: PMC9050737 DOI: 10.1038/s41522-022-00299-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/04/2022] [Indexed: 11/08/2022] Open
Abstract
Bioprospecting of microorganisms suitable for bioremediation of fuel or oil spills is often carried out in contaminated environments such as gas stations or polluted coastal areas. Using next-generation sequencing (NGS) we analyzed the microbiota thriving below the lids of the fuel deposits of diesel and gasoline cars. The microbiome colonizing the tank lids differed from the diversity found in other hydrocarbon-polluted environments, with Proteobacteria being the dominant phylum and without clear differences between gasoline or diesel-fueled vehicles. We observed differential growth when samples were inoculated in cultures with gasoline or diesel as the main carbon source, as well as an increase in the relative abundance of the genus Pseudomonas in diesel. A collection of culturable strains was established, mostly Pseudomonas, Stenotrophomonas, Staphylococcus, and Bacillus genera. Strains belonging to Bacillus, Pseudomonas, Achromobacter, and Isoptericola genera showed a clear diesel degradation pattern when analyzed by GC-MS, suggesting their potential use for bioremediation and a possible new species of Isoptericola was further characterized as hydrocarbon degrader.
Collapse
|
210
|
Ezzat S, Ahmed NA. Short-Term Biodegradation of Crude Petroleum Oil in Water by Photostimulated Janibacter terrae Strain S1N1. ACS OMEGA 2022; 7:13976-13984. [PMID: 35559133 PMCID: PMC9089385 DOI: 10.1021/acsomega.2c00460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/30/2022] [Indexed: 06/01/2023]
Abstract
Biodegradation is a sustainable green strategy that gives the opportunity for remediation of water contaminated with petroleum products. In this study, 12 bacterial isolates were recovered from River Nile, Egypt and screened for their potential to degrade a mixture of paraffinic petroleum crude oil. The most promising isolate was identified according to 16S rRNA sequencing as Janibacter terrae strain S1N1 (GenBank accession No. KX570955.1). In order to boost the biodegradation efficiency, the bacterial suspension was photostimulated by exposure to different irradiation doses using a low-power helium-neon (He-Ne) laser (λ = 632.8 nm). Maximum biodegradation was achieved after 4 min of exposure (134.07 J cm-2) at optimized pH value (6) and temperature (35 °C). The gas chromatography-mass spectrometry (GC-MS) analysis revealed the biodegradation of 96.5% of the substrate after only 48 h of incubation. The n-C17/Pr and n-C18/Ph ratios indicated a preferential biodegradation of iso-paraffines over normal ones. Meanwhile, pristane/phytane (Pr/Ph) ratios were indicative of selective biodegradation for pristane. The carbon preference index (CPI) was nearly around unity indicating the ability of Janibacter terrae to attack the odd and even n-alkanes simultaneously. These results support the superiority of irradiated bacteria in optimizing the biodegradation efficiency and shortening the time of treatment, thus proposing an eco-friendly technique in water bioremediation programs.
Collapse
Affiliation(s)
- Safaa
M. Ezzat
- Microbiology
Department, Central Laboratory for Environmental Quality Monitoring
(CLEQM), National Water Research Center
(NWRC), El-Kanater, 13621/6, Egypt
| | - Nashwa A. Ahmed
- Microbiology
Department, Faculty of Applied Medical Sciences, October 6 University, Giza, 12585, Egypt
| |
Collapse
|
211
|
Degradation of long-chain n-alkanes by a novel thermal-tolerant Rhodococcus strain. Arch Microbiol 2022; 204:259. [PMID: 35419660 DOI: 10.1007/s00203-022-02872-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022]
Abstract
A novel bacterial strain, CH91, was isolated from a high-temperature oil reservoir. Morphological characterization, phylogenetic analyses of 16S rRNA gene sequence and genome relatedness indicated that the strain is a potential new species in the genus Rhodococcus. Strain CH91 could grow in the temperature range of 25-50 °C (optimally at 37 °C) and utilize a broad range of long-chain n-alkanes from hexadecane to hexatriacontane. The utilization of the n-alkanes mixture of strain CH91 revealed that the degradation rate was correlated to the length of the carbon chain. Two novel alkB genes encoding alkane 1-monooxygenase were found in the genome of this strain. The protein sequences of both alkane 1-monooxygenases showed a remarkable phylogenetic distance to other reported AlkB protein sequences. These results would help broaden our knowledge about alkane degradation by Rhodocuccus and its potential ecological role. The ability of the strain in the long-chain alkane degradation and thermal tolerance could also be further exploited for bioremediation of oil contaminations and microbial enhanced oil recovery.
Collapse
|
212
|
Abstract
Crude oil is a viscous dark liquid resource composed by a mix of hydrocarbons which, after refining, is used for the elaboration of distinct products. A major concern is that many petroleum components are highly toxic due to their teratogenic, hemotoxic, and carcinogenic effects, becoming an environmental concern on a global scale, which must be solved through innovative, efficient, and sustainable techniques. One of the most widely used procedures to totally degrade contaminants are biological methods such as bioremediation. Synthetic biology is a scientific field based on biology and engineering principles, with the purpose of redesigning and restructuring microorganisms to optimize or create new biological systems with enhanced features. The use of this discipline offers improvement of bioremediation processes. This article will review some of the techniques that use synthetic biology as a platform to be used in the area of hydrocarbon bioremediation.
Collapse
|
213
|
Cui Z, Luan X, Li S, Li Y, Bian X, Li G, Wei Q, Ran X, Bao M, Valentine DL. Occurrence and distribution of cyclic-alkane-consuming psychrophilic bacteria in the Yellow Sea and East China Sea. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128129. [PMID: 34991007 DOI: 10.1016/j.jhazmat.2021.128129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Cyclic alkanes (c-alkanes) are toxic compounds that are abundant in subsurface oil reservoirs and spilled condensate; hence, their environmental risk is significant. Although numerous studies have focused on the decomposition of other compound classes, e.g., acyclic alkanes and aromatic hydrocarbons, very little is known about the biodegradation of c-alkanes in the marine environment. Here, we enriched methylcyclohexane (MCH)-degrading bacteria derived from the cold bottom water (10-20 °C) of China's marginal seas in summer and characterized the changes to the bacterial community using high-throughput amplicon sequencing. MCH-consuming bacteria failed to grow from the warmer surface water (25-29 °C) in the same geographic sites and seasons. Notably, MCH-consuming communities derived from the cold bottom water in the Yellow Sea exhibit distinct structures compared to the other treatments. Furthermore, almost all dominant species in this setting appear to be specifically adapted to deeper cold water as indicated by significantly negative correlations to temperature (P < 0.01). From these results, we proposed that the biodegradation of MCH is effectively limited to the colder waters (10-20 °C) of China's marginal seas, with uncultured psychrophiles acting as the key taxa for MCH decomposition. Overall, this study indicates key functions for uncultivated microbes in the marine environment.
Collapse
Affiliation(s)
- Zhisong Cui
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, People's Republic of China.
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People's Republic of China
| | - Shujun Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - Yingchao Li
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Xinqi Bian
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Guoqing Li
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Qinsheng Wei
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Xiangbin Ran
- Marine Bioresources and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao 266061, People's Republic of China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, People's Republic of China
| | - David L Valentine
- Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
214
|
Peng C, Wan X, Zhang J, Zhang B, Wang S, Ma T, Bian Y, Wang W. Bacterial diversity and competitors for degradation of hazardous oil refining waste under selective pressures of temperature and oxygen. JOURNAL OF HAZARDOUS MATERIALS 2022; 427:128201. [PMID: 34999399 DOI: 10.1016/j.jhazmat.2021.128201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 02/08/2023]
Abstract
Oil refining waste (ORW) contains complex, hazardous, and refractory components, causing more severe long-term environmental pollution than petroleum. Here, ORW was used to simulate the accelerated domestication of bacteria from oily sludges and polymer-flooding wastewater, and the effects of key factors, oxygen and temperature, on the ORW degradation were evaluated. Bacterial communities acclimated respectively in 30/60 °C, aerobic/anaerobic conditions showed differentiated degradation rates of ORW, ranging from 5% to 34%. High-throughput amplicon sequencing and ORW component analysis revealed significant correlation between bacterial diversity/biomass and degradation efficiency/substrate preference. Under mesophilic and oxygen-rich condition, the high biomass and abundant biodiversity with diverse genes and pathways for petroleum hydrocarbons degradation, effectively promoted the rapid and multi-component degradation of ORW. While under harsh conditions, a few dominant genera still contributed to ORW degradation, although the biodiversity was severely restricted. The typical dominant facultative anaerobes Bacillus (up to 99.8% abundance anaerobically) and Geobacillus (up to 99.9% abundance aerobically and anaerobically) showed oxygen-independent sustainable degradation ability and broad-spectrum of temperature adaptability, making them promising and competitive bioremediation candidates for future application. Our findings provide important strategies for practical bioremediation of varied environments polluted by hazardous ORW.
Collapse
Affiliation(s)
- Chenchen Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Xuehua Wan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Jingjing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Bingling Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Shuo Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Ting Ma
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | - Ya Bian
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China
| | - Wei Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, PR China; Tianjin Key Laboratory of Microbial Functional Genomics, TEDA, Tianjin 300457, PR China.
| |
Collapse
|
215
|
Zhang Z, Xi H, Yu Y, Wu C, Yang Y, Guo Z, Zhou Y. Coupling of membrane-based bubbleless micro-aeration for 2,4-dinitrophenol degradation in a hydrolysis acidification reactor. WATER RESEARCH 2022; 212:118119. [PMID: 35114527 DOI: 10.1016/j.watres.2022.118119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Micro-aeration hydrolysis acidification (HA) is an effective method to enhance the removal of toxic and refractory organic matter, but the difficulty in stable dosing control of trace oxygen limits its wide application. Membrane-based bubbleless aeration has been proved as an ideal aeration method because of its higher oxygen transfer rate, more uniform mass transfer, and lower cost than HA. However, the available information on its application in HA is limited. In this study, membrane-based bubbleless micro-aeration coupled with hydrolysis acidification (MBL-MHA) was exploited to investigate the performance of 2,4-dinitrophenol (2,4-DNP) degradation via comparing it with bubble micro-aeration HA (MHA) and anaerobic HA. The results indicated that the performances in MBL-MHA and MHA were higher than those in HA during the experiment. 2,4-DNP degradation rates under redox microenvironments caused by counter-diffusion in MBL-MHA (84.43∼97.28%) were higher than those caused by co-diffusion in MHA (82.41∼94.71%) under micro-aeration of 0.5-5.0 mL air/min. The 2,4-DNP degradation pathways in MBL-MHA were nitroreduction, deamination, aromatic ring cleavage, and fermentation, while those in MHA were hydroxylation, aromatic ring cleavage, and fermentation. Reduction/oxidation-related, interspecific electron transfer-related species, and fermentative species in MBL-MHA were more abundant than that in MHA. Ultimately, more reducing/oxidizing forces formed by more redox proteins/enzymes from these rich species could enhance 2,4-DNP degradation in MBL-MHA.
Collapse
Affiliation(s)
- Zhuowei Zhang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Hongbo Xi
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yin Yu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| | - Changyong Wu
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| | - Yang Yang
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; College of Chemical and Environmental Engineering, China University of Mining & Technology, Beijing, 100083, China
| | - Zhenzhen Guo
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China; College of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070China
| | - Yuexi Zhou
- Research Center of Environmental Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, China.
| |
Collapse
|
216
|
Flores Pantoja LE, Briseño Silva E, Loeza Lara PD, Jiménez Mejía R. ACTIVIDAD ANTIFÚNGICA Y CARACTERÍSTICAS DE PROMOCIÓN DE CRECIMIENTO VEGETAL DE Pseudomonas aeruginosa y Enterobacter sp. DEGRADADORAS DE HIDROCARBUROS AISLADAS DE SUELO CONTAMINADO. ACTA BIOLÓGICA COLOMBIANA 2022. [DOI: 10.15446/abc.v27n3.92758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El diésel es una mezcla compleja de hidrocarburos alifáticos y aromáticos, que por su amplio uso se ha convertido en un contaminante ambiental muy frecuente. Debido a esto, es imperativo explorar alternativas viables y económicas para la remoción de dicho contaminante. El propósito del presente trabajo fue analizar la degradación de diésel por bacterias aisladas de suelo contaminado con esa mezcla de hidrocarburos, así como evaluar su actividad antagónica sobre hongos fitopatógenos, sus características de promoción del crecimiento vegetal y tolerancia a pesados. A partir del enriquecimiento en diésel como única fuente de carbono, se obtuvieron los aislados bacterianos J3 y S3, cuya identificación bioquímica y molecular reveló que corresponden a Pseudomonas aeruginosa y Enterobacter sp., respectivamente. Además, se observó que el crecimiento bacteriano fue mejor entre 2 y 5 % de diésel, mientras que el pH óptimo fue de 7,0 y 8,0 en presencia de 3 % de diésel. También, S3 mostró buen crecimiento a concentraciones de hasta 4 % de NaCl. Por otro lado, las bacterias mostraron inhibición del crecimiento micelial de los hongos fitopatógenos Alternaria sp., Botrytis cinerea, Colletotrichum siamense y Fusarium proliferatum. Además de características de promoción de crecimiento vegetal como producción de ácido indol acético (AIA), solubilización de fosfato, producción de sideróforos y surfactantes. También, se observó que las bacterias crecieron en presencia de metales como Zn, Cu, Ba y Pb, en concentraciones de entre 1,5 y >10 mM. En conclusión, las bacterias aisladas e identificadas en este estudio presentan características que las hacen excelentes candidatas para la remoción de hidrocarburos solas o mediante fitorremediación por sus características de promoción de crecimiento vegetal.
Collapse
|
217
|
Current research on simultaneous oxidation of aliphatic and aromatic hydrocarbons by bacteria of genus Pseudomonas. Folia Microbiol (Praha) 2022; 67:591-604. [PMID: 35318574 DOI: 10.1007/s12223-022-00966-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
One of the most frequently used methods for elimination of oil pollution is the use of biological preparations based on oil-degrading microorganisms. Such microorganisms often relate to bacteria of the genus Pseudomonas. Pseudomonads are ubiquitous microorganisms that often have the ability to oxidize various pollutants, including oil hydrocarbons. To date, individual biochemical pathways of hydrocarbon degradation and the organization of the corresponding genes have been studied in detail. Almost all studies of this kind have been performed on degraders of individual hydrocarbons belonging to a single particular class. Microorganisms capable of simultaneous degradation of aliphatic and aromatic hydrocarbons are very poorly studied. Most of the works on such objects have been devoted only to phenotype characteristic and some to genetic studies. To identify the patterns of interaction of several metabolic systems depending on the growth conditions, the most promising are such approaches as transcriptomics and proteomics, which make it possible to obtain a comprehensive assessment of changes in the expression of hundreds of genes and proteins at the same time. This review summarizes the existing data on bacteria of the genus Pseudomonas capable of the simultaneous oxidation of hydrocarbons of different classes (alkanes, monoaromatics, and polyaromatics) and presents the most important results obtained in the studies on the biodegradation of hydrocarbons by representatives of this genus using methods of transcriptomic and proteomic analyses.
Collapse
|
218
|
Koul Y, Devda V, Varjani S, Guo W, Ngo HH, Taherzadeh MJ, Chang JS, Wong JWC, Bilal M, Kim SH, Bui XT, Parra-Saldívar R. Microbial electrolysis: a promising approach for treatment and resource recovery from industrial wastewater. Bioengineered 2022; 13:8115-8134. [PMID: 35297316 PMCID: PMC9161901 DOI: 10.1080/21655979.2022.2051842] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Wastewater is one of the most common by-products of almost every industrial process. Treatment of wastewater alone, before disposal, necessitates an excess of energy. Environmental concerns over the use of fossil fuels as a source of energy have prompted a surge in demand for alternative energy sources and the development of sophisticated procedures to extract energy from unconventional sources. Treatment of municipal and industrial wastewater alone accounts for about 3% of global electricity use while the amount of energy embedded in the waste is at least 2–4 times greater than the energy required to treat the same effluent. The microbial electrolysis cell (MEC) is one of the most efficient technologies for waste-to-product conversion that uses electrochemically active bacteria to convert organic matter into hydrogen or a variety of by-products without polluting the environment. This paper highlights existing obstacles and future potential in the integration of Microbial Electrolysis Cell with other processes like anaerobic digestion coupled system, anaerobic membrane bioreactor and thermoelectric micro converter.
Collapse
Affiliation(s)
- Yamini Koul
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India.,School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, India
| | - Viralkunvar Devda
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India.,School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar, India
| | - Sunita Varjani
- Paryavaran Bhavan, Gujarat Pollution Control Board, Gandhinagar, India
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| | | | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture and Department of Biology, Hong Kong Baptist University, Hksar, Hong Kong
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Xuan-Thanh Bui
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (Hcmut), Ho Chi Minh City, Vietnam.,Key Laboratory of Advanced Waste Treatment Technology, Vietnam National University Ho Chi Minh (Vnu-hcm), Ho Chi Minh City, Vietnam
| | - Roberto Parra-Saldívar
- Escuela de Ingeniería y Ciencias- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Mexico
| |
Collapse
|
219
|
Massot F, Bernard N, Alvarez LMM, Martorell MM, Mac Cormack WP, Ruberto LAM. Microbial associations for bioremediation. What does "microbial consortia" mean? Appl Microbiol Biotechnol 2022; 106:2283-2297. [PMID: 35294589 DOI: 10.1007/s00253-022-11864-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 11/02/2022]
Abstract
Microbial associations arise as useful tools in several biotechnological processes. Among them, bioremediation of contaminated environments usually takes advantage of these microbial associations. Despite being frequently used, these associations are indicated using a variety of expressions, showing a lack of consensus by specialists in the field. The main idea of this work is to analyze the variety of microbial associations referred to as "microbial consortia" (MC) in the context of pollutants biodegradation and bioremediation. To do that, we summarize the origin of the term pointing out the features that an MC is expected to meet, according to the opinion of several authors. An analysis of related bibliography was done seeking criteria to rationalize and classify MC in the context of bioremediation. We identify that the microbe's origin and the level of human intervention are usually considered as a category to classify them as natural microbial consortia (NMC), artificial microbial consortia (AMC), and synthetic microbial consortia (SMC). In this sense, NMC are those associations composed by microorganisms obtained from a single source while AMC members come from different sources. SMC are a class of AMC in which microbial composition is defined to accomplish a certain specific task. We propose that the effective or potential existence of the interaction among MC members in the source material should be considered as a category in the classification as well, in combination with the origin of the source and level of intervention. Cross-kingdom MC and new developments were also considered. Finally, the existence of grey zones in the limits between each proposed microbial consortia category is addressed. KEY POINTS: • Microbial consortia for bioremediation can be obtained through different methods. • The use of the term "microbial consortia" is unclear in the specialized literature. • We propose a simplified classification for microbial consortia for bioremediation.
Collapse
Affiliation(s)
- Francisco Massot
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina
| | - Nathalie Bernard
- Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina
| | - Lucas M Martinez Alvarez
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina
| | - María M Martorell
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina
| | - Walter P Mac Cormack
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina.,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina
| | - Lucas A M Ruberto
- Instituto Antártico Argentino (IAA), Buenos Aires, Argentina. .,Instituto de Nanobiotecnología (NANOBIOTEC, UBA-CONICET), Buenos Aires, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina. .,Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB UBA), Buenos Aires, Argentina.
| |
Collapse
|
220
|
Huang Z, Liu Y, Dai H, Gui D, Hu BX, Zhang J. Spatial distribution and source apportionment of polycyclic aromatic hydrocarbons in typical oasis soil of north-western China and the bacterial community response. ENVIRONMENTAL RESEARCH 2022; 204:112401. [PMID: 34801544 DOI: 10.1016/j.envres.2021.112401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/01/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Oases environments in oases to be sensitive to anthropogenic activity because of ecological fragility. Polycyclic aromatic hydrocarbon (PAH) pollution resulting from anthropogenic activity leads to ecological degradation in oases. To examine the impact of anthropogenic activity on the oasis ecological environment, the present study focused on the spatial distribution and source apportionment of soil PAHs and bacterial community responses in typical oases in Xinjiang, China. The results showed that the soil PAH level were higher in the city centres of Urumqi (9-6340 μg kg-1), Aksu (8-957 μg kg-1) and Korla (8-1103 μg kg-1) and lower in the centres of Hotan city (11-268 μg kg-1) and Qira county (7-163 μg kg-1). Source apportionment suggested that gasoline emissions, diesel emissions, vehicle emissions, coal combustion, coke processing and biomass burning were the sources of soil PAHs. The integrated lifetime cancer risks of soil PAH exceeding the guideline safety values (10-6) recommended by United States Environmental Protection Agency. The ingestion and dermal exposure pathways caused the greatest health risk (contribution ≤82%). Additionally, in the soil with low PAH concentrations, the richness and evenness of the soil bacterial community were great, and the molecular ecological network (MEN) structure was complex. Among populations, Proteobacteria and Actinobacteria (relative abundance ≥17%) are the main dominant species in the bacterial communities and the keystone species in the MEN.
Collapse
Affiliation(s)
- Zhenyu Huang
- Department of Ecology and Institute of Hydrobiology, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China
| | - Yi Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Heng Dai
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, NO. 68 Jincheng Street, East Lake High-Tech Development Zone, 430078, Wuhan, China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, NO. 68 Jincheng Street, East Lake High-Tech Development Zone, 430078, Wuhan, China.
| | - Dongwei Gui
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| | - Bill X Hu
- School of Water Conservancy and Environment, University of Jinan, 250022, Jinan, Shandong, China.
| | - Jin Zhang
- Department of Ecology and Institute of Hydrobiology, College of Life Science and Technology, Jinan University, 510632, Guangzhou, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830011, Urumqi, China
| |
Collapse
|
221
|
Péquin B, Cai Q, Lee K, Greer CW. Natural attenuation of oil in marine environments: A review. MARINE POLLUTION BULLETIN 2022; 176:113464. [PMID: 35231783 DOI: 10.1016/j.marpolbul.2022.113464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/31/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Natural attenuation is an important process for oil spill management in marine environments. Natural attenuation affects the fate of oil by physical, chemical, and biological processes, which include evaporation, dispersion, dissolution, photo-oxidation, emulsification, oil particle aggregation, and biodegradation. This review examines the cumulative knowledge regarding these natural attenuation processes as well as their simulation and prediction using modelling approaches. An in-depth discussion is provided on how oil type, microbial community and environmental factors contribute to the biodegradation process. It describes how our understanding of the structure and function of indigenous oil degrading microbial communities in the marine environment has been advanced by the application of next generation sequencing tools. The synergetic and/or antagonist effects of oil spill countermeasures such as the application of chemical dispersants, in-situ burning and nutrient enrichment on natural attenuation were explored. Several knowledge gaps were identified regarding the synergetic and/or antagonistic effects of active response countermeasures on the natural attenuation/biodegradation process. This review highlighted the need for field data on both the effectiveness and potential detrimental effects of oil spill response options to support modelling and decision-making on their selection and application.
Collapse
Affiliation(s)
- Bérangère Péquin
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada.
| | - Qinhong Cai
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Kenneth Lee
- Ecosystem Science, Fisheries and Oceans Canada, Ottawa, Ontario, Canada
| | - Charles W Greer
- McGill University, Department of Natural Resource Sciences, Ste-Anne-de-Bellevue, Quebec, Canada; Energy, Mining and Environment Research Centre, National Research Council Canada, Montreal, Quebec, Canada
| |
Collapse
|
222
|
Ummara U, Noreen S, Afzal M, Zafar ZU, Akhter MS, Iqbal S, Hefft DI, Kazi M, Ahmad P. Induced systemic tolerance mediated by plant-microbe interaction in maize (Zea mays L.) plants under hydrocarbon contamination. CHEMOSPHERE 2022; 290:133327. [PMID: 34929274 DOI: 10.1016/j.chemosphere.2021.133327] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
The present investigation was committed to examining the effect of soil spiked with diesel contamination (0, 1.5, 2.5, 3.5 g diesel kg-1 soil) on maize (Zea mays L) varieties (MMRI yellow and Pearl white) with or without bacterial consortium (Pseudomonas aeruginosa BRRI54, Acinetobacter sp. strain BRSI56, Acinetobacter sp. strain ACRH80). Seed and soil bacterial inoculation were done. The studied morphological attributes were fresh and dry weight of shoot and root of both maize varieties. The results documented that bacterial consortium caused 21%, 0.06% and 29%, 34% higher shoot and root fresh/dry weights in "Pearl white" and 14%, 15% and 32%, 22% shoot and root fresh/dry weights respectively in MMRI yellow under control conditions. The biochemical attributes of shoot and root were affected negatively by the 3.5 g diesel kg-1 soil contamination. Bacterial consortium enhanced enzymatic activity (APX, CAT, POD, SOD, GR) and non-enzymatic (AsA, GSH, Pro, α-Toco) antioxidant and reduction in oxidative stress (H2O2, MDA) under hydrocarbon stress as compared to non-inoculated ones in both root and shoot organs. Among both varieties, the highest hydrocarbon removal (75, 64, and 69%) was demonstrated by MMRI yellow with bacterial consortium as compare to Pearl white showed 73, 57, 65% hydrocarbon degradation at 1.5 2.5, 3.5 g diesel kg-1 soil contamination. Consequently, the microbe mediated biotransformation of hydrocarbons suggested that the use of PGPB would be the most beneficial selection in diesel fuel contaminated soil to overcome the abiotic stress in plants and successfully remediation of hydrocarbon in contaminated soil.
Collapse
Affiliation(s)
- Ume Ummara
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sibgha Noreen
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan.
| | - Muhammad Afzal
- National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Salim Akhter
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sehrish Iqbal
- Department of Environment Science, Bahauddin Zakariya University, Multan, Pakistan
| | - Daniel Ingo Hefft
- Department of Food Sciences, University Centre Reaseheath, Reaseheath College, Nantwich, CW5 6DF, UK.
| | - Mohsin Kazi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, PO Box 2457, Riyadh, 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India.
| |
Collapse
|
223
|
Xu HX, Tang YQ, Nie Y, Wu XL. Comparative transcriptome analysis reveals different adaptation mechanisms for degradation of very long-chain and normal long-chain alkanes in Dietzia sp. DQ12-45-1b. Environ Microbiol 2022; 24:1932-1945. [PMID: 35191184 DOI: 10.1111/1462-2920.15928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 01/30/2022] [Indexed: 12/13/2022]
Abstract
Hydrocarbon-degrading bacteria typically metabolize a broad range of alkane substrates, but global metabolic characteristics of strains growing on alkane substrates in different chain lengths remain unclear. In this study, we analysed the transcriptional profiles of a hydrocarbon degrading bacterium, Dietzia sp. DQ12-45-1b, during growth on octacosane (C28), hexadecane (C16) and glucose as the sole carbon sources. Our results highlight that C16 and C28 induced common genes of core alkane degradation pathways in DQ12-45-1b, whereas transcriptional patterns of genes related to lipid metabolism, energy metabolism, biomass synthesis, and metal ion transportation were distinct. In addition, the transcriptional differences of genes related to glyoxylate shunt (GS) as well as growth phenotypes of mutant strain with defects in GS demonstrated that GS is essential for C16 degradation, though it is dispensable for C28 degradation in DQ12-45-1b. These results demonstrate that DQ12-45-1b cells exhibited considerable metabolic flexibility by using various mechanisms during growth on alkane substrates in different chain lengths. This study advances our knowledge of microbial hydrocarbon degradation and provides valuable information for the application of alkane-degrading bacteria in bioremediation and microbial enhanced oil recovery.
Collapse
Affiliation(s)
- Hong-Xiu Xu
- College of Architecture and Environment, Sichuan University, Chengdu, 610207, China.,College of Engineering, Peking University, Beijing, 100871, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610207, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, 100871, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, 100871, China.,Institute of Ecology, Peking University, Beijing, 100871, China.,Institute of Ocean Research, Peking University, Beijing, 100871, China
| |
Collapse
|
224
|
Understanding the Implications of Predicted Function for Assessment of Rapid Bioremediation in a Farmland-Oilfield Mixed Area. SUSTAINABILITY 2022. [DOI: 10.3390/su14042248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Farmland-oilfield mixed areas are fragile ecosystems that require dynamic remediation to counteract the undesirable impact of energy development. Practicable assessment methods are pivotal to a fast and accurate evaluation of the in situ bioremediation process. Petroleum pollutants impose component-dependent effects on autochthonous microbiota before and after remediation. Here, the predicted functional response of soil microbiomes to petroleum pollutants was analyzed in a historically polluted farmland-oilfield mixed area from the perspective of developing a set of feasible biomarkers for immediate post-bioremediation evaluation. An array of microbial, genetic, systematic, and phenotypic biomarkers was proposed. Our results showed that the biomarkers could proxy the stage of the bioremediation multidimensionally. We argue that functional diversity should be considered together with microbial community dynamic to evaluate the restoration status of the microbial communities in petroleum-contaminated farmland-oilfield mixed environments.
Collapse
|
225
|
Wang L, Gao H, Wang M, Xue J. Remediation of petroleum-contaminated soil by ball milling and reuse as heavy metal adsorbent. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127305. [PMID: 34571471 DOI: 10.1016/j.jhazmat.2021.127305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
A simple mechanochemical (MC) method is used to treat petroleum-contaminated soil and prepare a heavy metal adsorbent in one step. XRD, Raman, FT-IR, VSM, BET, and XPS were used to characterize the adsorbent. After MC treatment, the dissolved total petroleum hydrocarbons of the adsorbent is less than 1 mg·L-1, and a porous structure and carbonization phenomenon are evident. The specific surface area and cumulative void volume increase, and the adsorption pore size decreases. On the surface of soil, the percentages of iron oxides, carbonates, CO, -C-O-H, -COOH, and π unsaturated bonds increase. The Langmuir model shows that the maximum adsorption capacity of Pb2+, Cu2+, Cd2+, and Zn2+ are 338.58, 51.61, 32.34, and 25.05 mg·g-1, respectively. The pseudo-second-order kinetic model fits the Pb adsorption process, indicating the domination of chemical adsorption. GC-MS shows that petroleum hydrocarbons are completely degraded. The Tessier continuous extraction result shows that heavy metals are bound to carbonate, iron manganese oxide, and organic matter. The MC treatment achieves deep cleanup and resource utilization of petroleum-contaminated soil through the formation of amorphous carbon, carbonates, and iron oxides on the surface of soil particles. The material is magnetic and can be recycled when used in wastewater treatment.
Collapse
Affiliation(s)
- Lin Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Hang Gao
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China
| | - Mingxin Wang
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou 213164, PR China.
| | - Jinjuan Xue
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, PR China; Jiangsu Petrochemical Safety and Environmental Protection Engineering Research Center, Changzhou 213164, PR China
| |
Collapse
|
226
|
Khan AL, Numan M, Bilal S, Asaf S, Crafword K, Imran M, Al-Harrasi A, Al-Sabahi JN, Rehman NU, A-Rawahi A, Lee IJ. Mangrove's rhizospheric engineering with bacterial inoculation improve degradation of diesel contamination. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127046. [PMID: 34481398 DOI: 10.1016/j.jhazmat.2021.127046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Mangroves (Avicennia marina) growing in intertidal areas are often exposed to diesel spills, adversely damaging the ecosystem. Herein, we showed for the first time that mangrove seedlings' associations with bacteria could reprogram host-growth, physiology, and ability to degrade diesel. We found four bacterial strains [Sphingomonas sp.-LK11, Rhodococcus corynebacterioides-NZ1, Bacillus subtilis-EP1 Bacillus safensis-SH10] exhibiting significant growth during diesel degradation (2% and 5%, v/v) and higher expression of alkane monooxygenase compared to control. This is in synergy with reduced long-chain n-alkanes (C24-C30) during microbe-diesel interactions in the bioreactor. Among individual strains, SH10 exhibited significantly higher potential to improve mangrove seedling's morphology, anatomy and growth during diesel treatment in rhizosphere compared to control. This was also evidenced by reduced activities and gene expression of antioxidant enzymes (catalases, peroxidases, ascorbic peroxidases, superoxide dismutases and polyphenol peroxidases) and lipid peroxidation during microbe-diesel interactions. Interestingly, we noticed significantly higher soil-enzyme activities (phosphatases and glucosidases) and essential metabolites in seedling's rhizosphere after bacteria and diesel treatments. Degradation of longer n-alkane chains in the rhizosphere also revealed a potential pathway that benefits mangroves by bacterial strains during diesel contaminations. Current results support microbes' application to rhizoengineer plant growth, responses, and phytoextraction abilities in environments contaminated with diesel spills. AVAILABILITY OF DATA AND MATERIALS: The datasets generated during the current study are available in the NCBI GenBank ((https://www.ncbi.nlm.nih.gov).
Collapse
Affiliation(s)
- Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, 616, Oman; Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA.
| | - Muhammad Numan
- Department of Biology, University of North Carolina at Greensboro, NC 27412, USA
| | - Saqib Bilal
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA
| | - Sajjad Asaf
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA
| | - Kerri Crafword
- Department of Biology and Biochemistry, College of Natural Science and Mathematics, University of Houston, TX, USA
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu Korea, South Korea
| | - Ahmed Al-Harrasi
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA.
| | - Jamal Nasser Al-Sabahi
- Central Instrument Laboratory, College of Agriculture and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Najeeb Ur Rehman
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA
| | - Ahmed A-Rawahi
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, 77479 TX, USA
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu Korea, South Korea.
| |
Collapse
|
227
|
Yuan L, Guo P, Guo S, Wang J, Huang Y. Influence of C14 alkane stress on antioxidant defense capacity, mineral nutrient element accumulation, and cadmium uptake of ryegrass. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13857-13868. [PMID: 34595720 DOI: 10.1007/s11356-021-16806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In order to explore the influence of C14 alkane on physiological stress responses, mineral nutrient elements uptake, cadmium (Cd) transfer, and uptake characteristics of Lolium perenne L. (ryegrass), a series of pot trials were conducted which included a moderate level of Cd (2.182 mg·kg-1) without (control) and with five levels of C14 alkane (V/m, 0.1%, 0.2%, 0.5%, 1%, 2%). Biomass and Cd content in the root and shoot, chlorophyll content, antioxidant enzymes activity, and mineral nutrient elements in the shoot of ryegrass were determined at the end of the experiment. The results indicated that Cd uptake significantly elevated at 0.1% C14 alkane treatment, then gradually decreased with the increase of C14 alkane concentration. Compared with the control, chlorophyll content was significantly suppressed and malondialdehyde (MDA) concentration obviously increased. Superoxide dismutase (SOD) activity and catalase (CAT) activity significantly increased to prevent the C14 alkane stress. With the increase of C14 alkane, the Mn concentration gradually increased; Mg and Fe significantly decreased. Correlation analysis showed that Mn was positively correlated with SOD (with the exception of 2% treatment) and CAT (p < 0.01), and negatively correlated with Cd uptake (p < 0.01). It implied that the increase of Mn induced by C14 alkane stress was an important reason for the decrease of Cd uptake.
Collapse
Affiliation(s)
- Lizhu Yuan
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
- Institute of Applied Ecology, National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-Physicochemical Synergistic Process, Chinese Academy of Sciences, Shenyang, 110016, China
| | | | - Shuhai Guo
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
- Institute of Applied Ecology, National-Local Joint Engineering Laboratory of Contaminated Soil Remediation By Bio-Physicochemical Synergistic Process, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Jianing Wang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Yujie Huang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| |
Collapse
|
228
|
Romo-Enríquez NP, Ignacio de la Cruz JL, Villegas-Moreno J, Sánchez-Yáñez JM. Saccharomyces exiguus utiliza queroseno como fuente de carbono y energía. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2022. [DOI: 10.36610/j.jsars.2022.130100023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
229
|
Enhanced degradation of petroleum hydrocarbons in soil by FeS@BC activated persulfate and its mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120060] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
230
|
Avona A, Capodici M, Di Trapani D, Giustra MG, Greco Lucchina P, Lumia L, Di Bella G, Viviani G. Preliminary insights about the treatment of contaminated marine sediments by means of bioslurry reactor: Process evaluation and microbiological characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150708. [PMID: 34600982 DOI: 10.1016/j.scitotenv.2021.150708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Contaminated marine sediments represent a critical threat towards human health and ecosystems, since they constitute a potential reservoir of toxic compounds release. In the present study, a bioslurry reactor was studied for the treatment of real marine sediments contaminated by petroleum hydrocarbons. The experimental campaign was divided in two periods: in the first period, microcosm trials were carried out to achieve useful indicators for biological hydrocarbon removal from sediments. The microcosm trials highlighted that the inoculum of halotolerant allochthonous bacteria provided the highest performance followed by autochthonous biomass. Based on the achieved results, in the second experimental period a bioslurry reactor was started up, based on a semisolid stirred tank reactor (STR) operated in batch mode. The process performances have been evaluated in terms of total petroleum hydrocarbon (TPH) removal, coupled with the characterization of microbial community through a Next Generation Sequencing (NGS) and phytotoxicity tests through the Germination Index (GI) with Lepidium Sativum seeds. The achieved results showed good hydrocarbons removal, equal to 40%, with a maximum removal rate of 220 mgTPH kg-1 d-1, but highlighting that high contaminant concentrations might affect negatively the overall removal performance. In general, the observed results were encouraging towards the feasibility of biological treatment of marine sediments contaminated by hydrocarbons. The microbiological analysis allowed the identification of taxa most involved in the degradation of TPH, highlighting after the treatment a shift in the microbial community from that of the raw sediment.
Collapse
Affiliation(s)
- Alessia Avona
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy
| | - Marco Capodici
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy
| | - Daniele Di Trapani
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy.
| | - Maria Gabriella Giustra
- University of Enna Kore, Faculty of Engineering and Architecture, Cittadella Universitaria, 94100 Enna, Italy
| | - Pietro Greco Lucchina
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy
| | - Lucia Lumia
- University of Enna Kore, Faculty of Engineering and Architecture, Cittadella Universitaria, 94100 Enna, Italy
| | - Gaetano Di Bella
- University of Enna Kore, Faculty of Engineering and Architecture, Cittadella Universitaria, 94100 Enna, Italy
| | - Gaspare Viviani
- Department of Engineering, University of Palermo, Viale delle Scienze Ed 8, 90128 Palermo, Italy
| |
Collapse
|
231
|
Lin C, Cheruiyot NK, Bui XT, Ngo HH. Composting and its application in bioremediation of organic contaminants. Bioengineered 2022; 13:1073-1089. [PMID: 35001798 PMCID: PMC8805880 DOI: 10.1080/21655979.2021.2017624] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
This review investigates the findings of the most up-to-date literature on bioremediation via composting technology. Studies on bioremediation via composting began during the 1990s and have exponentially increased over the years. A total of 655 articles have been published since then, with 40% published in the last six years. The robustness, low cost, and easy operation of composting technology make it an attractive bioremediation strategy for organic contaminants prevalent in soils and sediment. Successful pilot-and large-scale bioremediation of organic contaminants, e.g., total petroleum hydrocarbons, plasticizers, and persistent organic pollutants (POPs) by composting, has been documented in the literature. For example, composting could remediate >90% diesel with concentrations as high as 26,315 mg kg−a of initial composting material after 24 days. Composting has unique advantages over traditional single- and multi-strain bioaugmentation approaches, including a diverse microbial community, ease of operation, and the ability to handle higher concentrations. Bioremediation via composting depends on the diverse microbial community; thus, key parameters, including nutrients (C/N ratio = 25–30), moisture (55–65%), and oxygen content (O2 > 10%) should be optimized for successful bioremediation. This review will provide bioremediation and composting researchers with the most recent finding in the field and stimulate new research ideas.
Collapse
Affiliation(s)
- Chitsan Lin
- Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.).,Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.)
| | - Nicholas Kiprotich Cheruiyot
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan (R.O.C.)
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, Vietnam.,Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (Hcmut), Ho Chi Minh City, Vietnam
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
232
|
Moratti CF, Scott C, Coleman NV. Synthetic Biology Approaches to Hydrocarbon Biosensors: A Review. Front Bioeng Biotechnol 2022; 9:804234. [PMID: 35083206 PMCID: PMC8784404 DOI: 10.3389/fbioe.2021.804234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Monooxygenases are a class of enzymes that facilitate the bacterial degradation of alkanes and alkenes. The regulatory components associated with monooxygenases are nature's own hydrocarbon sensors, and once functionally characterised, these components can be used to create rapid, inexpensive and sensitive biosensors for use in applications such as bioremediation and metabolic engineering. Many bacterial monooxygenases have been identified, yet the regulation of only a few of these have been investigated in detail. A wealth of genetic and functional diversity of regulatory enzymes and promoter elements still remains unexplored and unexploited, both in published genome sequences and in yet-to-be-cultured bacteria. In this review we examine in detail the current state of research on monooxygenase gene regulation, and on the development of transcription-factor-based microbial biosensors for detection of alkanes and alkenes. A new framework for the systematic characterisation of the underlying genetic components and for further development of biosensors is presented, and we identify focus areas that should be targeted to enable progression of more biosensor candidates to commercialisation and deployment in industry and in the environment.
Collapse
Affiliation(s)
- Claudia F. Moratti
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Colin Scott
- CSIRO Synthetic Biology Future Science Platform, Canberra, ACT, Australia
| | - Nicholas V. Coleman
- School of Life and Environmental Science, Faculty of Science, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
233
|
Wojtowicz K, Steliga T, Kapusta P, Brzeszcz J, Skalski T. Evaluation of the Effectiveness of the Biopreparation in Combination with the Polymer γ-PGA for the Biodegradation of Petroleum Contaminants in Soil. MATERIALS (BASEL, SWITZERLAND) 2022; 15:400. [PMID: 35057118 PMCID: PMC8778143 DOI: 10.3390/ma15020400] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 11/30/2022]
Abstract
Biodegradation is a method of effectively removing petroleum hydrocarbons from the natural environment. This research focuses on the biodegradation of aliphatic hydrocarbons, monoaromatic hydrocarbons such as benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) and polycyclic aromatic hydrocarbons (PAHs) as a result of soil inoculation with a biopreparation A1 based on autochthonous microorganisms and a biopreparation A1 with the addition of γ-PGA. The research used biopreparation A1 made of the following strains: Dietzia sp. IN133, Gordonia sp. IN138 Mycolicibacterium frederiksbergense IN53, Rhodococcus erythropolis IN119, Rhodococcus sp. IN136 and Pseudomonas sp. IN132. The experiments were carried out in laboratory conditions (microbiological tests, respirometric tests, and in semi-technical conditions (ex-situ prism method). The biodegradation efficiency was assessed on the basis of respirometric tests, chromatographic analyses and toxicological tests. As a result of inoculation of AB soil with the biopreparation A1 within 6 months, a reduction of total petroleum hydrocarbons (TPH) (66.03%), BTEX (80.08%) and PAHs (38.86%) was achieved and its toxicity was reduced. Inoculation of AB soil with the biopreparation A1 with the addition of γ-PGA reduced the concentration of TPH, BTEX and PAHs by 79.21%, 90.19%, and 51.18%, respectively, and reduced its toxicity. The conducted research has shown that the addition of γ-PGA affects the efficiency of the biodegradation process of petroleum pollutants, increasing the degree of TPH biodegradation by 13.18%, BTEX by 10.11% and PAHs by 12.32% compared to pure biopreparation A1.
Collapse
Affiliation(s)
- Katarzyna Wojtowicz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Teresa Steliga
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Piotr Kapusta
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Joanna Brzeszcz
- Oil and Gas Institute—National Research Institute, Lubicz 25 A, 31-503 Krakow, Poland; (T.S.); (P.K.); (J.B.)
| | - Tomasz Skalski
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland;
| |
Collapse
|
234
|
Zhang L, Wang M, Cui H, Qiao J, Guo D, Wang B, Li X, Huang H. How humic acid and Tween80 improve the phenanthrene biodegradation efficiency: Insight from cellular characteristics and quantitative proteomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126685. [PMID: 34332485 DOI: 10.1016/j.jhazmat.2021.126685] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic and recalcitrant pollutants, with an urgent need for bioremediation. Systematic biodegradation studies show that surfactant-mediated bioremediation is still poorly understood. Here, we investigated a comprehensive cellular response pattern of the PAH degrading strain B. subtilis ZL09-26 to (non-)green surfactants at the cellular and proteomic levels. Eight characteristic cellular factor investigations and detailed quantitative proteomics analyses were performed to understand the highly enhanced phenanthrene (PHE) degradation efficiency (2.8- to 3-fold improvement) of ZL09-26 by humic acid (HA) or Tween80. The commonly upregulated pathway and proteins (Arginine generation, LacI-family transcriptional regulator, and Lactate dehydrogenase) and various metabolic pathways (such as phenanthrene degradation upstream pathway and central carbon metabolism) jointly govern the change of cellular behaviors and improvement of PHE transport, emulsification, and degradation in a network manner. The obtained molecular knowledge empowers engineers to expand the application of surfactants in the biodegradation of PAHs and other pollutants.
Collapse
Affiliation(s)
- Lei Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China; College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, Aachen 52074, Germany; DWI-Leibniz Institut für Inateraktive Materialien, Forckenbeckstraße 50, 52056 Aachen, Germany
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Dongsheng Guo
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Biao Wang
- Petroleum Engineering Technology Research Institute of Jiangsu Oilfield Company, SINOPEC, Yangzhou 225009, People's Republic of China; Research Center of Oil and Gas Microbial Engineering of Jiangsu, Yangzhou 225009, People's Republic of China
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - He Huang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| |
Collapse
|
235
|
Dang BT, Nguyen TT, Bui XT, Hao Ngo H, Andrew Lin KY, Tomoaki I, Saunders T, Huynh TN, Ngoc-Dan Cao T, Visvanathan C, Varjani S, Rene ER. Non-submerged attached growth process for domestic wastewater treatment: Influence of media types and internal recirculation ratios. BIORESOURCE TECHNOLOGY 2022; 343:126125. [PMID: 34653623 DOI: 10.1016/j.biortech.2021.126125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
This study is aimed to comprehend the treatment of non-submerged attached growth systems using bio-sponge, bio-cord, and bio-cloth media. Three reactors were set up with internal recirculation ratio of 1 (IR = 1) and similar media surface area. Bio-sponge and bio-cloth reactors showed removal of COD (79 vs. 76%) and NH4+-N (78 vs. 73%). While bio-cord treatment was deteriorated due to time-dependent process. Multiple linear regression revealed that alkalinity governed the formation degree of the anaerobic zone in bio-sponges, partially affecting nitrification. Increasing IR from 1 to 3 caused sloughing of the attached biomass and was positively correlated with effluent nitrite nitrogen concentration, indicating the sensitivity of nitrification to spatial distribution effects. In addition, bio-sponge system obtained superior performance at IR of 2 while bio-cloth one might be also an effective media for wastewater treatment if having good durability.
Collapse
Affiliation(s)
- Bao-Trong Dang
- Ho Chi Minh City University of Technology (HUTECH), 475A Dien Bien Phu, Ward 25, Binh Thanh District, Ho Chi Minh City, Viet Nam
| | - Thanh-Tin Nguyen
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea; Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Viet Nam
| | - Xuan-Thanh Bui
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., District 10, Ho Chi Minh City 700000, Viet Nam.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NWS 2007, Australia
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan
| | - Itayama Tomoaki
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Todd Saunders
- Graduate School of Biomedical Science, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Tan-Nhut Huynh
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Viet Nam; Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Str., District 10, Ho Chi Minh City 700000, Viet Nam
| | - Thanh Ngoc-Dan Cao
- Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Thu Duc City, Viet Nam
| | - Chettiyappan Visvanathan
- Department of Energy, Environment and Climate Change, School of Environment, Resources and Development, Asian Institute of Technology, P.O. Box 4, Klong Luang, Pathumthani 12120, Thailand
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, IHE - Delft, Institute of Water Education, 2601 DA, Delft, The Netherlands
| |
Collapse
|
236
|
Imam A, Kumar Suman S, Kanaujia PK, Ray A. Biological machinery for polycyclic aromatic hydrocarbons degradation: A review. BIORESOURCE TECHNOLOGY 2022; 343:126121. [PMID: 34653630 DOI: 10.1016/j.biortech.2021.126121] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hazardous environmental pollutants with widespread and well-recognized health concerns. Amidst more than a hundred known PAHs, 16 are categorized as priority pollutants. Use of widely diverse biological machinery comprising bacteria, fungi, and algae harnessed from contaminated sites has emerged as an ecologically safe and sustainable approach for PAH degradation. The potential of these biological systems has been thoroughly examined to maximize the degradation of specific PAHs by understanding their detailed biochemical pathways, enzymatic system, and gene organization. Recent advancements in microbial genetic engineering and metabolomics using modern analytical tools have facilitated the bioremediation of such xenobiotics. This review explores the role of microbes, their biochemical pathways, genetic regulation of metabolic pathways, and the effect of biosurfactants against the backdrop of PAH substrate structures.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, India.
| |
Collapse
|
237
|
Gaur VK, Sharma P, Sirohi R, Varjani S, Taherzadeh MJ, Chang JS, Yong Ng H, Wong JWC, Kim SH. Production of biosurfactants from agro-industrial waste and waste cooking oil in a circular bioeconomy: An overview. BIORESOURCE TECHNOLOGY 2022; 343:126059. [PMID: 34606921 DOI: 10.1016/j.biortech.2021.126059] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Waste generation is becoming a global concern owing to its adverse effects on environment and human health. The utilization of waste as a feedstock for production of value-added products has opened new avenues contributing to environmental sustainability. Microorganisms have been employed for production of biosurfactants as secondary metabolites by utilizing waste streams. Utilization of waste as a substrate significantly reduces the cost of overall process. Biosurfactant(s) derived from these processes can be utilized in environmental and different industrial sectors. This review focuses on global market of biosurfactants followed by discussion on production of biosurfactants from waste streams such as agro-industrial waste and waste cooking oil. The need for waste stream derived circular bioeconomy and scale up of biosurfactant production have been narrated with applications of biosurfactants in environment and industrial sectors. Road blocks and future directions for research have also been discussed.
Collapse
Affiliation(s)
- Vivek K Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Poonam Sharma
- Department of Bioengineering, Integral University, Lucknow, India
| | - Ranjna Sirohi
- Department of Postharvest Process and Food Engineering, GB Pant University of Agriculture and Technology, Pantnagar, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | | | - Jo-Shu Chang
- Department of Chemical Engineering and Materials Science, College of Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - How Yong Ng
- National University of Singapore, Environmental Research Institute, 5A Engineering Drive 1, Singapore 117411, Singapore
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Hong Kong Baptist University, Hong Kong, PR China
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
238
|
Suresh R, Rajendran S, Kumar PS, Dutta K, Vo DVN. Current advances in microbial fuel cell technology toward removal of organic contaminants - A review. CHEMOSPHERE 2022; 287:132186. [PMID: 34509759 DOI: 10.1016/j.chemosphere.2021.132186] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/22/2021] [Accepted: 09/04/2021] [Indexed: 05/27/2023]
Abstract
At present, water pollution and demand for clean energy are most pressing global issues. On a daily basis, huge quantity of organic wastes gets released into the water ecosystems, causing health related problems. The need-of-the-hour is to utilize proficient and cheaper techniques for complete removal of harmful organic contaminants from water. In this regard, microbial fuel cell (MFC) has emerged as a promising technique, which can produce useful electrical energy from organic wastes and decontaminate polluted water. Herein, we have systematically reviewed recently published results, observations and progress made on the applications of MFCs in degradation of organic contaminants, including organic synthetic dyes, agro pollutants, health care contaminants and other organics (such as phenols and their derivatives, polyhydrocarbons and caffeine). MFC-based hybrid technologies, including MFC-constructed wetland, MFC-photocatalysis, MFC-catalysis, MFC-Fenton process, etc., developed to obtain high removal efficiency and bioelectricity production simultaneously have been discussed. Further, this review assessed the influence of factors, such as nature of electrode catalysts, organic pollutants, electrolyte, microbes and operational conditions, on the performance of pristine and hybrid MFC reactors in terms of pollutant removal efficiency and power generation simultaneously. Moreover, the limitations and future research directions of MFCs for wastewater treatment have been discussed. Finally, a conclusive summary of the findings has been outlined.
Collapse
Affiliation(s)
- R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Kingshuk Dutta
- Advanced Polymer Design and Development Research Laboratory (APDDRL), School for Advanced Research in Petrochemicals (SARP), Central Institute of Petrochemicals Engineering and Technology (CIPET), Bengaluru, 562149, India
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| |
Collapse
|
239
|
R J, Gurunathan B, K S, Varjani S, Ngo HH, Gnansounou E. Advancements in heavy metals removal from effluents employing nano-adsorbents: Way towards cleaner production. ENVIRONMENTAL RESEARCH 2022; 203:111815. [PMID: 34352231 DOI: 10.1016/j.envres.2021.111815] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/29/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Due to the development in science field which gives not only benefit but also introducesundesirable pollution to the environment. This pollution is due to poor discharge activities of industrial effluents into the soil and water bodies, surface run off from fields of agricultural lands, dumping of untreated wastes by municipalities, and mining activites, which deteriorates the cardinal virtue of our environment and causes menace to human health and life. Heavy metal(s), a natural constituent on earth's crust and economic important mineral, due to its recalcitrant effects creates heavy metal pollution which affects food chain and also reduces the quality of water. For this, many researchers have performed studies to find efficient methods for wastewater remediation. One of the most promising methods from economic point of view is adsorption, which is simple in design, but leads to use of a wide range of adsorbents and ease of operations. Due to advances in nanotechnology, many nanomaterials were used as adsorbents for wastewater remediation, because of their efficiency. Many researchers have reported that nanoadsorbents are unmitigatedly a fruitful solution to address this world's problem. This review presents a potent view on various classes of nanoadsorbents and their application to wastewater treatment. It provides a bird's eye view of the suitability of different types of nanomaterials for remediation of wastewater and Backspace gives up-to-date information about polymer based and silica-based nanoadsorbents.
Collapse
Affiliation(s)
- Janani R
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 6000119, India
| | - Baskar Gurunathan
- Department of Biotechnology, St. Joseph's College of Engineering, Chennai, 6000119, India.
| | - Sivakumar K
- Department of Biotechnology, KarpagaVinayaga College of Engineering and Technology, Chinna Kolambakkam, 603308, Tamilnadu, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, India.
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
240
|
Yaashikaa PR, Senthil Kumar P, Varjani S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. BIORESOURCE TECHNOLOGY 2022; 343:126126. [PMID: 34673193 DOI: 10.1016/j.biortech.2021.126126] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/07/2021] [Accepted: 10/09/2021] [Indexed: 05/26/2023]
Abstract
Energy recovery from waste resources is a promising approach towards environmental consequences. In the prospect of environmental sustainability, utilization of agro-industrial waste residues as feedstock for biorefinery processes have gained widespread attention. In the agro-industry, various biomasses are exposed to different unit processes for offering value to various agro-industrial waste materials. Agro-industrial wastes can generate a substantial amount of valuable products such as fuels, chemicals, energy, electricity, and by-products. This paper reviews the methodologies for valorization of agro-industrial wastes and their exploitation for generation of renewable energy products. In addition, management of agro-industrial wastes and products from agro-industrial wastes have been elaborated. The waste biorefinery process using agro-industrial wastes does not only offer energy, it also offers environmentally sustainable modes, which address effective management of waste streams. This review aims to highlight the cascading use of biomass from agro-industrial wastes into the systemic approach for economic development.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar 382 010, Gujarat, India.
| |
Collapse
|
241
|
Jain M, Khan SA, Sharma K, Jadhao PR, Pant KK, Ziora ZM, Blaskovich MAT. Current perspective of innovative strategies for bioremediation of organic pollutants from wastewater. BIORESOURCE TECHNOLOGY 2022; 344:126305. [PMID: 34752892 DOI: 10.1016/j.biortech.2021.126305] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 06/13/2023]
Abstract
Organic contaminants in water are a growing environmental threat to sustainable development, with detrimental effects on the biosphere. In recent years, researchers have increasingly focused their attention on the area of bioremediation as an important tool to eliminate harmful pollutants from the environment. This review examines the application of bioremediation technologies to the removal of organic pollutants, with an emphasis on hydrocarbons and textile dyes. It applies a descriptive bibliometric analysis to study statistical practicality-vs-applicability of bioremediation of emerging organic pollutants. The paper identifies efficient pathways for bioremediation of different types of organic pollutants and outlines the potential for an eco-friendly and economical approach for the biological remediation of micropollutants by microalgae. Facts and figures on various hazardous pollutants, constraints in their current removal from water at an industrial level, and promising future solutions are carefully presented here.
Collapse
Affiliation(s)
- Marut Jain
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072 Australia
| | - Sadaf Aiman Khan
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072 Australia
| | - Komal Sharma
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Prashant Ram Jadhao
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Kamal Kishore Pant
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| | - Zyta Maria Ziora
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072 Australia
| | - Mark A T Blaskovich
- The University of Queensland, Indian Institute of Technology Delhi Academy of Research (UQIDAR), India; Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia QLD 4072 Australia
| |
Collapse
|
242
|
Peng Y, Guo Y, Wu Q, Chen H, Ma C, Li C, Liu W. Hydrochemical environment of a fractured karst aquifer influenced by petroleum hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2244-2257. [PMID: 34365599 DOI: 10.1007/s11356-021-15661-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
A fractured karst aquifer polluted by petroleum hydrocarbons (PH) for several decades was selected to study the influences of PH on the hydrochemical environment. The research was implemented using the hydrochemical indicators (Ca2+, Mg2+, Na++K+, HCO3-, NO3-, Cl-, F-, and SO42-) and PH with the help of GIS and origin platforms, statistical analyses, and graphical methods. Results showed that PH had significant influences on the hydrochemical environment over the last several decades. The main principle elements influencing the evolution processes of hydrochemical environment were carbonates dissolution, leaking wastewater, and biodegradation processes from 1977 to 2019, and hydrochemistry types changed from HCO3-Ca-Mg and HCO3-Ca to HCO3-Cl-Ca-Mg and HCO3-Cl-Ca. The contribution rate of PH biodegradation to the representative ion increased at first, then decreased over time, which has a close relationship with the variation characteristics of PH. The dynamic evolution processes of hydrochemical environment have significances for indentifying the influencing mechanisms of hydrogeochemical reactions, which could provide valuable scientific suggestions for the local administrators to take effective efforts to optimize and protect the karst groundwater environment.
Collapse
Affiliation(s)
- Yuming Peng
- Research Center of Groundwater Resources and Environment, Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong, 250014, Jinan, China
| | - Yongli Guo
- Institute of Karst Geology, Chinese Academy of Geological Sciences / Key Laboratory of Karst Dynamics, MNR&GZAR, Guilin, 541004, Guangxi, China.
- International Research Center on Karst under the Auspices of UNESCO, Guilin, 541004, China.
| | - Qing Wu
- Institute of Karst Geology, Chinese Academy of Geological Sciences / Key Laboratory of Karst Dynamics, MNR&GZAR, Guilin, 541004, Guangxi, China
- International Research Center on Karst under the Auspices of UNESCO, Guilin, 541004, China
| | - Huanliang Chen
- Research Center of Groundwater Resources and Environment, Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong, 250014, Jinan, China
| | - Chao Ma
- Research Center of Groundwater Resources and Environment, Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong, 250014, Jinan, China
| | - Chuanlei Li
- Research Center of Groundwater Resources and Environment, Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong, 250014, Jinan, China
| | - Wen Liu
- Research Center of Groundwater Resources and Environment, Shandong Provincial Geo-mineral Engineering Exploration Institute, Shandong, 250014, Jinan, China
| |
Collapse
|
243
|
Saeed M, Ilyas N, Bibi F, Jayachandran K, Dattamudi S, Elgorban AM. Biodegradation of PAHs by Bacillus marsiflavi, genome analysis and its plant growth promoting potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118343. [PMID: 34662593 DOI: 10.1016/j.envpol.2021.118343] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/13/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The biodegradation of hazardous petroleum hydrocarbons has recently received a lot of attention because of its many possible applications. Bacillus marsiflavi strain was isolated from oil contaminated soil of Rawalpindi, Pakistan. Initial sequencing was done by 16s rRNA sequencing technique. Bac 144 had shown 78% emulsification index and 72% hydrophobicity content. Further, the strain displayed production of 15.5 mg/L phosphate sloubilization and 30.25 μg/ml indole acetic acid (IAA) in vitro assay. The strain showed 65% biodegradation of crude oil within 5 days by using Gas Chromatography-Mass Spectrometry (GC-MS) analysis. Whole Genome analysis of Bac 144 was performed by PacBio sequencing and results indicated that Bacillus marsiflavi Bac144 strain consisted of size of 4,417,505bp with closest neighbor Bacillus cereus ATCC 14579. The number of the coding sequence was 4662 and number of RNAs was 141. The GC content comprised 48.1%. Various genes were detected in genome responsible for hydrocarbon degradation and plant defense mechanism. The toxic effect of petroleum hydrocarbons in soil and its mitigation with Bac 144 was tested by soil experiment with three levels of oil contamination (5%, 10% and 15%). Soil enzymatic activity such as dehydrogenase and fluorescein diacetate (FDA) increased up to 49% and 40% with inoculation of Bac 144, which was considered to be correlated with hydrocarbon degradation recorded as 46%. An increase of 20%, 14% and 9% in shoot length of plant at 5%, 10% and 15% level of oil was recorded treated with Bac 144 as compared to untreated plants. A percent increase of 14.89%, 16.85%, and 13.87% in chlorophyll, carotenoid, and proline content of plant was observed by inoculation with Bac 144 under oil stress. Significant reduction of 14% and 18%, 21% was recorded in the malondialdehyde content of plant due to inoculation of Bac 144. A considerable increase of 21.33%, 19.5%, and 24.5% in super oxide dismutase, catalase, and peroxidase dismutase activity was also observed in plants inoculated with strain Bac 144. These findings suggested that Bac-144 can be considered as efficient candidate for bioremediation of hydrocarbons.
Collapse
Affiliation(s)
- Maimona Saeed
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | - Noshin Ilyas
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan.
| | - Fatima Bibi
- Department of Botany, PMAS-Arid Agriculture University Rawalpindi, 46300, Rawalpindi, Pakistan
| | | | - Sanku Dattamudi
- Earth and Environment Department, Florida International University, USA
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
244
|
Cabral L, Giovanella P, Pellizzer EP, Teramoto EH, Kiang CH, Sette LD. Microbial communities in petroleum-contaminated sites: Structure and metabolisms. CHEMOSPHERE 2022; 286:131752. [PMID: 34426136 DOI: 10.1016/j.chemosphere.2021.131752] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Over recent decades, hydrocarbon concentrations have been augmented in soil and water, mainly derived from accidents or operations that input crude oil and petroleum into the environment. Different techniques for remediation have been proposed and used to mitigate oil contamination. Among the available environmental recovery approaches, bioremediation stands out since these hydrocarbon compounds can be used as growth substrates for microorganisms. In turn, microorganisms can play an important role with significant contributions to the stabilization of impacted areas. In this review, we present the current knowledge about responses from natural microbial communities (using DNA barcoding, multiomics, and functional gene markers) and bioremediation experiments (microcosm and mesocosm) conducted in the presence of petroleum and chemical dispersants in different samples, including soil, sediment, and water. Additionally, we present metabolic mechanisms for aerobic/anaerobic hydrocarbon degradation and alternative pathways, as well as a summary of studies showing functional genes and other mechanisms involved in petroleum biodegradation processes.
Collapse
Affiliation(s)
- Lucélia Cabral
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Patricia Giovanella
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elisa Pais Pellizzer
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Elias Hideo Teramoto
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Chang Hung Kiang
- Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Laboratório de Estudos de Bacias (LEBAC), Departamento de Geologia Aplicada, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil
| | - Lara Durães Sette
- Laboratório de Micologia Ambiental e Industrial (LAMAI), Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil; Centro de Estudos Ambientais (CEA), Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Rio Claro, SP, Brazil.
| |
Collapse
|
245
|
Zhou J, Xu X, Huang G, Li W, Wei Q, Zheng J, Han F. Oil degradation and variation of microbial communities in contaminated soils induced by different bacterivorous nematodes species. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113079. [PMID: 34915222 DOI: 10.1016/j.ecoenv.2021.113079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/29/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Oil pollution poses a great threat to environments and makes the remediation of oil-contaminated soils an urgent task. Microorganisms are the main biological factor for oil removal in the environment but microbial remediation is greatly affected by environmental factors. For our research, we inoculated three species of bacterivorous nematodes into oil-contaminated soil to explore how bacterivorous nematodes affect soil microbial activities and community structure in contaminated soil, as well as how efficiently different nematodes remove oil pollution from the soil. Six treatments were set in this experiment: sterilized oil-contaminated soil (SOC); nematode-free soil (S); oil-contaminated soil (OC); oil-contaminated soil + Caenorhabditis elegans (OCN1); oil-contaminated soil + Cephalobus persegnis (OCN2); oil-contaminated soil + Rhabditis marina (OCN3) for a 168-day incubation experiment. After the experiment was done, the oil contents in SOC, OC, OCN1, OCN2, and OCN3 were reduced by 6.5%, 32.3%, 38.2%, 42.8%, and 40.2%, respectively, compared with the beginning of the experiment. The amount of phospholipid fatty acids (PLFAs) of Gram-negative bacteria in OC, OCN1, OCN2, and OCN3 was increased by 50.9%, 43.4%, 37.7%, and 47.9%, respectively, compared with that of S. During the 168-day incubation period, the maximum growth of the number of nematodes in OCN1, OCN2, and OCN3 compared with the initial number of the nematodes were 2.25-, 1.52-, and 1.65-fold, respectively. The amount of oil residue in the contaminated soil negatively correlated with the populations of nematodes, total microorganisms, Gram-negative bacteria, actinomycetes, and eukaryotes. Thus, oil pollution increased the number of Gram-negative bacteria, decreased the ratio of Gram-positive bacteria/Gram-negative bacteria and Fungi/Bacteria significantly, and altered the community structure of soil microorganisms. Each species of bacterivorous nematodes has got its unique effect on the microbial activity and community structure in oil contaminated soils, but those tested can promote oil degradation and thus improve the environment of oil contaminated soils.
Collapse
Affiliation(s)
- Jihai Zhou
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China; Nanchang Institute of Technology, Nanchang 330099, China.
| | - Xiaoyang Xu
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Guomin Huang
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Wei Li
- Nanchang Institute of Technology, Nanchang 330099, China
| | - Qian Wei
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China
| | - Jiyong Zheng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Fengpeng Han
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
246
|
Gondi R, Kavitha S, Yukesh Kannah R, Parthiba Karthikeyan O, Kumar G, Kumar Tyagi V, Rajesh Banu J. Algal-based system for removal of emerging pollutants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 344:126245. [PMID: 34743994 DOI: 10.1016/j.biortech.2021.126245] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The bioremediation of emerging pollutants in wastewater via algal biotechnology has been emerging as a cost-effective and low-energy input technological solution. However, the algal bioremediation technology is still not fully developed at a commercial level. The development of different technologies and new strategies to cater specific needs have been studied. The existence of multiple emerging pollutants and the selection of microalgal species is a major concern. The rate of algal bioremediation is influenced by various factors, including accidental contaminations and operational conditions in the pilot-scale studies. Algal-bioremediation can be combined with existing treatment technologies for efficient removal of emerging pollutants from wastewater. This review mainly focuses on algal-bioremediation systems for wastewater treatment and pollutant removal, the impact of emerging pollutants in the environment, selection of potential microalgal species, mechanisms involved, and challenges in removing emerging pollutants using algal-bioremediation systems.
Collapse
Affiliation(s)
- Rashmi Gondi
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
247
|
Teng T, Liang J, Wu Z. Identification of pyrene degraders via DNA-SIP in oilfield soil during natural attenuation, bioaugmentation and biostimulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149485. [PMID: 34392205 DOI: 10.1016/j.scitotenv.2021.149485] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pyrene is a model contaminant of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs), which are compounds that have potential carcinogenic effects and pose a serious threat to human health. Finding effective pyrene-degrading bacteria is crucial for removing PAHs from soil. In this study, DNA-based stable isotope probing (DNA-SIP) technology was used to investigate pyrene degraders in PAH-contaminated oilfield soil during natural attenuation (NA), bioaugmentation (BA) and biostimulation (BS). The results show that BA played an important role in pyrene degradation with the highest pyrene removal rate (~95%) after 12 days incubation, followed by removal rates of ~90% for NA and ~30% for BS. In addition, 6 novel pyrene degraders were identified, while 12 well-known PAH degraders were demonstrated to participate in the biodegradation of pyrene. Additionally, the external homologous strains introduced during BA promoted the degradation of pyrene, but not by directly participating in the metabolism of the target compound. Rhamnolipid supplementation during BS promoted the involvement of more microorganisms in the degradation of pyrene, which was beneficial to identifying more pyrene degraders via DNA-SIP. These findings provide new insight into the effects of external homologous strains and supplementary rhamnolipids on pyrene degradation.
Collapse
Affiliation(s)
- Tingting Teng
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jidong Liang
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zijun Wu
- Department of Environmental Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
248
|
Shapiro TN, Lobakova ES, Dolnikova GA, Ivanova EA, Sandzhieva DA, Burova AA, Dzhabrailova KS, Dedov AG. Community of Hydrocarbon-Oxidizing Bacteria in Petroleum Products on the Example of TS-1 Jet Fuel and AI-95 Gasoline. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821090076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
249
|
Prasad A, Kothari N. Cow products: boon to human health and food security. Trop Anim Health Prod 2021; 54:12. [PMID: 34894304 PMCID: PMC8665701 DOI: 10.1007/s11250-021-03014-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 12/03/2021] [Indexed: 02/05/2023]
Abstract
The world population exceeded 7.8 billion people in 2020 and is predicted to reach 9.9 billion by 2050 as per the current increasing rate of 25%. In view of this, ensuring human health and food security has become an issue of key importance to countries with different degrees of economic development. At the same time, the livestock sector plays a strategic role in improving the economic, environmental, and sociocultural stewardship of any nation. The cow (Bos indicus) has held a distinctive role in human history ever since its domestication because of its valued harvests like dairy products (milk, clarified butter, yogurt, curd, and buttermilk) excreta like dung and urine. These products, except dung, provide all the necessary energy and nutrients to ensure the proper growth and development of the human. They are the source of many bioactive substances, which possess immense pharmacotherapeutic action against various physiological, metabolic and infectious disorders, including COVID-19. The use of urine and dung can be considered a low-cost agricultural practice for farmers and has been extensively used in modern agriculture practices to ensure food security via soil fertility, plant pathogens, and pests. Cow urine mediated synthesized nanomaterial also display distinctive characteristics and novel applications in various fields of science and technology. Thus, this paper aims to provide a comprehensive overview of cow products, describing their biochemical constituents, bioactivities, and their utilization in the area ranging from human welfare to agriculture sustainability. An attempt is also made to present possible applications in bioenergy production and pollution reduction.
Collapse
Affiliation(s)
- Arti Prasad
- Laboratory of Public Health Entomology, Department of Zoology, M. L. Sukhadia University, Udaipur, Rajasthan, India
| | - Naresh Kothari
- Laboratory of Public Health Entomology, Department of Zoology, M. L. Sukhadia University, Udaipur, Rajasthan, India.
| |
Collapse
|
250
|
Fu J, Chen J, Wang Y, Meng T, Yue L, Luo D, Wang X. Promoting effect of the recombinant resuscitation promoting factors-2 of Rhodococcus erythropolis on petroleum degradation and cultivable bacterial diversities of the oil-contaminated soils. Lett Appl Microbiol 2021; 74:462-469. [PMID: 34878651 DOI: 10.1111/lam.13626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 11/27/2021] [Accepted: 11/29/2021] [Indexed: 11/27/2022]
Abstract
Resuscitation-promoting factors (Rpfs) belong to peptidoglycan hydrolases, which participate in recovery of dormant cells and promoting bacteria growth. In this study, the resuscitation promoting factor rpf2 gene of Rhodococcus erythropolis KB1 was expressed in Escherichia coli and purified by Ni2+ affinity chromatography. The purified recombinant fusion protein Rpf2 showed a closely 50 kDa band on sodium dodecyl sulphate polyacrylamide gel electrophoresis. The protein showed muralytic activity, with a specific activity of 1503 ± 123 U mg-1 when determined with 4-methylumbelliferyl-β-d-N, N',N″-triacetotri-ylchitoside as substrate. It also showed protease activity when measured with azocasein as substrate, with a specific activity of 1528 ± 411 U mg-1 . The addition of the recombinant Rpf2 protein significantly increased petroleum degradation efficiency of the indigenous micro-organisms and the petroleum degradation rates increased from 30·86 to 43·45%, 45·20 and 49·23% in the treatment groups. The recombinant protein also increased the petroleum-degrading bacterial diversities enriched from the contaminated soils. The cultivable bacterial flora of the treatment groups supplemented with different concentrations of Rpf2 increased from 82 genera in 9 phyla to 116 genera in 16 phyla and 138 genera in 16 phyla respectively. Thirteen extra petroleum-degrading bacteria strains were isolated from the petroleum-contaminated soils in the groups containing the recombinant Rpf2.
Collapse
Affiliation(s)
- J Fu
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - J Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - Y Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, China
| | - T Meng
- Gansu Academy for Water Conservancy, Lanzhou, China
| | - L Yue
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - D Luo
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| | - X Wang
- School of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, China
| |
Collapse
|